
 Open access  Journal Article  DOI:10.1080/01621459.1980.10477478

Marginally restricted D-optimal designs — Source link 

R. Dennis Cook, L. A. Thibodeau

Institutions: University of Minnesota, Harvard University

Published on: 01 Jun 1980 - Journal of the American Statistical Association (Taylor & Francis Group)

Topics: Optimal design and Equivalence (measure theory)

Related papers:

 Theory of optimal experiments

 Marginally restricted linear-optimal designs

 Optimal Design of Experiments

 On the design of experiments in the presence of fixed covariates

 The Equivalence of Two Extremum Problems

Share this paper:    

View more about this paper here: https://typeset.io/papers/marginally-restricted-d-optimal-designs-
3k9tkodbob

https://typeset.io/
https://www.doi.org/10.1080/01621459.1980.10477478
https://typeset.io/papers/marginally-restricted-d-optimal-designs-3k9tkodbob
https://typeset.io/authors/r-dennis-cook-zz7ezgizxb
https://typeset.io/authors/l-a-thibodeau-1fasixd93q
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/institutions/harvard-university-3suqum0d
https://typeset.io/journals/journal-of-the-american-statistical-association-390w2s2p
https://typeset.io/topics/optimal-design-2lv14qwj
https://typeset.io/topics/equivalence-measure-theory-6kbiz4zc
https://typeset.io/papers/theory-of-optimal-experiments-v4e5pkxpfx
https://typeset.io/papers/marginally-restricted-linear-optimal-designs-1x7x25wzw9
https://typeset.io/papers/optimal-design-of-experiments-iso7qzus4b
https://typeset.io/papers/on-the-design-of-experiments-in-the-presence-of-fixed-2xiurpdxjh
https://typeset.io/papers/the-equivalence-of-two-extremum-problems-1zzwqqde7j
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/marginally-restricted-d-optimal-designs-3k9tkodbob
https://twitter.com/intent/tweet?text=Marginally%20restricted%20D-optimal%20designs&url=https://typeset.io/papers/marginally-restricted-d-optimal-designs-3k9tkodbob
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/marginally-restricted-d-optimal-designs-3k9tkodbob
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/marginally-restricted-d-optimal-designs-3k9tkodbob
https://typeset.io/papers/marginally-restricted-d-optimal-designs-3k9tkodbob


• 

• ' 

Marginally Restricted 

D-optimal Designs 

by 

R. Dennis Cook and L.A. Thibodeau 

Technical Report No. 331 

Department of Applied Statistics 
University of Minnesota 

Saint Paul, Minnesota 55108 

November 1, 1978 

This work was supported in part by Grant 
#l-R01-GM25587-0l from the National Insti
tute of General Medical Science. 



' Abstract 

In experimental design it often happens that some of the relevant 

carriers cannot be specified by the experimenter. We consider the 

problem of obtaining approximate D-optimal designs when the design 

space is a product space and the carriers associated with one margin 

are not subject to control. An equivalence theorem for D-optimal 

designs is presented. The essential ingredients of iterative schemes 

for generating designs are discussed. 
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1. Introduction 

In classical optimal design for regression models it is usually assumed 

that all relevant carriers (independent variables) can be controlled 

completely throughout the design space, (see, for example, Fedorov, 1972). 

However, in many areas of application it is common to find that some of 

the known carriers are not subject to control. This often happens when 

the experiment consists of applying levels of a "treatment" to experimental 

units which differ on known relevant quantitative variables. In this case 

the values of the carriers associated with the experimental units are 

restricted by the availability of the units. 

Harville (1974, 1975) discusses the problem of obtaining nearly optimal 

allocation of experimental units for analysis of covariance models. He 

presents algorithms which result in nearly D-optimal exact designs for 

inferences about the treatment effects in additive covariance models and 

discusses extensions to nonadditive models. 

Here,we consider the problem of obtaining D-optimal designs for 

regression models when the values of some of the carriers are restricted 

and not subject to control by design. We first present the general 

formulation and some relevant background information. 

Let f'(x) • (£
1

, ••• ,f) denote a vector of p linearly independent 
- p 

continuous functions on some compact space X. An experiment consists of 

selecting an x in x and observing a random variable y(x) with 

regression function E(ylx) a!'! and constant variance a2
• We assume 

that the fi are known while the parameter vector ! is unknown. If ; 

is a probability measure on X then ~ defines an experimental design. 

1 
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Exact designs concentrate mass ;(x
1

) at points xi, i~l,2, ••• ,r, 

subject to the restriction that N((x
1

) • n
1 

is integral for all i. An 

exact design specifies that the experimenter is to take N uncorrelated 

observations, n
1 

at xi. The resulting covariance matrix of the least 

squares estimate of ! is of the form 

where the information matrix, ~(t), is 

M(f;) • f .f .f' df; 

X 

Approximate designs are not constrained by the requirement that ni be 

integral for all i. Here we consider only approximate designs. 

The choice of a design is often based on the minimization of some 

functional of the information matrix, M(;). Perhaps the two most commonly 

employed functionals are 

and 

(i) 
-1 

determinant M (;) • 

(11) max d(x;E:) 
X€; 

where 
-1 

d(x;;) ::r !:...' (x)M (~)f(x). Designs minimizing these functionals are 

called D and G-optimal designs, respectively. The following result due 

to Kiefer and Wolfowitz (1960) established the equivalence of D and 

G-optimal approximate designs and provided a way of verifying whether a 

given design is D-optimal: 

.. 
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Theorem 1: (Equivalence Theorem). The following conditions are equivalent. 

(i) IM-1 <tn> I • min IM-1(t)I 
E; 

(ii) max d(x;(D) a min max d(x;t) 
X ; X 

(iii) max d(x;~D) mp. 
X 

The set of all designs satisfying these conditions is convex and the 

corresponding information matrices are identical. 

In the next section we provide analogous equivalences for situations 

in which x is a vector, x • (x
1

,x
2
), and the values of ;_ to be 

included in the experiment are~ at the experimenter1s control. 
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2. Marginally Restricted D-Optimal Designs 

Let x m (x
1

,x
2

) and let ~(x) ·m ;(x
1

,x
2
) denote an arbitrary design on 

X m x
1 

x x
2

• We consider only designs for which IM(t)I; O. Let ;i, 

iml,2, denote the marginal design 

~i(xi): ..( d~(xl,x2) 

j 

, i ; j m 1, 2 • 

Since the values of xl to be included in the experiment are not subject 

* to control, we assume that they specify a ma_rginal design ;
1

, say, which places 

* mass at points of a finite collection s
1

• 

* 

* Following Fedorov (1972), we refer to s
1 

* as the spectrum of the design ~
1

. All permissible designs must have ;
1 

= ;
1 

and 

we assume that there is at least one permissible design ~ such that IM(;)I; o. 

Let C • {~1~
1 

• ;"'} 
1 

and note that C is convex. The associated 

family of information matrices, {M(~)l;£C}, has the same properties as the 

family of all information matrices (cf, Fedorov, 1972, p. 66). In particular, 

under the assumption that * s1 is finite we may, without loss of generality, 

restrict C to measures with finite·spectrum. Let·s
2 

denote the spectrum of ;
2 

The design problem is to choose the "best" design from C according to the 

following definition. 

~ 

Definition 1: The design ; is a marginally restricted D-optimal design 

if 

min jM-1(;)1 = IM-1 (€)J • 
t£C 

In the case that i,(x1 ,x2) • .z
1 

(x
1

) ® !2 (x
2
), where 0 denotes the Kronecker 

product, a marginally restricted D-optimal design is easily determined. 

I 

.... 
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Lemma 1: If f (x
1 

,x
2

) = .s,
1 

(x
1

) @ .s,
2 

(x
2

) on 

D * restricted D-optimal design is equal to ~
2 

x ~l 

design for ,s.
2 

on x
2

• 

X = x
1 

x x
2 

then a marginally 

D 
where ~

2 
is the D-optimal 

Proof: The result follows immediately from Hoel (1965). 

Recall that for any design 

and, thus, 

fx d(x
1

,x
2

; f;) df;(xl'x
2

) • p 

max d(x
1

,x
2

; ;) ~ p 

xl,x2 

The following lenuna establishes an analogous result for the maximum over 

the unrestricted margin, x
2

• First, for ;EC, let; I (x Ix) 
• 2 1 2 1 

denote the associated conditional design on x
2 

given x
1

ES~: 

;211 (x2lx1) = ~(x
1

,x
2
)/;;(x

1
) for tt(x

1
) > O. 

Lemma 2: For ;&C 

l max d("i_,x
2

; f;) df;~(x
1

) ~ p, 

X1 x2 

Proof: The result follows immediately from the relationship 

J, d(x
1

,x
2

; f;) df;
2

1
1

(x
2

1x
1

) ~max d(x
1

,x
2

; f;) 

Xz x2 

* for all x
1 

E s
1

. 

The following theorem presents equivalences for marginally restricted 

D-optimal designs analogous to those of Theorem 1 for D-optimal designs. 

Theorem 2: The following conditions are equivalent: 

(i) IM-1 (i)I = min IM-1 (;)1 
~EC 

r ~ * 
(ii) Jv max d(x1,x2; ~) d~1 (x1) 

X1 x2 
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= min [ max d(x
1

,x
2

; t) dt~(x
1

) 

~EC X1 x2 

r A * 
(iii) Jv max d(x

1
,x

2
;t) dt

1
(x

1
) ~ P. 

X1 x2 

The set of all designs satisfying these conditions is convex and the 

corresponding information matrices are identical. 

Proof: The proof follows along the same lines as that for Theorem 1. Only 

the main points will be sketched here. We first show that (ii) and (iii) 

follow from (i). 

A 

Let ~ satisfy (i) and let ; denote an arbitrary design in C. Then 

A A 

;a. = (1-a); + a; e: C for all O ~ a ~ 1. Since IM(;) I ~ )M(;) I 

for all t e:C we must have 

0 
- log IM(~ >II < 0 • a rv - a, -

""' a•O 

Or, after evaluation, 

Iv r d(~,x2; €> 
X1 Jx2 

* 
d;2(1<x2lx1) d;l(xl) ~ p 

I * * * where t 211 • t(x1 ,x2) t 1 (x1), x
1 

€ s
1

. Choosing, for each x
1 

E s
1

, 
A 

t
211

cx
2

1x1) to place mass 1 at the value of x
2 

which achieves maxx
2
d(x

1
,x

2
; t) 

it follows that 

r A * J ~ max d(x1 ,x2; ~) d~1(x1) ~ P 

X1 x2 

This in combination with lemma 2 establishes results (ii) and (iii). 

J 

.. 
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To show that (1) follows from (ii), let ~ satisfy (ii) and assume 

111-1 (€)1 > min l.!1-1 (t)I 
E;EC 

There is a design ~EC such that 

,.. 
However, since ~ satisfies (ii), 

and result (i) follows. Other equivalences follow in a similar fashion. 

As in the case of the equivalence theorem, Theorem 2 establishes 

equivalences between functionals based on the determinant and the variances 

of the predicted values, and provides conditions for verifying when a given 

design 1s the marginally restricted D-optimal design. However, the following 

necessary condition may be a bit easier to verify in practice. 
,.. 

Corollary 1: Let ~ denote a marginally restricted D-optimal design then 

Proof: By Theorem 2, v ~ p. Assume v < p, then 

and, thus, 

The result follows by contradiction • 

. ···------- .. ·----- -----
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According to this corollary, to verify that a given design is not the 

marginally restricted design we need consider only the points in s
2

• 

Additive models represent an important special case which frequently 

occurs in practice. If the experimenter can specify that the model is 

additive and contains a constant term then !. may be written as 

f'(x
1

,x
2

) = (1,.&i(x
1
), ,&2(x

2
)). The following lennna shows how to construct a 

marginally restricted D-optimal design in this case. 

Lennna 3: If !'(x
1

,x
2

) = (l,.&~ (x
1
), ,s.2(x

2
)) then a marginally restricted 

D * D D-optimal design is ;
2 

x ;
1

, where ;
2 

is the D-optimal design for 

(1,,s.2) on x
2

• 

Proof: Let ;(xl,x2) • ;l(xl) x t2<x2?, 

and 

where 

M = 
=-! h ~~ d;i (xi) 

X1 

- -1-
di (xi; ;1) • .&j_ ~ £i 

~ =- (1,aI (xi)), i • 1,2. 

It is straightforward to verify that 

d(xl,x2; ;) = dl(xl; ;l) + d2(x2; ;2) - 1 • 

The result follows immediately from Theorems 1 and 2 by setting 

and 
D 

;2 • (2. 

* tl - ;l 

In general, Lemma 3 will not hold for models without constant terms. 

This is easily seen by considering the case f'(x
1

,x
2

) = (x
1

,x
2
), X ::a [-1,1]

2
• 

Also, it is worth noting that Lemma 3 shows how to obtain a D-optimal design for an 

additive model in the unrestricted case. 

J 

' 
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The following examples illustrate the use of Theorem 2 in two cases not 

covered by Lemmas 1 or 3. 

2 
Example 1: Let X = [-1,1] and !.'(x

1
,x

2
) = (l,x

2
x

1
,x

2
). Also, let 

D * D 
;(x

1
,x

2
) = ;

2
(x

2
) x ;

1
(x

1
) where ;

2 
is the D-optimal design for (1,x

2
) 

D D 
on [-1,1], i.e. ;

2
(-1) • ;

2
(1) • 1/2. It is easily verified that 

where 

Clearly, 

and 

2 2 2 
d(x

1
,x

2
; ;) a 1 + x

2 
+ x

2
x
1

/k 

f
l 2 * k a x

1 
d;

1
(x

1
) • 

-1 

2 
max d(x

1
,x

2
; t) • 2 + x

1
/k 

x2 

r1 2 * J. (2+xl/k) d;l • 3. 

-1 

Thus, by condition (iii) of Theorem 2, t is a marginally restricted D-optimal 

design. 

2 2 
Example 2: Let X = [-1,1] and !,'(x

1
,x

2
) = (l,x

2
x

1
,x

2
). Consider the 

D * D 2 
design ; m ;

2 
x ;

1 
where ;

2 
is the D-optimal design for (1,x

2
,x

2
) on 

[-1,1), i.e. ~(-1) • ~(O) a ~(1) = 1/3. A little algebra will verify that 

2 3 2 2 9 4 
d(xl,x2; ;) • 3 - 6x2 + 2k x2xl + 2 x2 

J i 2 * 
where k = x

1
d~(x

1
). 

-1 

Thus, 

max d(x
1

,x
2

; ;) a 3 

x2 2 
3 xl 

- -(1 + -) 
2 k 

if 

if 

2 
x

1 
~ k 

2 
xl ~ k 

. ---·- ··---·------------
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and 

2 

f l * J 3 xl * max d(x
1

,x
2

; ~)d~
1

(x
1

) • 3 + 2(1- k)d;
1

(x
1

) > 3. 

-1 x2 lx1l<v'k 
.l 

Therefore, by Theorem 2; ~ is not a marginally restricted D-optimal design. 

.. 
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3. Generating Marginally Restricted D-Optimal Designs. 

For every ; EC there exists a conditional design t
211 

such that 

~(xl,x2) = ~2j1<x2lx1) ;~(xl) 

* 
for all x1es1 and t2 11 is an unrestricted design on x

1
xx

2
. The followin~ 

lemma shows a parallel between the designs t
211 

and D-optimal designs and 

indicates how to generate marginally restricted D-optimal designs. 
A 

Lemma 4: 

for all 

* ; Proof: For all ( EC and xl E sl max d(x X •l:°) > d(x el:') dl:' ( I ) 
l' 2'~ - ~ l'x2,~ ~211 x2 xl 

_x2 2 

Sufficiency follows by letting ; in this expression be a marginally 

i:-* restricted D-optimal design, integrating both sides with respect to ~
1 

and then noting that in the resulting expression the left hand side 

equals p by (iii) of Theorem 2 and the right hand side equals p by 

construction. 

To show necessity, choose t £ C such that 

max d(x1 ,x2;i) • Jx d(x
1

,x
2

;~) d~
2

1
1

(x
2

1x
1

) 
x

2 
2 

* for all x
1 

E s
1 

The result follows by integrating both sides with 

* respect to t
1 

and using (iii) of Theorem 2. 

* Lemma 4 shows that for any x
1 

E s
1 

we must have 

where x
2 

,. * ,. 
d(x

1
,x

2
;;) • d{x

1
,x

2
;;) 

A 

* and x
2 

are points of support of t
2
1
1

<x
2

1x
1

) • Thus, to 

iteratively generate marginally restricted D-optimal designs we focus 

on the conditional designs ~
2

1
1 
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Let E; denote a design at some iteration. The design f;+l' say, at 

the next iteration is obtained by augmenting E; * * with a fixed point (x
1

, x
2

) 

* * * where xl £ sl and x2 e; X2 . Specifically, for O < a < 1 let 

~ * * * * 211 (x2lx1) • (1-a) t211 (x2lx1) + ao(xl, x2) 

* * where o places mass 1 at (x
1

, x
2

) The design at the next iteration 

is now defined as 

· E;+l (xl ,x2) • 

* 
~2f1<x2fx1) (1 (xl) 

a * * * 
~211 (x2lx1) E;l (xl) 

* * 

* 
xl 1' xl 

* 
xl m xl 

The following lemma indicates how (x
1

, x
2

) is to be chosen. 

Lemma 1= Let E; be any nonsingular marginally restricted design. Define 

* * ;+l as above with (x
1

, x
2

) such that 

max [max dCx
1

, x2; t> - ( d(x
1

,x2; ;) d;
2

1
1

Cx
2

1x
1
)J • 

"i x2 *Jx2* r * * 

Then 

d(x1 , x2 ; t) - Jv d(x1, x2; ~)d;211(x21x1) 

X2 

_a_ lnlM(;+1> I 
a a I > 0 

a•O 

with equality if and only if t is a marginally restricted D-optimal design. 

------------ .. ·----

J 

.( 

'." 
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Proof: From the definition of ~+l' 
I 

1:!<E:+1> * * * * , * * * •.!:!(~)+a tl(xl) [!,(xl,x2) !. (xl, x2) - 1:!<E:211• xl)] 

* where ]:!(~2 1
1

, x1) r * , * * =JY !(xl, x2) ! (xl, x2) d~2J1<x2lx1) 
X2 

Thus, 

_L lnlM<E:+1> I a a 
-1 ) 

a Tr M (E:+l 
* * * *, * * t
1

(x
1

) [.!,(x
1

, x
2

) 1 (x
1

,x
2

) 

* - !!<E:2 I 1 • x1> 1 

(See, for example, Fedorov, 1972). 

It follows then that 

a I •• ** J. * aa ln(M(~+l~ I m ~l(xl) [d(xl, x2; ~) - d(~, x2; ~) d~211<x2lx1)l 

a~o x
2 

Thus, 

a 
:fa lnlM (E:+1) I > 0 

a:::10 

and by Lemma 4 equality is achieved if and only if ~ is a marginally restricted 

I>-optimal design. This completes the proof. 

* * The method of choosing (x
1

, x
2
) and generating ¼-l are the essential 

ingredients in an iterative scheme to generate a marginally restricted·D-optimal 

design. The sequence of weights {ai} and the termination criterion can be 

specified generally as in schemes for generating unrestricted D-optimal 

designs. See, Fedorov (1972) and Tsay (1976). 
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