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Abstract

We give a conformal representation in terms of meromorphic data for a certain

class of spacelike surfaces in L4 whose mean curvature vector verifies 〈H,H〉 = 0.

This representation extends simultaneously the Weierstrass representation for

minimal surfaces in R3 and for maximal surfaces in L3, and the Bryant repre-

sentation for mean curvature one surfaces in the hyperbolic 3-space and in the de

Sitter 3-space.

1 Introduction

In 1987 R.L. Bryant [Bry] described a conformal representation for the surfaces with
constant mean curvature H = r in the hyperbolic 3-space H3(−r2) of constant curvature
−r2, similar in spirit to the classical Weierstrass representation for minimal surfaces in
R3. Having Bryant’s work as a basis, the theory of CMC-r surfaces in H3(−r2) has
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experimented in the last fifteen years a great development, largely influenced by the
global results of minimal surface theory.

Additionally, Umehara and Yamada [UmYa] showed that there is an isometric defor-
mation process via which CMC-r surfaces in H3(−r2) converge analytically to minimal
surfaces in R3 as r → 0. This suggested the possibility of unifying both conformal
representations into a more general one in a natural way.

The first such extended representation was obtained in [KTUY] for a class of surfaces
with holomorphic right Gauss map in certain Lie groups containing those of the form
SL(n,C)/SU(n). An alternative unified representation was derived in [HMN] in terms
of Möbius geometry of surfaces.

The present paper provides a new conformal representation generalizing simultane-
ously those of Weierstrass and Bryant. To do so, we consider the Minkowski spacetime
L4 as the ambient space, and we view R3 and H3(−r2) as hyperquadrics of L4 in the
usual way. With this, we will describe a complex representation for a certain class of
spacelike surfaces in L4, which we will call surfaces of Bryant type in L4, that includes
the minimal surfaces in R3 and the CMC-r surfaces in H3(−r2). Indeed, the surfaces of
Bryant type in L4 that lie in R3 ⊂ L4 (resp. H3(−r2) ⊂ L4) are exactly the minimal
surfaces of R3 (resp. the CMC-r surfaces of H3(−r2)).

The main geometric property of these Bryant-type surfaces is that their mean cur-
vature vector H verifies 〈H,H〉 = 0, where 〈, 〉 is the Lorentzian product of L4. The
spacelike surfaces defined by this condition are well known in General Relativity, where
they are called marginally trapped surfaces, and represent useful objects in the theory
of singularities in spacetimes (see [HaEl]). From our viewpoint, the isotropy condition
〈H,H〉 = 0 implies that a certain Gauss map of the surface in L4 is conformal, what
generalizes the well known fact that both minimal surfaces in R3 and CMC-r surfaces
in H3(−r2) have conformal Gauss maps.

There are some points of special interest in the present unified conformal represen-
tation. First, it does not only generalize the representation formulae in the theories of
minimal surfaces in R3 and CMC-r surfaces in H3(−r2). It also includes the conformal
representations of their Lorentzian counterparts, namely, the theories of maximal sur-
faces in L3 [Kob] and of spacelike CMC-r surfaces in the de Sitter 3-space S3

1(r
2) [AiAk],

when we view L3 and S3
1(r

2) as hyperquadrics of L4 in the usual way. In addition,
with the present complex representation the Umehara-Yamada perturbation process is
to some extent simplified, as it is viewed in the fixed ambient space L4. Finally, the con-
formal representation can be used to construct many complete surfaces of Bryant type
in L4 which do not belong to any of the previous families, but that still have physical
interest as they are marginally trapped surfaces in L4.

The paper is organized as follows. In Section 2 we analyze the structure equations
of a spacelike surface ψ : Σ → L4, and prove that a natural hyperbolic Gauss map
G : Σ→ C ∪ {∞} on the surface is conformal if ψ is a marginally trapped surface. We
also show that if the normal bundle of ψ is flat, then a certain Hopf differential on the
surface is holomorphic.

Section 3 describes the basic result of the present work: a conformal representation
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for the surfaces of Bryant type in L4. Here we define a surface of Bryant type in L4

as a marginally trapped surface with flat normal bundle that is locally isometric to a
minimal surface in R3 or to a maximal surface in L3.

In Section 4 we will show that the meromorphic representation we have obtained
generalizes the Weierstrass representation of the minimal (resp. maximal) surfaces in
R3 (resp. L3), and the Bryant representation of the CMC-r surfaces in H3(−r2) and
S3

1(r
2). We will also indicate how the Umehara-Yamada deformation is described in our

context, and we will construct new examples of complete surfaces of Bryant type in L4

that do not belong to any of the previous families.
Finally, in Section 5 we will classify the complete surfaces of Bryant type in L4 with

non-negative curvature, as well as the complete simply-connected surfaces of Bryant
type in L4 with finite total curvature. The paper ends up with an appendix containing
some auxiliary results.

2 Marginally trapped surfaces

Let L4 denote the 4-dimensional Lorentz-Minkowski space, that is, the real vector
space R4 endowed with the Lorentzian metric

〈, 〉 = −dx2
0 + dx2

1 + dx2
2 + dx2

3,

in canonical coordinates. We shall identify L4 with the space of 2 by 2 Hermitian
matrices in the usual way,

(x0, x1, x2, x3) ∈ L4 ←→
(

x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
∈ Herm(2).

Under this identification one gets 〈m,m〉 = − det(m) for all m ∈ Herm(2). The complex
Lie group SL(2,C) acts naturally on L4 by Φ·m = ΦmΦ∗, being Φ ∈ SL(2,C), Φ∗ = Φ̄t,
and m ∈ Herm(2). Consequently, SL(2,C) preserves the metric and the orientations.
We shall view the hyperbolic 3-space of negative curvature −r2 in its Minkowski model,
that is, H3(−r2) = {x ∈ L4 : 〈x, x〉 = −1/r2, x0 > 0}. The above identification makes
H3(−r2) become

H3(−r2) =

{
1

r
ΦΦ∗ : Φ ∈ SL(2,C)

}
, (r > 0).

In the same way, the de Sitter space S3
1(r

2) = {x ∈ L4; 〈x, x〉 = 1/r2} is regarded as

S3
1(r

2) =

{
1

r
Φ
(

0 1
1 0

)
Φ∗ : Φ ∈ SL(2,C)

}
, (r > 0).

We shall use the notation H3 = H3(−1) and S3
1 = S3

1(1).
Finally, the positive light cone N3 = {x ∈ L4 : 〈x, x〉 = 0, x0 > 0} is seen as the space

of positive semi-definite matrices in Herm(2) with determinant 0, and can be described
as

N3 =
{
ww∗ : wt = (w1, w2) ∈ C2 \ {(0, 0)}

}
,
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where w ∈ C2 \ {(0, 0)} is uniquely defined up to multiplication by an unimodular
complex number. The quotient N3/R+ inherits a conformal structure and it can be
regarded as the ideal boundary S2

∞
of the hyperbolic 3-space H3 in L4. The map ww∗ →

[(w1, w2)] becomes the quotient map of N3 onto S2
∞

and identifies S2
∞

with CP1 ≡
C ∪ {∞}.

An immersion ψ : Σ→ L4 of a connected orientable surface Σ is said to be a spacelike
surface if Σ inherits via ψ a Riemannian metric. Thus we shall regard Σ as a Riemann
surface with the conformal structure induced by ψ.

Let ψ : Σ → L4 be a spacelike surface, and choose a local conformal coordinate z
on Σ and an oriented orthonormal frame {η, η̃} of T⊥Σ, being η̃ a timelike vector field
with values in H3, and η a spacelike one. Thus the induced metric of Σ is written as
ds2 = λ|dz|2 for some positive smooth function λ. If we define the moving frame

σ = (ψz, ψz̄, η, η̃)
T (2.1)

the structure equations for the immersion are

σz = Uσ, σz̄ = Vσ, (2.2)

where

U =




(log λ)z 0 p p̃

0 0 E Ẽ
−2E/λ −2p/λ 0 A

2Ẽ/λ 2p̃/λ A 0


 , V =




0 0 E Ẽ
0 (log λ)z̄ p̄ ¯̃p

−2p̄/λ −2E/λ 0 Ā

2¯̃p/λ 2Ẽ/λ Ā 0


 ,

and
E = 〈ψzz̄, η〉, Ẽ = −〈ψzz̄, η̃〉, A = −〈ηz, η̃〉,
p = 〈ψzz, η〉, p̃ = −〈ψzz, η̃〉.

(2.3)

The integrability condition for this system,

Uz̄ − Vz + [U ,V ] = 0,

turns into the following Gauss-Codazzi-Ricci equations:

Gauss: (log λ)zz̄ = 2
λ

(
|p|2 − |p̃|2 + E2 − Ẽ2

)
.

Codazzi (1): pz̄ − Ez = AẼ − Ap̃− E(log λ)z,

p̃z̄ − Ẽz = AE + Ap− Ẽ(log λ)z,

Codazzi (2):
(

p̄

λ

)
z
−
(

E
λ

)
z̄

= 1
λ

(
ĀẼ − Ap̃− p(log λ)z

)
(

p̃

λ

)
z̄
−
(

Ẽ
λ

)
z

= 1
λ

(
AE − Ap− p̃(log λ)z̄

)

Ricci: Az̄ − Az = −4i
λ
Im(pp̃).

(2.4)
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The mean curvature vector of the immersion ψ : Σ→ L4 will be denoted by H : Σ→ L4,
and with the above notations it is given by

H =
2

λ

(
Eη + Ẽη̃

)
. (2.5)

Besides, as η + η̃ takes its values in the light cone N3, we may define on any spacelike
surface in L4 the map [η + η̃] : Σ → S2

∞
≡ C ∪ {∞}. It is straightforward to check

that this map does not depend on the chosen orthonormal frame {η, η̃} of the oriented
normal bundle. So, the following definition makes sense:

Definition 1 The map G = [η+ η̃] : Σ→ C∪ {∞} is called the hyperbolic Gauss map
of the spacelike surface ψ : Σ→ L4.

The present paper deals with spacelike surfaces in L4 with isotropic mean curva-
ture vector, that is, surfaces satisfying 〈H,H〉 = 0. We shall call any such surface a
marginally trapped surface. Observe that, with this definition, any spacelike surface with
vanishing mean curvature in L4 is marginally trapped. After a change of orientation in
the normal bundle if necessary (i.e. after a change of sign in η), the above condition

is written as E = Ẽ. Apart from their interest in Relativity Theory, the geometric
importance of marginally trapped surfaces comes from the following fact.

Lemma 2 Let ψ : Σ → L4 be a marginally trapped surface. Then its hyperbolic Gauss
map G : Σ→ C ∪ {∞} is conformal.

This result follows simply by noting that

〈(η + η̃)z, (η + η̃)z〉 = 4(E − Ẽ)(p− p̃) = 0

for every marginally trapped surface in L4.

Remark 3 Let ψ : Σ → L4 be a marginally trapped surface in L4 that actually lies in
some R3 ⊂ L4, L3 ⊂ L4, H3(−r2) ⊂ L4 or S3

1(r
2) ⊂ L4. Then, by a straightforward

computation, the condition 〈H,H〉 = 0 implies that ψ has zero mean curvature if it lies
in some R3 or some L3. In the same way, if ψ lies in some H3(−r2) or some S3

1(r
2), its

mean curvature in that ambient space is constant, of value H = r. In all these cases,
the mean curvature vector H of ψ in L4 is parallel.

From now on we shall work with marginally trapped surfaces with flat normal bundle,
that is, we shall assume that the normal curvature vanishes identically, R⊥ ≡ 0. This
amounts to say that Az̄−Az = 0. But it comes clear that this condition implies the local
existence of a real function β on Σ such that dβ = Adz + Ādz̄. Thus, by considering
the new normal frame given by

ξ = cosh(β)η − sinh(β)η̃, ξ̃ = − sinh(β)η + cosh(β)η̃

we can assume that A = 0 holds in the structure equations (2.2). In other words, there

exists an orthonormal frame ξ, ξ̃ of the normal bundle that is parallel. Let us also remark
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that this parallel orthonormal frame is unique up to constant hyperbolic rotations in
the Lorentzian normal bundle of the immersion.

We shall keep denoting by {η, η̃} the new parallel orthonormal frame {ξ, ξ̃} of T⊥Σ.
It is not difficult to see that with the above hypothesis the equations (2.2) and (2.4) can
be simplified considerably.

Lemma 4 Let ψ : Σ→ L4 be a marginally trapped surface with flat normal bundle, and
let z denote a local conformal coordinate on Σ. Then there is an orthonormal frame
{η, η̃} of T⊥Σ such that the moving frame (2.1) satisfies (2.2) for the matrices

U =




(log λ)z 0 p p̃
0 0 E E

−2E/λ −2p/λ 0 0
2E/λ 2p̃/λ 0 0


 , V =




0 0 E E
0 (log λ)z̄ p̄ ¯̃p

−2p̄/λ −2E/λ 0 0
2¯̃p/λ 2E/λ 0 0


 . (2.6)

Here E, p, p̃ are as in (2.3), and they obey the integrability conditions

Gauss-Ricci: (log λ)zz̄ =
2
(
|p|2 − |p̃|2)

λ
=

2(p− p̃)(p+ p̃)

λ

Codazzi: pz̄ = p̃z̄ = λ

(
E

λ

)

z

(2.7)

The mean curvature vector of any surface in the conditions of the above Lemma is given
by

H =
2E

λ

(
η + η̃

)
. (2.8)

It is immediate from the Codazzi equations that H is parallel if and only if E/λ is
constant, if and only if both p, p̃ are holomorphic.

Besides, let us note this other consequence of the Codazzi equations.

Lemma 5 The quadratic differential Q = (p̃−p)dz2 is holomorphic on every marginally
trapped surface with flat normal bundle in L4.

From now on we will denote the holomorphic function p̃− p as q = p̃− p. We shall call
Q = q(z)dz2 the Hopf differential of the surface.

Remark 6 If ψ : Σ → L4 is a marginally trapped surface with flat normal bundle
on which Q vanishes identically, then by (2.6), η + η̃ is constant and Σ is flat. Thus
ψ(Σ) lies in an affine degenerate hyperplane of L4. Flat surfaces lying in degenerate
hyperplanes of L4 were completely described in explicit coordinates in [GMM2]. Let us
also indicate that many of these surfaces are complete.

In the remaining of the present work we will assume that Q does not vanish identically.
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3 A conformal representation

Let us start this section recalling a classical result by Ricci, stating that a necessary
and sufficient condition for a Riemannian surface (S, ds2) to be locally isometric to a
minimal surface in R3 is that it has non-positive curvature K ≤ 0 and the conformal
pseudo-metric ds̃2 =

√
−Kds2 is flat in case K 6≡ 0. This is equivalent to impose that

the conformal pseudo-metric −Kds2 has constant curvature 1 at its regular points.
Analogously, it can be easily proved that (S, ds2) is locally isometric to a maximal

surface in L3 if and only if K ≥ 0 and
√
Kds2 is flat, if and only if K ≥ 0 and Kds2

has constant curvature −1.

Definition 7 Let ψ : Σ→ L4 be a marginally trapped surface with flat normal bundle.
Then ψ is said to be a surface of Bryant type in L4 provided Σ is locally isometric to
some minimal surface in R3 or to some maximal surface in L3.

Let us examine this kind of surfaces. For this we start with a simply connected
marginally trapped surface with flat normal bundle ψ : Σ → L4. From the Gauss
equation in (2.7) we find that its Gauss curvature is

K =
4 (|p̃|2 − |p|2)

λ2
.

We shall denote ε = sign(K) = sign (|p̃|2 − |p|2). If ε = 0 the surface is of Bryant
type. Otherwise we can define on Σ away from the isolated flat points of Σ the metric
ds̃2 =

√
εKds2, and the above formula easily implies that ds̃2 is flat if and only if

(
log
(
ε(|p̃|2 − |p|2)

))
zz̄

= 0,

that is, if and only if there is a holomorphic function ϕ : Σ→ C such that ε(|p̃|2−|p|2) =
|ϕ|2 (recall that Σ is simply connected). But by the Ricci equation, this is equivalent to
the fact that

p̃+ p = ε|f |2q, (3.1)

being
f = ϕ/q : Σ→ C ∪ {∞} (3.2)

a meromorphic function on Σ.

Remark 8 As we know that a marginally trapped surface with flat normal bundle has
parallel mean curvature if and only if both p, p̃ are holomorphic, it turns out that a
surface of Bryant type has parallel mean curvature if and only if f is constant.

Moreover, if ψ : Σ→ L4 is a marginally trapped surface with flat normal bundle and
parallel mean curvature vector in L4, then it belongs to a known family. Indeed, if this
is the case we get from the Ricci equation that p̃ = kp, k ∈ R, which, jointly with the
structure equations (2.6) provide ψz = k′(kη + η̃)z, k

′ ∈ R. This identity implies that ψ
must lie in a totally umbilical affine hyperquadric of L4, and thus is a known example
by Remark 3.
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The basic result of the present work is a conformal representation for surfaces of
Bryant type in L4.

Theorem 9 (Conformal representation) Let ψ : Σ→ L4 be a non-flat simply con-
nected surface of Bryant type, and let ε = ±1 denote the sign of its Gaussian curvature.
Then there exist a meromorphic function g and a holomorphic 1-form ω on Σ, and three
constants a, b ∈ R, c ∈ C satisfying

C.1 1− ε|g|2 > 0, and the zeros of ω of order 2k correspond to the poles of g of order
k, and

C.2 There is a holomorphic function f verifying that

df =
(
c+ (a+ εb)g + εc̄g2

)
ω (3.3)

and that ωdg/f is holomorphic,

such that the immersion can be expressed as

ψ = FΩF ∗ : Σ→ L4. (3.4)

Here F : Σ→ SL(2,C) is a meromorphic curve satisfying

F−1dF =

(
0 (a+ εc̄g)ω

dg/f 0

)
=: A (3.5)

and Ω : Σ→ Herm(2) verifies the differential equation

dΩ +AΩ + ΩA∗ =

(
2εRe

(
gfω

)
(1− ε|g|2)ω

(1− ε|g|2)ω 0

)
. (3.6)

Conversely, let Σ be a simply connected Riemann surface, ε = ±1, and consider a
meromorphic function g and a holomorphic 1-form ω on Σ satisfying C.1 and C.2 for
some constants a, b ∈ R, c ∈ C. Then there exist a meromorphic curve F : Σ→ SL(2,C)
satisfying (3.5), and a solution Ω : Σ → Herm(2) to the system (3.6). Moreover, the
map ψ : Σ→ L4 given by (3.4) is a surface of Bryant type in L4 for which ε is the sign
of its Gauss curvature.

Remark 10 The only surfaces of Bryant type in L4 that are flat are those in Remark
6. So, it is not restrictive to assume in the representation theorem that the surfaces of
Bryant type are non-flat.

Proof: Let ψ : Σ→ L4 be a non-flat simply connected surface of Bryant type. As Q is a
non-zero holomorphic 2-form, Σ cannot be the Riemann sphere, and so we may choose
a global holomorphic coordinate z on the Riemann surface Σ. Following the notations
of Lemma 4 we get that q = p̃ − p is holomorphic and f as in (3.2) is meromorphic.
On the other hand it is easy to check that dσ2 = εKds2 is a pseudometric on Σ of
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constant curvature −ε. As Σ is simply connected, by the Frobenius theorem there
exists a meromorphic function g (holomorphic with |g| < 1 if ε = 1) on Σ such that (see
[Bry, GMM3, GaMi])

εKds2 =
4|dg|2

(1− ε|g|2)2 .

Now, since from (3.1) and (3.2) we know that

K = ε
4|f |2|q|2
λ2

,

it follows that
|f |2|q|2
λ

=
|gz|2

(1− ε|g|2)2 . (3.7)

Thus

λ =

∣∣∣∣
fq

gz

∣∣∣∣
2 (

1− ε|g|2
)2
. (3.8)

In this way ω = fQ/dg is a meromorphic 1-form on Σ, and it has no poles. Note that
Q = ωdg/f , so this quantity defines a holomorphic quadratic differential on Σ. Besides,
the zeros of ω of order 2k must trivially coincide with the poles of g of order k.

Since from Lemma 2 we know that the hyperbolic Gauss map G = [η+η̃] : Σ→ S2
∞

is
conformal, there exist holomorphic functions A,B : Σ→ C and a positive real function
µ : Σ→ R+ such that

η + η̃ = µ

(
AĀ AB̄
ĀB BB̄

)
. (3.9)

Thus 〈(η+ η̃)z, (η+ η̃)z̄〉 = 1
2
|ABz−BAz|2µ2, and since from (2.1) and (2.6) it is obtained

(η + η̃)z̄ =
2q

λ
ψz, (3.10)

we get by means of (3.8)

|AdB −BdA|2µ2 =
4|dg|2

|f |2 (1− ε|g|2)2 . (3.11)

Besides, from (3.11) we see that

∣∣∣∣
dg

f(AdB −BdA)

∣∣∣∣ =
1

2
µ(1− ε|g|2) > 0.

So, dg/(f(AdB−BdA)) never vanishes, and all its poles are of even order. This ensures
the existence of a meromorphic function (holomorphic if ε 6= −1) S verifying

S2 =
dg

f(AdB −BdA)
.
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If we now choose C = AS, D = BS we find that [(A,B)] = [(C,D)] and CdD−DdC =
dg/f . Thus, by substituting (A,B) with (C,D) and µ with ̺ so that

η + η̃ = ̺

(
CC̄ CD̄
C̄D DD̄

)
,

equation (3.11) turns into

̺ =
2

1− ε|g|2 . (3.12)

Now consider the meromorphic curve F : Σ→ SL(2,C)

F =

(
C fdC/dg
D fdD/dg

)
. (3.13)

Then there exists a meromorphic 1-form ϑ on Σ such that

F−1dF =

(
0 ϑ

dg/f 0

)
. (3.14)

Moreover,

η + η̃ = F

(
̺ 0
0 0

)
F ∗ (3.15)

and from there, (3.14) and (3.12), we have

(η + η̃)z̄ = F




2εggz

(1− ε|g|2)2

2gz

f (1− ε|g|2)
0 0


F ∗.

Once here we recall (3.10) and the fact that q does not vanish identically to obtain from
the above expression that

ψz =
λ

2q
F




2εggz

(1− ε|g|2)2

2gz

f (1− ε|g|2)
0 0


F ∗.

In addition, using (3.7) we obtain the final expression for ψz,

ψz = F




ε|f |2qg
gz

(1− ε|g|2) qf
gz

0 0


F ∗. (3.16)

Finally, let us note that as SL(2,C) acts on L4 as the connected component of the
identity in its isometry group, the immersion ψ : Σ → L4 can be expressed as ψ =
FΩF ∗ : Σ → L4 for an adequately chosen intermediate matrix Ω : Σ → Herm(2). It
comes clear from (3.16) that Ω is a solution of the differential system (3.6). Next, note
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that by differentiation of (3.16) with respect to z̄ and noting that ψzz̄ is real, we see
that the data f, g, ω, ϑ must verify

εgω
(
df − ḡϑ̄

)
+ ωϑ̄ = εḡω̄ (df − gϑ) + ω̄ϑ.

Thus, by Lemma 16 in the Appendix, and as g is not constant (otherwise ψ would be
flat), we obtain the existence of constants a, b ∈ R and c ∈ C such that

ϑ = (a+ εc̄g)ω, df =
(
c+ (a+ εb)g + εc̄g2

)
ω. (3.17)

Particularly, f, ϑ are holomorphic, and C.2 and (3.5) hold. Thus the proof of the first
part of the theorem is complete.

For the converse, we start with the Weierstrass data (g, ω) and constants a, b ∈ R,
c ∈ C verifying C.1 and C.2 on a simply connected Riemann surface Σ. Then the
system (3.5) has a (possibly multivalued) solution F : Σ→ SL(2,C) of the form (3.13),
where C,D are linearly independent solutions of (see [GMM1])

Z ′′ − (g′/f)′

g′/f
Z ′ − (a+ εc̄g)qZ = 0,

(
′ =

d

dz

)
, (3.18)

being Q = q(z)dz2 = ωdg/f.
As the meromorphic 1-form in (3.5) has its poles at the poles of g, we see that the

solution F is locally well defined and holomorphic away from the poles of g.
Let now z0 ∈ Σ be a pole of g of order k ≥ 1, and let δ ≥ 0 denote the order of

the zero of f at z0 (possibly δ = 0). From C.2 it is clearly seen that if c 6= 0, then
δ ∈ {0, 1}, while if c = 0 then δ = 0 (otherwise we would have δ = k + 1 by C.2, which
would contradict that ωdg/f has no poles).

It is straightforward that (g′/f)′/(g′/f) has a simple pole at z0, of residue−(k+δ+1).
Besides, if h = (a+ εc̄g)q, it follows directly that h is holomorphic at z0 if c = 0, it has
a simple pole at z0 if c 6= 0 and f(z0) 6= 0, and has a pole of order two at z0 otherwise.
From this, a simple calculation shows that

h−2 = lim
z→z0

(z − z0)
2h(z) = δk.

Hence, the differential equation (3.18) has a regular singularity at z0 (see [CoLe]). Its
indicial equation is

λ2 + (k + δ)λ+ kδ = 0,

that has the integer roots −k and −δ. Therefore, both C,D are single valued mero-
morphic functions on Σ, and the orders of their poles at z0 are k and δ (see [GMM1]).
Particularly, any pole of C or D of order l is located at a poles of g of order ≥ l.

Once here, we have ensured the existence of a meromorphic solution F : Σ →
SL(2,C) to (3.5) of the form (3.13). If we now set ̺ : Σ→ [0,+∞) as (3.12), the map

N = F

(
̺ 0
0 0

)
F ∗ (3.19)

11



has a finite value at every point, due to the previous analysis regarding the poles of
C,D. Thus we have a map N : Σ→ N3. The same argument shows that the 1-forms

φdz = F


 εgf̄ω (1− ε|g|2)ω

0 0


F ∗, φ̃dz̄ = F


 εḡfω̄ 0

(1− ε|g|2) ω̄ 0


F ∗

take finite values at all points. But now, noting that φ∗ = φ̃ and that φz̄ = φ̃z, we can
conclude the existence of a map ψ : Σ→ Herm(2) such that ψz = φ and ψz̄ = φ̃. Finally,
let us define Ω : Σ → Herm(2) as Ω = F−1ψ(F−1)∗, whose entries may take infinite
values at some points. Then ψ = FΩF ∗ and Ω is trivially a solution to the differential
system (3.6).

At last, as by differentiation of (3.16) we have that ψzz̄ is collinear with N , we
conclude that ψ is a marginally trapped surface. Now, deriving the right hand side of
(3.19) with respect to z we get that N is parallel, that is ψ has flat normal bundle. And
as 〈dψ, dψ〉 = (1− ε|g|2)2|ω|2, ψ is regular and of Bryant type, and the proof is finished.

✷

Remark 11 The mean curvature vector of the Bryant-type surface ψ : Σ→ L4 verifies
the relation 2ψzz̄ = λH = 2E(η + η̃). This indicates by differentiation of (3.16) that

2E

λ
=
a+ b|g|2 + 2εRe(c̄g)

1− ε|g|2 . (3.20)

Thus an explicit expression for H in terms of the Weierstrass data is obtained from
(2.8), (3.20) and (3.15).

Remark 12 The hyperbolic Gauss map G : Σ→ C ∪ {∞} of a surface of Bryant type
is a geometric concept, and thus is uniquely determined at every point. However, this is
not the case for the other basic meromorphic data of a Bryant surface. First, note that
as Q depends on the chosen frame of the normal bundle, it is defined up to the change
Q → eαQ, where α ∈ R is the constant hyperbolic angle relating two different frames.
Therefore, the function f is by definition defined up to f → e−α+iβf , β ∈ R. Besides,
the meromorphic function g is unique up to isometries of the 2-sphere S2 ≡ C ∪ {∞} if
ε = −1, and up to isometries of the Poincaré disk H2 ≡ D if ε = 1. Thus, g is unique
up the change

g → τg + εγ̄

γg + τ̄
, |τ |2 − ε|γ|2 = 1.

Noting now that Q = ωdg/f , the above comments show that ω is defined up to

ω → eiβ(γg + τ̄)2ω.

To close this section, we shall relate the hyperbolic Gauss map G : Σ→ C∪ {∞} to
the Weierstrass data of a Bryant-type surface in L4. First, observe that in (3.9) we may

12



choose A = 1, B = G. Then, with these choices we end up with the formula ψ = FΩF ∗

where

F =

(
C fdC/dg
D fdD/dg

)
, C =

√
dg/(fdG), D = G

√
g/(fdG).

This formula extends a result by Small [Sma] for mean curvature one surfaces in H3 (see
also [GMM3]).

An alternative relation between G and the Weierstrass data relies in the concept of
Schwarzian derivative {h, z} of a meromorphic function h:

{h, z} =

(
h′′

h′

)′

− 1

2

(
h′′

h′

)2

,

(
′ =

d

dz

)
.

We get then by [GMM1, Eq. (28)] and (3.14) that the following relation holds on any
surface of Bryant type in L4:

{G, z}dz2 =

((
(g′/f)′

g′/f

)′

− 1

2

(
(g′/f)′

g′/f

)2
)
dz2 − (a+ εc̄g)Q.

We remark that this formula extends an important equation due to Umehara and Ya-
mada [UmYa2] in the context of mean curvature one surfaces in H3.

4 Examples

Representation of CMC-r surfaces: next, we show that the conformal represen-
tation in Theorem 9 generalizes the Bryant representation [Bry] for surfaces with H = r
in H3(−r2), as well as the Aiyama-Akutagawa one [AiAk] for spacelike surfaces with
H = r in S3

1(r
2). For this, we shall use the unified notation M3(εr2) to denote H3(−r2)

for ε = −1 and S3
1(r

2) for ε = 1.
Let ψ : Σ→M3(εr2) ⊂ L4 be a simply connected (spacelike) CMC-r surface, and let

η1 be its unit normal in M3(εr2). Then {η1, η2 := rψ} is a parallel orthonormal frame
in the normal bundle of ψ in L4. So, using the notations of the first two sections, it
follows directly that εQ = 〈ψzz, η1〉 dz2. Therefore |f | = 1 on Σ and as f is defined up
to constant rotations (note that in this case we are working with a uniquely determined
frame in the normal bundle), we may assume that f = 1.

With all of this, the differential system (3.6) can be explicitly solved under the
condition det(Ω) = −ε/r2, to obtain

Ω =
1

r

(
−ε εḡ

εg 1− ε|g|2
)

=
1

r

(
0 i

i −ig

)(
1 0

0 −ε

)(
0 −i
−i iḡ

)
.

Finally, we derive with respect to z the identity ψ = FΩF ∗ and compare it with (3.16)
to deduce that ϑ = rω for the holomorphic 1-form ϑ in (3.17). In conclusion, the Bryant
surface ψ : Σ→M3(εr2) is recovered as

ψ =
1

r
B
(

1 0

0 −ε

)
B∗, B = F

(
0 i

i −ig

)
.

13



Here B : Σ → SL(2,C) is a null holomorphic curve (i.e. det(dB) = 0), and F : Σ →
SL(2,C) verifies (3.5) for a = r, c = 0. Thus, the Bryant representation in [Bry] and
the Bryant-type representation in [AiAk] are recovered.

The Weierstrass representation: now, we prove that the classical Weierstrass
representation for minimal surfaces in R3 and its analogue for maximal surfaces in L3

are also included in Theorem 9. In order to do so, we fix the notation R3
ε to denote

R3 ≡ x0 = 0 ⊂ L4 if ε = −1, and L3 ≡ x3 = 0 ⊂ L4 if ε = 1.
Let ψ : Σ→ R3

ε ⊂ L4 be a minimal (or maximal) surface in R3
ε, with unit normal η1.

Then {η1, η2 = 1
2
(1− ε, 0, 0, 1+ ε)} is a parallel orthonormal frame of the normal bundle

of ψ in L4, and arguing as above we get that f = 1. Moreover, as H = 0, by (3.20) we
have a = b = c = 0. Thus the differential equation (3.5) can be explicitly integrated,
and we obtain a solution as

F =

(
1 0

g 1

)
: Σ→ SL(2,C). (4.1)

Let Ω : Σ→ Herm(2) be the solution to (3.6), which is in this case as

Ωz +

(
0 0

gz 0

)
Ω =

(
εgω (1− ε|g|2)ω
0 0

)
. (4.2)

If we write

Ω =

(
U V

V̄ W

)
,

then we see from (4.2) that

U = 2εRe

∫
gω, (Ug + V̄ )z = εg2ω, (Uḡ + V )z̄ = ω.

Now, as ψ(Σ) ⊂ R3
ε it holds

ψ = FΩF ∗ =

(
U Uḡ + V

Ug + V̄ εU

)
.

So, by the above computations we finally obtain the Weierstrass representation:

ψ = Re

∫ (
(1 + ε)g, 1 + εg2,−i(1− εg2), (1− ε)g

)
ω.

Analytic deformation of surfaces: we shall show now that, with the above
notations, CMC-r surfaces in M3(εr2) can be analytically and isometrically deformed
to minimal (or maximal) surfaces in R3

ε as r tends to zero. This result was obtained in
the case ε = −1 by Umehara and Yamada [UmYa].

To do so, we consider first the translated spaces

M̃3(εr2) =

{
p− 1

2r
(1− ε, 0, 0,−1− ε) : p ∈M3(εr2)

}
,
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where we will assume that M3(r2) = {x ∈ S3
1 : x3 < 0} is a de Sitter half-space. Our

deformation process will rely on the fact that, as r → 0, the spaces M̃3(εr2) converge to
R3

ε.
Let ψr0

: Σ → M3(εr2
0) be a simply connected CMC-r0 surface, and choose z0 ∈ Σ.

Let now (g, ω) be its Weierstrass data, and suppose without loss of generality that
g(z0) = 0. Then, for every r > 0 there exists a unique (up to rigid motions) CMC-r
surface in M(εr2) ψr : Σ → M(εr2) that has the same Weierstrass data (g, ω), and so
it is isometric to the original immersion ψr0

. Now, we know that ψr = 1
r
Fr∆F

∗

r , where
Fr ∈ SL(2,C),

F−1
r dFr =

(
0 rω
dg 0

)
, Fr(z0) = Id, ∆ =

(
−ε εḡ

εg 1− ε|g|2
)
.

Consider now the translated immersions Xr : Σ→ M̃3(εr2) given by

Xr = ψr −
1

2r
(1− ε, 0, 0,−1− ε) =

1

r

(
Fr∆F

∗

r −
(
−ε 0

0 1

))
.

As the family Ar := F−1
r dFr is real analytic with respect to r ∈ R, the family Fr : Σ→

SL(2,C) is also real analytic with respect to r. So, using that F0 is given by (4.1), it is
easy to see that

Fr∆F
∗

r −
(
−ε 0

0 1

)
= a1(z, z̄)r + o(r).

This assures that the family of surfaces Xr : Σ → L4 is real analytic with respect to
r ∈ R. Furthermore, X0 : Σ→ R3

ε is given by

X0 = a1(z, z̄) =
∂

∂r

∣∣∣∣
r=0

Fr∆F
∗

r .

Finally, X0 has zero mean curvature in R3
ε. This happens because, by

∂2

∂z∂z̄
(Fr∆F

∗

r ) = Fr

(
r2|ω|2(1− ε|g|2) 0

0 0

)
F ∗

r

and the analyticity of the family in r ∈ R, we have

∂2X0

∂z∂z̄
=

∂2

∂z∂z̄

(
∂

∂r

∣∣∣∣
r=0

Fr∆F
∗

r

)
=

∂

∂r

∣∣∣∣
r=0

(
∂2

∂z∂z̄
(Fr∆F

∗

r )

)
= 0.

Therefore, we conclude that the CMC-r surfaces of H3(−r2) (resp. S3
1(r

2)) can be
perturbed in an analytic and isometric way to minimal surfaces in R3 (resp. to maximal
surfaces in L3) as r approaches to zero.

New families of complete examples: there exist many complete surfaces of
Bryant type in L4 with non-parallel mean curvature, that can be constructed by means
of the representation formula.
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To see this, let us choose c = 0 in Theorem 9. Then df = (a+ εb)gω. Therefore, the
condition C.2 in this case just asks for the existence of a nowhere-zero primitive

∫
gω

of the holomorphic 1-form gω on Σ, a condition that always holds locally. Moreover, if
a+ εb 6= 0 the example has non-parallel mean curvature, and if a = −εb 6= 0 the surface
lies in some affine hyperbolic 3-space or de Sitter 3-space in L4 and is a Bryant surface
there (see Remark 8). Finally, if a = −εb = 0, the surface has zero mean curvature in
some Euclidean or Lorentzian affine 3-space of L4, again by Remark 8.

Many of the examples with c = 0 and non-parallel mean curvature are complete. For
instance, if (g, ω) are the Weierstrass data of a complete minimal surface in R3 lying in a
halfspace with horizontal boundary, then its third coordinate Re

∫
gω is non-surjective,

and thus the above condition C.2 holds. So, g, ω together with ε = −1 and a, b ∈ R,
a+ εb 6= 0, generate a complete surface of Bryant type in L4.

As a closing remark, we indicate that if a = c = 0 and b 6= 0, the resulting class of
surfaces admit an integral representation quite analogous to the Weierstrass represen-
tation of minimal and maximal surfaces. Indeed, in that situation we have ϑ = 0 in
(3.17), so a solution F : Σ→ SL(2,C) to (3.5) is obtained by substituting g in (4.1) by∫
dg/f . With this, the system (3.6) can be integrated much in the same way that we

did for minimal and maximal surfaces in (4.2). We do not write the final expressions
explicitly, as they are straightforward but rather lengthy.

5 Completeness

The well known Calabi-Bernstein theorem [Cal] asserts that the only complete max-
imal surfaces in L3 are spacelike planes. Analogously, every complete spacelike CMC-r
surface in S3

1(r
2) must be a flat totally umbilic example, obtained as the intersection of

S3
1(r

2) with a degenerate vector hyperplane of L4 [Aku, Ram]. We remark that both max-
imal surfaces in L3 and CMC-r surfaces in S3

1(r
2) have non-negative curvature, K ≥ 0.

We start this section with a simultaneous generalization of these two Bernstein-type
theorems:

Corollary 13 Every complete surface of Bryant type in L4 with non-negative curvature
is a flat surface lying in a degenerate hyperplane of L4, as described in Remark 6

Proof: Given a surface of Bryant type ψ : Σ → L4 with non-negative curvature, we
obtain that ε = 1, and so 〈dψ, dψ〉 = (1 − |g|2)2|ω|2 ≤ |ω|2. Thus |ω|2 is a flat metric,
which is complete because so is ψ. Therefore, the Riemann surface Σ must be parabolic,
and as |g| < 1 we obtain that g is constant. Therefore the Hopf differential Q vanishes
identically on Σ, and the surface must be flat and lie in a degenerate hyperplane of L4,
by Remark 6.

✷

In minimal surface theory, as well as in Bryant surface theory, the study of the
complete examples of finite total curvature has been widely developed. Here, we recall
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that a surface Σ with non-positive curvature K ≤ 0 has finite total curvature provided
∫

Σ

KdA > −∞,

where dA is the area element of the surface.
Our next result shows that, even though there are many complete simply connected

surfaces of Bryant type with non-parallel mean curvature, none of them has finite total
curvature.

Theorem 14 Let ψ : Σ→ L4 be a non-flat complete simply-connected surface of Bryant
type with finite total curvature. Then ψ(Σ) lies in some Euclidean or hyperbolic 3-space
of L4, and its Weierstrass data are given by

g(z) =
P1(z)

P2(z)
, ω = P2(z)

2dz, c = a+ εb = 0,

where P1(z), P2(z) : C→ C are polynomials with no common zeros.

Proof: Since ψ is a non-flat immersion then ε = −1, from Corollary 13. On the other
hand, using that ψ has finite total curvature, Σ must be parabolic, that is, we can
assume Σ = C, and its Weierstrass data (g, ω) are meromorphic on C∪{∞} (see [Oss]).

As ω is holomorphic on Σ = C, there exist Q1(z), Q2(z), Q3(z) : C→ C polynomials,
Q1(z), Q2(z) without common factors, such that

g(z) =
Q1(z)

Q2(z)
, ω = Q3(z)dz.

Observe that from C.1, the zeros of g of order k correspond to the zeros of order 2k
of the holomorphic 1-form g2ω. So, g2ω = AQ1(z)

2 dz for a non-zero complex constant
A. Then, Q3(z) = AQ2(z)

2 and we can write g(z) = P1(z)/P2(z), ω = P2(z)
2dz for

P1(z) =
√
AQ1(z), P2(z) =

√
AQ2(z).

Let R1, R2 be the degrees of P1(z), P2(z), respectively. Since g is unique up to
isometries of C∪{∞}, we can suppose that g(∞) =∞, that is, R1 > R2. Consequently

degree(ω) < degree(gω) < degree(g2ω).

Moreover, from (3.3), f(z) is a polynomial such that degree(df) = degree(g2ω) if c 6= 0
or degree(df) = degree(gω) if c = 0 and a− b 6= 0. Hence, if c 6= 0 or a− b 6= 0 it follows
that degree(df) ≥ degree(gω) = R1 +R2, and so

degree(f) ≥ R1 +R2 + 1 > R1 +R2 − 1 ≥ degree(ωdg).

But the last inequality implies that ωdg/f is not holomorphic, which is a contradiction.
Thus we can conclude that c = 0 and a − b = 0, which means by Remark 8 that H is
parallel, and ψ lies in some Euclidean or hyperbolic 3-space of L4. This concludes the
proof.

✷
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Appendix

In searching an adequate family which generalizes simultaneously the theories of
minimal surfaces in R3 and Bryant surfaces in H3, a natural hypothesis is to ask the
mean curvature vector to be parallel in the normal bundle, that is, ∇⊥H ≡ 0. However,
this condition is too strong, as it does not generate any new example:

Proposition 15 Any spacelike surface in L4 with parallel mean curvature which is not
maximal in L4 must lie in a totally umbilical affine hyperquadric Q3 of L4.

Proof: Let ψ : Σ→ L4 be a non maximal spacelike surface with parallel mean curvature
H. Then it holds that 〈H,H〉 = A with A ∈ R.

If A = 0, then ψ is a marginally trapped surface, and we can choose ν ∈ T⊥(Σ) such
that 〈ν, ν〉 = 0 and 〈ν,H〉 = C > 0. Then it is easy to check that {η = (ν+H)/(2C), η̃ =
(ν −H)/(2C)} is an orthonormal frame of T⊥(Σ), and that both η, η̃ are parallel. This
implies that the normal curvature vanishes identically, R⊥ ≡ 0. The result follows then
by Remark 8.

If A 6= 0, let us suppose that A > 0 and so H is spacelike (the case A < 0 is
analogous). Then we can take η̃ a normal timelike vector field such that {η = H/A, η̃}
is an orthonormal frame of T⊥(Σ). As both η, η̃ are parallel, R⊥ ≡ 0. Since the mean

curvature vector H, given by (2.5), is spacelike, we get Ẽ = 0 and E/λ = 0. Now, by
the Codazzi and Ricci equations in (2.4) it follows that p, p̃ are holomorphic and p̃ = kp,
k ∈ R. The proof of this case finishes following the argument of Remark 8.

✷

The following elementary fact is used in the proof of the representation theorem.

Lemma 16 Let f1, f2, f3, f4 : Σ → C ∪ {∞} be meromorphic functions on a Riemann
surface, such that f1 and f3 are linearly independent and

f1f̄2 + f3f̄4 = f̄1f2 + f̄3f4. (5.1)

Then there exist constants a, b ∈ R and c ∈ C such that

f2 = af1 + cf3, f4 = c̄f1 + bf3.

Proof: Given z0 ∈ Σ a point where the functions fi have no poles and f3(z0) 6= 0, by
differentiation of (5.1) we get

f
(n)
1 f̄2 + f

(n)
3 f̄4 = f̄1f

(n)
2 + f̄3f

(n)
4 (5.2)

at z0, for every n ∈ N. Thus, all derivatives of f4 at z0 are a linear combination of the
derivatives of f1, f2, f3 at z0. This shows the existence of λ, µ, δ ∈ C with

f4 = λf1 + µf2 + δf3. (5.3)
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Deriving now (5.2) with respect to z̄ at z0 we obtain

f
(n)
1 f

(k)
2 + f

(n)
3 f

(k)
4 = f

(k)
1 f

(n)
2 + f

(k)
3 f

(n)
4 (5.4)

for all k ∈ N. As f1, f3 are linearly independent, there is some n0 ∈ N such that
f

(n0)
1 + µ̄f

(n0)
3 6= 0 at z0. Putting this fact together with (5.3) and (5.4) we conclude

as before that f2 is a linear combination of f1 and f3. Therefore, there exist complex
constants a, b, c, e ∈ C such that

f2 = af1 + cf3, f4 = ef2 + bf4. (5.5)

Now, by (5.1) and (5.5) it holds

(a− ā)|f1|2 + (c− ē)f̄1f3 + (e− c̄)f1f̄3 + (b− b̄)|f3|2 = 0.

By the linear independence of f1 and f3 this indicates that a, b ∈ R and e = c̄, what
completes the proof.

✷
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