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Marginalized Particle Filter for Accurate and
Reliable Terrain-Aided Navigation

Per-Johan Nordlund, and Fredrik Gustafsson,Member, IEEE

Abstract— This paper details an approach to the integration
of INS (Inertial Navigation System) and TAP (Terrain-Aided
Positioning). The solution is characterized by a joint design of
INS and TAP, meaning that the highly nonlinear TAP is not
designed separately but jointly with the INS using one and the
same filter.

The applied filter extends the theory of the MPF (Marginalized
Particle Filter) given by [1]. The key idea with MPF is to estimate
the nonlinear part using the particle filter and the part which is
linear, conditionally upon the nonlinear part, is estimated using
the Kalman filter. The extension lies in the possibility to deal
with a third multi-modal part, where the discrete mode variable
is also estimated jointly with the linear and nonlinear parts.
Conditionally upon the mode and the nonlinear part, the resulting
subsystem is linear and estimated using the Kalman filter.

Given the nonlinear motion equations which the INS uses to
compute navigation data, the INS equations must be linearized
for the MPF to work. A set of linearized equations is derived
and the linearization errors are shown to be insignificant with
respect to the final result. Simulations are performed and the
result indicates near-optimal accuracy when compared to the
Cramer-Rao lower bound.

Index Terms— Terrain-aided navigation, particle filter, Kalman
filter, marginalized.

I. I NTRODUCTION

A CCURATE AND RELIABLE navigation systems have
been identified as a critical enabling technology for

enhanced aircraft capabilities in the coming 10-20 years.
One reason is the foreseen increased use of unmanned aerial
vehicles (UAVs). Following the introduction of UAVs the
requirements on the navigation system (cost, size and perfor-
mance) is strengthened, and no stand-alone navigation sensor
is capable of meeting them all. The solution is to blend the
output from two or more navigation sensors to achieve an
overall good enough accuracy and reliability.

Due to its reliability and short-term accuracy, even for
flight conditions involving substantial maneuvering, inertial
navigation systems (INS) are usually regarded as the primary
source of navigation data. The major drawback with iner-
tial navigation is that initialization and sensor errors cause
computed quantities to drift. To stabilize the drift and ensure
long-term accuracy the inertial navigation system is integrated
with one or more aiding sources. The standard aiding source
today is the global positioning system (GPS), see e.g. [2],
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[3], [4]. Although satellite navigation is seeing a widespread
use, problems with the GPS such as reception limitation and
interference increase the relevance of other aiding navigation
sensors. One example is terrain-referenced navigation, or
terrain-aided positioning (TAP). The principle is to measure
terrain variations along the flight path and compare it to
a database with stored terrain elevation for given positions.
Although TAP does not suffer from the limitations applicable
for GPS, there are other criteria which must be met. The
distance to the ground needs to be within the operating range
of the radar altimeter, you need a terrain elevation map overthe
area of interest and last but not least you need terrain variation
along the flight path (which is not always the case e.g. when
flying over water). Nevertheless, often the drawbacks of TAP
are easier to accept than those for GPS, and the idea of using
the terrain height [5], [6] or landmarks [7], [8] for positioning
purposes has been around for quite some time now.

The challenge with TAP is to deal with its highly nonlin-
ear, non-analytical characteristics. When facing a nonlinear
estimation problem, a standard tool among practitioners is
to apply the extended Kalman filter (EKF). Due to TAPs
multi-modal character, corresponding to a measured terrain
profile matching several profiles in the database, the EKF
often fails. Better performance is obtained using grid-based
methods, e.g. the point-mass filter [6], where the probability
is discretized over the state space. This is possible due to the
low dimensionality of TAP (either two or three dimensions if
considering altitude besides horizontal position).

Traditionally, integrating TAP with INS has been performed
using separate filters, one for TAP estimating position and
another for estimating INS quantities using position from TAP
as input [9]. Here, we use state-of-the-art joint design, meaning
that we blend TAP and INS tightly in one and the same filter,
see Figure 1.

Using this tight fusion technique means that we need
to solve a nonlinear, high-dimensional problem. Here high-
dimensional means that we have to consider not only position
but also INS computed quantities such as velocity, attitudeand
heading. This rules out grid-based methods which, due to the
computational load increasing exponentially with the dimen-
sion, are tractable only up to three dimensions. Simulation-
based methods, such as the particle filter (PF) [10], have
the promising feature of theoretically being independent of
dimensionality. Simulation results indicate however thatthis
is not the case in practice, although less dependent compared
to the grid-based methods. Moreover, based on analysis and
simulations [11] we know that a high performance INS with
position error typically in the range of one nautical mile per
hour (1.825 km/hr) is not very well suited for the particle filter.
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Fig. 1. Chosen configuration for blended INS/TAP. The pressure altimeter
is used to stabilize INS vertical channel.

This has to do with the process noise being so small, making
the particles cluster in state space and thereby increasingthe
discretization error of the particle filter. For the stand-alone
particle filter to work on the blended INS/TAP described here
the number of particles needed for filter convergence is simply
too large to be computationally tractable [11].

However, we derive a set of linearized equations for the INS
errors and we show that the linearization errors are small. Par-
ticularly this is true when the errors are kept small either using
a high performance INS or by feeding the error back to the
INS. Still the problem is highly nonlinear due to TAP, but now
with a conditionally linear sub-structure corresponding to the
additional INS related quantities. This means that conditionally
upon position the INS related quantities can be estimated using
the extended Kalman filter while position is estimated using
the particle filter. The combined Kalman/particle filter is also
known as the marginalized particle filter (MPF) [1] or the
Rao-Blackwellized particle filter (RBPF) [12].

For the system to be able to provide accurate estimates
of position we need an accurate estimate of altitude. One
way forward and the one detailed in this paper is to use
measurements from a radar altimeter (RA). The ground clear-
ance measurements from the RA are however subject to a
mode dependent error characteristic. The measurement error
reflects e.g. whether there are a lot of trees on the ground
or not. Conditionally upon the mode and nonlinear horizontal
position, altitude is straightforwardly estimated by the Kalman
filter. The MPF from [1] is here extended to account for this
multi-modal character of the terrain elevation measurements.
The extension consists of including estimation of the discrete
RA measurement error mode as a third part in the joint filter
design. The use of an airborne laser scanner (ALS) to measure
ground clearance [13] is an interesting alternative to the radar
altimeter. The accuracy and possibility to filter measurements
which originate from tree reflections should yield significantly
better estimation accuracy. On the other hand, the ALS has
problem penetrating fog, rain and clouds which limits its
applicability.

II. OUTLINE

This paper begins by a derivation of INS error dynamics in
Section III. The INS nonlinear equations, for the sake of com-
pleteness given in Appendix I, are linearized and the resulting
linear INS error equations are shown to accurately describe
the aircraft dynamics. The non-analytical and highly nonlinear
terrain-aided positioning system is introduced in SectionIV.
The derivation of the extended marginalized particle filter
(MPF) is given in Section V. The derivation consists of three
lemmas, where each lemma provides result on how to estimate
the linear, multi-modal and nonlinear parts respectively.The
details on the algorithm for the blended INS/TAP system is
given in VI where we also analyze convergence properties
of the filter. The algorithm is tested in a simulation study
as described in VII. Finally conclusions are elaborated on in
Section VIII.

III. INS ERROR DYNAMICS

Collect all navigation variables, i.e. latitudeL, longitudel,
altitudeh, velocity in northvn, eastve and downvd directions
and attitude and heading represented by a transfomation matrix
from body to navigation frameCn

b , in a state vector

z =
[
L l h vn ve vd vec(Cn

b )
]T
. (1)

The input variables, i.e. accelerationsf b and angular ratesωb,
are collected in the vector

w =
[
f b

x f b
y f b

z ωb
x ωb

y ωb
z

]T
. (2)

For details regarding the navigation and input variables see
Appendix I. The state dynamics, given by (76), (78) and (84)
in Appendix I, can compactly be written according to

ż = f(z, w). (3)

Denote the corresponding INS state and input vectors byzins

andwins. Due to initialization and sensor errors the state vector
computed by the INS will differ from the true state vector.
Define the INS state and sensor errors according to

x = z − zins, u = w − wins. (4)

Combining (3)–(4) we can write the error dynamics as

ẋ = ż − żins = f(z, w) − f(z − x,w − u). (5)

The goal is to provide a set of linearized equations describing
the INS error dynamics,

ẋ(t) = A(t)x(t) +B(t)u(t) + ∆, (6)

such that∆ representing the linearization error is small. Below
we derivex, u, A andB in (6) such that

|∆i|
|[Ax]i|

< 0.01, i = 1, . . . , n, ∀x ∈ Table I (7)

wheren is the number of states inx. We will show thatx and
u according to

x =
[
L̃ l̃ h̃ ṽn ṽe γn γe γd bax bay

]T
, (8)

u =
[
uh ua

x ua
y uγ

x uγ
y uγ

z ub
x ub

y

]T
. (9)
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and A and B according to Appendix II are adequate. The
vector x in (8) is extended with two states for accelerom-
eter biasesbax and bay compared to (4). Moreover,u in (9)
consists of white noise components including process noise
for the accelerometer biasesub

x andub
y. Note that there is no

accelerometer bias or noise along body framez−axis. Instead
white noiseuh enters the equation for altitude errorh̃ directly.
The reason for this is that the INS is supported by a pressure
altimeter, see Figure 1, which compensates for any drift in the
vertical channel.

TABLE I

RANGES ON NAVIGATION DATA .

|L| ≤ 70 deg |L̃| ≤ 2000/r0 rad

h ≤ 5000 m |h̃| ≤ 100 m

|vtot| ≤ 200 m/s |ṽtot| ≤ 2 m/s

|γn,e| ≤ 5 · 10−4 rad |γd| ≤ 1 · 10−3 rad

|fb
x,y,z| ≤ 20 m/s2 |ba

x,y| ≤ 5 · 10−3 m/s2

From (76) and (5) the expressions for the latitude and
longitude errors become

˙̃L =
vn

rL(L) + h
− vn − ṽn

rL(L− L̃) + h− h̃
,

˙̃
l =

ve cos−1 L

rl(L) + h
− (ve − ṽe) cos−1(L − L̃)

rl(L− L̃) + h− h̃
.

(10)

Apply Taylor expansion on (10) aroundh, ε2 andL and we
can rewrite the equations according to

˙̃L =
1

r0
ṽn + ∆L̃

˙̃
l =

ve sinL

r0 cos2 L
L̃+

1

r0 cosL
ṽe + ∆l̃.

(11)

Inserting values on the errors involved from Table I, the
magnitude on∆L̃ and∆l̃ in (11) is

|∆L̃|
|[Ax]L̃|

< ε2 +
vnh̃

ṽnr0
< 9 · 10−3,

|∆l̃|
|[Ax]l̃|

<
ṽeε

2 + veh̃/r0

veL̃ tanL+ ṽe

< 8 · 10−3.

(12)

From (76) we see that the equation for the altitude errorh̃
becomes

˙̃
h = −ṽd. (13)

The INS is unstable in the vertical channel with a time constant
of approximately10 minutes [14]. For an operational INS the
vertical channel must therefore be stabilized. Typically this
is done using a pressure sensor. A simple and reasonable
assumption is that the pressure sensor error drifts according to
a random walk process, where the driving noise is described
by the uh-component in (9). Moreover, we assume that the
stabilization works through an altitude filter such that theINS
altitude error follows the pressure altitude error, resulting in
the equation

˙̃h ≈ uh. (14)

Applying (5) on (78) gives the velocity error equation

˙̃vn = C̃n
b f

b + (Cn
b − C̃n

b )ãb − (Ω̃n
en + 2Ω̃n

ie)v
n−

(Ωn
en − Ω̃n

en + 2(Ωn
ie − Ω̃n

ie))ṽ
n + g̃n,

(15)

with f b,ins = f b − ãb and g̃n ≈
[
0 0 g̃d

]T
. Taylor

expansion oñωn
en using (80) and (5) aroundε2, h andL and

on ω̃n
ie aroundL provides

ω̃n
en + 2ω̃n

ie = ˆ̃ωn
en + 2ˆ̃ωn

ie + ∆δω ,

ˆ̃ωn
en + 2ˆ̃ωn

ie =






ṽe

r0
− 2ωieL̃ sinL

− ṽn

r0

− veL̃
r0 cos2 L − ṽe tan L

r0
− 2ωieL̃ cosL




 .

(16)

We can also simplifyωn
en−ω̃n

en+2(ωn
ie−ω̃n

ie) in (15) according
to

ωn
en − ω̃n

en + 2(ωn
ie − ω̃n

ie) = ω̂n
en + 2ωn

ie + ∆ω,

ω̂n
en + 2ωn

ie =





ve

r0
+ 2ωie cosL

− vn

r0

− ve tan L
r0

− 2ωie sinL



 .
(17)

Moreover, define a small-angle transformationγn =
[
γn γe γd

]T
, in skew-symmetric matrix form denoted by

Γn, through

C̃n
b = Cn

b − Cn,ins
b = Cn

b − Cn,ins
n Cn

b

= (I − Cn,ins
n )Cn

b = ΓnCn
b + ∆C̃n

b
.

(18)

The small-angle transformation describes a rotation of the
navigation frame computed by the INS relative to the true
navigation frame. The rest term∆C̃n

b
consists of second and

higher order terms ofγn which are obtained after Taylor
expansion ofI −Cn,ins

n . Applying the approximations on the
velocity error equation in (15), together withfn = Cn

b f
b,

Γnfn = −Fnγn andΩnvn = −V nωn, yields

˙̃vn = −Fnγn + Cn
b ã

b + Ṽ n(ω̂n
en + 2ωn

ie)+

V n(ˆ̃ωn
en + 2ˆ̃ωn

ie) + g̃n + ∆ṽn .
(19)

The error introduced iñvn and ṽe when going from (15) to
(19) is upper limited by

‖∆ṽn,e
‖∞ ≤ ‖∆C̃n

b
f b‖∞ + ‖Γnãb‖∞

+ ‖Ṽ n∆ω‖∞ + ‖V n∆ω̃‖∞.
(20)

Using (16) and (17) we have

‖∆C̃n
b
f b‖∞ ≤ 2γ2

dmax(f b
x, f

b
y , f

b
z)

‖Γnãb‖∞ ≤ 2γdmax(bax, b
a
y, b

a
z),

‖Ṽ n∆ω‖∞ ≤ ṽ(
ṽ tanL

r0
+
ε2vL tanL

r0
+ 2ωieL̃),

‖V n∆ω̃‖∞ ≤ v(
ṽε2 tanL

r0
+
vh̃L tanL

r20
+ 2ωieL̃

2),

(21)

with v = max(vn, ve). Using values from Table I we obtain

‖∆ṽn,e
‖∞

|[Ax]ṽn,e
| ≤ (40 + 10 + 4 + 2) · 10−6

(10000 + 5000 + 300 + 100) · 10−6

≤ 4 · 10−3.

(22)
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Finally, using (84) and (18) it is straightforward to show
[14] that the linearized equation forγn is given by

γ̇n = Cn
b ω̃

b
ib − ω̃n

in − Ωn
inγ

n + ∆γn ,

‖∆γn‖∞ ≤ 2γ2
d(
v tanL

r0
+ ωie),

(23)

wherev = max(vn, ve) and ṽ = max(ṽn, ṽe). The rest term
∆γn consists of second and higher order terms ofγn. The
error is therefore upper limited by

‖∆γn‖∞
|[Ax]∆γn |

≤ 0.4 · 10−9

(1000 + 500 + 100) · 10−9
< 3 · 10−4. (24)

The error characteristics for the accelerometers and rate
gyros are in general involved, see e.g. [15]. The easiest, but
for the application adequate, way to model the accelerometer
errors is to use a slowly varying offset and white noise.
Normally there also exist offsets in the rate gyros, but these
are for the application here considered small and therefore
neglected. Note however, the algorithm is readily modifiable
to include the influence of gyro drift in cases where the gyro
offset is larger or the time interval is longer. The accelerometer
offset, or bias, can with good accuracy be modelled as a first
order Gauss-Markov process,

ḃa = −1

τ
ba + ub ≈ ub. (25)

The last approximation is valid because the time constantτ
is usually rather large. We will here incorporate accelerometer
biases acting only in thex- and y-directions in body frame.
This is an implication from the assumption that the INS
altitude error follows the pressure altitude, meaning thatanyz-
accelerometer bias is compensated for through the stabilization
of the vertical channel. This is true for situations where roll
and pitch angles are close to zero. During a turn, climb
and/or dive the altitude filter is effected byx- and/or y−
accelerometer biases. Here we assume turns, climbs and/or
dives are rare such that we can neglect this effect.

To be able to apply our discrete time filter (6) has to be
discretized

xt+1 = Ftxt +Gtut. (26)

For a small sampling periodTs the Euler approximation
provides

Ft = I + TsAt,

Gt = Ts(I +
Ts

2
At)Bt,

E[utu
T
t ] = Qt/Ts,

(27)

whereA(t) = At, B(t) = Bt andE[u(t)uT (t)] = Q(t) = Qt

are considered constant during the sampling period.

IV. T ERRAIN-A IDED POSITIONING

The idea behind terrain-aided positioning is to use the
terrain height profile, obtained by projecting the path of the
aircraft onto the ground. The INS computed altitude provides
a measurement of altitude above mean-sea level. At the same
time the ground clearance, i.e. the distance between the
aircraft and the ground, is measured using a radar altimeter.

The difference between these two measurements provides a
measurement on the terrain height at the location where the
measurement was performed. A number of such measurements
build up a measured terrain height profile. The aircraft carries a
terrain elevation database where the terrain height is stored as a
function of sampled horizontal position. The measured terrain
height profile is compared with all possible profiles obtained
from the database. The database profile which resembles the
measured profile the most is selected, and thereby determines
the aircraft’s position.

The equation for terrain-aided positioning is

yt = hins
t − hra

t = h(Lt, lt) − h̃t + et, (28)

where yt is measured terrain height andh(·) is the terrain
height given by the database as a function of horizontal
position, i.e. latitude and longitude. The term̃ht is the INS
altitude error. Moreover,et is the measurement noise, having
a probability density which here is given by

p(et) =

2∑

λt=1

Pr(λt)N (m
(λt)
t , R

(λt)
t ), (29)

i.e. a Gaussian mixture with two modes. The first mode (λt =
1) represents the case where the radar altimeter beam hits the
ground and thereby reflecting the true ground clearance. The
second mode (λt = 2) models the case where the beam hits a
tree top, giving a measurement of the ground clearance which
is too small. The probability for each of the two events is
Pr(λt = 1) andPr(λt = 2) respectively. The radar altimeter is
a pulsed system operating at4.3 GHz which makes it sensitive
to reflections from e.g. trees. Together with a wide beam lobe
(≈ 50 deg) the radar altimeter normally measures the closest
distance to the ground or any obstacle, even during moderate
roll and pitch angles. To eliminate roll and pitch dependent
errors the measurements from the radar altimeter are not used
when roll or pitch angle is larger than25 deg.

A simple way of avoiding the mode dependent error charac-
teristics is to approximate the probability density in (29)with
a single Gaussian. However, it is shown in [16] that the gain
when taking advantage of multi-modal characteristics can be
significant. Simulations show that e.g. horizontal position is
estimated with approximately70% better accuracy.

V. THE MARGINALIZED PARTICLE FILTER

The main idea of the particle filter is to discretize the
posterior probability density for the statext according to

p(xt|Yt) ≈
N∑

i=1

w̄
(i)
t δ

x
(i)
t

(xt), (30)

whereδ is the delta-Dirac function andYt = {y0, . . . , yt} is
the stacked vector of measurements. The weightsw̄

(i)
t , where

∑N
i=1 w̄

(i)
t = 1, together with the particlesx(i)

t are such that
they together yield a set of samples approximately drawn from
the posterior probability density. Theoretically we can solve
almost any estimation problem using the particle filter, as long
as the number of particlesN is high enough.
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In many cases the underlying motion model has structures
which can be exploited for the purpose of decreasingN and
thereby the computational load. Consider a state-space model
which can be written on the form

xn
t+1 = fn

t (xn
t ) +F n

t x
l
t +Gn

t u
n
t , (31a)

xd
t+1 = fd

t (xn
t )+F d

t x
d
t +Gd

t u
d
t , (31b)

xl
t+1 = f l

t(x
n
t ) +F l

tx
l
t +Gl

tu
l
t, (31c)

yt = ht(x
n
t )+Htx

d
t + et(λt), (31d)

wherext =
[
(xn

t )T (xd
t )T (xl

t)
T
]T

. The superscriptsn, d
and l denote which part of the state vector has a nonlinear,
discrete and linear structure respectively. Note that spaces in
(31) are used to emphasize what parts of the state vector
are affected by other parts and the measurements. This is
important for the results derived below. Assume that the
process noise is Gaussian distributed according to

ut =





un
t

ud
t

ul
t



 ∼ N (0, Qt), Qt =





Qn
t 0 0

0 Qd
t 0

0 0 Ql
t



 . (32)

See [1] on how to deal with a mutually correlated process
noise. Also assume thatxd

0 and xl
0 are Gaussian distributed

i.e.

xd
0 ∼ N (0, P d

0 ), xl
0 ∼ N (0, P l

0). (33)

The measurement noiseet is a sum ofM Gaussians according
to

et ∼
M∑

λt=1

Pr(λt)N (m
(λt)
t , R

(λt)
t ), (34)

with mode transition probabilities

πλt

λt−1
= Pr(λt|λt−1), λt, λt−1 = 1, . . . ,M. (35)

The aim is to recursively estimate the probability density
function (pdf) forxt given all available measurementsYt. The
pdf is then used to compute an estimate ofxt, here the mean
value, and the corresponding covariance of the estimate. The
direct approach is to apply the particle filter. However, forthe
class of systems described by (31) there exists a more efficient
way. Consider the probability densityp(xl

t, x
d
t , X

n
t |Yt), where

Xn
t = {xn

0 , . . . , x
n
t } is the stacked vector of state history. This

pdf can be factorized using Bayes´ rule according to

p(xl
t, x

d
t , X

n
t |Yt) =

p(xl
t|xd

t , X
n
t , Yt)p(x

d
t |Xn

t , Yt)p(X
n
t |Yt) =

p(xl
t|Xn

t , Yt)p(x
d
t |Xn

t , Yt)p(X
n
t |Yt).

(36)

Assume for now that we have an estimate based on the particle
filter of p(Xn

t |Yt) according to

p(Xn
t |Yt) ≈

N∑

i=1

w̄
(i)
t δ

X
n,(i)
t

(Xn
t ). (37)

From (37) we have the probability density

p(xn
t |Yt) ≈

N∑

i=1

w̄
(i)
t δ

x
n,(i)
t

(xn
t ), (38)

by extractingxn
t fromXn

t . Moreover, combining (36) and (37)
we have estimates of

p(xl
t|Yt) =

∫

p(xl
t|Xn

t , Yt)p(X
n
t |Yt)dX

n
t

≈
N∑

i=1

w̄
(i)
t p(xl

t|Xn,(i)
t , Yt),

p(xd
t |Yt) =

∫

p(xd
t |Xn

t , Yt)p(X
n
t |Yt)dX

n
t

≈
N∑

i=1

w̄
(i)
t p(xd

t |Xn,(i)
t , Yt).

(39)

In the forthcoming three Lemmas we derive expressions for
how to recursively computep(Xn

t |Yt), p(xl
t|Xn

t , Yt) and
p(xd

t |Xn
t , Yt), i.e.

Lemma 1: p(xl
t|Xn

t , Yt) by the Kalman filter,
Lemma 2: p(xd

t |Xn
t , Yt) by a bank ofM t+1 Kalman filters,

Lemma 3: p(Xn
t |Yt) by the particle filter.

The recursions are such that we do not need knowledge of
the state historyXn

t but only xn
t−1 and xn

t . The derived
expressions are then used together with (38) and (39) to
obtain estimates of the posterior pdfs ofxl

t, x
d
t andxn

t .

Lemma 1 (Conditionally linear single Gaussian)For the
state-space model(31), with the assumptions according to
(32)–(33), we have that

p(xl
t|Xn

t , Yt) = N (x̂l
t|t, P

l
t|t), (40a)

p(xl
t+1|Xn

t+1, Yt) = N (x̂l
t+1|t, P

l
t+1|t), (40b)

where

x̂l
t|t = x̂l

t|t−1, P l
t|t = P l

t|t−1, (41)

and

x̂l
t+1|t = (F l

t −Kp,tF
n
t )x̂l

t|t+

Kp,t(x
n
t+1 − fn

t (xn
t )) + f l

t(x
n
t ),

P l
t+1|t = F l

tP
l
t|t(F

l
t )

T +Gl
tQ

l
t(G

l
t)

T −Kp,tSp,tK
T
p,t,

Kp,t = F l
tP

l
t|t(F

n
t )TS−1

p,t ,

Sp,t = Gn
tQ

n
t (Gn

t )T + F n
t P

l
t|t(F

n
t )T .

(42)

Proof: Conditionally uponXn
t , xl

t is independent ofYt

and thereby unaffected by the multi-modal noiseet given by
(34). The result then follows immediately from [1].

In practice the above means that we can estimatep(xl
t|Yt)

as the weighted sum ofN Kalman filters applied to each
sequence of{Xn,(i)

t }N
i=1.

Lemma 2 (Conditionally linear multi-modal Gaussian)
For the state-space model(31), with the assumptions
according to(32)–(35) and Λt = {λ0, . . . , λt}, we have that

p(xd
t |Xn

t , Yt) =
∑

Λt

ᾱ
(Λt)
t N (x̂

d,(Λt)
t|t , P

d,(Λt)
t|t ), (43a)

p(xd
t+1|Xn

t , Yt) =
∑

Λt

ᾱ
(Λt)
t N (x̂

d,(Λt)
t+1|t , P

d,(Λt)
t+1|t ), (43b)
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where

x̂
d,(Λt)
t|t = x̂

d,(Λt−1)
t|t−1 +

P
d,(Λt−1)
t|t−1 HT

t (S
(Λt)
f,t )−1(yt − ŷ

(Λt)
t|t−1),

(44a)

P
d,(Λt)
t|t = P

d,(Λt−1)

t|t−1 −
P

d,(Λt−1)
t|t−1 HT

t (S
(Λt)
f,t )−1Ht(P

d,(Λt−1)
t|t−1 )T ,

(44b)

ŷ
(Λt)
t|t−1 = ht(x

n
t ) −Htx̂

d,(Λt−1)
t|t−1 −m

(λt)
t , (44c)

S
(Λt)
f,t = R

(λt)
t +HtP

d,(Λt−1)
t|t−1 HT

t , (44d)

x̂
d,(Λt)
t+1|t = fd

t (xn
t ) + F d

t x̂
d,(Λt)
t|t ,

P
d,(Λt)
t+1|t = F d

t P
d,(Λt)
t|t (F d

t )T +Gd
tQ

d
t (Gd

t )T ,
(45)

and

α
(Λt)
t = N (ŷ

(Λt)
t|t−1, S

(Λt)
f,t )πλt

λt−1
ᾱ

(Λt−1)
t−1 ,

ᾱ
(Λt)
t =

α
(Λt)
t

∑

Λt
α

(Λt)
t

(46)

Proof: The probability p(xd
t |Xn

t , Yt) can be written
according to

p(xd
t |Xn

t , Yt) =
∑

Λt

p(xd
t |Xn

t , Yt,Λt)Pr(Λt|Xn
t , Yt). (47)

Conditionally uponλt, et is a single Gaussian. Together
with ᾱ

(Λt)
t = Pr(Λt|Xn

t , Yt) the result for (43)–(45) follows
from [1]. Using Bayes´ rule repeatedly and the principle of
induction, the probabilityPr(Λt|Xn

t , Yt) is recursively given
by

Pr(Λt|Xn
t , Yt) =

p(yt|Xn
t , Yt−1,Λt)Pr(Λt|Xn

t , Yt−1)

p(yt|Xn
t , Yt−1)

=

p(yt|Xn
t , Yt−1,Λt)Pr(λt|λt−1)Pr(Λt−1|Xn

t−1, Yt−1)
∑

Λt
p(yt|Xn

t ,Yt−1,Λt)Pr(λt|λt−1)Pr(Λt−1|Xn
t−1,Yt−1)

=

p(yt|Xn
t , Yt−1,Λt)Pr(λt|λt−1)ᾱ

(Λt−1)
t−1

∑

Λt
p(yt|Xn

t , Yt−1,Λt)Pr(λt|λt−1)ᾱ
(Λt−1)
t−1

.

(48)

From [1] we know that p(yt|Xn
t , Yt−1,Λt) =

N (ŷ
(Λt)
t|t−1, S

(Λt)
f,t ). Together with the mode transition

probability πλt

λt−1
= Pr(λt|λt−1) the formulas in (46)

follows.
In practice this means that we have to apply one Kalman

filter for each sequence of particles and each sequence of
modes. The number of possible mode sequences increases
exponentially with time and must somehow be limited. One
way is to include the estimate of the mode sequence in the
particle filter, which automatically limits the number suchthat
only the most probable mode sequences survive. Another way
is to merge mode sequences which are identical fromt − L
up to and includingt, so as to keep the number constant
(= ML), using e.g. the generalized pseudo-Bayesian (GPB)
or interacting multiple model (IMM) filter [17], [18], [19].

Lemma 3 (Gaussian distributed likelihood and prior)
The probabilityp(Xn

t |Yt) is recursively given by

p(Xn
t |Yt) =

p(yt|Xn
t , Yt−1)p(x

n
t |Xn

t−1, Yt−1)

p(yt|Yt−1)
p(Xn

t−1|Yt−1).
(49)

For the state-space model(31), with the assumptions accord-
ing to (32)–(35), we have that

p(yt|Xn
t , Yt−1) =

∑

Λt

α
(Λt)
t , (50a)

p(xn
t+1|Xn

t , Yt) = N (x̂n
t+1|t, P

n
t+1|t), (50b)

where

x̂n
t+1|t = fn

t (xn
t ) + F n

t x̂
l
t|t,

P n
t+1|t = F n

t P
l
t|t(F

n
t )T +Gn

tQ
n
t (Gn

t )T ,
(51)

with α(Λt)
t given by(46).

Proof: Expression (49) is given by repeated use of Bayes’
rule. Forp(xn

t+1|Xn
t , Yt) see [1]. Forp(yt|Xn

t , Yt−1) rewrite
it according to

p(yt|Xn
t , Yt−1) =

∑

Λt

p(yt|Xn
t , Yt−1,Λt)Pr(Λt|Xn

t−1, Yt−1) =

∑

Λt

N (ŷ
(Λt)
t|t−1, S

(Λt)
f,t )πλt

λt−1
ᾱ

(Λt−1)
t−1 =

∑

Λt

α
(Λt)
t ,

(52)

where the last step is given by (46).
For the particle filter algorithm, we can choose to use

p(xn
t |Xn,(i)

t−1 , Yt−1) to update the samples, i.e.

x
n,(i)
t ∼ p(xn

t |Xn,(i)
t−1 , Yt−1), (53)

knowing that this is a Gaussian density and thereby easy to
sample from. The weights are then calculated according to

w
(i)
t = w̄

(i)
t−1p(y

n
t |Xn,(i)

t , Yt−1) = w̄
(i)
t−1

∑

Λt

α
(i,Λt)
t ,

w̄
(i)
t =

w
(i)
t

∑

k w
(k)
t

,

(54)

which together with (53) yield (38).
A very important special case of (31) is when the matrices

F n
t , Gn

t , F d
t , Gd

t , F l
t , Gl

t andHt are independent ofxn
t . In this

case one can deduce from Lemma 1 and 2 that the Kalman
filter covariance matrices are

P
l,(i)
t|t = P l

t|t andP d,(i,Λt)
t|t = P

d,(Λt)
t|t , (55)

i.e. independent ofXn,(i)
t , and at each timet we only have to

update it once forxl
t andΛt times (each mode sequence) for

x
d,(Λt)
t . This implies that, for a given number of samplesN ,

the computational load for the marginalized particle filteris
approximately the same as for the stand-alone particle filter. In
this case, given that the number of samples needed for MPF
is significantly lower than for the particle filter, the gain with
respect to computational load can be substantial.
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VI. B LENDED INS/TAP USING MPF

A. The applied algorithm

For the purpose of applying the marginalized particle filter
we separate the position and altitude states from the othersin
(8) according to

xn
t =

[

L̃t l̃t
]T
,

xd
t = h̃t,

xl
t =

[
ṽn,t ṽe,t γn,t γe,t γd,t bax,t bay,t

]T
.

(56)

Using the system equations derived in Sections III and IV, the
discrete state propagation and measurement equations become





xn
t+1

xd
t+1

xl
t+1



 = Ft





xn
t

xd
t

xl
t



 +Gt

[
ud

t

ul
t

]

. (57a)

yt = h

([
Lins

t

lins
t

]

+ xn
t

)

− xd
t + et, (57b)

whereh(·) in (57b) is the terrain database height with input
arguments latitudeLt = Lins

t + L̃t and longitudelt = lins
t + l̃t

and

Ft = I + TsAt =





F n
n,t 02×1 F n

l,t

01×2 1 01×7

F l
n,t 01×7 F l

l,t



 ,

Gt = Ts(I +
Ts

2
At)Bt =





02×1 Gn
t

Ts(1 + Ts

2 ) 01×7

07×1 Gl
t



 ,

ud
t = uh

t ,

ul
t =

[
ua

x,t ua
y,t uγ

x,t uγ
y,t uγ

z,t ub
x,t ub

y,t

]T
.

(58)

Note that the state propagation model in (57a) is linear as
opposed to the more general nonlinear model used in Section
V.

To only have to compute one covariance matrixP l
t , the

matricesF l
l,t, F

n
l,t, G

n
t andGl

t must all be independent ofxn
t .

This is achieved by not compensating INS computed quantities
with estimated errors before enteringFt, i.e. xt = xins

t +
x̃t ≈ xins

t . An alternative is to compensate using theMPF
estimates, meaning that we use the same compensation for all
i = 1, . . . , N . The second alternative should be better if the
INS errors are large, but for simplicity the first alternative is
chosen here.

For the altitude errorxd
t = h̃t we choose to estimate it using

the GPB filter. This means that we use two Kalman filters, each
one conditioned on one of the modes in (29). For each timet
the number of modes is always two. The recursions are then

given by

x̂
d,(i,λt)
t|t = x̂

d,(i)
t|t−1+

P
d,(i)
t|t−1H

T
t (S

(i,λt)
f,t )−1(yt − ŷ

(i,λt)
t|t−1 ),

P
d,(i,λt)
t|t = P

d,(i)
t|t−1−
P

d,(i)
t|t−1H

T
t (S

(i,λt)
f,t )−1Ht(P

d,(i)
t|t−1)

T ,

α
(i,λt)
t = N (ŷ

(i,λt)
t|t−1 , S

(i,λt)
f,t )

2∑

λt−1=1

πλt

λt−1
ᾱ

(λt−1)
t−1 ,

ŷ
(i,λt)
t|t−1 = h(x

n,(i)
t ) −Htx̂

d,(i)
t|t−1 −m

(λt)
t ,

S
(i,λt)
f,t = R

(λt)
t +HtP

d,(i)
t|t−1H

T
t .

(59)

To keep the number of mode sequences constant the result
from the two Kalman filters are merged, usinḡα(i,λt)

t =

α
(i,λt)
t /

∑2
λt=1 α

(i,λt)
t , according to

x̂
d,(i)
t|t =

2∑

λt=1

ᾱ
(i,λt)
t x̂

d,(i,λt)
t|t ,

P
d,(i)
t|t =

2∑

λt=1

ᾱ
(i,λt)
t (P

d,(i,λt)
t|t + (x̂

d,(i,λt)
t|t − x̂

d,(i)
t|t )2).

(60)

We will add some artificial process noiseuadd
t for the

latitude and longitude error states, to deal with particle fil-
ter discretization errors and to further decrease the number
of needed particles. This will change the state propagation
equation for horizontal position in (57a) to

xn
t+1 = F n

n,tx
n
t + F n

l,tx
l
t +Gn

t u
l
t + uadd

t
︸ ︷︷ ︸

un
t

, (61)

which should be compared to the propagation equation forxl
t,

i.e.

xl
t+1 = F l

n,tx
n
t + F l

l,tx
l
t +Gl

tu
l
t. (62)

The process noisesun
t andul

t are mutually correlated. On the
other hand, hereQadd

t � Ql
t which yieldsun

t ≈ uadd
t and the

correlation is therefore neglected.
A summary of the applied algorithm is given in Algorithm

1.

Algorithm 1 The MPF for blended INS/TAP

1) Initialization:
For i = 1, . . . , N , samplexn,(i)

0 ∼ p(xn
0), and set

{x̂l,(i)
0|−1, P

l
0|−1} = {0, P l

0},
{x̂d,(i)

0|−1, P
d,(i)
0|−1} = {0, P d

0 },
{ᾱ(i,1)

−1 , ᾱ
(i,2)
−1 } = {Pr(λt = 1),Pr(λt = 2)}.

2) GPB filter measurement update:
For i = 1, . . . , N andλt = 1, 2, compute

{x̂d,(i,λt)
t|t , P

d,(i,λt)
t|t , α

(i,λt)
t } using (59),

ᾱ
(i,λt)
t = α

(i,λt)
t /(α

(i,1)
t + α

(i,2)
t ),

{x̂d,(i)
t|t , P

d,(i)
t|t } using (60).
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3) Particle filter measurement update:
For eachi = 1, . . . , N , update

w
(i)
t = w̄

(i)
t−1

∑2
λt=1 α

(i,λt), w̄(i)
t = w

(i)
t /

∑

i w
(i)
t .

4) Resampling:
Resample N times with replacement according to

Pr(x
(i)
t = x

(k)
t ) = w̄

(i)
t .

5) Kalman filter measurement uppdate:
For eachi = 1, . . . , N , set

x̂
l,(i)
t|t = x̂

l,(i)
t|t−1, P l

t|t = P l
t|t−1.

6) GPB filter time update:
For eachi = 1, . . . , N , compute

x̂
d,(i)
t+1|t = x̂

d,(i)
t|t ,

P
d,(i)
t+1|t = P

d,(i)
t|t + Ts(1 + Ts/2)2Qd

t .

7) Particle filter time update:
For i = 1, . . . , N , sample

x
n,(i)
t+1 ∼ p(xn

t+1|Xn,(i)
t , Yt) using (50b).

8) Kalman filter time update:
For eachi = 1, . . . , N , compute

{x̂l,(i)
t+1|t, P

l,(i)
t+1|t} according to(42).

B. Convergence Analysis of Algorithm 1

For the estimation ofxn
t there are to the authors knowledge

not many results which can be used for convergence analysis.
The results that do exist e.g. [20] are unfortunately rather
conservative. Simulations indicate however that given a large
enough number of samples the estimate ofxn

t does converge.
We can on the other hand analyze the behaviour ofxl

t and
xd

t . Below we show that the estimates of bothxl
t and xd

t

always converge, although they likely converge to something
wrong if the estimate ofxn

t diverges. Rewrite the model for
xl

t according to

xl
t+1 = F l

l,tx
l
t + F l

n,tx
n
t +Gl

tu
l
t

zl
t = xn

t+1 − F n
n,tx

n
t = F n

l,tx
l
t + un

t ,
(63)

The termF l
n,tx

n
t in (63) can be regarded as a known input

signal.
Suppose first that the aircraft is traveling without any turns,

at constant speed, at the same altitude, and that the path is
located around60 degrees latitude. In this case, the eigenvalues
of F l

l,t all lie on or slightly outside the unit-circle. For the
Riccati recursion to converge a necessary condition is thatthe
system is detectable [21]. For detectability in this case weneed
full observability. To investigate the observability we can use
the observability matrix

O(t, t+ k) =






Ht

...
Ht+k−1Ft+k−2 · · ·Ft




 , (64)

where in our caseHt = F n
l,t andFt = F l

l,t. We know from
[22] that if rank

(
O(t, t + k)

)
= dim(xt), then the system

is observable. It is straightforward to verify, under the flight
conditions stated above, we actually have full observability
after only four steps, i.e.k = 4. On the other hand, most of

the singular values ofO(t, t + k) are very small, and this is
true for larger values onk as well.

To clarify, we can simplify the system equations further
by discarding those elements which are insignificant during
shorter periods of time, say one or two minutes. For these
short periods of time we can neglect that the earth rotates and
that the surface of the earth is curved, i.e.

ωn
ie ≈ 03×1, ωn

en ≈ 03×1. (65)

The simplification above means that the state transition matrix
will look like

F l
l,t =

I + Ts




02×2

0 fd −fe cnb,11 cnb,12
−fd 0 fn cnb,21 cnb,22

05×2 05×5



 .
(66)

Moreover, although the termfn in (19) can be regarded as a
known input signal (at leastfn,ins is known), it is convenient
for the analysis to rewrite it as

fn = v̇n + (Ωn
en + 2Ωn

ie)v
n − gn ≈





v̇n

v̇e

v̇d − gd



 . (67)

From the simplified system matrixF l
l,t above and the expres-

sion for the specific forcefn we can draw two conclusions.
First of all, if there is no horizontal acceleration, i.e.v̇n =
v̇e = 0, γd will not be observable. This is easily seen from
(66), because in this casefn ≈ fe ≈ 0 andγd will thereby not
have any influence onvn or ve, hence unobservable. Secondly,
flying along a straight path means that only the sum of−fdγn

andbae , andfdγe andban, where

ban = cnb,11b
a
x + cnb,12b

a
y,

bae = cnb,21b
a
x + cnb,22b

a
y,

(68)

are observable. We need a change inCn
b to be able estimate

the individual components in the two sums.
The detectability criteria is only a necessary condition for

the Riccati recursion to converge. A necessary and sufficient
condition is to also require that the system is unit-circle
controllable [21]. Here, it is straightforward to verify, by
inspection ofGk

t , that the system is actually controllable, and
thereby also unit-circle controllable.

The same reasoning as forxl
t applies toxd

t . Rewrite the
model forxd

t according to

xd
t+1 = xd

t +Gd
t u

d
t

zd
t = yt − h

([
Lins

t

lins
t

]

+ xn
t

)

= −xd
t + et(λt).

(69)

It is obvious that the model is both observable and controllable
thereby providing sufficient conditions for the Riccati equation
to converge. The mode variableλt could possibly cause the
estimate to converge to something wrong, but simulations
show that this is highly unlikely.
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VII. S IMULATION RESULTS

In this section we apply the marginalized particle filter
according to Algorithm 1 on simulated inertial navigation data.
Terrain elevation data is taken from a commercial database,
which contains terrain elevation at discrete points separated
with 50 metres in both north and east directions. Elevation data
at intermediate points is computed using bilinear interpolation.
The flight trajectory projected onto the ground is depicted in
Figure 2.

15.5

15.6

15.7

15.8

15.9

16

57.8

57.9

58

58.1

58.2

0

100

200

Longitude (deg)Latitude (deg)

m

Fig. 2. Terrain elevation profile along the flight trajectory.

As can be deduced from Figure 2 the flight trajectory makes
a turn after about half of the distance. The main reason for
this turn is to makeγn andγe distinguishable frombax andbay.
The measurements are assumed unavailable during the turn, to
imitate the fact that the radar altimeter provides poor ground
clearance measurements when the absolute value of the bank
angle|φ| is large. The bank angle during the turn is 60 deg.
Moreover, to makeγd observable, the speed along the path
changes from time to time according to Figure 3. Note that
the turn and speed changes are used to make attitude, heading
and accelerometer biases observable. Position and velocity
errors are observable without accelerations meaning that the
algorithm does not require accelerations for accurate position
and velocity estimates.

0 50 100 150 200 250 300 350 400 450

100

120

140

160

180

m
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sec

Fig. 3. Ground speed along the flight trajectory.

To simulate INS data we have used the truth flight profile
given by Figure 2 and 3 and worked backwards through the
nonlinear motion model given in Appendix I. Sensor errors
according to Table II have then been added to the exact
sensor measurements obtained from the backward propagation.
Finally the sensor measurements, now with errors added, are

run through the nonlinear motion model to yield as close to
authentic INS data as possible. Note that INS initial alignment
is not simulated but initial errors given by Table II are usedto
initialize the INS computations. Simulated terrain elevation

TABLE II

SIMULATED INS ERRORS.

p(xn
0
) U

(
− 1000

√
3

r0
, 1000

√
3

r0

)
· U

(
− 1000

√
3

r0 cos L0
, 1000

√
3

r0 cos L0

)

p(xd
0
) N (0, 50)

p(xl
0
) N

(
0,diag(1, 1, 0.05π

180
, 0.05π

180
, 0.1π

180
, 10−3 · 51×2)2

)

p(ud
t ) N (0, 0.2)

p(ul
t) N

(
0,diag(10−4, 10−4, 10−6 · 11×5)2

)

measurements have been created along the flight path by
adding a random error defined by

p(et) = 3/4 · N (0, 32) + 1/4 · N (12, 62), (70)

to the true terrain elevation. We have assumed mode transition
probabilities for the measurement noise from (35) according
to

[
π1

1 π1
2

π2
1 π2

2

]

=

[
3/4 3/4
1/4 1/4

]

. (71)

Note that these particular parameter values are not authentic
but gives an adequate example on the distribution of the radar
altimeter measurement error over dense forest. In practicethe
values are found empirically by comparing measurements from
GPS, radar altimeter and terrain height database over different
types of terrain.

For the marginalized filter we used sampling periodTs =
1 sec and 12000 particles (N = 12000). No significant
improvement was obtained using more than 12000 particles.
For the additional process noise we chose

uadd
t ∼ N (0, 2 · 10−3 P n,MPF

t|t−1 ), (72)

applied toxn
t according to (61). Deterministic resampling [10]

were performed if
∑

i 1/(w̄
(i)
t )2 < 2N/3 and at least five filter

iterations have past since the last resampling.
The result (RMSEt and

√

PMEAN
t ) based on 100 Monte

Carlo simulations is depicted in Figure 4 for position (sL =
L̃ r0 and sl = l̃ r0 cosL) and altitude errors, Figure 5 for
velocity and acceleration errors, and Figure 6 for platform
orientation errors respectively. The RMSEt and PMEAN

t are
computed according to

RMSEt =

(
1

100

100∑

m=1

||x̂MPF,(m)
t|t−1 − x

true,(m)
t ||22

)1/2

, (73a)

PMEAN
t =

1

100

100∑

m=1

tr(P
MPF,(m)
t|t−1 ), (73b)

m representing them:th Monte Carlo simulation.
The RMSEt for horizontal position decreases to about 30

m after 40 sec, and the stationary error level lies around 20 m.
The RMSEt for the altitude converges to its stationary value,
approximately 1 m, after 30 sec. The RMSEt for horizontal
velocity drops below0.2 m/s, and the INS horizontal platform
orientation error (γn andγe) drop below0.02/

√
2 ≈ 0.015 deg
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for each of the two errors. The RMSEt for bax andbax approach
3 · 10−3/

√
2 ≈ 2 · 10−3 m/s2, and forγd it approaches 0.075

deg. Note also the distinct increase of the position and velocity
error and uncertainty during the turn (between time150 to 175
sec). This is due to that no terrain elevation measurements are
used during this period of time.

In the same figures the corresponding Cramer-Rao posterior
prediction bounds are shown. The bound is computed accord-
ing to [14]

PCR
0 = P0,

PCR
t+1 = FtP

CR
t

(
I − (I + R−1

t PCR
t )−1R−1

t PCR
t

)
FT

t

+GtQtG
T
t ,

(74)

whereFt andGt are taken from (58),Qt andP0 from Table
II and R−1

t is given by

R−1
t = Ep(et)

[
(

d
det

log p(et)
)2

]

·

Ep(xn
t )





∂
∂xn

t
h(xn

t )

−1
07×1









∂
∂xn

t
h(xn

t )

−1
07×1





T

.
(75)

R−1
t is computed by evaluating the expectations in (75) using

a large number of samples fromp(et) according to (70) and
p(xn

0) ≈ p(xn
t ) according to Table II. As can be seen from

the figures, the RMSEt of the filter estimates are all slightly
larger than the corresponding PCR

t , but the difference is small
indicating that the applied filter is close to being optimal with
respect to RMSEt, at least after filter convergence.

0 50 100 150 200 250 300 350 400 450
10

1

10
2

10
3

Horizontal position error

m

sec

0 50 100 150 200 250 300 350 400 450

10
0

10
1

Altitude error

m

sec

Fig. 4. RMSEt (solid line),
√

PMEAN
t (dashed line) and

√

PCR
t (dash-

dotted line) for horizontal position
√

s2

L
+ s2

l
and altitudeh̃.

VIII. C ONCLUSIONS

In this paper we have extended the MPF from [1] to account
for a multi-modal measurement noise. The extended filter has

0 50 100 150 200 250 300 350 400 450

0.5

1

1.5
Horizontal velocity error

m
/s

sec

0 50 100 150 200 250 300 350 400 450
2

4

6

8
Accelerometer bias

x 
10

−
3  m

/s
2

sec

Fig. 5. RMSEt (solid line),
√

PMEAN
t (dashed line) and

√

PCR
t

(dash-dotted line) for horizontal velocity
√

ṽ2
n + ṽ2

e and accelerometer bias
√

(ba
x)2 + (ba

y)2.

been applied on a tightly blended INS/TAP navigation system.
We have shown that by concentrating on the inertial navigation
errors, we can linearize the state transition equations without
introducing any significant errors. The MPF takes advantage
of the linearized structure, and estimates it using relatively fast
Kalman filters. The highly nonlinear terrain-aided positioning
system only depends on position, meaning that we can focus
the computer intensive particle filter on the position part of the
state vector only. Compared to applying a stand-alone particle
filter we can decrease the number of samples substantially and
thereby making the applied MPF computationally tractable.

Simulations have been performed on simulated inertial nav-
igation data, using a commercial terrain elevation database to
simulate the terrain-aided positioning system. The simulation
result is compared with the Cramer-Rao lower bound. The
comparison shows that we obtain nearly optimal accuracy, at
least after filter convergence. The deviation between the lower
bound and the simulation result partly depends on the fact that
the particle filter still only provides an approximate solution
particularly due to discretization errors. Another possible
contributing factor to the deviation could be that the Cramer-
Rao bound is not a tight bound in this case. There could very
well exist other bounds that are tighter, see e.g. [23].

APPENDIX I

Based on measured accelerations and angular rates in three
dimensions the INS computes position, velocity, attitude and
heading. The computations are based on an accurate nonlinear
motion model describing the kinematics of the system. These
equations will not be derived here, for detailed derivations
see e.g. [24], [25], [26]. To be able to characterize the INS
mathematically we will need a number of coordinate frames
given by:
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0 50 100 150 200 250 300 350 400 450

0.02

0.04

0.06

0.08
Roll and pitch errors

de
g

sec

0 50 100 150 200 250 300 350 400 450
0.06

0.07

0.08

0.09

0.1

Yaw error

de
g

sec

Fig. 6. RMSEt (solid line),
√

PMEAN
t (dashed line) and

√

PCR
t (dash-

dotted line) for roll and pitch errors
√

γ2
n + γ2

e and yaw errorγd.

i Inertial frame, fixed in the inertial space. For navi-
gation periods shorter than days this frame can be
approximated with an earth centered non-rotating
frame.

e Earth-centered frame, fixed to the earth, i.e it rotates
with the earth.

n Navigation frame, with its center attached to the air-
craft. Thex, y andz-axis are aligned with north, east
and the ellipsoid normal respectively. The velocity
e.g. is denoted byvn = [vn, ve, vd]

T .
b Body frame, attached to the aircraft, thereby always

translating and rotating with the aircraft. Thex, y
and z-axis points through the nose, right wing and
belly respectively. The acceleration e.g. is denoted
by ab = [ax, ay, az]

T .

The horizontal position is usually given as two angles,
latitude and longitude. Latitude refers to the angle between
the normal to the reference ellipsoid and the equatorial plane,
and will be denoted byL. Longitude is the angle between the
same normal and a plane intersecting the Greenwich meridian,
and will be denoted byl. The reference ellipsoid is defined by
the World Geodetic System 1984 (WGS84), see [27] or Table
III for numerical values. The equations for latitude, longitude
and altitude are

L̇ =
vn

rL + h
,

l̇ =
ve

(rl + h) cosL
,

ḣ = −vd.

(76)

In (76), the two radii of curvature are given by

rL =
r0(1 − ε2)

(1 − ε2 sin2 L)3/2
, rl =

r0

(1 − ε2 sin2 L)1/2
, (77)

TABLE III

PARAMETERS FORWGS84.

Parameter Notation Numerical value

Semimajor axis r0 6.378137 · 106 m

Reciprocal of flattening 1/f 298.2572

First eccentricity ε 0.08181919

Angular velocity ωie 7.292115 · 10−5 rad/sec

Gravity at equator g0 9.780325 m/s2

Gravity formula constant k 0.001931853

Gravity formula constant m 0.003449787

where the constantε is the earth’s first eccentricity, see Table
III.

The velocity of the aircraft relative to the earth, expressed in
the navigation (n) frame and denoted byvn =

[
vn ve vd

]T
,

is given as the solution to the differential equation

v̇n = Cn
b f

b − (Ωn
en + 2Ωn

ie)v
n + gn. (78)

The vectorf b is the acceleration sensed by the accelerometers
(specific force vector) andCn

b is a transformation matrix from
body frame to navigation frame. The matricesΩn

en and Ωn
ie

represent the rotation of the navigation frame relative to earth
and earth relative to inertial frame respectively, both expressed
in the n-frame. The rotation described byΩn

en arises when
travelling over the curved surface of the earth. The matrices
Ωn

en andΩn
ie are both the skew-symmetric matrix

Ω =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 (79)

of the corresponding vectorω =
[
ωx ωy ωz

]T
. In vector

form the rotations are given by

ωn
ie =





cosL
0

− sinL



ωie, ωn
en =





ve

rl+h

− vn

rL+h

− ve tan L
rl+h



 , (80)

whereωie is a scalar representing the angular velocity of the
earth. For a numerical value see Table III.

The accelerationf b includes the effect of the gravity vector,
gn, which represents the sum of the earth’s gravitation,Gn,
and the centripetal acceleration due to the rotation of the earth,
i.e.

gn = Gn − (Ωn
ie)

2rn, (81)

wherern is the position vector of the aircraft measured from
the centre of the earth. The WGS84 ellipsoid is defined in
such a way that the angle betweengn and the normal to the
ellipsoid is minimized. The deflection of the vertical, i.e.the
remaining error angle between the ellipsoid’s normal and the
gravity vector, is usually less than5 µrad. Therefore, without
introducing any significant errors, the gravity is approximately
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given by [27]

gn ≈
[
0 0 gd

]T
,

gd = g0
1 + k sin2 L

(1 − ε2 sin2 L)1/2
·

(

1 − 2h

r0

(
1 + f +m− 2f sin2 L

)
+

3h2

r20

)

.

(82)

For numerical values ong0, ε, f, k, m andr0 see Table III.
The attitude and heading of the aircraft are often represented

by an orthogonal matrixCn
b , (Cn

b )TCn
b = I, relating a vector

in the body frame to a vector in the navigation frame. This
matrix is referred to as a direction cosine matrix (DCM), and
the coupling to the attitude and heading of the aircraft is

Cn
b =





cψ −sψ 0
sψ cψ 0
0 0 1









cθ 0 sθ
0 1 0

−sθ 0 cθ









1 0 0
0 cφ −sφ
0 sφ cφ



 . (83)

In (83),φ, θ andψ are the roll, pitch and heading angles, ands
andc are short forsin andcos respectively. The corresponding
matrix differential equation forCn

b is given by

Ċn
b = Cn

b Ωb
ib − Ωn

inC
n
b , (84)

where the skew-symmetric matricesΩb
ib and Ωn

in are again
given by their vector counterpartsωb

ib and ωn
in according to

(79). The vectorωb
ib corresponds to the angular rates exhibited

by the body frame, expressed in the body frame, i.e. the
angular rates sensed by the rate gyros. Moreover,ωn

in =
ωn

ie + ωn
en.

APPENDIX II

A(t) is given by

A(t) =





An
n(t) 02×1 An

l (t)
01×2 0 01×7

Al
n(t) 07×1 Al

l(t)





where

An
n(t) =

[
0 0

ve sin L
r0 cos2 L 0

]

,

An
l (t) =

[ 1
r0

0 0 0 0 0 0

0 1
r0 cos L 0 0 0 0 0

]

,

Al
n(t) =

[
dvn

L dve

L dγn

L 0 dγd

L 0 0
0 0 0 0 0 0 0

]T

,

Al
l(t) =













dvn
vn

dvn
ve

0 fz −fe cnb,11 cnb,12
dve

vn
dve

ve
−fz 0 fn cnb,21 cnb,22

0 − 1
r0

0 dγn
γe

dγn
γd

0 0
1
r0

0 dγe
γn

0 dγe
γd

0 0

0 tan L
r0

dγd
γn

dγd
γe

0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0













,

and

dvn

L = − v2
e

r0 cos2 L
+ 2ωieve cosL

dve

L =
vnve

r0 cos2 L
− 2ωievd sinL+ 2ωievn cosL

dγn

L = ωie sinL

dγd

L =
ve

r0 cos2 L
+ ωie cosL

dvn
vn

=
vd

r0

dvn
ve

= −2ve tanL

r0
− 2ωie sinL

dve
vn

=
ve tanL

r0
+ 2ωie sinL

dve
ve

=
vn tanL

r0
+
vd

r0

dγe
γn

= −ωie sinL+
ve tanL

r0
, dγn

γe
= −dγe

γn

dγd
γn

=
vn

r0
, dγn

γd
= −dγd

γn

dγd
γe

= ωie cosL+
ve

r0
, dγe

γd
= −dγd

γe
.

B(t) is given by

B(t) =



















0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 cnb,11 cnb,12 0 0 0 0 0

0 cnb,21 cnb,22 0 0 0 0 0

0 0 0 cnb,11 cnb,12 cnb,13 0 0

0 0 0 cnb,21 cnb,22 cnb,23 0 0

0 0 0 cnb,31 cnb,32 cnb,33 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



















.
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