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Cancer and neurodegenerative diseases (NDD) appear mechanistically distinct, i.e., the

former acquires mechanisms to resist and evade cell death, while the latter is characterized by

progressive cellular demise and degeneration in specific neuronal populations. Nevertheless,

there is an ongoing debate about the inverse epidemiologic relationship between cancer

and NDD. A substantial number of cancer survivors have a lower risk of developing

NDD, particularly Parkinson’s disease (PD) and Alzheimer’s disease (AD), whereas less

malignancies are observed in PD and AD patients. Several biological hypotheses have been

put forward (Wang et al., 2013; Catalá-López et al., 2014; Majd et al., 2019; Panegyres

and Chen, 2021; Zabłocka et al., 2021; Lee et al., 2022), but exact underlying mechanisms

behind this “inverse association” remain to be explored. Interestingly the correlation between

cancer and AD appears to be purely negative/inverse, suggesting that susceptibility to one

disease may be protective against the other (Musicco et al., 2013; Driver, 2014; Zhang

et al., 2015; Papageorgakopoulos et al., 2017). Contrary in PD, patients showed a low risk

to develop colon, rectal, colorectal cancer and lung cancers but increased risks of brain

cancer and melanoma (Ye et al., 2020). The possible involvement of certain genes and

signaling pathways behind this inverse comorbidity has been discussed (Ibáñez et al., 2014).

In particular, the authors elaborated on the possible roles ofWnt and p53 signaling pathways

and protein degradation processes (Ubiquitin/proteasome system) underlying the observed

differences in CNS diseases and cancers. The putative role of non-coding genomes (LnRNAs,

miRNAs) has also been briefly investigated. Pandini et al. (2021), recently discussed the

mechanisms of action associated withMYC-induced long non-coding RNA (MINCR) and its

potential implications in both cancer and NDD. Likewise, miR-519a-3p, which is normally

upregulated in certain cancers, appears to be downregulated in PD (via possible engagement

of its target gene PARP1) (Salemi et al., 2022).

Since most NDD and cancer patients are sporadic, the notion of inverse association in

familial cases is still unexplored. Notably, mutations in the gene encoding leucine-rich repeat

kinase 2 (LRRK2) are associated with both familial and sporadic PD. There is plethora of

knowledge indicating the “overlapping” molecular mechanisms between these two entities.

For instance, TP53—the most frequently mutated gene in human cancers, often named as—

“guardian of the genome” (Chen et al., 2022), turns out to be one of the discriminating tools

also in NDD (Chang et al., 2012; Checler and da Alves Costa, 2014; Talebi et al., 2021).

It has been shown that the mononuclear cells from AD patients express higher levels of

mutant-like p53 (conformationally altered p53) compared to non-AD patients (Lanni et al.,

2008). Likewise, p53 protein levels were found markedly elevated in caudate nucleus of PD
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patients (Mogi et al., 2007). Similar to TP53 PIN1 (Peptidyl-prolyl

isomerase), has been reported to inactivate and activate more than

26 tumor suppressors and 56 oncogenes, in numerousmalignancies

(Yu et al., 2020). Besides cancer, a number of studies highlighted the

possible involvement of PIN1 in NDDs (Pastorino et al., 2006; Ryo

et al., 2006). Driver et al. (2015) discussed the diverse priorities of

PIN1 in cyclic cells and neurons, and suggested that understanding

its role may explain the inverse association between cancer and

AD. Of interest, in cancers that originate mainly in the brain

(e.g., glioblastoma/GBM), an obvious communication between the

cancer cells and adjacent neuronal cells can be expected. In such

scenario, some genetic/molecular resemblances shared by both

cancer and neuronal cells would not be surprising, and genes

such as PARK7 (which encodes the protein DJ-1) fit well into

this scenario. More specifically, whereas the mutation/deletion of

PARK7 leads to the early onset of PD (Dolgacheva et al., 2019), this

gene seems to play a role in cancerogenesis (Kawate et al., 2017).

Particularly in GBM, the immunohistochemical staining showed

enhanced expression of PARK7 in glioma tissues compared to the

normal brain tissues (Kim et al., 2021). Thus, a multifunctional

protein like PARK7 represents a prime candidate explaining the

pathological interactions between cancer (GBM) and PD, which

occur in the anatomically different regions yet in same organ.

Similarly, Tau protein (encoded by the MAPT gene), one of

the major hallmarks of AD, is assumed to bind cancer-related

kinase proteins due to its ability to accumulate both intracellularly

and extracellularly (Papin and Paganetti, 2020; Hedna et al.,

2022). Certain miRNAs are also instrumental in these overlapping

mechanisms. Notably, miRNAs that are differentially expressed in

NDDs (e.g., miR-9, the miR-29 family, and the miR-34 family)

have also been implicated as potential tumor suppressors (Saito

and Saito, 2012). Strikingly, the substantial epigenetic constraint

on cancer progression appears to be a mediating rather than

a causative factor when compared with NDD. For instance,

rapid divisions in cancer cells requires a continuous rewriting of

epigenetic marks (e.g., DNMTs, HAT/HDACs) in their daughter

cells, whereas in NDD all the established epigenetic marks vanished

with the loss/degeneration of neuronal cells.

Beyond the aforementioned—inverse or overlapping—

mechanisms, another avenue that remains to be explored is the

identification of distant molecular contributors involved in these

two entities. A prerequisite for such possible causative contributors

should be their ability to play a dichotomous functional role in

cancer (i.e., both tumor suppressor and tumor promoter), having

open access to the epigenetic landscape/chromatin machinery (to

control transcriptional activity) and a strong tendency to cross-talk

with other non-cancerous hallmarks. Interesting candidate are

the ubiquitin C-terminal hydrolases (UCHs: UCH-L1, UCH-L3,

UCH-L5, and BAP1), a subfamily of deubiquitinating enzymes,

which we have recently shown to be involved in both cancer and

NDD (Sharma et al., 2020). Specifically, UCH-L1 and BAP1 are

of interest. UCH-L1 (also known as PARK5 and PGP9.5) was

previously found to be enriched in neurons, shown to promote

alpha-synuclein neurotoxicity in PD patients (Liu et al., 2009) at

the same time being proposed as an oncogene (Hurst-Kennedy

et al., 2012; Zhong et al., 2012). Likewise, BAP1 gene has been

implicated in several types of cancer and is considered pivotal to

constrain histone H2A monoubiquitylation (H2AK119ub1) in the

genome (Sharma et al., 2019; Fursova et al., 2021). Several cancer-

associated mutations within this gene were found to destabilize

the protein structure and promoted β-amyloid aggregation in

vitro, constituting a pathological hallmark of AD (Bhattacharya

et al., 2015). Though apparently distant (not directly linked),

understanding the multifaceted involvement of UCH-L1 and

BAP1 in cancer and NDD could be of importance. Other potential

candidates are adenosine receptors (ARs), a family of G protein-

coupled receptors (GPCRs) whose four (A1, A2A, A2B, and A3)

members have all been involved in one way or another in the

regulation of tumor progression (Franco et al., 2021). A1 and A2A

show the highest expression in the brain but their relevance for

NDD has yet to be defined (Stockwell et al., 2017).

It is widely accepted that NDD start long before clinical

symptoms (Sharma et al., 2021), i.e., parkinsonism or dementia

arise and affect the patients substantially, thus tracking the

subsequent overt disease progression or severity may not

reveal information relevant to the primary cause (Surguchov,

2022). Similarly, in cancer it appeared crucial to determine

the “disease onset point” by understanding the aforementioned

overlapping/inverse molecular mechanisms. Given the rapid

development of sequencing technology it can be envisioned that

defining genotype of sporadic and familial cases across populations

may improve insight into the shared genetic architecture

connecting disease specific phenotypes, ranging from cancer to

NDD. Consequently, such approaches will also help identify

aging-related exponential accumulation of mutations that may

possibly be correlated with the proteins/proteolytic fragments

released by degenerating neurons in order to develop advanced

novel therapies.
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