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Marginalized Particle Filters for Mixed
Linear/Nonlinear State-Space Models

Thomas Schön, Fredrik Gustafsson, Member, IEEE, and Per-Johan Nordlund

Abstract—The particle filter offers a general numerical tool
to approximate the posterior density function for the state in
nonlinear and non-Gaussian filtering problems. While the particle
filter is fairly easy to implement and tune, its main drawback is
that it is quite computer intensive, with the computational com-
plexity increasing quickly with the state dimension. One remedy
to this problem is to marginalize out the states appearing linearly
in the dynamics. The result is that one Kalman filter is associated
with each particle. The main contribution in this paper is the
derivation of the details for the marginalized particle filter for a
general nonlinear state-space model. Several important special
cases occurring in typical signal processing applications will also
be discussed. The marginalized particle filter is applied to an
integrated navigation system for aircraft. It is demonstrated that
the complete high-dimensional system can be based on a particle
filter using marginalization for all but three states. Excellent
performance on real flight data is reported.

Index Terms—Kalman filter, marginalization, navigation sys-
tems, nonlinear systems, particle filter, state estimation.

I. INTRODUCTION

THE nonlinear non-Gaussian filtering problem considered
here consists of recursively computing the posterior prob-

ability density function of the state vector in a general discrete-
time state-space model, given the observed measurements. Such
a general model can be formulated as

(1a)

(1b)

Here, is the measurement at time is the state variable,
is the process noise, is the measurement noise, and are
two arbitrary nonlinear functions. The two noise densities
and are independent and are assumed to be known.

The posterior density , where , is given
by the following general measurement recursion:

(2a)

(2b)
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and the following time recursion:

(2c)

initiated by [20]. For linear Gaussian
models, the integrals can be solved analytically with a finite
dimensional representation. This leads to the Kalman filter
recursions, where the mean and the covariance matrix of the
state are propagated [1]. More generally, no finite dimensional
representation of the posterior density exists. Thus, several
numerical approximations of the integrals (2) have been pro-
posed. A recent important contribution is to use simulation
based methods from mathematical statistics, sequential Monte
Carlo methods, commonly referred to as particle filters [11],
[12], [16].

Integrated navigation is used as a motivation and applica-
tion example. Briefly, the integrated navigation system in the
Swedish fighter aircraft Gripen consists of an inertial navigation
system (INS), a terrain-aided positioning (TAP) system and an
integration filter. This filter fuses the information from INS with
the information from TAP. For a more thorough description of
this system, see [32] and [33]. TAP is currently based on a point-
mass filter as presented in [6], where it is also demonstrated that
the performance is quite good, close to the Cramér–Rao lower
bound. Field tests conducted by the Swedish air force have con-
firmed the good precision. Alternatives based on the extended
Kalman filter have been investigated [5] but have been shown to
be inferior particularly in the transient phase (the EKF requires
the gradient of the terrain profile, which is unambiguous only
very locally). The point-mass filter, as described in [6], is likely
to be changed to a marginalized particle filter in the future for
Gripen.

TAP and INS are the primary sensors. Secondary sensors
(GPS and so on) are used only when available and reliable.
The current terrain-aided positioning filter has three states (hor-
izontal position and heading), while the integrated navigation
system estimates the accelerometer and gyroscope errors and
some other states. The integration filter is currently based on a
Kalman filter with 27 states, taking INS and TAP as primary
input signals.

The Kalman filter that is used for integrated navigation re-
quires Gaussian variables. However, TAP gives a multi-modal
un-symmetric distribution in the Kalman filter measurement
equation and it has to be approximated with a Gaussian dis-
tribution before being used in the Kalman filter. This results
in severe performance degradation in many cases, and is a
common cause for filter divergence and system reinitialization.

1053-587X/$20.00 © 2005 IEEE
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The appealing new strategy is to merge the two state vectors
into one, and solve integrated navigation and terrain-aided posi-
tioning in one filter. This filter should include all 27 states, which
effectively would prevent application of the particle filter. How-
ever, the state equation is almost linear, and only three states
enter the measurement equation nonlinearly, namely horizontal
position and heading. Once linearization (and the use of EKF)
is absolutely ruled out, marginalization would be the only way
to overcome the computational complexity. More generally, as
soon as there is a linear sub-structure available in the general
model (1) this can be utilized in order to obtain better estimates
and possibly reduce the computational demand. The basic idea
is to partition the state vector as

(3)

where denotes the state variable with conditionally linear dy-
namics and denotes the nonlinear state variable [14], [32].
Using Bayes’ theorem we can then marginalize out the linear
state variables from (1) and estimate them using the Kalman
filter [22], which is the optimal filter for this case. The nonlinear
state variables are estimated using the particle filter. This tech-
nique is sometimes referred to as Rao-Blackwellization [14].
The idea has been around for quite some time; see, e.g., [2],
[7], [8], [12], [14], and [31]. The contribution of this article
is the derivation of the details for a general nonlinear state-
space model with a linear sub-structure. Models of this type are
common and important in engineering applications, e.g., posi-
tioning, target tracking and collision avoidance [4], [18]. The
marginalized particle filter has been successfully used in sev-
eral applications, for instance, in aircraft navigation [32], un-
derwater navigation [24], communications [9], [37], nonlinear
system identification [28], [37], and audio source separation [3].

Section II explains the idea behind using marginalization in
conjunction with general linear/nonlinear state-space models.
Three nested models are used in order to make the presenta-
tion easy to follow. Some important special cases and general-
izations of the noise assumptions are discussed in Section III.
To illustrate the use of the marginalized particle filter, a syn-
thetic example is given in Section IV. Finally, the application
example is given in Section V, and the conclusions are stated in
Section VI.

II. MARGINALIZATION

The variance of the estimates obtained from the standard par-
ticle filter can be decreased by exploiting linear substructures
in the model. The corresponding variables are marginalized out
and estimated using an optimal linear filter. This is the main idea
behind the marginalized particle filter. The goal of this section
is to explain how the marginalized particle filter works by using
three nested models. The models are nested in the sense that the
first model is included in the second, which in turn is included
in the third. The reason for presenting it in this fashion is to
facilitate reader understanding, by incrementally extending the
standard particle filter.

A. Standard Particle Filter

The particle filter is used to get an approximation of the pos-
terior density in the general model (1). This approxi-
mation can then be used to obtain an estimate of some inference
function, , according to

(4)

In the following, the particle filter, as it was introduced in [16],
will be referred to as the standard particle filter. For a thorough
introduction to the standard particle filter, see [11] and [12]. The
marginalized and the standard particle filter are closely related.
The marginalized particle filter is given in Algorithm 1 and ne-
glecting steps 4a and 4c results in the standard particle filter
algorithm.

ALGORITHM 1: The marginalized particle filter
1) Initialization: For i = 1; . . . ; N , initialize the particles
x
n;(i)
0 j�1 � px (xn0 ), and set fxl;(i)0 j�1; P

(i)
0 j�1g = f�xl0; �P0g:

2) For i = 1; . . . ; N , evaluate the importance weights
q
(i)
t = p(yt jX

n;(i)
t ; Yt�1) and normalize

~q
(i)
t =

q
(i)
t

N

j=1 q
(j)
t

:

3) Particle filter measurement update (resampling):
Resample N particles with replacement

Pr x
n;(i)
t j t = x

n;(j)
t j t�1 = ~q

(j)
t :

4) Particle filter time update and Kalman filter:
a) Kalman filter measurement update:

Model 1: (10),
Model 2: (10),
Model 3: (22).

b) Particle filter time update (prediction): For
i = 1; . . . ; N , predict new particles,

x
n;(i)
t+1 j t � p x

n
t+1 j t X

n;(i)
t ; Yt :

c) Kalman filter time update:
Model 1: (11),
Model 2: (17),
Model 3: (23).

5) Set t := t + 1 and iterate from step 2.

The particle filter algorithm 1 is quite general and several im-
provements are available in the literature. It is quite common
to introduce artificial noise in step 3 in order to counteract the
degeneracy problem. Depending on the context various impor-
tance functions can be used in step 4b. In [11], several refine-
ments to the particle filter algorithm are discussed.

B. Diagonal Model

The explanation of how the marginalized particle filter works
is started by considering the following model.
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Model 1:

(5a)

(5b)

(5c)

The gaps in the equations above are placed there intentionally, in
order to make the comparison to the general model (18) easier.
The state noise is assumed white and Gaussian distributed ac-
cording to

(6a)

The measurement noise is assumed white and Gaussian dis-
tributed according to

(6b)

Furthermore, is Gaussian

(6c)

The density of can be arbitrary, but it is assumed known. The
and matrices are arbitrary.

Model 1 is called the “diagonal model” due to the diagonal
structure of the state equation (5a) and (5b). The aim of recur-
sively estimating the posterior density can be accom-
plished using the standard particle filter. However, conditioned
on the nonlinear state variable, , there is a linear sub-struc-
ture in (5), given by (5b). This fact can be used to obtain better
estimates of the linear states. Analytically marginalizing out the
linear state variables from and using Bayes’ theorem
gives

(7)

where is analytically tractable. It is given by the
Kalman filter (KF); see Lemma 2.1 below for the details. Fur-
thermore, can be estimated using the particle filter
(PF). If the same number of particles are used in the standard
particle filter and the marginalized particle filter, the latter will,
intuitively, provide better estimates. The reason for this is that
the dimension of is smaller than the dimension of

, implying that the particles occupy a lower dimen-
sional space. Another reason is that optimal algorithms are used
in order to estimate the linear state variables. Let de-
note the estimate of (4) using the standard particle filter with

particles. When the marginalized particle filter is used the
corresponding estimate is denoted by . Under certain
assumptions the following central limit theorem holds:

(8a)

(8b)

where . A formal proof of (8) is provided in [13] and
[14]. For the sake of notational brevity, the dependence of in

, and are suppressed below.
Lemma 2.1: Given Model 1, the conditional probability den-

sity functions for and are given by

(9a)

(9b)

where

(10a)

(10b)

(10c)

(10d)

and

(11a)

(11b)

The recursions are initiated with and .
Proof: We use straightforward application of the Kalman

filter [21], [22].
The second density in (7) will be approximated

using the standard particle filter. Bayes’ theorem and the
Markov property inherent in the state-space model can be used
to write as

(12)

where an approximation of is provided by the
previous iteration of the particle filter. In order to perform
the update (12) analytical expressions for
and are needed. They are provided by the
following lemma.

Lemma 2.2: For Model 1 and
are given by

(13a)

(13b)

Proof: We utilize basic facts about conditionally linear
models; see, e.g., [19] and [36].

The linear system (5b)–(5c) can now be formed for each par-
ticle , and the linear states can be estimated using the
Kalman filter. This requires one Kalman filter associated with
each particle. The overall algorithm for estimating the states in
Model 1 is given in Algorithm 1. From this algorithm, it should
be clear that the only difference from the standard particle filter
is that the time update (prediction) stage has been changed. In
the standard particle filter, the prediction stage is given solely
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by step 4b in Algorithm 1. Step 4a is referred to as the measure-
ment update in the Kalman filter [21]. Furthermore, the predic-
tion of the nonlinear state variables is obtained in step 4b.
According to (5a), the prediction of the nonlinear state variables
does not contain any information about the linear state variables.
This implies that cannot be used to improve the quality
of the estimates of the linear state variables. However, if Model
1 is generalized by imposing a dependence between the linear
and the nonlinear state variables in (5a), the prediction of the
nonlinear state variables can be used to improve the estimates
of the linear state variables. In the subsequent section, it will be
elaborated on how this affects the state estimation.

C. Triangular Model

Model 1 is now extended by including the term in
the nonlinear state equation. This results in a “triangular model”
defined below.

Model 2:

(14a)

(14b)

(14c)

with the same assumptions as in Model 1.
Now, from (14a), it is clear that does indeed contain

information about the linear state variables. This implies that
there will be information about the linear state variable in
the prediction of the nonlinear state variable . To under-
stand how this affects the derivation, it is assumed that step 4b
in Algorithm 1 has just been completed. This means that the
predictions are available, and the model can be written
(the information in the measurement has already been used
in step 4a)

(15a)

(15b)

where

(15c)

It is possible to interpret as a measurement and as the
corresponding measurement noise. Since (15) is a linear state-
space model with Gaussian noise, the optimal state estimate is
given by the Kalman filter according to

(16a)

(16b)

(16c)

(16d)

where “ ” has been used to distinguish this second measurement
update from the first one. Furthermore, and are given
by (10a) and (10b), respectively. The final step is to merge this

second measurement update with the time update to obtain the
predicted states. This results in

(17a)

(17b)

(17c)

(17d)

For a formal proof of this, see the Appendix. To make
Algorithm 1 valid for the more general Model 2, the time
update equation in the Kalman filter (11) has to be replaced by
(17).

The second measurement update is called measurement
update due to the fact that the mathematical structure is the
same as a measurement update in the Kalman filter. However,
strictly speaking, it is not really a measurement update, since
there does not exist any new measurement. It is better to think
of this second update as a correction to the real measurement
update using the information in the prediction of the nonlinear
state variables.

D. General Case

In the previous two sections, the mechanisms underlying the
marginalized particle filter have been illustrated. It is now time
to apply the marginalized particle filter to the most general
model.

Model 3:

(18a)

(18b)

(18c)

where the state noise is assumed white and Gaussian distributed
with

(19a)

The measurement noise is assumed white and Gaussian dis-
tributed according to

(19b)

Furthermore, is Gaussian

(19c)

The density of can be arbitrary, but it is assumed known.
In certain cases, some of the assumptions can be relaxed. This

will be discussed in the subsequent section. Before moving on
it is worthwhile to explain how models used in some applica-
tions of marginalization relate to Model 3. In [23], the marginal-
ized particle filter was applied to underwater navigation using a
model corresponding to (18), save the fact that

. In [18], a model corresponding to linear
state equations and a nonlinear measurement equation is applied
to various problems, such as car positioning, terrain navigation,
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and target tracking. Due to its relevance, this model will be dis-
cussed in more detail in Section III. Another special case of
Model 3 has been applied to problems in communication theory
in [9] and [37]. The model used there is linear. However, de-
pending on an indicator variable the model changes. Hence, this
indicator variable can be thought of as the nonlinear state vari-
able in Model 3. A good and detailed explanation of how to use
the marginalized particle filter for this case can be found in [14].
They refer to the model as a jump Markov linear system.

Analogously to what has been done in (7), the filtering distri-
bution is split using Bayes’ theorem

(20)

The linear state variables are estimated using the Kalman filter
in a slightly more general setting than which was previously
discussed. However, it is still the same three steps that are ex-
ecuted in order to estimate the linear state variables. The first
step is a measurement update using the information available in

. The second step is a measurement update using the infor-
mation available in , and finally, there is a time update.
The following theorem explains how the linear state variables
are estimated.

Theorem 2.1: Using Model 3 the conditional probability
density functions for and are given by

(21a)

(21b)

where

(22a)

(22b)

(22c)

(22d)

and

(23a)

(23b)

(23c)

(23d)

where

(24a)

(24b)

(24c)

Proof: See the Appendix.
It is worth noting that if the cross-covariance between

the two noise sources and is zero, then and
. The first density on the right-hand

side in (20) is now taken care of. In order for the estimation to

work, the second density in (20) is taken care of ac-
cording to (12). The analytical expressions for
and are provided by the following theorem.

Theorem 2.2: For Model 3, and
are given by

(25a)

(25b)

Proof: For the basic facts about conditionally linear
models, see [19]. The details for this particular case can be
found in [36].

The details for estimating the states in Model 3 have now been
derived, and the complete algorithm is Algorithm 1. As pointed
out before, the only difference between this algorithm and the
standard particle filtering algorithm is that the prediction stage
is different. If steps 4a and 4c are removed from Algorithm 1,
the standard particle filter algorithm is obtained.

In this paper, the most basic form of the particle filter has been
used. Several more refined variants exist, which in certain ap-
plications can give better performance. However, since the aim
of this article is to communicate the idea of marginalization in
a general linear/nonlinear state-space model, the standard par-
ticle filter has been used. It is straightforward to adjust the al-
gorithm given in this paper to accommodate e.g., the auxiliary
particle filter [34] and the Gaussian particle filter [26], [27]. Sev-
eral ideas are also given in the articles collected in [11].

The estimates as expected means of the linear state variables
and their covariances are given by [32]

(26a)

(26b)

(26c)

where are the normalized importance weights, provided by
step 2 in Algorithm 1.

III. IMPORTANT SPECIAL CASES AND EXTENSIONS

Model 3 is quite general indeed, and in most applications,
special cases of it are used. This fact, together with some exten-
sions, will be the topic of this section.

The special cases are just reductions of the general results
presented in the previous section. However, they still deserve
some attention in order to highlight some important mecha-
nisms. It is worth mentioning that linear substructures can enter
the model more implicitly as well, for example, by modeling
colored noise and by sensor offsets and trends. These modeling
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issues are treated in several introductory texts on Kalman fil-
tering, see e.g., [17, Sec. 8.2.4]. In the subsequent section, some
noise modeling aspects are discussed. This is followed by a dis-
cussion of a model with linear state equations and a nonlinear
measurement equation.

A. Generalized Noise Assumptions

The Gaussian noise assumption can be relaxed in two special
cases. First, if the measurement equation (18c) does not depend
on the linear state variables, , i.e., , the measure-
ment noise can be arbitrarily distributed. In this case, (18c) does
not contain any information about the linear state variables and,
hence, cannot be used in the Kalman filter. It is solely used in the
particle filter part of the algorithm, which can handle all proba-
bility density functions.

Second, if in (18a), the nonlinear state equation
will be independent of the linear states and, hence, cannot be
used in the Kalman filter. This means that the state noise
can be arbitrarily distributed.

The noise covariances can depend on the nonlinear state vari-
ables, i.e., and . This is useful for
instance in terrain navigation, where the nonlinear state variable
includes information about the position. Using the horizontal
position and a geographic information system (GIS) onboard
the aircraft, noise covariances depending on the characteristics
of the terrain at the current horizontal position can be motivated.
We will elaborate on this issue in Section V.

B. Important Model Class

A quite important special case of Model 3 is a model with
linear state equations and a nonlinear measurement equation. In
Model 4 below, such a model is defined.

Model 4:

(27a)

(27b)

(27c)

with and . The distribution for
can be arbitrary, but it is assumed known.
The measurement equation (27c) does not contain any infor-

mation about the linear state variable . Hence, as far as the
Kalman filter is concerned, (27c) cannot be used in estimating
the linear states. Instead, all information from the measurements
enter the Kalman filter implicitly via the second measurement
update using the nonlinear state equation (27a) and the predic-
tion of the nonlinear state , as a measurement. This means
that in Algorithm 1, step 4a can be left out. In this case, the
second measurement update is much more than just a correc-
tion to the first measurement update. It is the only way in which
the information in enters the algorithm.

Model 4 is given special attention as several important state
estimation problems can be modeled in this way. Examples
include positioning, target tracking, and collision avoidance
[4], [18]. For more information on practical matters concerning
modeling issues, see, e.g., [4], [29], [30], and [32]. In the
applications mentioned above, the nonlinear state variable

usually corresponds to the position, whereas the linear state
variable corresponds to velocity, acceleration, and bias
terms.

If Model 4 is compared to Model 3, it can be seen that the
matrices , and are independent of in Model 4,
which implies that

(28)

This follows from (23b)–(23d) in Theorem 2.1. According to
(28) only one instead of Riccati recursions is needed, which
leads to a substantial reduction in computational complexity.
This is, of course, very important in real-time implementa-
tions. A further study of the computational complexity of the
marginalized particle filter can be found in [25].

If the dynamics in (18a)–(18b) are almost linear, it can be
linearized to obtain a model described by (27a)–(27b). Then,
the extended Kalman filter can be used instead of the Kalman
filter. As is explained in [29] and [30], it is common that the
system model is almost linear, whereas the measurement model
is severely nonlinear. In these cases, use the particle filter for
the severe nonlinearities and the extended Kalman filter for the
mild nonlinearities.

IV. ILLUSTRATING EXAMPLE

In order to make things as simple as possible, the following
two-dimensional model will be used:

(29a)

(29b)

where the state vector is . Hence, the state con-
sists of a physical variable and its derivative. Models of this kind
are very common in applications. One example is bearings only
tracking, where the objective is to estimate the angle and an-
gular velocity and the nonlinear measurement depends on the
antenna diagram. Another common application is state estima-
tion in a DC-motor, where the angular position is assumed to
be measured nonlinearly. As a final application terrain naviga-
tion in one dimension is mentioned, where the measurement is
given by a map. A more realistic terrain navigation example is
discussed in Section V.

Model (29) is linear in and nonlinear in . The state vector
can thus be partitioned as , which implies that
(29) can be written as

(30a)

(30b)

(30c)

This corresponds to the triangular model given in Model 2.
Hence, the Kalman filter for the linear state variable is given by
(22)–(24), where the nonlinear state is provided by the particle
filter. The estimate of the linear state variable is given by (23a),
which, for this example, is

(31)
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Fig. 1. Integrated navigation system consists of an inertial navigation system
(INS), a terrain-aided positioning (TAP) system, and an integration filter. The
integration filter fuse the information from INS with the information from TAP.

where

(32)

Intuitively, (31) makes sense, since the velocity estimate is given
as a weighted average of the current velocity and the estimated
momentary velocity, where the weights are computed from the
Kalman filter quantities. In cases where (29a) is motivated by
Newtons’ force law, the unknown force is modeled as a distur-
bance, and . This implies that (31) is reduced to

(33)

Again, this can intuitively be understood, since, because it is
conditioned on the knowledge of the nonlinear state variable,
(30a) can be written as

(34)

Thus, (30b) does not add any information for the Kalman filter
since is a deterministic function of the known nonlinear state
variable.

V. INTEGRATED AIRCRAFT NAVIGATION

As was explained in the introduction, the integrated naviga-
tion system in the Swedish fighter aircraft Gripen consists of
an inertial navigation system (INS), a terrain-aided positioning
(TAP) system, and an integration filter. This filter fuses the in-
formation from INS with the information from TAP; see Fig. 1.
The currently used integration filter is likely to be changed to a
marginalized particle filter in the future for Gripen; see Fig. 2. A
first step in this direction was taken in [18], where a six-dimen-
sional model was used for integrated navigation. In six dimen-
sions, the particle filter is possible to use, but better performance
can be obtained. As demonstrated in [18], 4000 particles in the
marginalized filter outperform 60 000 particles in the standard
particle filter.

The feasibility study presented here applies marginalization
to a more realistic nine-dimensional submodel of the total inte-
grated navigation system. Already here, the dimensionality has
proven to be too large for the particle filter to be applied directly.
The example contains all ingredients of the total system, and the
principle is scalable to the full 27-dimensional state vector. The
model can be simulated and evaluated in a controlled fashion;
see [32] for more details. In the subsequent sections, the results
from field trials are presented.

Fig. 2. Using the marginalized particle filter for navigation. The terrain
information is now incorporated directly in the marginalized particle filter. The
radar altimeter delivers the hight measurement y .

A. Dynamic Model

In order to apply the marginalized particle filter to the naviga-
tion problem a dynamic model of the aircraft is needed. In this
paper, the overall structure of this model is discussed. For de-
tails, see [32] and the references therein. The errors in the states
are estimated instead of the absolute states. The reason is that
the dynamics of the errors are typically much slower than the
dynamics of the absolute states. The model has the following
structure:

(35a)

(35b)

(35c)

There are seven linear states and two nonlinear states. The linear
states consist of two velocity states and three states for the air-
craft in terms of heading, roll, and pitch. Finally, there are two
states for the accelerometer bias. The nonlinear states corre-
spond to the error in the horizontal position, which is expressed
in latitude and longitude .

The total dimension of the state vector is thus 9, which is too
large to be handled by the particle filter. The highly nonlinear
nature of measurement equation (35c), due to the terrain eleva-
tion database, implies that an extended Kalman filter cannot be
used. However, the model described by (35) clearly fits into the
framework of the marginalized particle filter.

The measurement noise in (35c) deserves some special atten-
tion. The radar altimeter, which is used to measure the ground
clearance, interprets any echo as the ground. This is a problem
when flying over trees. The tree tops will be interpreted as the
ground, with a false measurement as a result. One simple, but
effective, solution to this problem is to model the measurement
noise as

(36)

where is the probability of obtaining an echo from the ground,
and is the probability of obtaining an echo from the tree
tops. The probability density function (36) is shown in Fig. 3.
Experiments have shown that this, in spite of its simplicity, is a
quite accurate model [10]. Furthermore, , and
in (36) can be allowed to depend on the current horizontal po-
sition . In this way, information from the terrain data base
can be inferred on the measurement noise in the model. Using
this information, it is possible to model whether the aircraft is
flying over open water or over a forest.
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Fig. 3. Typical histogram of the error in the data from the radar altimeter.
The first peak corresponds to the error in the ground reading, and the second
peak corresponds to the error in the readings from the tree tops.

B. Result

The flight that has been used is shown in Fig. 4. This is a
fairly tough flight for the algorithm, in the sense that during
some intervals data are missing, and sometimes, the radar al-
timeter readings become unreliable. This happens at high alti-
tudes and during sharp turns (large roll angle), respectively. In
order to get a fair understanding of the algorithm’s performance,
100 Monte Carlo simulations with the same data have been per-
formed, where only the noise realizations have been changed
from one simulation to the other. Many parameters have to be
chosen, but only the number of particles used are commented
here (see [15] for more details). In Fig. 5, a plot of the error
in horizontal position as a function of time is presented for a
different number of particles. The true position is provided by
the differential GPS (DGPS). From this figure, it is obvious that
the estimate improves as more particles are used. This is natural
since the theory states that the densities are approximated better
when more particles are used. The difference in performance is
mainly during the transient, where it can be motivated to use
more particles. By increasing the number of particles the con-
vergence time is significantly reduced, and a better estimate is
obtained. This is true up to 5000 particles. Hence, 5000 particles
were used in this study. The algorithm can be further improved,
and in [15], several suggestions are given.

The conclusion from this study is that the marginalized par-
ticle filter performs well and provides an interesting and pow-
erful alternative to methods currently used in integrated aircraft
navigation systems.

VI. CONCLUSION

The marginalization techniques have systematically been ap-
plied to general nonlinear and non-Gaussian state-space models,
with linear substructures. This has been done in several steps,
where each step implies a certain modification of the standard
particle filter. The first step was to associate one Kalman filter
with each particle. These Kalman filters were used to estimate

Fig. 4. Flight path used for testing the algorithm. The flight path is clockwise,
and the dark regions in the figure are open water.

the linear states. The second step was to use the prediction of the
nonlinear state as an additional measurement. This was used to
obtain better estimates of the linear state variables. The com-
plete details for the marginalized particle filter were derived for
a general nonlinear and non-Gaussian state-space model. Sev-
eral important special cases were also described. Conditions im-
plying that all the Kalman filters will obey the same Riccati re-
cursion were given.

Finally, a terrain navigation application with real data from
the Swedish fighter aircraft Gripen was presented. The particle
filter is not a feasible algorithm for the full nine-state model
since a huge number of particles would be needed. However,
since only two states (the aircrafts horizontal position) appear
nonlinearly in the measurement equation, a special case of the
general marginalization algorithm can be applied. A very good
result can be obtained with only 5000 particles, which is readily
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Fig. 5. Horizontal position error as a function of time units for different
numbers of particles. The marginalized particle filter given in Algorithm 1 has
been used.

possible to implement in the computer currently used in the
aircraft.

APPENDIX

PROOF FOR THEOREM 2.1

The proof of (16) and (17) is provided as a special case of the
proof below.

Proof: For the sake of notational brevity, the dependence
on in (18) is suppressed in this proof. Write (18) as

(37a)

(37b)

(37c)

where and are defined as

(37d)

(37e)

Inspection of the above equations gives that and can both
be thought of as measurements, since mathematically, (37b) and
(37c) possess the structure of measurement equations. The fact
that there is a cross-correlation between the two noise processes

and , since in (19a), has to be taken care of.
This can be accomplished using the Gram–Schmidt procedure
to decorrelate the noise [17], [21]. Instead of , the following
can be used

(38)

resulting in , and

(39)

Using (37b) and (38), (37a) can be rewritten according to (
is assumed invertible. The case of a noninvertible is treated
in [5])

(40)

(41)

where

(42)

The de-correlated system is

(43a)

(43b)

(43c)

which is a linear system with Gaussian noise. Moreover, from
(37d) and (37e), it can be seen that and are known if
and are known. The actual proof, using induction, of the
theorem can now be started. At time zero,

. Now, assume that is
Gaussian at an arbitrary time .

The recursions are divided into three parts. First, the informa-
tion available in the actual measurement , i.e., is used. Once
the measurement update has been performed, the estimates
and are available. These can now be used to calculate the
predictions of the nonlinear state . These predictions will
provide new information about the system. Second, this new in-
formation is incorporated by performing a second measurement
update using the artificial measurement . Finally, a time up-
date, using the result from the second step, is performed.

Part 1: Assume that both
and are available. This means that can

be computed as

(44)

Using the fact that the measurement noise and, thereby,
is Gaussian, as is the Kalman filter [1]. it can be

seen that , where

(45a)

(45b)

(45c)

(45d)

Part 2: At this stage, becomes available. Use

(46)
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analogously to part 1 , where

(47a)

(47b)

(47c)

(47d)

Part 3: The final part is the time update, i.e., to compute

(48)

Since the state noise is Gaussian, this corresponds to the time up-
date handled by the Kalman filter. Hence,

, where

(49a)

(49b)

(49c)

(49d)
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