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Abstract— This paper details an approach to the integration
of INS (Inertial Navigation System) and TAP (Terrain-Aided
Positioning). The solution is characterized by a joint degn of
INS and TAP, meaning that the highly nonlinear TAP is not
designed separately but jointly with the INS using one and tk
same filter.

The applied filter extends the theory of the MPF (Marginalized
Particle Filter) given by [1]. The key idea with MPF is to estimate
the nonlinear part using the particle filter and the part which is
linear, conditionally upon the nonlinear part, is estimated using
the Kalman filter. The extension lies in the possibility to del
with a third multi-modal part, where the discrete mode variable
is also estimated jointly with the linear and nonlinear parts.
Conditionally upon the mode and the nonlinear part, the resiting
subsystem is linear and estimated using the Kalman filter.

Given the nonlinear motion equations which the INS uses to
compute navigation data, the INS equations must be linearzd
for the MPF to work. A set of linearized equations is derived
and the linearization errors are shown to be insignificant wih
respect to the final result. Simulations are performed and tle
result indicates near-optimal accuracy when compared to th
Cramer-Rao lower bound.

Index Terms— Terrain-aided navigation, particle filter, Kalman
filter, marginalized.

I. INTRODUCTION

A

[3], [4]. Although satellite navigation is seeing a widesad
use, problems with the GPS such as reception limitation and
interference increase the relevance of other aiding ntviga
sensors. One example is terrain-referenced navigation, or
terrain-aided positioning (TAP). The principle is to me&su
terrain variations along the flight path and compare it to
a database with stored terrain elevation for given posstion
Although TAP does not suffer from the limitations applicabl
for GPS, there are other criteria which must be met. The
distance to the ground needs to be within the operating range
of the radar altimeter, you need a terrain elevation map tneer
area of interest and last but not least you need terrainti@ria
along the flight path (which is not always the case e.g. when
flying over water). Nevertheless, often the drawbacks of TAP
are easier to accept than those for GPS, and the idea of using
the terrain height [5], [6] or landmarks [7], [8] for positimg
purposes has been around for quite some time now.

The challenge with TAP is to deal with its highly nonlin-
ear, non-analytical characteristics. When facing a nealin
estimation problem, a standard tool among practitioners is
to apply the extended Kalman filter (EKF). Due to TAPs
multi-modal character, corresponding to a measured terrai
profile matching several profiles in the database, the EKF
often fails. Better performance is obtained using gridelias

CCURATE AND RELIABLE navigation systems havenethods, e.g. the point-mass filter [6], where the probibili
been identified as a critical enabling technology fag giscretized over the state space. This is possible dueeto t

enhanced aircraft capabilities in the coming 10-20 yeaigy, dimensionality of TAP (either two or three dimensions if
One reason is the foreseen increased use of unmanned agfakigering altitude besides horizontal position).

vehicles (UAVs). Following the introduction of UAVs the Tragitionally, integrating TAP with INS has been performed
requirements on the navigation system (cost, size and perfgsing separate filters, one for TAP estimating position and
mance) is strengthened, and no stand-alone navigationrseng,other for estimating INS quantities using position froAPT

is capable of meeting them aI_I. T_he solution is to ble_znd thes input [9]. Here, we use state-of-the-art joint desigramiteg
output from two or more navigation sensors to achieve §Rat we blend TAP and INS tightly in one and the same filter,

overall good enough accuracy and reliability.

see Figure 1.

flight conditions involving substantial maneuvering, i@r 1o solve a nonlinear, high-dimensional problem. Here high-
navigation systems (INS) are usually regarded as the pyimgfimensional means that we have to consider not only position
source of navigation data. The major drawback with inefyt also INS computed quantities such as velocity, attiante
tial navigation is that initialization and sensor errorsi®& neading. This rules out grid-based methods which, due to the
computed quantities to drift. To stabilize the drift and@mes computational load increasing exponentially with the dime
long-term accuracy the inertial navigation system is irde&l  sjon, are tractable only up to three dimensions. Simulation
with one or more a|d|ng.s_ou_rces. The standard aiding souliggsed methods, such as the particle filtter (PF) [10], have
today is the global positioning system (GPS), see e.g. [#he promising feature of theoretically being independent o
. . . - dimensionality. Simulation results indicate however ttras
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Inertial + Il. OUTLINE

navigation
system - This paper begins by a derivation of INS error dynamics in
Section Ill. The INS nonlinear equations, for the sake of eom
pleteness given in Appendix I, are linearized and the rizgult
__FUSION linear INS error equations are shown to accurately describe
! Estimation of | i i ; i :
| f|i;Sgr'1ng;&na?1d the qlrcrgft dynaml_cs._The non-an_alytlcal and hlghly noedir
Pressure | sensorerrors | terrain-aided positioning system is introduced in Sectign
altimeter J ¥ The derivation of the extended marginalized particle filter
! Terrain-aided: (MPF) is given in Section V. The derivation consists of three
| positioning . .
bogqrrmoeoeey lemmas, where each lemma provides result on how to estimate

the linear, multi-modal and nonlinear parts respectivélye
e | [Temain details on the algorithm for the blended INS/TAP system is
altimeter] height | given in VI where we also analyze convergence properties
S| . . . . . .
of the filter. The algorithm is tested in a simulation study
Fig. 1. Chosen configuration for blended INS/TAP. The presaitimeter &S described in VII. Finally conclusions are elaboratedron i
is used to stabilize INS vertical channel. Section VIII.

Il1. INS ERRORDYNAMICS

This has to do with the process noise being so small, makinﬁ.COIIeCt all nay@_aﬂon variables, i.e. latitude Ion_gltuqlel,
aftitudenh, velocity in northv,,, eastv. and downv, directions

the particles cluster in state space and thereby incrediseng d attitud 4 headi ted by at f g ¢
discretization error of the particle filter. For the stardra and attitude and heading represented by a transtomatiarxma
Iféom body to navigation framé€?’, in a state vector

particle filter to work on the blended INS/TAP described he
the number of particles needed for filter convergence is lgimp c=[L 1 h vy ve vg vec(Cgl)}T. (1)

too large to be computationally tractable [11].

. . . . The input variables, i.e. acceleratioffsand angular rates?,
However, we derive a set of linearized equations for the IN§e collected in the vector

errors and we show that the linearization errors are smait. P
ticularly this is true when the errors are kept small eithging w={[fy fb ff oWl oWl oWl )

Y
a high performance INS or by feeding the error back to t . . L . .
INS. Still the problem is highly nonlinear due to TAP, but novk\l/-Eeor details regarding the navigation and input variables se

with a conditionally linear sub-structure correspondiagtie ApXendlxdl_. 'II'he state dynatrInI%s, g|v_?tn by (76)(’1.(781 and (84)
additional INS related quantities. This means that coodily N Appendix 1, can compactly be written according 1o
upon position the INS related quantities can be estimatiedjus 2= f(z,w). 3)

the extended Kalman filter while position is estimated usinlg i . .
the particle filter. The combined Kalman/particle filter isa Denote the corresponding INS state and input vectors'by

known as the marginalized particle filter (MPF) [1] or th@ndw'™*. Due to initialization and sensor errors the state vector
Rao-Blackwellized particle filter (RBPF) [12]. computed by the INS will differ from the true state vector.

_ ~ Define the INS state and sensor errors according to
For the system to be able to provide accurate estimates

of position we need an accurate estimate of altitude. One r=z-2", u=w-—w". (4)
way forward and the one detguled in this paper is to u%f’ombining 3)-
measurements from a radar altimeter (RA). The ground clear- '
ance measurements from the RA are however subject to a T=2-2"=f(z,w) — f(z —z,w —u). (5)
mode dependent error characteristic. The measurement eﬁr . . . . . -
e goal is to provide a set of linearized equations desuyibi

reflects e.g. whether there are a lot of trees on the groun )

o . , the INS error dynamics,
or not. Conditionally upon the mode and nonlinear horizbnta
position, altitude is straig.htforwardly estimated by thalidan _ o(t) = A(t)x(t) + B(t)u(t) + A, (6)
filter. The MPF from [1] is here extended to account for this ) ) o )
multi-modal character of the terrain elevation measuretmenSUCh th_atA representing Fhe linearization error is small. Below
The extension consists of including estimation of the aiser W€ derivez, u, A and B in (6) such that
RA measurement error mode as a third part in the joint filter |A] ,
design. The use of an airborne laser scanner (ALS) to measure  [[Ag],| <001, i=1,...,n, VoeTablel (7)
ground clearance [13] is an interesting alternative to ttar
altimeter. The accuracy and possibility to filter measunetse
which originate from tree reflections should yield signifitig
better estimation accuracy. On the other hand, the ALS has , — []j [ h B B o e a b bZ]T’ )

problem penetrating fog, rain and clouds which limits its N " s 1T
applicability. w=[u" ug o oug u) ouyouloup gl ©

}T

(4) we can write the error dynamics as

wheren is the number of states in We will show thatz and
u according to



and A and B according to Appendix Il are adequate. The Applying (5) on (78) gives the velocity error equation
vector x in (8) is extended with two states for accelerom- . ~ ~ ~ ~
roet = (O — Gt — (O, + 2007

eter biasesh; and bj, compared to (4). Moreover, in (9) A ~ (15)
consists of white noise components including process noise Q7, —QF, +2(2F — Q)" + ",
for the accelerometer biase4 andw?. Note that there is no , T

; : Y ; with s = f* — g and g" ~ [0 0 g4 . Taylor
accelerometer bias or noise along body framrexis. Instead = a g = ga| . Tay

white noiseu enters the equation for altitude errodirectly. expf';msion onug, using (80) and (5) arounef, h and L and
The reason for this is that the INS is supported by a press@@wi. aroundL provides
alt|rr_1eter, see Figure 1, which compensates for any driftién t OP 1 25n =80 4200 + A,
vertical channel. N .

;’—; — 2w;e L sin L

TABLE | 5 2 B (16)
RANGES ON NAVIGATION DATA Wen + 20 = p T - '
' —TOZSSLQL — L f;nL — 2w Lcos L
|L| < 70 deg |L| < 2000/ rad W N - N .
- e can also simplifw?” —o" +2(w? —&?) in (15) accordin
|vtot] < 200 m/s |Dtot] < 2 mis
IYn,el <5-10"% rad  |yq| < 1-1073 rad Wen — Wep + 2(Wie — Bfe) = Wgy, + 2wy + Ay,
|f2.,.2| <20 mig |bg | < 5-1073 m/& e + 2wje cos L 17)
N U
Wl + 2wl = -
From (76) and (5) the expressions for the latitude and —vetanl 9., sin L

. TO
longitude errors become } Moreover, define a small-angle transformatiof® =
Up, _ Un — Un _ [% Ve yd}T, in skew-symmetric matrix form denoted by
ro(L)+h  r(L—L)+h—h '™, through
1 ~ —1 T (10) - . .
Ve COS L _ ('Ue — Ue) COS (L — L) ng — Cl;n, _ Cl’)n.,lns _ ng _ Og,]nsogz

n(L)+h  r(L-L)+h-h (1 - OO — TR 4 A
n v

z:

i:

(18)

Apply Taylor expansion on (10) arourid 2 and L and we

can rewrite the equations according to The small-angle transformation describes a rotation of the

navigation frame computed by the INS relative to the true

I— if}n +A; navigation frame. The rest teri,. consists of second and
To (11) higher order terms'ofy” which are obtained after Taylor

f: Ve sin L i 1 b+ A expansion off — C»™s. Applying the approximations on the
rocos2 L rocos L © ! velocity error equation in (15), together with* = CJ f°,

Inserting values on the errors involved from Table I, thE"f" = —F"y" andQ"v" = —V"w", yields

magnitude omA; and Ay in (11) is B R Crab V@ + 2wl )+ )
|AE| <82—|— z)nh <9-1073, Vv (wen+2wie)+g + Ajn.
|[Ax]z| UnTo

- (12) The error introduced in,, and v. when going from (15) to
|A;] - Dee? + veh /1o

<8.10-3 (19) is upper limited by
[[Az);| = v.Ltan L + o, . L
: N 145, oo < 1A fPlloo + 7@l (20)
From (76) we see that the equation for the altitude ekror o n
becomes. : 17" Bulloe + IV A
;L _ Using (16) and (17) we have
= —Uq.

. . . . . ||Ac~’"fb||00 Szﬁmax( ia gljaf,g)
The INS is unstable in the vertical channel with a time camista L w1 e
of approximatelyl0 minutes [14]. For an operational INS the IT"a"||oo < 2yamax(by, by, b2),
vertical channel must therefore be stabilized. Typicahis t — _otanL  e*vLtanL ~ (21)
is done using a pressure sensor. A simple and reasonablgv Aulloo < 3( o + o +2wiel),
assumption is that the pressure sensor error drifts acuptdi . 5e2tan L vhLtan L -,
a random walk process, where the driving noise is described||V" As [loe < v( o + 2 + 2w;e L),

0

by the u"-component in (9). Moreover, we assume that the
stabilization works through an altitude filter such that IN& ~ With v = max(vy, ve). Using values from Table | we obtain
E:t:ue(;eu;(r)(;‘r follows the pressure altitude error, rangltin 1A, [l (40 + 10+ 4 +2) - 10~©

I[Az]5, .| — (10000 + 5000 4 300 + 100) - 10=¢  (22)
k. (14) <4-1073.

>
X
<



Finally, using (84) and (18) it is straightforward to showlhe difference between these two measurements provides a
[14] that the linearized equation for* is given by measurement on the terrain height at the location where the
_ C”J)b _qn LA measurement was performed. A number of such measurements
b " 7" 23 build up a measured terrain height profile. The aircraftieara
Y tanL + wie), (23) terrain elevation database where the terrain height isdtas a
function of sampled horizontal position. The measuredatarr
wherev = max(v,,v.) ando = max(d,,0.). The rest term height profile is compared with all possible profiles obtdine
A~ consists of second and higher order termsydf The from the database. The database profile which resembles the
error is therefore upper limited by measured profile the most is selected, and thereby detesmine
the aircraft’s position.

1A oo < 2794(

< <3-107%. (24 -
[Az]a_.] = (1000 1 500 1 100) - 10-9 (24) The equation for terrain-aided positioning is
The error characteristics for the accelerometers and rate Yo = h"™ = b = h(Le, lt) — he + ey, (28)

gyros are in general involved, see e.g. [15]. The easiest, blhere y: is measured terrain height arid.) is the terrain
for the application adequate, way to model the accelerdmeﬁé

eight given by the database as a function of horizontal
errors is to use a slowly varying offset and white noise,

Normally there also exist offsets in the rate gyros, but ehegosnmn l.e. latitude and longitude. The tern is the INS
alt|tude error. Moreoverg,; is the measurement noise, having

are for the application here considered small and therefq robability density which here is given b

neglected. Note however, the algorithm is readily modiéab p y y g y

to include the influence of gyro drift in cases where the gyro k Y 0

offset is larger or the time interval is longer. The acceteeter Z Pr(A)N (my™, R™), (29)

offset, or bias, can with good accuracy be modelled as a first Ae=1

order Gauss-Markov process, i.e. a Gaussian mixture with two modes. The first maokle=¢
ja 1 B b~ b o5 1) represents the case where the radar altimeter beam hits the
-7 Tut AU (25) ground and thereby reflecting the true ground clearance. The

The last approximation is valid because the time constantSécond modeX; = 2) models the case where the beam hits a
is usually rather large. We will here incorporate acceleten tree top, giving a measurement of the ground clearance which
biases acting On'y in the- and y-directions in body frame. is too small. The probablllty for each of the two events is
This is an implication from the assumption that the IN$T(A: =1)andPr()\; = 2) respectively. The radar altimeter is
altitude error follows the pressure altitude, meaning #mgt-- @ pulsed system operating48 GHz which makes it sensitive
accelerometer bias is compensated for through the statidirz t0 reflections from e.g. trees. Together with a wide beam lobe
of the vertical channel. This is true for situations whert ro(~ 50 deg) the radar altimeter normally measures the closest
and pitch angles are close to zero. During a turn, clinfiistance to the ground or any obstacle, even during moderate
and/or dive the altitude filter is effected by and/ory— roll and pitch angles. To eliminate roll and pitch dependent
accelerometer biases. Here we assume turns, climbs an@/@rs the measurements from the radar altimeter are ndt use

dives are rare such that we can neglect this effect. when roll or pitch angle is larger thars deg.
To be able to apply our discrete time filter (6) has to be A simple way of avoiding the mode dependent error charac-
discretized teristics is to approximate the probability density in (28)h
a single Gaussian. However, it is shown in [16] that the gain
Tor = Fyy + Guug. (26)  when taking advantage of multi-modal characteristics can b
For a small sampling period, the Euler approximation significant. Simulations show that e.g. horizontal positie
provides estimated with approximatel§0% better accuracy.
F,=I+T At,
V. THE MARGINALIZED PARTICLE FILTER
G = (I+ At)Bt’ @7 The main idea of the particle filter is to discretize the
E[usul] = Q4/Ts, posterior probability density for the staig according to
where A(t) = A, B(t) = B; andE[u(t)u®' ()] = Q(t) = Q, N
are considered constant during the sampling period. p(x:|Y) Zwt 9, (21), (30)
IV. TERRAIN-AIDED POSITIONING whereJ is the delta-Dirac function antl; = {yo,...,y:} is

The idea behind terrain-aided positioning is to use tHbe stacked vector of measurements. The welgiﬁ’t)s where
terrain height profile, obtained by projecting the path of chZ 1 u’J,gl = 1, together with the par‘uclest are such that
aircraft onto the ground. The INS computed altitude prosidehey together yield a set of samples approximately drawm fro
a measurement of altitude above mean-sea level. At the sattme posterior probability density. Theoretically we carveo
time the ground clearance, i.e. the distance between #ilenost any estimation problem using the particle filter,cengl

aircraft and the ground, is measured using a radar altimet&s the number of particled is high enough.



In many cases the underlying motion model has structureg extractingz;' from X*. Moreover, combining (36) and (37)
which can be exploited for the purpose of decreasihg@nd we have estimates of

thereby the computational load. Consider a state-spacelmod | N N
which can be written on the form p(zy]Yy) = / (2| X7, Yo)p( X7 |Y2)d X
=R Gl (31) ~ 3 plal X0, 12)
$t+1 ft (@) +F, d Gdut ) (31b) i—1 (39)
Flal + Glul, 31c N N
e (xi) st 2 (lv) = [ plat e Yop(xyax,
= ht ((Et ) +Htxt + €t ()\t), (31d) N
wherez; = [(a:?)T (zHT (xi)T]T. The superscripts, d s ngi)p(xﬂXf’(i),Kg).
and1 denote which part of the state vector has a nonlinear, i=1

discrete and linear structure respectively. Note that&pat |n the forthcoming three Lemmas we derive expressions for

(31) are used to emphasize what parts of the state vedieiv to recursively computep(X|Y;), p(x}|XP,Y;) and
are affected by other parts and the measurements. Thiqu'§td|th,yt), i.e

important for the results derived below. Assume that th

. 1 n i
process noise is Gaussian distributed according to Lemma 1 p(a| X7, Y1) by the Kalman filter,

Lemma 2 p(z}|XP,Y;) by a bank ofAM*+! Kalman filters,

ul QY 0 0 Lemma 3 p(X}'|Y:) by the particle filter.
ul 0 0 Q) The recursions are such that we do not need knowledge of

See [1] on how to deal with a mutually correlated proced@€ state historyXy but only zi_, and z. The derived

noise. Also assume that! andz), are Gaussian distributed€XPressions are then used together W'th (38) and (39) to
ie. obtain estimates of the posterior pdfsadf = andz?.

3 ~ N(0,P), xb ~N(0,P)). (33) Lemma 1 (Conditionally linear single Gaussian)For the
state-space modd[31), with the assumptions according to

The measurement noiseis a sum ofd/ Gaussians according(32)_(33) we have that

to
Pr(\ N (At) R()xt) 34 p(.%‘“Xf, Y;&) = N(‘%}ﬂta Ptl‘t), (40a)
€t ~ )\ZZI r( t) (mt y Ll )? ( ) p(x}f+1|Xgl+1,}/t) :N(:E}f+1|t’Ptl+l‘t)a (40b)
with mode transition probabilities where
~1 _ ~1 1 - 1
Wi' _Pr()\t|At71)7 )\tv)\tfl = 1,,]\/[ (35) xt|t _xt|t—l7 Pt|t _Pt|t—17 (41)

The aim is to recursively estimate the probability densit?nd
function (pdf) forz, given all available measuremerits The i:iH‘t = (F} - prtFt“)iri‘t—l—

pdf is then used to compute an estimaterpfhere the mean n  _ ¢n/om l/.n

value, and the corresponding covariance of the estimate. Th | K. l(xt“ i (:ft ) +1ft(xt) T

direct approach is to apply the particle filter. However, tfoe Piae = F; Ptlt( DT+ GUG)T Ky tSpiKpy, (42)

class of systems described by (31) there exists a more efficie K, , = F‘Pt‘|t(F“)TSp 5

way. Consider the probability densipyz}, ¢, X2|Y;), where n n npl [ poyT

XP = {z8,...,21'} is the stacked vector of state history. This Spa = GRQUGH" + FMP(F)

pdf can be factorized using Bayes’ rule according to Proof: Conditionally uponX?, z} is independent ot
p(at, 23, XP|Y;) = and thereby unaffected by the multi-modal noisegiven by

d on divn N (34). The result then follows immediately from [1]. [ ]
pliley, X7, Yop(ay | X3, Yo)p(Xi'Ye) = CORNN practice the above means that we can estirpaté|Y;)
(| X2, Yi)p(ad | X2, Vi) p(XP|Y:). as the weighted sum oV Kalman filters applied to each

n,(i)y N
Assume for now that we have an estimate based on the partRguence of X"} ¥ .

filter of p(X|Y;) according to N _ ) _
Lemma 2 (Conditionally linear multi-modal Gaussian)

For the state-space mode{31), with the assumptions

P(X{Yr) =~ Zwt @ (X7)- (37) according to(32)«(35) and A; = {)o, ..., A+}, we have that
From (37) we have the probability density p(z Z N Af{t(At)a Pji(At))a (43a)

LA pr(p (M) pei(As
' |Yy) Zwt oo (@), (38) plaf | XE, V) Z ( t+(1|t)’Pt+(1|t))’ (43Db)



where Lemma 3 (Gaussian distributed likelihood and prior)

dy(Ar) _ ady(Aeoi) The probabilityp(X}|Y;) is recursively given by
Ty = xt\t 1t 44 N
P (At I)HT(S(At))fl( A(A ) ) ( a) p(Xt |}/:f) =
fe-1 AR Pyl XP Yo )p(@ | XP 1 Yier) o (49)
d,(Ae) _ pdy(Ae-1) _ (X3 1]Yio1).
Pt|t - Pt\t 1 p(yelYe-1)
(44b) _ .
P t(Alt 1)HT(S(A )) 1Ht(Pt t(Alt 1))T7 For the state-space modé31), with the assumptions accord-
(A)) | d.(Ar_1) O ‘) ing to (32)+(35), we have that
g, = he(xf) — HyZ, o —my ™ (44c)
yt|t 1 t\Lt 12 tlt—1 t n (A¢)
(A Y () (Ae—1) 14T p(yt|Xt Y1) = Zat ) (50a)
Spil =R +HP‘t LU H, (44d) -
Pt XE, Ye) = N(@ s Pryae)s (50b)
~d,(As) ~d, (A
t+(1|t fi=}) + F'2 t|t( g 45) where
PN = RPN (FDT + GG, i = fie) £ s -
and t+1\t = Ft Ptl\t(Ft ) +G?Q?(G?)T,
o™ = N (g t(ﬁt 1,S(Af ) ﬁift{”, with o{**) given by(46)
_(A) agA t) (46) Proof: Expression (49) is given by repeated use of Bayes’
Q= > A0 rule. Forp(z}, | X}, Y;) see [1]. Forp(y,| X}, Y;—1) rewrite
A T it according to
Pdrgof: The probability p(z$| X, Y;) can be written p(y| X2 Y1) =
according to
J Zp Yl XP Ve, APr(AXT ) Yio) =
pEPIXP V) = p(af| X, Ve, A)Pr(A| X7, Y1), (47) g o o
ZN Yeje—1 ft )7T>\t LT = (52)
Condmonally upon ), ¢; is a single Gaussian. Together
with &) = Pr(A,|XP,Y;) the result for (43)—(45) follows Zat :
from [1] Using Bayes’ rule repeatedly and the principle of At
induction, the probabilityPr(A¢| X}, Y;) is recursively given where the last step is given by (46). m
by For the particle filter algorithm, we can choose to use
Pr(A| X2, Y;) = p(z}| X} ’(f ,Y;_1) to update the samples, i.e.
Py X2, Vo1, A)Pr(A XP, Yeo1) 2O p(ar| Xm0 vy, (53)
Pl XP, Yi1) knowing that this is a Gaussian density and thereby easy to

P(ye| X7, Yer, A)Pr(Ae| At )Pr(Ae [ Xy, Vi) — (48) sample from. The weights are then calculated according to
Y oa, P X2 Yo, A Pr(Ae [ A1) Pr(Ap 1 [ X7, Yi )

(%) _ (4) _ (4, At
(e X2, Vi, APrO A )alhe ) w = pr XD Yy = o', ;a
) n (Ae—1)” i ' (54)

A, P X Y1, A)Pr(Ae A1)y 5 o0 w?
From [1] we know that p(y:| X}, Yi—1,As) = o Zk wtk)’
N(gjgﬁt_)l, S}f‘tf)). Together with the mode transitionwhich together with (53) yield (38).
probability ”ill = Pr(M|A—1) the formulas in (46) A very important special case of (31) is when the matrices
follows. m FRGHFE GY, Fl, Gl andH, are independent of?. In this

In practice this means that we have to apply one Kalm&ase one can deduce from Lemma 1 and 2 that the Kalman
filter for each sequence of particles and each sequencefitbér covariance matrices are
modes. The number of possible mode sequences increases pLi) _ pl gnd phAd — pdi(Ao)
exponentially with time and must somehow be limited. One tlt et tlt te
way is to include the estimate of the mode sequence in thg independent o™ ‘@) and at each time we only have to
particle filter, which automatically limits the number sutblat update it once for! and A, times (each mode sequence) for
only the most probable mode sequences survive. Another Wﬁy(l\t This implies that, for a given number of sampl¥s
is to merge mode sequences which are identical ffomL e computational load for the marginalized particle filigr
up to Land including?, so as to keep the number constanf,s oximately the same as for the stand-alone particle. fitte
(= M?), using e.g. the generalized pseudo-Bayesian (GPf)s case, given that the number of samples needed for MPF
or interacting multiple model (IMM) filter [17], [18], [19]. g significantly lower than for the particle filter, the gairitiv

respect to computational load can be substantial.

(55)



V1. BLENDED INS/TAP usING MPF given by

jd,(z’,>\t) _ j?d,(i) +

t|t = Yt—1
X i i d, (i i)\ — (6, A
A. The applied algorithm Pt\t(—)lHtT(SJ(",t )y — yt(\t—b’
_ o _ _ pdir) _ pd i) _
For the purpose of applying the marginalized particle filter = ¢/t tlt—1
we separate the position and altitude states from the others PO T (U AN (pd T
. tlt—1"1t \Fft tjt—1/ >
(8) according to ) (59)
i\t ~( ¢ it PG VIl
"™ = NGy S DD me el
~ ~.T Ai—1=1
v =[Le L], (i) n,(i) (i) (M)
:C‘ti = ;Lta (56) y?.t’;l) = h((a;\t), ) - H;:?)"til —my 7,
L T S = R + P HE
Tp = [Ont et Ynt Vet Yar bhy bo,]" . fit R

To keep the number of mode sequences constant the result

i G
Using the system equations derived in Sections Il and I¥, trf]r?irr;t)the 2tW0 K(?Ikr‘tn)an filters are merged, using =
M3 oy, according to

discrete state propagation and measurement equationmbec%t
2

0 = 37 {0,

n n tlt t|t
Tiy1 Ty d Ap=1
ﬁﬂ =F, @ +G{$]. (57a) | 2 | _ _ (60)
Tiiq Ty t Pt(|11;(l) _ Z dz(sz,)\t)(Ptflii(l,At) 4 (j?‘wt(zv)\t) _ ‘%?\t(Z))2)

w=n([f] +at) -t v ©7) e
t We will add some artificial process noiggdd for the

latitude and longitude error states, to deal with particle fi

whereh(-) in (57b) is the terrain database height with inputPr discretization errors and to further decrease the numbe
arguments latitudé,; = Li" + L, and longitudd, = l%ns+l~t of needed particles. This will change the state propagation

and equation for horizontal position in (57a) to
T = By + Flntxi + Gyuy +uf, (61)
———
Fryo Oaxn B ul

F,=1+T:A; = 012 1 O1x7| ,

Flo 01 Fl which should be compared to the propagation equationfor

ie.
T OQXIT Gt (58) 1 _ Fl n +F1 1+Gl 1 (62)
Gy =Ts(I + 71415)375 = |Ts(1+ %) Oixr|, Tipr = oy 1,t % Uy
1
071 Gy The process noiseg' andu. are mutually correlated. On the
uf =y, other hand, her€)?44 > Q! which yieldsu} ~ u24¢ and the
W= Tue . we. W W w). wb. b }T correlation is therefore neglected.
! et Tt Tt Tyt Tt Tt Tyt A summary of the applied algorithm is given in Algorithm
1

Note that the state propagation model in (57a) is linear as
opposed to the more general nonlinear model used in Sectidigorithm 1 The MPF for blended INS/TAP
V. 1) Initialization: .

To only have to compute one covariance matfk, the Fori=1,...,N, Sample:cg’(z) ~ p(zy), and set
matricesF},, F,, G andG} must all be independent of;. L) pl )
This is achieved by not compensating INS computed quasititie {IO\—l’ PO\—l} =10, Ko},
with estimated errors before entering, i.e. z; = =™ + {j'gl’(_ii’POd"’_(il)} = {0, PN,
Z; ~ ™. An alternative is to compensate using tNEPF _G1) _(i,2)
estimates, meaning that we use the same compensation for all {aly’, aly"} = {Pr(A = 1),Pr(A = 2)}.
i =1,...,N. The second alternative should be better if the 2y GpB filter measurement update:
INS errors are large, but for simplicity the first alternatis Fori=1,...,N and\; = 1,2, compute
chosen here.

For the altitude erro:cffi — h, we choose to estimate it using
the GPB filter. This means that we use two Kalman filters, each al" ) = ot ) (D 4 o0y
one conditioned on one of the modes in (29). For each time d,(5) pd,(4) .
the number of modes is always two. The recursions are then {xtlt ’Ptlt } using (60).

{:Efl’(i’kt) Pd’(i”\‘),af’m} using (59),

t v Lt



3) Particle filter measurement update: the singular values 0O(¢,t + k) are very small, and this is

For eachi =1,..., N, update true for larger values o#& as well.
w = w", 2 _ alid), o = w3 w. To clarify, we can simplify the system equations further
4) Resampling: by discarding those elements which are insignificant during

Resample N times with replacement according to shorter periods of time, say one or two minutes. For these
Pr(x(i) . x(k)) —g® short periods of time we can neglect that the earth rotatds an
t TNt - %t o

] that the surface of the earth is curved, i.e.
5) Kalman filter measurement uppdate:
Foreachi=1,..., N, set

i . wﬁi ~ 03><1, wgn ~ 03><1. (65)
L) AL(4) _
Tyje = Tyg_1r Ptl|t = Ptl|t71'
6) GPB filter time update: The simplification above means that the state transitiomixnat
For eachi = 1,..., N, compute will look like
’\dv(i) — "dv(i) 1
Ter1)t = Tt > F, =
d, (i d, (i _ n n
Pt+(1|)t = Pt|t( )T (14 T./2)%Q5. O 0 fa —fe C571,11 C571.,12 (66)
. . . I+T; _fd 0 fn Cp21  Cp,22
7) Particle filter time update: 0 0
i 5%x2 5%x5
Fori=1,...,N, sample
2D~ pap, | X, Y;) using (50b) Moreover, although the terni” in (19) can be regarded as a
8) Kalman filter time update: known input signal (at least™™™s is known), it is convenient
For eachi = 1,..., N, compute for the analysis to rewrite it as
1,(i 1,(i .
{xtiflt, Pt+(1)|t} according to(42). o
ffr=0"4+(Qr, +2Q0)0" — ¢" =~ Ve . (67)
B. Convergence Analysis of Algorithm 1 Uq — ga

For the estimation ot} there are to the authors knowledge
not many results which can be used for convergence analy&gm the simplified system matrik;', above and the expres-
The results that do exist e.g. [20] are unfortunately rath&ion for the specific forcg™ we can draw two conclusions.
conservative. Simulations indicate however that givenrgela First of all, if there is no horizontal acceleration, i®, =
enough number of samples the estimate-pfdoes converge. v = 0, 7a Will not be observable. This is easily seen from

We can on the other hand analyze the behaviour,aind (66), because in this cagg ~ f. ~ 0 andvyq will thereby not
z¢. Below we show that the estimates of both and ¢ have any influence on, or v., hence unobservable. Secondly,
always converge, although they likely converge to somethiflying along a straight path means that only the sum-@f,,
wrong if the estimate of:? diverges. Rewrite the model forandbg, and fav. andby;, where
x} according to
by, = C?.,llbi + 021,12[7;7

a T a T a (68)
(63) be = cp91by + ¢y 220y,

x£+1 = Fll,txi + FIllt‘r? + G}su}s

7= ripy — Bl = Flntfi + ug,
are observable. We need a change’fp to be able estimate
Yhe individual components in the two sums.

The detectability criteria is only a necessary condition fo
rt]he Riccati recursion to converge. A necessary and sufficien

The termF,it:v}} in (63) can be regarded as a known inp
signal.
Suppose first that the aircraft is traveling without any girn
IS

at constant speed, at the same altitude, and that the patcondition is to also require that the system is unit-circle

located aroun@0 degrees latitude. In this case, the eigenvalu€s o . )
of Fﬁt all lie on or slightly outside the unit-circle. For thecontrollable [21]. Here, it is straightforward to verifyyb

Riccati recursion to converge a necessary condition isttteat inspection ofG:7', that the system is actually controllable, and

system is detectable [21]. For detectability in this caseneed thereby also unit-circle controllable.

. . d .
full observability. To investigate the observability wencase The samde reasoning as fo} applies toz]. Rewrite the
the observability matrix model forzF according to

H, ol = a2l + Glug

Ot t k) — : 64 ins 69
(t,t+ k) : 5 (64) Zfzyt—h<[ll;i§1s] +x?) =z +er(\). (69)
Hiyp1Fiip—2- F t

where in our caséf, = Fy, and F; = F,. We know from It is obvious that the model is both observable and contotela
[22] that if rank(O(t,t + k:)) = dim(z;), then the system thereby providing sufficient conditions for the Riccati atjan

is observable. It is straightforward to verify, under thglili to converge. The mode variabl could possibly cause the
conditions stated above, we actually have full observgbiliestimate to converge to something wrong, but simulations
after only four steps, i.ek = 4. On the other hand, most of show that this is highly unlikely.



VII. SIMULATION RESULTS run through the nonlinear motion model to yield as close to
Fluthentic INS data as possible. Note that INS initial alignin
IS not simulated but initial errors given by Table Il are used
g%i’tialize the INS computations. Simulated terrain elemat

In this section we apply the marginalized particle filte
according to Algorithm 1 on simulated inertial navigaticatal
Terrain elevation data is taken from a commercial databa:
which contains terrain elevation at discrete points sdpdra TABLE II
with 50 metres in both north and east directions. Elevatita d SIMULATED INS ERRORS
at intermediate points is computed using bilinear inteafioh.

N

The flight trajectory projected onto the ground is depicted i p(zf) w(— 1000V3 1000V3) q/(_ 1000v3 1000v3 )
Figure 2. p(zg)  N(0,50)
p(ZB})) N(07 dla‘g(17 17 0-108%7\" Oi08507r7 %7 1073 . 51)(2)2)
p(uf)  N(0,0.2)
) (

0,diag(107%,104,1076 - 11 5)?)

%

o
5’;"‘0101/2')‘
m«'{j&i}'&%’;@"’l»“&"
VAT 65
f"“a‘\ 2\»‘%«»‘,’.«,

(et

measurements have been created along the flight path by
adding a random error defined by

ples) = 3/4-N(0,3%) 4+ 1/4 - N(12,62), (70)

to the true terrain elevation. We have assumed mode transiti
probabilities for the measurement noise from (35) accardin

to
E % - E?i ??ﬂ (72)

Note that these particular parameter values are not aithent
but gives an adequate example on the distribution of therrada
altimeter measurement error over dense forest. In pratitee

As can be deduced from Flgur_e 2 the flight traj(_ectory mak%%lues are found empirically by comparing measurements fro
a turn after about half of the distance. The main reason f&rPS radar altimeter and terrain heiaht database overelife
this turn is to makey,, and~. distinguishable fromb; andby. X 9

: g types of terrain.
The measurements are assumed unavailable during thedurn; L . .
or the marginalized filter we used sampling perid=

imitate the fact that the radar altimeter provides poor grbu1 sec and 12000 particlesN( — 12000). No significant
clearance measurements when the absolute value of the ban

angle|¢| is large. The bank angle during the turn is 60 de|mprovemer?t. was obtained using more than 12000 particles.
or the additional process noise we chose

Moreover, to makey; observable, the speed along the pat

changes from time to time according to Figure 3. Note that w24 ~ N(0,2 1073 PRMPEY) (72)

t|t—1
the turn and speed changes are used to make attitude, headinq_ N . | o .
and accelerometer biases observable. Position and \;eloﬁPp led toz} according to (61). Deterministic resampling [10]

. . . ; —(1)y2 U i
errors are observable without accelerations meaning treat Yvere performedif; 1/(w,”)* < 2N/3 and at least five filter

algorithm does not require accelerations for accuratetipasi iteérations have past since the last resampling.
and velocity estimates. The result (RMSE and / PMEAN) based on 100 Monte

Carlo simulations is depicted in Figure 4 for positiany, (=
Lro ands; = IrgcosL) and altitude errors, Figure 5 for
velocity and acceleration errors, and Figure 6 for platform
orientation errors respectively. The RMSEnd PMEAN are
computed according to

V)

Latitude (deg) 57.8 155 Longitude (deg)

Fig. 2. Terrain elevation profile along the flight trajectory

180

160

£140
1 100 (m) (m) 1/2
120 _ ~MPF,(m true,(m) (2
RMSE, = ( 15 D I} — ) L (7
100 m=1
0 5‘0 160 150 260 25‘0 360 35‘0 460 45‘0 MEAN 1 100 MPF (m)
sec _ ,
P ST > (), (73b)
Fig. 3. Ground speed along the flight trajectory. m=

m representing then:th Monte Carlo simulation.

To simulate INS data we have used the truth flight profile The RMSE for horizontal position decreases to about 30
given by Figure 2 and 3 and worked backwards through the after 40 sec, and the stationary error level lies around 20 m
nonlinear motion model given in Appendix I. Sensor erroffhe RMSE for the altitude converges to its stationary value,
according to Table Il have then been added to the exagproximately 1 m, after 30 sec. The RMStor horizontal
sensor measurements obtained from the backward propagati@locity drops below).2 m/s, and the INS horizontal platform
Finally the sensor measurements, now with errors added, areentation error-,, and~,) drop below0.02/v/2 ~ 0.015 deg
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for each of the two errors. The RM$Eor b2 andb? approach g Horzonmlveloclyemar
3-1073/v/2~ 2102 m/s, and fory, it approaches 0.075
deg. Note also the distinct increase of the position andcitylo
error and uncertainty during the turn (between tindé to 175
sec). This is due to that no terrain elevation measuremeats a
used during this period of time.

In the same figures the corresponding Cramer-Rao posterior ,
prediction bounds are shown. The bound is computed accord- L R R

m/s

ing to [14] 0 50 100 150 200 352350 300 350 400 450
POCR = P(), Accelerometer bias
8 T T T T T T
PR =FRPFYI - (I +RPEHTIRIPEMVFT (74)

+ GtQtG?a

where F; andG, are taken from (58)¢); and P, from Table

Il and R; ! is given by

_ 2
Ry =Epe, [(d%logp(et)) } '
aiz?h(x?) aizgh(x?) T (75) 0 56 160 150 260 ngo 360 3%0 460 450
Bpap) | —1 -1

O7x1 07x1

Fig. 5. RMSE (solid line), \/PtMEAN (dashed line) and\/PtCR
(dash-dotted line) for horizontal velocity/32 + ©2 and accelerometer bias
R; ! is computed by evaluating the expectations in (75) usin m

a large number of samples fropie;) according to (70) and

p(zg) ~ p(a}) according to Table Il. As can be seen from

the figures, the RMSEof the filter estimates are all slightly yeen applied on a tightly blended INS/TAP navigation system
larger than the corresponding'® but the difference is small \we have shown that by concentrating on the inertial navigati
indicating that the applied filter is close to being optimathw errors, we can linearize the state transition equationsouit
respect to RMSE at least after filter convergence. introducing any significant errors. The MPF takes advantage
of the linearized structure, and estimates it using redatifast
Kalman filters. The highly nonlinear terrain-aided positity
system only depends on position, meaning that we can focus
the computer intensive particle filter on the position pathe
state vector only. Compared to applying a stand-alonegbarti
filter we can decrease the number of samples substantially an
thereby making the applied MPF computationally tractable.
Simulations have been performed on simulated inertial nav-
igation data, using a commercial terrain elevation dattas

Horizontal position error

0 50 100 150 200 250 300 350 400 450 simulate the terrain-aided positioning system. The sitiaria
> result is compared with the Cramer-Rao lower bound. The
Alttude error comparison shows that we obtain nearly optimal accuracy, at

least after filter convergence. The deviation between thverlo
bound and the simulation result partly depends on the fatt th
the particle filter still only provides an approximate saat
particularly due to discretization errors. Another polgsib
contributing factor to the deviation could be that the Creme
Rao bound is not a tight bound in this case. There could very
well exist other bounds that are tighter, see e.g. [23].

6 56 160 1%0 260 ZgO 360 350 460 4%0
sec APPENDIXI
Based on measured accelerations and angular rates in three
dimensions the INS computes position, velocity, attitudd a
heading. The computations are based on an accurate nanlinea
motion model describing the kinematics of the system. These
equations will not be derived here, for detailed derivation
VIII. CONCLUSIONS see e.g. [24], [25], [26]. To be able to characterize the INS
In this paper we have extended the MPF from [1] to accountathematically we will need a number of coordinate frames
for a multi-modal measurement noise. The extended filter hgisen by:

Fig. 4. RMSE (solid line), \/PtMEAN (dashed line) anc{/PtCR (dash-

dotted line) for horizontal positior‘/s% + s? and altitudeh.
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TABLE Il

Roll and pitch errors

0.08r

PARAMETERS FORWGS84.
Parameter Notation ~ Numerical value
Semimajor axis ro 6.378137 - 106 m
Reciprocal of flattening  1/f 298.2572
> First eccentricity € 0.08181919
0.02¢ ST Angular velocity Wie 7.292115 - 10~5 rad/sec
0 50 100 150 200 250 300 350 400 450 Gravity at equator 9o 9.780325 mis®
sec Gravity formula constant & 0.001931853

Yaw error Gravity formula constant m 0.003449787

where the constant is the earth’s first eccentricity, see Table
[l

The velocity of the aircraft relative to the earth, expresise
the navigation (n) frame and denoteddsy= [v,, v vd]T,
is given as the solution to the differential equation

0.06

0 50 100 150 200 250 300 350 400 450
sec

_ _ o __ o opb n n n n
Fig. 6. RMSE (solid line), \/ PMEAN (dashed line) and/PCR (dash- 0= O = (2 + 2 0" + g7 (78)

dotted line) for roll and pitch errors/-y,% +~2 and yaw erroryy.

The vectorf? is the acceleration sensed by the accelerometers
(specific force vector) and}’ is a transformation matrix from

i Inertial frame, fixed in the inertial space. For nayiP0dy frame to navigation frame. The matric@3, and (2,

gation periods shorter than days this frame can fgpresent the rotation of the navigation frame relativeaute

approximated with an earth centered non-rotatin?{‘d earth relative to |nert|a_1I frame re_spectlvely, b_othrexped
In the n-frame. The rotation described k), arises when

frame. . .

e Earth-centered frame, fixed to the earth, i.e it rotat avelling over the curved surface of the earth. The matrice
with the earth. o and Q7 are both the skew-symmetric matrix

n Navigation frame, with its center attached to the air-
craft. Thex, y andz-axis are aligned with north, east 0w wy
and the ellipsoid normal respectively. The velocity Q= | w. 0 —ws (79)
e.g. is denoted by™ = [u,,, ve, vg]” —wy w0

b Body frame, attached to the aircraft, thereby always
translating and rotating with the aircraft. The y of the corresponding vectay = [w, w, wz]T. In vector
and z-axis points through the nose, right wing andorm the rotations are given by
belly respectively. The acceleration e.g. is denoted

by ab = [CLI, Qy, CLZ]T. cos L rlv;h
. . . . Un
The horizontal position is usually given as two angles, wie = 0 | wie, win = e (80)
latitude and longitude. Latitude refers to the angle betwee —sinL — e

the normal to the reference ellipsoid and the equatorialgla

and will be denoted by.. Longitude is the angle between thevherew;. is a scalar representing the angular velocity of the
same normal and a plane intersecting the Greenwich meridigarth. For a numerical value see Table IlI.

and will be denoted by. The reference ellipsoid is defined by The acceleratiorf® includes the effect of the gravity vector,
the World Geodetic System 1984 (WGS84), see [27] or Tabj&, which represents the sum of the earth’s gravitatiGh,

[l for numerical values. The equations for latitude, Idingie and the centripetal acceleration due to the rotation of énthe

and altitude are ie.
J— ’Un
r+ 0 g =G" — ()", (81)
= Ve (76)
~ (r;+h)cosL’ wherer™ is the position vector of the aircraft measured from
h=—vg. the centre of the earth. The WGS84 ellipsoid is defined in
such a way that the angle betwegh and the normal to the
In (76), the two radii of curvature are given by ellipsoid is minimized. The deflection of the vertical, ithe

remaining error angle between the ellipsoid’s normal ared th
— ., (77) gravity vector, is usually less thanurad. Therefore, without
(1 —e2sin® L)1/2 introducing any significant errors, the gravity is approately

ro(1 —&?) B 70
(1—e2sinL)2 '

rL =
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given by [27] and
2
n T dym = ———S—— 4+ 2w, cos L
g = [O 0 gd} ’2 L rocos2 L reve
; Upv
ga = 9o 1+ksin”L djf = —"—— — 2w;cvasin L + 2w;cv, cos L
(1—e2sin® L)1/ (82) o c0s? L
2h 342 d}" = wjesin L
<1——(1+f—|—m 2f sin? L) ) g Ve n I
r r2 = ———— 4 Wje COS
0 0 L T cos2 L v
. v
For numerical values ony, ¢, f, k, m andry, see Table III. d,r = -4
. . . " T
The attitude and heading of the aircraft are often represent 021; tan L
by an orthogonal matrixy’, (Ci*)*Cpt = I, relating a vector dyr = ———— — 2w;esin L
in the body frame to a vector in the navigation frame. This v talf%
matrix is referred to as a direction cosine matrix (DCM), and dle = ——— 4+ 2uwj.sin L
the coupling to the attitude and heading of the aircraft is "o
g — vptanl vy
cb —sp 0][cd 0 sO][1 0 0 v ro 7o
_ _ . Ve tan L
=|(sy e O 0 1 01|10 co s (83) d:;,'ﬁ = —wsinL + 22 7 d:;,'" _ _d"xe
0 0 1||—s80 0 cO||0 so cop " To ¢ "
v
Ya — ™ Vn Y
: : dvi - ) dw - dvi
In (83), ¢, 8 andv are the roll, pitch and heading angles, and To
. . . v
andc_ are short lfOISln andoos respepnvgly. The corresponding dJ? = wie cos L + iy dJe = —d2e.
matrix differential equation fo’}’ is given by 7o
B(t) is given by
op = opQb, —Qn o 84 _ i
b b b (84) 0 0 0 0 0 0 00
. . . 0 0 0 0 0 0 0 0
where the skew-symmetric matricé¥, and !, are again 10 0 0 0 0 0 0
given by their vector counterparts), andw?, according to n n
b . 0 cp11 Chio 0 0 0 0 0
(79). The vectow;, corresponds to the angular rates exhibited 0 o 5 0 0 0 0 0
by the body frame expressed in the body frame, i.e. the B(t) = 0 cb()?l Cb(a)” " " " 0 0
angular rates sensed by the rate gyros. Moreawgy, = %11 %12 a3
0 0 0 cy cy cy 0 0
Wik + Wl %21 %22 %23
0 0 0 cha1 Chae sz 0 0
0 0 0 0 0 0 1 0
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