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Direct numerical simulation of turbulent flow in a straight square duct was performed
in order to determine the minimal requirements for self-sustaining turbulence. It was
found that turbulence can be maintained for values of the bulk Reynolds number above
approximately 1100, corresponding to a friction-velocity-based Reynolds number of 80.
The minimum value for the streamwise period of the computational domain measures
around 190 wall units, roughly independently of the Reynolds number. Furthermore,
we present a characterization of the flow state at marginal Reynolds numbers which
substantially differs from the fully turbulent one. In particular, the marginal state exhibits
a 4-vortex secondary flow structure alternating in time whereas the fully turbulent one
presents the usual 8-vortex pattern. It is shown that in the regime of marginal Reynolds
numbers buffer layer coherent structures play a crucial role in the appearance of secondary
flow of Prandtl’s second kind.

1. Introduction

Turbulent flow in a plane channel has been extensively studied in the past and many
aspects of its dynamics are by now fairly well understood, at least as far as the near-wall
region is concerned. The flow in a duct with a rectangular cross-section, on the other
hand, has received much less attention. Although its geometry is only mildly more com-
plex, it exhibits important additional phenomena, of which the most prominent one is
the appearance of turbulence-driven secondary motion in the cross-sectional plane. In
particular, in this paper we will address the canonical case of ducts with square section.
The appearance of secondary mean motion of a turbulent flow in such a geometry is
well known since the experiments by Nikuradse (1926) who was the first to measure it
indirectly. One significant consequence of the secondary mean motion is a non negligible
deformation of the primary mean velocity profile. Previous experimental measurements
of the flow in a square duct (Brundrett & Baines 1964; Gessner 1973; Melling & Whitelaw
1976) as well as direct numerical simulations (Gavrilakis 1992; Huser & Biringen 1993)
have provided useful reference data for the mean velocities and the Reynolds stress ten-
sor. However, those studies were mainly focused upon the budget of the averaged flow
equations, while not providing much information on the underlying physical mechanisms
responsible for the formation of secondary flow. Although some insight about vortex
kinematics in duct flow was provided by Kawahara & Kamada (2000), a detailed inves-
tigation of the dynamics of coherent structures in such flow has to our knowledge not
been reported in the literature.

Galletti & Bottaro (2004) and Bottaro, Soueid & Galletti (2006) have employed a
parabolized linear formulation (in the latter reference a simple mixing-length model ac-
counts for the Reynolds stresses) to describe the transient growth of a perturbation field
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which under certain circumstances resembles the experimentally observed secondary flow
pattern in the square duct. However, their linear analysis of the mean field seems to be
more appropriate to model a transitional path toward turbulence rather than to describe
a fully developed turbulent state.

In the present study we numerically investigate marginal turbulence states in a square
duct, meaning that we focus upon flows developing at low Reynolds numbers just above
the minimum value for sustained turbulence. The rationale behind this choice is that
in this regime the cross-stream scale of coherent structures should be comparable with
the duct width. Therefore, such a scenario should be an ideal one to elucidate possible
direct relationships between well known buffer layer coherent structures (i.e. streaks and
streamwise vortices) and cross stream mean motion.

The first objective of the research has been the quantitative determination of marginal
states. Subsequently, we have performed a detailed study to characterize these states. It
is found that the marginal state is substantially different from the fully turbulent one
displaying periods of strong turbulent activity and quasi laminar behavior switching from
a pair of facing walls to the other. Finally, we have addressed the generation mechanism of
turbulent mean secondary motion from the point of view of coherent structure dynamics
at marginal Reynolds numbers.

The organization of this paper is as follows. In §2 a pseudo-spectral direct numerical
simulation method by which flow data are generated is presented. We then proceed, in
§3, with an identification of the critical parameter values above which turbulence can
be sustained in the square duct. In §4 we present the characterization of the flow under
marginal conditions in terms of statistics and newly discovered secondary flow patterns
with reduced symmetries. We also describe statistical results stemming from a coherent
vortex eduction study. Finally, in §5, a general discussion about the obtained results is
presented together with some conclusions.

2. Numerical methodology

We are considering the flow in a straight duct with square cross-section of half-width h.
The Cartesian coordinates are x, y, z with the origin located in the center of the duct
and x defined along the streamwise direction. The flow field is assumed to be streamwise
periodic over a period of length Lx and a constant flow rate is imposed at each time step
(Pinelli et al. 2007).

We solve the incompressible Navier-Stokes equations with the velocity components
u, v, w (along x, y and z directions, respectively) and the pressure p (normalized by a
unit density) as the independent variables. An incremental-pressure projection method
is used for solving the momentum equation and imposing the divergence-free condition
in three fractional steps. The temporal integration is based upon the Crank-Nicholson
scheme for the viscous terms and a three-step low-storage Runge-Kutta method for the
non-linear terms, including the pressure gradient. This time discretization is identical to
the one described by Verzicco & Orlandi (1996) with a time accuracy of O(∆t2) in the
interior of the domain. On the walls the impermeability constraint is exactly enforced,
while –due to the use of the fractional step scheme– the no-slip condition is verified up
to an error of O(∆t2 ν), where ν is the kinematic viscosity. In all our simulations this
“slip error” was kept below 10−4 times the bulk flow velocity by adjusting the time step
∆t accordingly.

The flow variables are expanded in terms of truncated Fourier series in the streamwise
direction and Chebyshev polynomials in the two cross-stream directions. We use a collo-
cated grid arrangement in physical space, constructed from an equidistant spacing in the
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x-direction and the Chebyshev-Gauss-Lobatto points in y, z. The non-linear terms in the
momentum equation are evaluated in physical space whereas the explicit contribution
of the linear terms is evaluated in spectral space. The fields are transformed back and
forth by means of fast Fourier transform and fast cosine transform. De-aliasing according
to the 2/3-rule is performed in the streamwise direction. For each streamwise Fourier
mode we need to solve four two-dimensional Helmholtz equations at every Runge-Kutta
substep; the corresponding solution is carried out by a fast diagonalization technique
applied to the discrete Laplace operator (Haldenwang et al. 1984). This approach yields
four spurious pressure modes (Leriche & Labrosse 2000), which, however, do not affect
the velocity field since their first derivatives in all three coordinate directions vanish iden-
tically at all interior collocation nodes. For the purpose of post-processing the pressure
field, these modes can simply be filtered in Chebyshev space.

We impose a time-independent volume flow rate Q which is related to the streamwise

velocity and the bulk velocity ub by: Q =
∫ h

−h

∫ h

−h
u dy dz = ub 4h2. As a consequence,

the Reynolds number based upon the bulk velocity and duct half-width, Reb = ub h/ν, is
fixed a priori, while the wall-shear stress fluctuates in time. The instantaneous wall-shear
stress at each cross-section is defined as follows:

τw(x, t) = − ν

8h

(

∫ h
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[

∂u
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]y=h

y=−h

dz +

∫ h

−h

[

∂u

∂z

]z=h

z=−h
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)

. (2.1)

For later convenience, let us define a number of averaging operators. The time average
is denoted by an overbar, e.g. τ̄w = 1

t2−t1

∫ t2

t1
τw dt, the streamwise average is defined as

〈u〉x(y, z, t) = 1

Lx

∫ Lx

0
u dx, the average over the cross-section is defined as 〈u〉yz(x, t) =

1

4h2

∫ h

−h

∫ h

−h
u dy dz, and the average over the streamwise direction and time as 〈u〉(y, z) =

〈u〉x. Fluctuations are defined with respect to the streamwise-and-time average, u =
〈u〉 + u′, and with respect to the streamwise average only, u = 〈u〉x + u′′. Finally we
introduce the mean friction velocity uτ =

√

〈τw〉 which is used to define the usual viscous
wall units indicated in the following by the superscript +.

For all simulations presented below we have enforced the following resolution require-
ments: the time step was chosen such that the CFL number is below 0.3, the number
of Fourier modes such that the streamwise grid spacing ∆x+ is below 15, the number
of Chebyshev modes such that the maximum grid size in the cross-stream directions
∆y+ = ∆z+ is below 5.7. In most cases, especially the marginal ones which are of par-
ticular interest here, the spatial and temporal resolution was in fact considerably higher.

Finally, it should be mentioned that all the statistical data, presented in the paper,
have been obtained considering at least an accumulation time of 1500h/ub.

A complete description of the numerical technique and an exhaustive validation will
be given in Pinelli et al. (2007).

3. Identification of the critical conditions

The purpose of the minimization study is to determine the critical parameter values
which allow for sustained turbulence. Here the two significant quantities are the Reynolds
number and the length of the streamwise period. We have performed simulations for
various values of both quantities, covering a total of 70 parameter points in the range
0.79 ≤ Lx/h ≤ 25.13 and 320 ≤ Reb ≤ 2600. The results from this series provide
quantitative information about the scaling properties of the coherent structures involved
in the regeneration mechanism of near-wall turbulence in the duct geometry.
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Figure 1. (a) Variation of the wall friction as a function of the bulk Reynolds number: ◦, present
results (turbulent); – – – –, empirical formula of Jones (1976); ——, laminar flow. (b) The vari-
ation of the wall friction as a function of the streamwise period for three different Reynolds
numbers: ◦, Reb = 1400; �, Reb = 1753; △, Reb = 2205. Filled symbols are for laminar flow.

Each simulation was initiated with a fully developed turbulent flow field taken from a
previous run. Care was taken to vary as little as possible the values of the parameters
between successive simulations (Jiménez & Moin 1991). The computations were run until
either the flow relaminarized or a minimum of 2000 bulk flow time units had elapsed,
while the sustenance of turbulence was verified by monitoring the temporal variation of
the box-averaged kinetic energy fluctuations. This lower limit for the integration time is
comparable to the values used for the determination of the critical conditions in plane
channel flow by Jiménez & Moin (1991) and in pipe flow by Faisst & Eckhardt (2004).

Figure 1(a) shows the variation of the wall friction in terms of the friction-velocity-
based Reynolds number, Reτ = uτh/ν, as a function of the bulk Reynolds number Reb.
The curve for the laminar state is given by Reτ =

√
a Reb with a = 3.3935 (Tatsumi

& Yoshimura 1990). It can be observed that a turbulent state can be maintained only
above Reb = 1077. This value should be compared to the corresponding value of 1000
for the plane channel configuration (Carlson, Widnall & Peeters 1982) and 1125 for pipe
flow (Faisst & Eckhardt 2004).

At this critical point we obtain Reτ = 77 which means that the width of the duct in
turbulent conditions corresponds to at least 154 viscous units. In other words, the critical
Reynolds number sets a lower limit for the lateral extension of the duct in wall scaling.
This is an important difference with respect to the plane geometry, where the spanwise
size of the computational domain can be freely adjusted and, therefore, the minimization
experiment can be used to determine the natural scaling of near-wall structures in the
spanwise direction (Jiménez & Moin 1991; Hamilton, Kim & Waleffe 1995). Conversely,
the presence of a pair of side walls in the square duct always imposes a spanwise constraint
upon the flow developing near a given wall plane. The implications of these geometrical
constraints upon the dynamics of the coherent structures will be discussed in more detail
in § 5. Figure 1(a) also shows that the friction velocity in the turbulent regime grows
almost linearly with the bulk velocity. Our data is very well represented by the empirical
correlation of Jones (1976), f−

1

2 = 2 log10(2.25 Reb f
1

2 ) − 0.8, where the friction factor
f is defined as f = 8u2

τ/u2
b. Note that in the turbulent regime slightly different values

for Reτ are obtained at a given value of Reb when the streamwise length Lx is varied.
This dependence of the wall friction upon the length of the streamwise period is shown
in figure 1(b) for three different values of the bulk flow Reynolds number. In all cases,
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Figure 2. Map of turbulent (◦) and laminar (•) flow states in the plane defined by the length of
the streamwise period of the computational box (measured in wall units) and the bulk Reynolds
number. The dashed lines indicate the border of the region where turbulence can be sustained.

Reτ exhibits a mild peak just above the critical value for Lx and then tends towards
an asymptotic value for larger domains. We will return to this point at the end of the
section.

The map of turbulent/laminar flow states in the plane spanned by Reb and L+
x is

given in figure 2. It can be observed that the critical value for the streamwise period is
roughly independent of the Reynolds number when expressed in wall units. In particular,
the shortest streamwise period with sustained turbulence for the three values Reb =
1400, 1753, 2205 corresponds to values just below 200 wall units (L+

x = 168, 193, 187
respectively). As a comparison, the corresponding length in outer scales varies by a factor
1.33 over the same range (Lx/h = 1.68, 1.57, 1.26), which suggests that wall scaling is
more adequate for the minimal periodic cell. For the plane channel configuration, Jiménez
& Moin (1991) have observed a similar although slightly higher minimum length of 250-
350 wall units. However, for a consistent comparison between the two geometries one
should consider that mean skin friction is not uniform along the perimeter in the case
of the duct (cf. Gavrilakis 1992, figure 7). Using a different definition of the global skin
friction (e.g. the value at the wall bi-sector) would lead to higher estimates of critical
L+

x , closer to the value of Jiménez & Moin (1991).
For computational boxes moderately larger than the critical value, at all time quasi

streamwise vortices span most of the domain, thus increasing the skin friction value. Con-
versely, for even longer boxes the population of vortices per unit length diminishes, thus
decreasing the integral value of skin friction. This reasoning explains the local maxima
of skin friction as observed in figure 1(b).

4. Characterisation of the marginal state

4.1. Secondary flow patterns

The commonly observed pattern of mean secondary flow in the cross-plane of the square
duct consists of eight vortices, one counter-rotating pair being located above each of the
four wall planes. Their sense of rotation is such that the secondary flow on the diagonals
is directed towards the corners (cf. Gavrilakis 1992).

In the course of the present investigation it was observed that the flow under marginal
conditions (i.e. at Reynolds numbers close to the critical values given in figure 2) can
exhibit a pattern with only four dominant mean secondary vortices over substantial in-
tervals of time, as shown in figure 3. The 4-vortex state is characterized by two pairs
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Figure 3. Contour lines of the primary mean flow 〈u〉 (with increment max〈u〉/5) and vectors
of the secondary mean flow 〈v〉, 〈w〉 for Reb = 1205 and Lx/h = 2π: (a) averaging interval
771h/ub ; (b) a different interval with length 482h/ub; (c) long-time integration including both
former intervals (1639h/ub). Vectors are shown for every third grid point.

of counter-rotating vortices associated to a pair of opposite walls. The sense of rotation
of the individual vortices is consistent with the usual 8-vortex pattern. For symmetry
reasons, 4-vortex patterns with two different orientations exist, corresponding to sec-
ondary flow vortices located near the planes z/h = ±1 and y/h = ±1, respectively (cf.
figure 3a, b). We have observed that the flow state indeed switches from one orientation
to the other during the temporal evolution, leading to a long-time average mean flow
exhibiting the common 8-vortex pattern as shown in figure 3(c).

Flow visualizations of instantanous flow fields exhibiting the 4-vortex state show that
turbulence activity is concentrated mostly on one pair of opposite walls, while the flow
near the other two walls is much more quiescent. During those intervals, a single low-
velocity streak is located around the bisector of each one of the ‘active walls’, whereas
typically only very weak structures are detected on the other pair of parallel walls. Near
the active walls, each streak is flanked by staggered streamwise vortices of the correspond-
ing signs, as often observed in plane channel flows (see Jeong et al. 1997). Therefore, the
mean flow near the active wall exhibits a pair of counter-rotating streamwise vortices
when the flow field is averaged over intervals of O(100) bulk flow time units. We shall
further discuss the relation of streaks and vortices with the mean flow in § 4.2.

In order to quantitatively identify the 4-vortex state, we compute the integral of
the square of the streamwise-averaged streamwise component of vorticity in the cross-
sectional plane, the integration extending over one of the four triangular regions delimited
by the diagonals, viz:

Si(t) =

∫ ∫

Ωi

〈ωx〉2x dy dz, (4.1)

where the triangular regions Ωi are defined as:

Ω1 : {(y, z) | y < z ∩ y < −z}, Ω3 : {(y, z) | y > z ∩ y > −z},
Ω2 : {(y, z) | y < z ∩ y > −z}, Ω4 : {(y, z) | y > z ∩ y < −z}. (4.2)

When considering non-laminar states, we introduce the following dimensionless indicator
function:

I(t) ≡ S1 + S3 − S2 − S4

S1 + S2 + S3 + S4

, (4.3)

bounded by −1 ≤ I ≤ 1. When the value of I is close to zero, the streamwise vorticity is
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Figure 4. Temporal evolution of the indicator function. (a) I : ——, Reb = 2205;
– – – –, Reb = 1077. In both cases Lx/h = 4π. (b) The average period between zero-cross-
ings of the indicator function I versus the Reynolds number for cases with long domains
(Lx/h = 10.97 . . . 12.57).

equipartitioned between the two triangular regions associated with the walls at y = ±1
and those two associated with the walls at z = ±1; this is true for an 8-vortex state.
Conversely, large absolute values of I appear for the 4-vortex state, with the sign of I
indicating whether the vorticity 〈ωx〉x is concentrated near the walls z = ±1 (I < 0) or
y = ±1 (I > 0). For the averaged flow patterns shown in figure 3(a, b, c) the indicator
function takes the values I = −0.760, 0.779, −0.003, respectively.

Figure 4(a) shows the temporal variation of the indicator I for two cases with Reb =
1077 and Reb = 2005 (in both cases the length of the domain is 4πh). At the higher
value for Reb the indicator fluctuates around I = 0 with a low amplitude and a high
frequency, implying that the flow is always in the conventional 8-vortex state. For lower
Reb, however, the indicator deviates largely from I = 0, and its sign changes after
relatively long intervals of the order of 100h/ub, as can also be seen in figure 4(b). This
latter behavior indicates that the flow at this marginal Reynolds number exhibits the
4-vortex state with both orientations occurring during the observation interval. If one
considers a duct with infinite streamwise extension, one would observe spatial cells of
finite length with a mean 4-vortex pattern. Overall, the mean over the infinite length
would lead to a standard 8-vortex mean secondary flow and therefore the indicator I will
tend to zero for Lx ≫ h.

The dependence of the amplitude of the fluctuations of I upon the Reynolds number
can be concluded from figure 5(a). Just above the critical Reynolds number, the rms
value of the indicator is very high (I ′ ≈ 0.43), then decreasing rapidly for Reb ' 1250 and
reaching a value of I ′ ≈ 0.1 for the highest Reynolds number currently investigated. The
4-vortex state is therefore clearly a phenomenon which is only encountered at marginal
Reynolds numbers. The plot in figure 5b shows the amplitude of the streamwise-averaged
wall shear fluctuations, which clearly exhibits a dependency upon the Reynolds number
very much alike the fluctuations of the indicator function. This is a strong indication that
cross-stream structures are correlated with the behaviour of the streaks (i.e. streamwise
motion) which are directly responsible for the wall shear fluctuations.

4.2. Coherent structures

In order to determine whether there is a direct relation between coherent structures and
mean secondary flow, we have performed a vortex eduction study. Coherent vortices have
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shear fluctuations, τ ′
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Figure 6. Statistical data for a case with Reb = 1143 and Lx/h = 4π, accumulated from 960
flow fields over a time interval of 915h/ub . (a) Contours indicating .1(.1).9 times the maximum
probability of occurrence of vortex centers with positive streamwise vorticity (shaded increas-
ingly from white to black); (b) the probability for vortices with negative streamwise vorticity;
(c) the average streamwise vorticity over the same interval (isocontours with −0.8(0.2)0.8 times
the maximum absolute value, negative values dashed).

been detected by means of the criterion proposed by Kida & Miura (1998): vortex cores
are associated with low pressure regions and an additional condition for swirling motion
without the need of introducing any threshold value. More specifically, we have applied
such method to the flow in each cross-sectional plane of a number of instantaneous flow
fields. In our study the locations of vortex centers are found by searching for local pressure
minima in planes (y, z) and checking whether these points verify the swirl condition
D < 0, where D is the discriminant of the velocity gradient tensor of the flow in the
cross-plane, i.e. D = (∂v/∂y − ∂w/∂z)2/4 + ∂v/∂z · ∂w/∂y. In order to eliminate the
effect of very low intensity vortices we have filtered all the contributions lower than 1%
of maximum streamwise vorticity. The positions of coherent vortex centers were then
stored along with the corresponding local value of the streamwise vorticity. The resulting
probability of occurrence of vortex centers is shown in figure 6(a, b) for a Reynolds number
of Reb = 1143. We observe that the local maxima of the pdf of the vortex positions bear
a striking resemblance to the mean secondary flow vorticity pattern accumulated over
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the same interval (cf. figure 6c). At marginal Reynolds numbers, where the coherent
structures are highly constrained by the geometry, the instantaneous streamwise vortices
are practically locked into their respective positions on either side of the wall bi-sector,
consistent with the signs of the secondary flow vorticity.

The same argument applies to the spanwise position of the velocity streaks. We have
verified that for a marginal Reynolds number the pdf of the low-velocity streak location
(identified by the local minima of the wall normal derivative of the streamwise velocity
component at the wall) indeed exhibits a sharp peak around the wall bi-sector (figure
omitted). This result is in turn consistent with the shape of the primary mean flow which
is such that the wall shear has a local minimum at the wall bi-sector. Therefore, a low-
velocity streak is found to be statistically constrained to a narrow range of spanwise
positions between two counter-rotating streamwise vortices.

5. Concluding remarks

Spectral direct numerical simulation of turbulent square duct flow has been performed
at marginal to low Reynolds numbers considering various streamwise domain extensions.
Critical values for these two parameters, allowing for self-sustaining turbulence, have
been determined.

In such a marginal regime, short-time averaged velocity fields are found to exhibit a 4-
vortex state instead of the usual 8-vortex secondary flow pattern found at higher Reynolds
numbers. It is also found that for marginal Reynolds numbers the most probable cross-
sectional position of the centers of coherent vortices match the mean secondary vorticity
pattern. Moreover, it has been shown that the deformation of the mean streamwise
velocity profile is due to the presence of a persistent low velocity streak preferentially
located over the center of the edges. The matching between preferential positions of
quasi-streamwise vortices and velocity streaks with the structure of the averaged flow
field is a clear evidence that, for marginal Reynolds numbers, the secondary flow pattern
is a direct consequence of coherent buffer layer structures.

The relationship between coherent structures and secondary flow also gives a possible
explanation for the appearance of a 4-vortex state in the regime of marginal Reynolds
numbers. In this case, the dimension of the cross-section in wall units is below the one
that would be needed to accommodate a complete minimal turbulent cycle on all four
walls (Jiménez & Moin 1991). Therefore, just two facing walls can be alternatively se-
lected to give rise to a complete turbulent regeneration mechanism, while the other two
faces remain in a relative quiescent state.

Two basic questions remain open. The first one concerns the validity of the proposed
mechanism when increasing the Reynolds number. Indeed, at higher Reynolds numbers
we should deal with the appearance of motion at different scales whereas in the marginal
case the cross-stream scale of coherent structures is comparable with the duct width. The
second question is related to the reason for preferential location of coherent structures. A
possible heuristic explanation is based upon a simple kinematic analysis of the interaction
of streamwise vorticity with a corner. Consider a generic vortex aligned with the mean
flow and initially located on the diagonal close to one of the corners. Its interaction with
the impermeable wall can be modeled using three image vortices and potential theory
(Kawahara & Kamada 2000). In this scenario the vortex would migrate by the induced
velocity field towards a position which is consistent with the mean streamwise vorticity
field observed in the real flow. In other words, there exists an automatic selection mecha-
nism associating the position of each streamwise vortex to its actual sign of rotation. The
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quantitative importance of such mechanism and the scaling with the Reynolds number
will be addressed by the authors in future communications.
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Strömungen. PhD Thesis, Göttingen. VDI Forsch. 281.

Pinelli, A., Uhlmann, M., Kawahara, G. & Sekimoto, A. 2007 Direct numerical simulation
of turbulent flow in ducts using a spectral collocation method. (in preparation).

Tatsumi, T. & Yoshimura, T. 1990 Stability of the laminar flow in a rectangular duct. J.
Fluid Mech. 212, 437–449.

Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incom-
pressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402–414.


