
19

MARIA: A Universal, Declarative, Multiple
Abstraction-Level Language for
Service-Oriented Applications in Ubiquitous
Environments

FABIO PATERNO’, CARMEN SANTORO, and LUCIO DAVIDE SPANO

ISTI-CNR

One important evolution in software applications is the spread of service-oriented architectures
in ubiquitous environments. Such environments are characterized by a wide set of interactive
devices, with interactive applications that exploit a number of functionalities developed beforehand
and encapsulated in Web services. In this article, we discuss how a novel model-based UIDL can
provide useful support both at design and runtime for these types of applications. Web service
annotations can also be exploited for providing hints for user interface development at design time.
At runtime the language is exploited to support dynamic generation of user interfaces adapted to
the different devices at hand during the user interface migration process, which is particularly
important in ubiquitous environments.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User
Interfaces—User-centered design; interaction styles; theory and methods

General Terms: Design, Experimentation, Human Factors

Additional Key Words and Phrases: Model-based design, user interface description language, ubiq-
uitous applications, multidevice user interfaces, Web services

ACM Reference Format:

Paterno’, F., Santoro, C., and Spano, L. D. 2009. MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environments. ACM
Trans. Comput.-Hum. Interact. 16, 4, Article 19 (November 2009), 30 pages.
DOI = 10.1145/1614390.1614394 http://doi.acm.org/10.1145/1614390.1614394

1. INTRODUCTION

Model-based approaches are a well-known area in HCI. They rely on a number
of models in which the relevant aspects of a user interface can be specified and

This work has been supported by the OPEN (http://www.ict-open.eu) and ServFace (http://www.
servface.eu) ICT EU Projects.
Authors’ addresses: F. Paterno’ (contact author), C. Santoro, L. D. Spano, ISTI-CNR, HIIS Labora-
tory, Via Giuseppe Moruzzi, 1 56124 Pisa, Italy; email: fabio.paterno@isti.cnr.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1073-0516/2009/11-ART19 $10.00
DOI 10.1145/1614390.1614394 http://doi.acm.org/10.1145/1614390.1614394

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:2 • F. Paterno’ et al.

manipulated, so as to ease the work of designers and developers. In recent years
they have evolved in parallel with the aim of coping with the different challenges
raised by the design and development of user interfaces in continuously evolv-
ing technological settings. We can identify a first generation of model-based
approaches in which the focus was basically on deriving abstractions for graph-
ical user interfaces (see, for example, UIDE [Foley et al. 1994]). At that time,
user interface designers focused mainly on identifying relevant aspects for this
kind of interaction modality. Then, the approaches evolved into a second gen-
eration focusing on expressing the high-level semantics of the interaction: This
was mainly supported through the use of task models and associated tools,
aimed at expressing the activities that the users intend to accomplish while
interacting with the application (see, for example, Adept [Johnson et al. 1993],
GTA [van der Veer et al. 1994], ConcurTaskTrees (CTT) [Paterno’ 1999]). Then,
thanks to the growing affordability of new interactive platforms, in particu-
lar mobile ones, the work of UI designers mainly focused on how to cope with
the relentless appearance of new devices on the market and the need to cope
with their different characteristics. As previously pointed out by Myers et al.
[2000], the increasing availability of new interaction platforms raised a new
interest in model-based approaches in order to allow developers to define the
input and output needs of their applications, vendors to describe the input and
output capabilities of their devices, and users to specify their preferences. How-
ever, such approaches should still allow designers to have good control on the
final result in order to be effective. A number of approaches have addressed
multidevice user interfaces by identifying relevant information to be contained
in appropriate models (and languages) for addressing such issues (examples
are UIML [Helms and Abrams 2008], TERESA [Mori et al. 2002], USIXML
[Limbourg et al. 2004]). In this area one specific issue is how to facilitate the
development of multiple versions. Example solutions of tools providing such
support are Damask [Lin and Landay 2008] and Gummy [Meksen et al. 2008].
Damask allows designers to sketch a multidevice user interface exploiting pat-
terns and layers to indicate the parts common to all devices and those specific
to a given platform. Gummy is a multiplatform graphical user interface builder
that can generate an initial design for a new platform by adapting and combin-
ing features of existing user interfaces created for the same application. These
model-based approaches for multidevice user interfaces have stimulated a good
deal of interest. An indication is a number of initiatives that have started to
define international standards in the area1 or to define their adoption in indus-
trial settings.2

Nowadays, we can identify some trends for interactive applications, which
represent a new challenge and pose requirements for a fourth generation of
model-based approaches: the access to applications encapsulated into a num-
ber of pre-existing Web services that can be distributed everywhere, and the
use of various types of devices (in particular mobile) able to exploit a variety

1For example, new W3C Group on Model-based User Interfaces: http://www.w3.org/2005/
Incubator/model-based-ui/
2For example, Working Group in NESSI NEXOF-RA IP, http://www.nexof-ra.eu/

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:3

of sensors (such as accelerometers, tilt sensors, electronic compass), localiza-
tion technology (such as RFIDS, GPS), and interaction modalities (multitouch,
gestures, camera-based interaction).

Indeed, Web services are increasingly used to support remote access to ap-
plication functionalities, which are often described using WSDL (Web Services
Description Language) files. Therefore, with the availability of Web services,
which are defined before the interactive applications, the challenge is shifted
on the reuse of such functionalities, the design and development of the Ser-
vice Front-End (SFE) for them, and how to compose such functionalities in
integrated applications with suitable user interfaces that are able to adapt to
various contexts. This combination of factors has further intensified the need
for identifying a suitable universal declarative language.

The goal of this article is multifold:

—to present a novel model-based language for user interfaces (MARIA, Model-
based lAnguage foR Interactive Applications), which draws on previous ex-
periences in this area;

—to show how such language can be exploited in order to design and develop
multidevice user interfaces, which support access to multiple pre-existing
services; and

—to show how such an approach can be exploited to support migratory user
interfaces, still for applications based on the use of Web services.

In the article, after discussing some related work and analyzing our previous ex-
perience with TERESA, we identify a number of requirements for the new lan-
guage and the associated supporting tool. Next, we describe the language, how it
can be exploited for UI annotations of Web services, a design space for composing
user interfaces, and a supporting tool. Then, we discuss how we have introduced
the use of the language into the software architecture able to support migratory
user interfaces. We show an example application: the migratory Pac-Man game.
Lastly, some conclusions along with indications for future work are provided.

2. RELATED WORK

Logical user interfaces are specifications of user interfaces, which are able to
abstract out some details and focus on the semantic aspects of a user interface.
In particular, using multiple levels of abstractions is useful to identify and de-
scribe aspects that are relevant at the specific abstract level considered, which
is particularly useful when designing interactive applications in multiplatform
environments. One of the main advantages of logical user interface description
is that they allow developers to avoid dealing with a plethora of low-level details
associated with the corresponding implementation languages.

XForms3 represents a concrete example of how the research in model-based
approaches has been incorporated into an industrial standard. XForms is an
XML language for expressing the next generation of Web forms, through the
use of abstractions to address new heterogeneous environments. However, the

3http://www.w3.org/MarkUp/Forms/

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:4 • F. Paterno’ et al.

language includes both abstract and concrete descriptions (control vocabulary
and constructs are described in abstract terms, while presentation attributes
and data types in concrete terms). XForms supports the definition of a data layer
inside the form. User interface controls encapsulate relevant metadata such as
labels, thereby enhancing accessibility of the application when using different
modalities. The list of XForms controls includes objects such as select (choice
of one or more items from a list), trigger (activating a defined process), output
(display-only of form data), secret (entry of sensitive information), etc. Through
the use of the appearance attribute XForms refers to concrete examples like
radio buttons, checkboxes, etc. XForms is mainly used for expressing form-
based UIs and less for supporting other interaction modalities, such as voice
interaction. UsiXML (USer Interface eXtensible Markup Language) [Limbourg
et al. 2004]4 is an XML-compliant markup language developed at University
of Louvain-la-Neuve, which aims to describe the UI for multiple contexts of
use. UsiXML is decomposed into several metamodels describing different as-
pects of the UI. There is also a transformation model that is used to define
model-to-model transformations between the different models. In UsiXML, a
Concrete User Interface model consists of a hierarchical decomposition of CIOs.
A Concrete Interaction Object (CIO) is defined as any UI entity that users can
perceive. Each CIO can be subtyped into sub-CIOs depending on the interac-
tion modality chosen: graphicalCIO for GUIs, auditoryCIO for vocal interfaces,
3DCIO for 3D UIs, etc. Each graphicalCIO is then subtyped into one of the
two possible categories: graphicalContainer, for all widgets containing other
widgets, or graphicalIndividualComponent, for all other traditional widgets. In
this approach the modeling of containers as subtypes of concrete interaction
objects can be misleading, since their purpose should be more to indicate how
to compose elements rather than to model single interactions. The authors use
graph transformations for supporting model transformations, which is an inter-
esting academic approach with some performance issues. TERESA [Mori et al.
2004] has a modular approach to support the description of abstract and con-
crete user interfaces. One level (concrete interface description) is represented
through a number of platform-dependent languages, which are refinements of
the abstract language. In TERESA there are different types of elements: inter-
actors (describing single interaction objects), composition operators (indicating
how to compose interactors), and presentations (indicating the elements that
can be perceived at a given time, such as the elements of a Web page). Paterno’
et al. [2008] describe how various modalities have been supported through this
approach. UIML [Abrams et al. 1999; Helms and Abrams 2008] was one of the
first model-based languages targeting multidevice interfaces. It structures the
user interface in various parts: structure, style content, behavior, even if it has
not been applied to obtain rich multimodal-user interfaces. The model-based
approach has also been applied to toolkit for developing context-dependent ap-
plications [Salber et al. 1999]. Context management can be integrated with our
model-based approach for user interface design and generation, as we will show
when we discuss our solution for migratory user interfaces.

4http://www.usixml.org

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:5

Jacob et al. [1999] have identified some requirements for non-WIMP user
interfaces, such as the need for support of continuous interaction and parallel
input flow. MARIA provides support on this aspect because it uses temporal
operators taken from the ConcurTaskTrees notation in order to describe even
parallel interactions. TAC [Shaer et al. 2004] is another notation able to over-
come such limitations but it is focused on specifying tangible user interfaces,
while with MARIA we aim to address multidevice ubiquitous interactive appli-
cations.

Interesting issues for the definition of the language are raised from the works
about the runtime execution of models.

DynaMo-AID [Clerkx et al. 2004] is a design process and runtime archi-
tecture for the creation and execution of context-aware user interfaces. The
dynamic model presented can change at runtime: According to the context in-
formation some parts of the model can be added while others can be removed.
At design time the model is represented using a forest of ConcurTaskTrees
models. They modified the traditional notation introducing a dynamic decision
node, linked with a context element where different subtrees can be added or
removed at runtime according to the context element value.

The dialog model of the application can handle the transition among the
presentation of a single (intradialog) or among multiple (interdialogs) trees.
The traditional context model contains the services which can be dynamically
discovered at runtime, together with the information about the environment
and the user.

In Sottet et al. [2007] an engineering approach to produce transformation for
plastic user interfaces is described. The user interface is formalized as a graph
of models and mappings. The mappings have a set of usability properties that
describe the criteria used for the model transformation, according to a reference
framework. These criteria can be used at design time to check the support of
properties of the user interface (i.e., error management, guidance, etc.), while
at runtime they can be used for reasoning about the usability of the generated
UI. The lack of a commonly accepted usability framework was stressed as a
possible enhancement in future works.

An approach to creating executable models for human-computer interaction
is presented in Blumendorf et al. [2008]. For describing a model able to change
over time, they distinguish three types of elements: the definition elements that
constitute the static (not changing over time) part of the model, the situation
elements that constitute the dynamic part of the model, and the execution ele-
ment, which describes the transition among the states of the model. A mapping
connects definition elements of different models, using a situation element as
trigger and an execution element for synchronizing the two definition elements.
At runtime both mappings and models offer different perspectives of a system
(task, domain, service, interaction), which can be used for deriving the user in-
terface through a model-based runtime system. However, this article does not
indicate precise solutions for supporting user interface adaptation at runtime
exploiting the information contained in the models.

In general, on the one hand our analysis of the state-of-the-art in user
interface description languages highlights that a good amount of work has

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:6 • F. Paterno’ et al.

been dedicated to support multidevice user interfaces, but usually this work
has been applied to support form-based interaction styles through different
devices (desktop, mobile, vocal) and has not addressed the specific issues
raised by emerging service-oriented architectures. On the other hand, the
languages aiming to support more innovative interaction styles do not seem
to have sufficient generality to support multidevice interfaces in ubiquitous
environments.

Based on the lessons learned from the analysis of the state-of-the-art and our
previous extensive experience with TERESA XML language and the associated
tool, we have identified a number of requirements for a new language suitable
to support user interfaces for applications based on Web services in ubiquitous
environments. Indeed, TERESA XML language and the related tool have com-
prised a good case study for the model-based approach. They have been used
in various applications in different projects,5 with more than 2200 downloads,
showing good potentiality for use in different approaches and different types
of applications. The tool has been used in university classes, which has also
provided suggestions for improving its usability and functionality; for example,
students asked for support for patterns in order to be able to reuse pieces of
specifications in different applications or across the same application. In addi-
tion, an evaluation of the TERESA tool has been performed [Chesta et al. 2003]
in a Motorola software development center with the aim of assessing its usabil-
ity for design and development of multiplatform applications. The evaluation
of TERESA highlighted some flaws in the tool and the approach which provide
useful input for the new MARIA language and tool, along with other inputs
from its use and technological evolution.

To summarize, a number of requirements were identified for both the tool and
the language. In particular, the following requirements have been identified for
the tool.

—The evaluation of TERESA highlighted the need to provide designers with
greater control of the user interface produced, which is an important fea-
ture, especially if we consider the ever-growing increase in flexibility (and
complexity) required by the new technologies.

—The transformations for generating the corresponding implementations
should not be hard-coded in the tool, but should be specified externally to
allow for customization without changing the tool implementation, which
requires considerable effort.

—The tool should provide support for creating front-ends for applications in
which the functionalities are pre-existing in Web services.

Moreover, the following requirements were identified for the language.

—There is a need for a more flexible dialog and navigation model. For instance,
with TERESA it was not possible to support complex dialogs and parallel
inputs (this requirement was also supported in Jacob et al. [1999]).

5At http://giove.isti.cnr.it:8080/TERESA/Externaluse.jsp there is a list of organizations that have
downloaded and used it

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:7

—There is a need for a flexible data model which allows the association of
various types of data to the various interactors.

—The specifications of the abstract and concrete languages were too verbose
in TERESA XML, with many redundancies: Cross-references between the
different schemas would make the specification shorter, more readable, and
consistent.

—There is a need to support more recent techniques able to change the con-
tent of user interfaces asynchronously with respect to the user interaction.
Concrete examples of such techniques are Ajax scripts for Web interfaces.

3. MARIA XML

MARIA XML inherits the modular approach of TERESA XML, with one lan-
guage for the abstract description and then a number of platform-dependent
languages that refine the abstract one depending on the interaction resources
considered. In its first version we have considered the following platforms:
graphical form-based, graphical mobile form-based, vocal, digital TV, graph-
ical direct manipulation, multimodal (graphical and vocal) for desktop and mo-
bile, advanced mobile (with support for multitouch and accelerometers, e.g.,
iPhone).

3.1 Main Features

A number of features have been included in the language.

(a) Introduction of Data Model. We have introduced an abstract/concrete
description of the underlying data model of the user interface, needed for rep-
resenting the data (types, values, etc.) handled by the user interface. Thus, the
interactors composing an abstract (concrete) user interface can be bound to ele-
ments of a type defined in the abstract (respectively, concrete) data model. The
concrete data model is a refinement of the abstract one. The introduction of a
data model also allows for more control over the admissible operations that can
be performed on the various interactors. In MARIA XML, the data model is
described using the XSD type definition language. Therefore, the introduction
of the data model can be useful for: correlation between the values of interface
elements, conditional presentation connections, conditional layout of interface
parts, and specifying the format of the input values. The dependencies between
the state of an interactor and the data model imply that at runtime, if a data
element bound to an interactor changes its value, this change has to be notified
to the interactor for updating its state and vice versa. The logic of this callback
mechanism can be defined using the target technology constructs during the
generation derived from the interface description.

(b) Introduction of an Event Model. In addition, an event model has been
introduced at different abstract/concrete levels of abstractions. The introduc-
tion of an event model allows for specifying how the user interface responds to
events triggered by the user.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:8 • F. Paterno’ et al.

In MARIA XML two types of events have been introduced:

(1) Property Change Events. These are events that change the status of some UI
properties. The handlers for this type of event are only change properties,
which indicate in a declarative manner how and under which conditions
property values change.

(2) Activation Events. These are events raised by activators, which are inter-
actors with the purpose of activating some application functionality (e.g.,
access to a database or to a Web service). This type of event can have ei-
ther change properties or script handlers (which have an associated generic
script).

The abstract definition of these events contains the information for the gen-
eration of the dynamic behavior of the final UI.

(c) Supporting Ajax Scripts, which Allow the Continuous Updating of Fields.

Another aspect that has been included in MARIA is the possibility of support-
ing continuous fields updating at the abstract level. We have introduced an
attribute to the interactors: continuosly updated= “true”[“false”]. The concrete
level provides more detail on this feature, depending on the technology used for
the final UI (Ajax for Web interfaces, callback for stand-alone application, etc.).
For instance, with Ajax asynchronous mechanisms, there is a behind-the-scene
communication between the client and the server about what has to be modified
in the presentation, without an explicit request from the user. When it is nec-
essary the client redraws the relevant part, rather than redrawing the entire
presentation from scratch. Thus it allows for quicker changes and real-time up-
dates. It is worth noting that while at the abstract level a certain interactor has
to support continuous dynamic updating of its values from a certain abstract
data source, at the concrete level, the specific platform-dependent technology
used to support such continuous updating of the interactor must be specified.

(d) Dynamic Set of User Interface Elements. Another feature that has been
included in MARIA XML is the possibility to express the need to dynamically
change only a part of the UI. This has been specified in such a way as to affect
both how the UI elements are arranged in a single presentation, and how it
is possible to navigate between the different presentations. The content of a
presentation can dynamically change (this is also useful for supporting Ajax
techniques). In addition, it is also possible to specify dynamic behavior that
changes depending on specific conditions: This is obtained through the use of
conditional connections between presentations.

In the next sections we will provide a more detailed description of concepts
and models that have been included in MARIA, both for the Abstract UI and
the Concrete UI. Regarding the definition of these abstraction layers, there
is a general agreement in the model-based community (see, for example, the
CAMELEON Reference Framework [Calvary et al. 2002]): The abstract descrip-
tion is independent of the interaction resources available in the target device
while the concrete description depends on the type of interaction modality but
is independent of the implementation language.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:9

Fig. 1. The metamodel for the abstract user interface.

3.2 MARIA XML—Abstract Interface Description

It is generally recognized that one of the main benefits of using a user interface
abstract description is for designers of multidevice interfaces, because they do
not have to learn all the details of the many possible implementation languages
supported by the various devices. Therefore, designers can reason in abstract
terms without being tied to a particular platform/modality/implementation lan-
guage. In this way, they can focus on the semantics of the interaction (what the
intended goal of the interaction is), regardless of the details and specificities of
the particular environment considered.

Figure 1 shows the main elements of the abstract user interface metamodel
(some details have been omitted for clarity). As can be seen, an interface is
composed of one data model and one or more presentations. Each presentation
is composed of name, a number of possible connections, elementary interactors,
and interactor compositions. The presentation is also associated with a dia-
log model which provides information about the events that can be triggered
at a given time. The dynamic behavior of the events, and the associated han-
dlers, is specified using the CTT temporal operators (for example, concurrency,

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:10 • F. Paterno’ et al.

Fig. 2. The metamodel for the part of the abstract user interface dedicated to interactors.

or mutually exclusive choices, or sequentiality, etc.). Indeed, CTT provides a
richer set of temporal operators with respect to traditional techniques for task
modeling such as GOMS [John and Kieras 1996]. When an event occurs, it
produces a set of effects (such as performing operations, calling services, etc.)
and can change the set of currently enabled events (for example, an event oc-
curring on an interactor can affect the behavior of another interactor, by dis-
abling the availability of an event associated to another interactor). The dia-
log model can also be used to describe parallel interaction between user and
interface.

A connection indicates what the next active presentation will be when a
given interaction takes place. It can be either an elementary connection, a
complex connection (when Boolean operators compose several connections), or
a conditional connection (when specific conditions are associated with it).

There are two types of interactor compositions: grouping or relation. The
latter has at least two elements (interactor or interactor compositions) that are
related to each other. An interactor (see Figure 2) can be either an interac-
tion object or an only output object. The first one can be one of the following

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:11

types: selection, edit, control, interactive description, depending on the type of
activity the user is supposed to carry out through such objects. An only output
interactor can be object, description, feedback, alarm, text, depending on the
supposed information that the application provides to the user through this
interactor.

The selection object is refined into single choice and multiple choice depend-
ing on the number of selections the user can perform. It is worth pointing out
that further refinement of each of these objects can be done only by specifying
some platform-dependent characteristics, therefore it is specified at the con-
crete level (see the next section for some examples). The edit object can be
further refined at the abstract level into text edit, object edit, numerical edit,
and position edit, depending on the type of effect desired. A more refined in-
dication of the elements that can be edited is obtained through the use of the
data model. The control object is refined into two different interactors depend-
ing on the type of activity supported (navigator: navigate between different
presentations; activator: trigger the activation of a functionality). It is worth
pointing out that all the interaction objects have associated events in order
to manage the possibility for the user interface to model how to react after
the occurrence of some events in their UI. The events differ depending on the
type of object they are associated with. Also this feature was not supported in
TERESA.

3.3 MARIA XML—Concrete Description

The purpose of the concrete description is to provide a platform-dependent
but implementation language-independent description of the user interface.
Thus, it assumes that there are certain available interaction resources that
characterize the set of devices belonging to the considered platform. It moreover
provides an intermediate description between the abstract description and that
supported by the available implementation languages for that platform.

In order to enhance the readability of the language, we decided to specify in
the concrete user interface only the details of the concrete elements, leaving the
specification of the higher hierarchy in the abstract metamodel. In this way, we
avoided the problem of redundancy among the two models (abstract/concrete),
since the higher-level hierarchy is fully specified at the abstract level and just
referred at the concrete level.

As one example of the various concrete language descriptions in MARIA,
we discuss the one developed for the multitouch mobile user interface platform.
Indeed, the iPhone has modified the typical interaction with a mobile phone and
other vendors (HTC, Samsung, etc.) followed its example and introduced similar
interaction techniques in their devices. Thus, it is reasonable to introduce a new
concrete platform for modeling this new type of device, the multitouch mobile

platform, which enhances the typical mobile platform by modeling the following
capabilities:

—a multitouch screen, able to handle different touches at the same time. A set
of gestures, which can be handled as events, is then defined based on this
capability (such as two-finger zooming and rotating); and

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:12 • F. Paterno’ et al.

Table I. XML Schema Definition of the Single Choice Interactor

—a three axis accelerometer, able to get the orientation of the screen: landscape,
landscape inverse, portrait, portrait inverse.

For supporting the multitouch interaction the device generates three types
of events.

(1) Mouse Emulation Events. Most of the one-finger touches and some two-
finger touches (for instance, the scrolling) are mapped onto the traditional
mouse events (i.e., mouse over, mouse down, mouse move, mouse up, etc.).

(2) Gesture Events. The device provides the support for recognizing predefined
interactions with the multitouch screen, allowing the developer to handle
high-level gesture events, such as zooming and rotating, without explicitly
tracking the screen touches.

(3) Touch Events. This type of event allows the programmers to create ad hoc
multitouch interactions, receiving an array of touches, each one with the
position on the screen.

Orientation changes are notified by a single event called orientation changed,
which indicates the new screen orientation.

Also the new concrete platform is a refinement of the abstract user inter-
face metamodel: Each interactor type is refined by adding the specification
of the concrete events. For instance, the single choice interactor can be re-
fined with four concrete interactors: radio button, list box, drop down list, im-

age map (see Table I).
A typical interactor for the mobile multitouch platform contains events corre-

sponding to mouse events emulation, touch events, the list of reasonable gesture
events (for example, we do not expect to have a rotation event on a radiobutton),
and the orientation change event (see Table II).

The previous example (see Table II) shows the specification of the radio but-
ton interactor: It contains a list of choice elements (key-value pairs) and a list
of events, which consist of four group references and an element. The groups
define, respectively, the typical mouse and key events, the touch events, and
the orientation events.

The touch property events group contains three events: touch start (sent when
a finger touches the screen surface), touch move (sent when a finger moves on

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:13

Table II. XML Schema Definition of the Radio Button Concrete Interactor

the surface), and touch end (sent when a finger leaves the screen surface). Each
event contains an array of touches with the current position on the screen. The
orientation property events group contains the event orientation changed which
contains the current screen orientation. The zoom gesture event notifies that a
zoom command has been recognized by the system and contains the scale factor.
The data types defined into the events definition are supposed to be mapped
with the real data type engine of the target technology when the model will
be transformed into executable code. So they are an abstraction that allows
developer to reason about the runtime behavior abstracting from technologies
issues.

An example of implementation language that can be derived from this mul-

titouch concrete description is XHTML + Safari DOM Extension.

4. SUPPORT FOR APPLICATIONS BASED ON WEB SERVICES

Web services are increasingly used to support remote access to application func-
tionalities, particularly in ubiquitous environments. They are described using
WSDL (Web Services Description Language) files, which are XML-based de-
scriptions as well.

In this section we discuss how MARIA can be exploited to support their
development. In particular, we show how it can be used to provide user interface-
related annotations of Web services and then to compose their corresponding
user interface specifications.

4.1 UI Annotations for Web Services

UI annotations are hints associated with Web services to obtain better user
interfaces. Indeed, with this approach, the functionalities/services are created
without aiming at any particular application in which to include them, since

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:14 • F. Paterno’ et al.

Fig. 3. An example of annotation for a service.

their main characteristic is reusability across different applications, even us-
ing different types of interactive technologies to make them available to the
final user. In order to obtain good quality user interfaces in the various con-
texts in which such services will finally be used, annotations can be included:
Their goal is to provide hints for creating the user interface to access a Web
service.

As happens for UI languages, also annotations can be specified using such
models and different abstraction levels. Here we show an example regarding a
simple service definition for managing customer accounts, which has two oper-
ations: one for creating a new customer and another one for getting information
about a customer. The service annotator would like to specify some hints about
how the service should be finally rendered. Figure 3 (right part) shows the
information s/he wants to add to the service definition (left part).

As can be seen from Figure 3, some information regards the data types ma-
nipulated by the service (the regular expression for validation, default labels
for fields), while other information is about the presentation of a UI for ac-
cessing an operation (group, input validation, relation between operation pa-
rameters, and data types). The resulting annotations can be expressed at the
abstract level using MARIA XML: The relevant part of the WSDL file is anno-
tated using the “ref” attribute of the annotation element (see XML excerpt in
Table III).

As shown in the preceding XML code excerpt, the annotations on the data
types are represented as a redefinition of the Customer type, adding the vali-
dation restriction (using the regular expressions of XSD). This new data type
is manipulated in the UI, and can be simply mapped on the service data
type.

For the operation Create Customer, the label of the operation is the name
of the corresponding grouping of elements. The type of interactor to be used, if
not specified directly in the annotation, can be obtained as follows.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:15

Table III. XML Excerpt from a WSDL Annotation

—As the result value only output interactors will be used.

—As the input parameters editing or selection interactors will be used.

—The parameter type will help choose the correct interactor, for example,
numerical edit for editing numbers, text edit for editing texts, etc.

—The input and output interactors are linked with the UI data types using the
parameter attribute.

For the Create Customer operation, we have two text edit interactors for cus-
tomer name and email (linked to the data type) and a single output for the
resulting id. Name and email are grouped together as specified by the Service

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:16 • F. Paterno’ et al.

Fig. 4. The design space.

Annotator (see Figure 3, right part). The Get Customer operation takes a long
integer as input (the customer id), which is supported by a numerical edit
interactor, while the output is a Customer whose rendering is not specified
in the annotation, though in a further step a default rendering can be sug-
gested using the Customer data type definition (two outputs only for name and
email).

4.2 UI Composition

In the case of applications based on Web services, designers and developers
often have to compose existing functionalities and corresponding user inter-
face specifications (which can be identified through the annotations discussed
in the previous section). In order to better understand this composition ac-
tivity we have identified a design space for composing user interfaces (see
Figure 4).

Four main aspects have been identified: the abstraction level of the user
interface description, the granularity of the user interface considered, the types
of aspects that are affected by the UI composition, and the time when the
composition occurs (design time/runtime).

Regarding the abstraction level, since a user interface can be described at
various abstraction levels (task and objects, abstract, concrete, and implemen-
tation), the user interface composition can occur at each of such abstraction
levels. The granularity refers to the size of elements to be composed: Indeed,
we can compose single user interface elements (for example, a selection object

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:17

with an object for editing a value), we can compose groups of objects (for ex-
ample, a navigation bar with a list of news), we can compose various types of
interface elements and groups to obtain an entire presentation, we can join
presentations in order to obtain the user interface for an entire application. It
is also possible to compose user interfaces of applications to obtain so-called
mash-ups. It is worth pointing out that the term “presentation” refers to the
set of user interface elements that can be perceived at a given time; a common
example is a graphical Web page.

Also, we have to distinguish the different types of compositions depending
on the main aspects that they affect:

—the dynamic behavior of the user interface, which means the possible se-
quencing of user actions and system feedback, but also the additional dy-
namic behavior of some UI objects (e.g., when some elements of the UI appear
or disappear depending on some conditions);

—the perceivable UI objects (for example, in graphical user interfaces we have
to indicate the spatial relations among the composed elements); and

—the data that are manipulated by the user interface.

Lastly, we have to identify the phase when the composition occurs: It can be
either a static composition (occurring at design time), or a dynamic composition
(occurring at runtime, namely during the execution of the application). This
latter composition is especially significant in ubiquitous applications, since in
such environments services can dynamically appear and disappear.

In the following section we provide some examples of the composition in or-
der to clarify and describe in more detail some of the elements appearing in
the framework. However, we have to point out that in some situations, mul-
tiple values on the same dimension can be involved in the same composition
process.

Figure 5 shows an example composition: There is a first service (the related
UI is in the top part of the figure) which delivers a list of restaurants in a spe-
cific area (certain information is available for the list elements: name, address,
opening time, photo, etc.). The geographical area given as input to this first
service can vary, for instance, depending on the current position of a mobile
user (provided by a GPS). Another service is available, and this is a mapping
service which simply visualizes objects on a map. Therefore, this second service
receives the position of a set of objects, and shows them on a graphical map.
These two services can be combined together and this composition is carried out
based on temporal sequencing aspects. For example, as soon as the user selects
a particular restaurant among the currently available ones, the information
regarding the restaurant is rendered on the composed user interface, and the
UI adapts to the characteristics of the current (mobile) device.

In particular, as can be seen in the bottom left of Figure 5, a picture of
the selected restaurant is displayed on a separate part of the window. The
position of the restaurant is displayed on the map using a bulb-shaped blue
icon to distinguish it from the (red) color used for displaying the other restau-
rants. In addition, since the device considered is mobile, an adaptation step is

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:18 • F. Paterno’ et al.

Fig. 5. (top) An example of UI service; (bottom) an example of composition of UI services.

performed when the UI is rendered on the user’s mobile device. Indeed, only
a part of the information available for the restaurants is immediately visible
on the screen, and this is done in order to save screen space. The complete in-
formation for a restaurant is only rendered when the user selects a particular
restaurant: In this case a picture is displayed, a part of (textual) information is
visualized, while the remaining information is rendered vocally on the mobile
device.

As far as our design space is concerned, in this case the composition is car-
ried out at the implementation level, involving groups of UI objects. Moreover,
it affects temporal aspects, since as soon as the user selects a particular item
on the list, different events occur concurrently in the UI: The map changes its
appearance (the selected item is highlighted with a different color in the map),
the picture shown at the bottom left of the UI changes, and a vocal rendering
of the remaining information about the selected restaurant starts. However,
another level of composition is carried out in this example: Indeed, also the UI
objects are affected. For instance, a part of the information about the restau-
rants is rendered vocally in the composed UI (see Figure 5, bottom part), while
in the first service it was simply visualized graphically, as can be seen from
Figure 5, top part.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:19

5. MARIA TOOL

A new authoring tool has been developed in order to support the editing of user
interface specifications with the new language, in particular for interactive
applications based on Web services.

5.1 MARIA Tool Requirements

Several requirements have driven the building of the new authoring environ-
ment. First of all, there is the requirement for an environment to support the
design and generation of user interfaces for applications based on Web ser-
vices. For this purpose, the tool is able to support mappings between the WSDL
files (which contain the interface descriptions of the functionalities supported
by Web services) and the logical user interfaces. Then, it is able to perform a
number of transformations that support the generation of the resulting user
interface through a semi-automatic refinement process.

Secondly, there is the ability to provide flexible support, able to address dif-
ferent approaches. Thus, not only top-down approaches (generally used with
model-based approaches at design time), but also bottom-up approaches, or
even the support for mixed approaches can be used. Moreover, there is the pos-
sibility of transformations between the different abstraction levels, which are
not hard-coded in the environment, but externally defined. In this way, it is
possible to modify them without modifying the implementation of the tool. As
the tool can handle XML-based descriptions, we have used XSLT to express and
carry out such transformations.

5.2 Transformations in MARIA

The new MARIA authoring environment provides the possibility to customize
the model-to-model transformations (forward and reverse) and also the rules
allowing passing from a model to the final implementation. For instance, it is
possible to specify general rules for associating concrete elements with abstract
ones, or specifying how to render concrete elements using a specific implementa-
tion technology. These types of transformations involve the document structure,
and are suitable for the transformation of all documents of a specified type to
another type. It is also possible to define document instance rules, which can
override the general template, for the fine-tuning of the result. In the following
paragraphs we will further detail the two types of transformations.

General transformation. The first type of transformation maps the elements
of a source document to the elements of a target document. The transformation
process consists of three high-level steps.

(1) Analysis of the Document Structure. From the XSD definition of the struc-
ture of the source and target documents, the transformation engine creates
the list of elements and attributes.

(2) Definition of Mappings. The designer defines a set of mappings between
the elements and attributes of the source and target documents. These
mappings can be one-to-one, or many-to-one. The mapping can also contain
the definition of some data transformations between the source and the

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:20 • F. Paterno’ et al.

Fig. 6. The UI of the transformation tool.

target (for example, we can extract a single piece of information from an
attribute, or merge two attributes values into one, etc.)

(3) Performing the Transformation. The source document and the mappings are
the input to the transformation engine that creates the target document as
output.

The user edits the rules through a graphical interface that presents the
source and the target document with a tree layout. The elements and the at-
tributes can be linked by drawing arrows: When the transformation engine en-
counters the specified source element (attribute), a target element (attribute)
is added in the output and filled in with the source element (attribute) con-
tent. However, it is also possible to define a transformation of the content able
to create a different representation of the source information (for example, an
address can be the source attribute and only the postal code is extracted for
the target attribute). Figure 6 shows the UI of the part of tool supporting the
transformation.

Document instance transformation. Sometimes the user needs to change the
transformation rule for a small part of a specific document, applying a special
transformation to fine-tune the final result. It is possible to override the tem-
plate rules defining a mapping at the document instance level, by selecting a
specified element and transforming it into an element of the target document.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:21

The transformation is performed only for the specified instance of the element
in the document.

The transformation engine has been implemented using an XSLT genera-
tor that creates a stylesheet from the mappings defined by the user. In turn,
the stylesheet and the source document are input to an XSLT transforma-
tion engine, which creates the target document. This implementation has
the advantage that the transformation defined can also be used by different
tools.

5.3 The Design Process for Applications Based on Web services

In this section we briefly discuss how to exploit the described universal declar-
ative language to support the development of user interfaces for applications
based on Web services in ubiquitous environments.

If we want to address the issues of creating interactive applications access-
ing functionalities developed by others (such as in UI for services), it soon
becomes clear that a traditional top-down approach going through the vari-
ous abstraction layers is not particularly effective. A top-down approach es-
sentially consists in breaking down an overall system by refining it into its
subsystems. Indeed, since the top-down approach aims to refine the entire sys-
tem, it is particularly effective when the design starts from scratch, so that
the designer has an overall picture of the system to be designed and refines it
gradually.

Instead, if the designer wants to include already existing pieces of software,
like services in SOA, this necessarily requires that a bottom-up approach be
included in the design process in order to exploit such legacy, fine-grained func-
tionalities and identify their relationships to compose them in larger/higher-
level functionalities.

However, the best option seems to be a hybrid solution in which a mix of
bottom-up and top-down approaches is used. More specifically, first a bottom-up
step is envisaged, in order to analyze the Web services providing functionalities
useful for the new application to develop. This implies analyzing the operations
and the data types associated with the input and output parameters in order
to associate them with suitable abstract interaction objects. Then, there is a
step aiming to define the relationships among such elements. In order to do
this, we envisage the use of task models expressed in CTT for describing the
interactive application and how it assumes that tasks are performed. In this
case, the Web services can be viewed as a particular type of task (system task,
namely a task whose performance is entirely allocated to the application), and
the temporal relationships that are specified in a task model can indicate also
how to compose such functionalities. This process (specifying the task model)
should be driven by the user requirements and also implies some constraints
on how to express such functionalities. Indeed, in order to be able to address
the right level of granularity, not only will a Web service be associated to an
application task, but it is required that each operation specified within the
Web service be associated to a different task. Thus, if a Web Service supports
three operations, then there would be three basic system tasks, with the parent

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:22 • F. Paterno’ et al.

task being another application task (corresponding to the Web service itself).
Once we have obtained the task model, it is possible to generate the various UI
descriptions in a top-down manner, and then refine them up to the implemen-
tation, by using the MARIA tool. In this refinement process the information
contained in the Web service annotations can be exploited as well.

6. EXPLOITING MARIA MODELS AT RUNTIME IN UBIQUITOUS
ENVIRONMENTS: APPLICATION TO MIGRATORY USER INTERFACES

Model-based UIDLs are utilized at design time to help the user interface de-
signer cope with the increasing complexity of today’s applications and contexts.
The underlying user interface models are mostly used to generate a final user
interface code, which is then executed at runtime. Nevertheless, approaches
utilizing the models at runtime are receiving increasing attention. We agree
with Sottet et al. [2007], who call for keeping the models alive at runtime to
make the design rationale available. We are convinced that the utilization of
models at runtime can provide useful results, such as support of migratory
user interfaces. Migratory user interfaces are interactive applications that can
transfer among different devices while preserving the state and therefore giv-
ing the sense of a noninterrupted activity. The basic idea is that devices that
can be involved in the migration process should be able to run a migration
client, which is used to allow the migration infrastructure to find such devices
and know their features. Such a client is also able to send the trigger event (to
activate the migration) to the migration server, when it is activated by the user.
At that point the state of the source interface will be transmitted to the server
in order to be adapted and associated to the new user interface automatically
generated for the target device (see Figure 7).

We have designed and developed a software architecture able to support
the main phases in the migration, based on previous experiences in the field
[Bandelloni et al. 2005]. The first phase is device discovery (step 1 in Figure 8).
It concerns the identification of the devices that can be involved in the migration
process and the attributes that can be relevant for migration (private or public
device, their connectivity, their interaction resources, etc.). The device discovery
has to be activated in every device that is involved in the migration (including
the Migration Server). Its purpose is allowing the user to trigger the migration
by selecting the migration target device. In order to do this, the device discovery
module has to notify the presence of the associated device to a known multicast
group. The list of the devices currently subscribed to such a group defines the
list of devices that are available and could be involved in a migration process.
In order to carry out this notification, the device discovery/migration client
modules use multicast datagrams communications using the UDP/IP protocol.

After the device discovery phase, the user requests a page access from the
current device (2), the request is transmitted to the application server (3), which
provides the page (4). Such page is downloaded by the Migration Server (which
works also as a proxy server) and then annotated by the Migration Server before
delivering it to the requesting device (5). The annotation is the automatical
insertion of a script that is then used to transmit the state of the user interface.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:23

Fig. 7. The migration approach.

Thus, when the migration is triggered and the target device is identified (6), the
current page along with its state is transmitted through an Ajax Script (7) to
the migration server. At that point a version of the page adapted for the target
device is created, with associated the state of the source version, and uploaded
so that the user can immediately continue with all the data entered beforehand.

Figure 9 shows how the abstraction layers are exploited to support migratory
user interfaces, by showing the various activities that are done by the Migration
Server. First of all the migration approach supposes that various UI models at
different abstraction levels are associated to each of the various devices involved
in a migration: Such UI models are stored and manipulated centrally, in the
Migration Server.

The current architecture assumes that a desktop Web version of the applica-
tion front-end exists and it is available in the corresponding Application Server:
This seems a reasonable assumption given the wide availability of this type of
applications. Then, from such a final UI version for the desktop platform, the
Migration Server automatically generates a logical, concrete UI description for
the desktop platform through a reverse-engineering process. After having ob-
tained such a concrete UI description for the desktop platform, the Migration
Server performs a semantic redesign of such CUI [Paterno’ et al. 2008] for cre-
ating a new, concrete, logical description of the user interface, adapted to the
target device. The purpose of the semantic redesign is to preserve the semantics
of the user interactions that should be provided to the user but to adapt the
structure of the user interface to the resources available in the target device.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:24 • F. Paterno’ et al.

Fig. 8. The steps of the migration.

For all the tasks that can be supported, the semantic redesign module identifies
concrete techniques that preserve the semantics of the interaction but supports
it and are most suitable for the new device (for example, in mobile devices it
will replace interactors with others that provide the same type of input but
occupying less screen space). In a similar way also page splitting is supported:
When there are pages too heavy for the target device, they are split taking into
account their logical structure so that elements logically connected remain in
the same page. Thus, the groupings and relations are identified and some of
them are allocated to newly created presentations so that the corresponding
page can be sustainable by the target devices.

The state is extracted through specific JavaScripts, which are automatically
included in the Web pages when they are accessed through the intermediate
migration server. When the migration is triggered, the state is transmitted to
the server where there is a module (State Mapper) whose purpose is to associate
the state with the concrete description for the target device, which is used for
the generation of the final user interface.

In testing our prototype we realized that the previous language (TERESA)
was inadequate to support the automatic creation of the logical descriptions of
various existing Web pages (for example, an event model was not supported).
Thus, we have introduced the use of MARIA, which is able to overcome such
limitations.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:25

Fig. 9. The relationships among abstraction layers supporting migration.

7. MIGRATORY PAC-MAN CASE STUDY

In this section we show an example application of our approach, which sup-
ports a migratory Pac-Man game exploiting MARIA specifications. We consid-
ered Web services as the implementation technology for the application logic,
since with this solution the distinction between the service frontend and the
application logic is clear and this technology is a mainstream solution in the
area of software and services. We consider a scenario in which one user plays
on a desktop device and at some point migrates to an iPhone, through which
s/he can interact using multitouch and accelerometer as well. In this case the
service frontend supports positioning of the game elements (user inputs, colli-
sion detection, and user interface presentation), while the Web services support
ghost game strategy, postcatch ghost policy (namely, what happens to the ghost
after being eaten); scoring rules, and rules for game levels. The information
flows between the Service Front End (SFE) and the Web Services (WS) during
the game. For instance, when the SFE detects that all the dots have been eaten
by the Pac-Man, the SFE requests a new maze from the WS, which then sends
it. Another example is the situation when, during the game, one of the special
pills is eaten by the Pac-Man: In this case, the SFE has to communicate this to
the WS, which delivers the new algorithm for controlling the new ghosts’ strat-
egy (for escaping from Pac-Man) and also sets the time interval (e.g., number
of seconds) during which this new situation should last.

The considered desktop game version (written in XHTML and JavaScript)
includes different parts (see Figure 10): the maze of the game with the differ-
ent characters (the ghosts and the Pac-Man), a part devoted to visualizing the
current state of the game (the number of Pac-Man lives still available, the cur-
rent level of the game, the score), and interaction elements for controlling the
game. This last part includes the controls for moving the Pac-Man (the 4 arrow -
imagemap, used for directing the Pac-Man) together with the two game controls
(starting a new game, implemented with the central “New Game” button in the

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:26 • F. Paterno’ et al.

Fig. 10. Pac-Man migration example: (left) desktop version; (right) mobile version.

left part of Figure 10 and pausing the game, which is implemented with the
central round-shape button in the imagemap), as well as the settings for speci-
fying the general game configuration (e.g., the animation speed of the Pac-Man,
and the possibility of using random maze layouts for the various levels, etc.).
In the desktop Web page, for controlling the Pac-Man, it is also possible to use
the keyboard (e.g., by using the arrow keys or some other predefined keys). In
addition, in order to pause and start a new game two keys are also available
(“n” and “p”, respectively).

The Web page of the Pac-Man game for the desktop platform is transformed
by the migratory platform in order to obtain a new version adapted for the mo-
bile device. To do this, a reverse engineering of Pac-Man for the Web desktop
platform is needed in order to obtain its logical concrete (desktop) UI descrip-
tion. Such a description will then be redesigned to finally generate the adapted
user interface for the mobile device.

The application of an enhanced reverse-engineering process to the Pac-Man
example allowed supporting some UI aspects that were not supported in pre-
vious versions of the associated algorithm (i.e., that producing TERESA XML
-based specifications). Now, by using a MARIA XML-compliant specification
as the planned output, we were able to specify aspects that were not consid-
ered before by the reverse-engineering transformation (e.g., some UI elements
were not supported and event handling was also not available). For instance,
imagemap (XHTML <map> tag) was an example of an element not supported.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:27

Also, the possibility of handling events able to activate some functions in the ap-
plication was not supported either. Indeed, in the desktop version, the Pac-Man
can be controlled either using the keyboard (i.e., arrow keys can be used to
specify directions) or by using an imagemap. In the latter case, the user can
click a specific region of the image or even pass the mouse over such a region
(event “onMouseOver”) in order to activate a function for controlling the new
direction that the Pac-Man should take.

The imagemap allowing the user to select a particular direction for the Pac-
Man is reversed into a refinement of an activator element: the image map con-
crete element. This element, at the concrete level, has a number of attributes to
specify not only the attributes of the various image regions, but also the different
mouse (mouse activation events) or keyboard events (key activation events)
that can be triggered, which comprise another feature that can be specified
with MARIA XML language.

As you can see, for the selection of the maze layout (as well as the animation
speed of the Pac-Man) a radiobutton element has been used in the desktop
version, which is reversed into an interactor of single selection type.

When migrating to the mobile device, the original page is split into two pages
(see Figure 10). Indeed, the more limited capabilities of the target device do not
allow all the elements to be included in one page, also because the maze is a
14 × 20 table and then, even if it is shrunk in order to fit the screen of the
mobile device, it will occupy almost all the first mobile page.

The splitting strategy considers some aspects. For instance, in the desktop
version, the imagemap used for controlling the Pac-Man is displayed in the
same presentation in which the maze of the game is also rendered: This is done
in order to allow the player to have instant feedback of the selected direction,
to control the Pac-Man position, and to be able to react promptly when a ghost
is approaching. This has to be preserved in the mobile version, since splitting
the Pac-Man controls onto a different page from the maze would result in an
unusable game (the user would have to navigate between different pages to
control the game and check the updated situation in the maze).

However, in the desktop version of the game there are two possibilities for
controlling the game (through the keyboard and also by using the imagemap).
Thus, since a touch-screen mobile device is used as migration target, the key-
board controls and the imagemap are considered by the adaptation engine not
suitable on this type of platform and they do not appear in the newly gener-
ated version. In this case, the support for controlling the Pac-Man is obtained
through touch-based interactions, which are available on this kind of platform.

In addition, when migrating to the mobile device, some controls are re-
designed in order to adapt them to the mobile device: For instance, radio but-
tons with several choices appearing in the desktop version (which are a refine-
ment of single selection objects) are replaced in the mobile device by pull-down
menus. This adaptation has been performed thanks to the fact that such two
elements (radiobuttons and pull-down menus) are both a refinement of the
single selection object. In this case the suitability of one element with respect
to the other one is decided according to the platform considered: On the mobile
platform, a pull-down menu is preferred in order to save space.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:28 • F. Paterno’ et al.

Apart from displaying the maze, the first mobile page will also contain the
button allowing the user to start a new game and another button allowing
the user to navigate to another page on the mobile device, which will include
all the remaining elements (current Pac-Man lives, current level and score,
settings for animation speed and smoothness).

Regarding the state of the game, it is preserved and then reactivated in the
mobile device at the point where the migration was activated. Therefore, the
current Pac-Man and ghost positions are saved, together with the current level
and score and all the other settings that the player already selected in the
desktop version. For instance, if a radiobutton (on the source device) has to
be mapped (together with its associated state) onto a pull-down menu (on the
target device), the process is basically the following one. The state is mainly
an XML-based string in which there are couples (id, value) where id is the
identifier of every (modifiable) XHTML element, and value represents the in-
formation about the current value(s) associated with such element. Therefore,
the state information associated with an XHTML radiobutton having id name

as its identifier will provide the list of options that can be selected, and also
the element (among the various options) that was currently selected at the
time when the migration was activated. Since the concrete user interface is
derived from such an XHTML version (through a reverse-engineering process),
an XHTML radiobutton (included in the final UI) and having id name as its
identifier will be translated onto a CUI interactor of the type radio button and
having the same identifier (id name). When the CUI radiobutton is semanti-
cally redesigned, the same identifier (id name) will be maintained in a new
CUI element, which is the result of the tranformation (e.g., a pulldown menu).
Therefore, by accessing the state information via such an identifier, it will be
possible to access the related state information and, by opportunely mapping
it in the new element, provide the full specification of the new CUI object (a
pull-down menu in our case) that also includes the state information.

8. CONCLUSIONS AND FUTURE WORK

In this article we have presented a language for describing user interfaces at dif-
ferent abstraction levels (and the associated tool that supports such language).
The language lays its foundation from previous experiences. In the article we
mainly highlight the characteristics of the new UIDL, which allows for sup-
porting the new evolution towards service-oriented architectures in ubiquitous
environments. More specifically, we have shown how this novel language can
provide useful support at both design and runtime. We have presented specific
support for applications based on Web services associated with annotations
based on MARIA XML and a design space for composing user interface descrip-
tions associated to different services. Moreover, we have discussed the use of the
language in a software architecture able to support migratory user interfaces,
also showing an application example (the migratory Pac-Man). Migratory user
interfaces are able to exploit ubiquitous environments and thereby follow mo-
bile users as they change devices while maintaining the interactive application
state.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language • 19:29

Future work will be dedicated to further empirically testing the usability
of the corresponding tool and investigate further additions in order to make
it suitable for end-user development, when the applications are developed by
nonprofessional software developers.

REFERENCES

ABRAMS, M., PHANOURIOU, C., BATONGBACAL, A., WILLIAMS, S., AND SHUSTER, J. 1999. UIML: An
appliance-independent XML user interface language. In Proceedings of the 8th World Wide Web

Conference (WWW). Elseiver, 617–630.
BANDELLONI R., MORI, G., AND PATERNO’, F. 2005. Dynamic generation of migratory interfaces. In

Proceedings Mobile Human-Computer Interaction Conference. 83–90.
BLUMENDORF, M., LEHMANN, G., FEUDERSTACK, S., AND ALBRAYARK, S. 2008. Executable models for

human-computer interaction. In Proceedings of the XVth International Workshop on the Design,

Verification and Specification of Interactive Systems (DSVIS’08). 238–251.
CALVARY, G., COUTAZ, J., BOUILLON, L., FLORINS, M., LIMBOURG, Q., MARUCCI, L., PATERNO’, F., SANTORO,

C., SOUCHON, N., THEVENIN, D., AND VANDERDONCKT, J. 2002. The CAMELEON reference frame-
work. Deliverable 1.1, CAMELEON Project. http://www.w3.org/2005/Incubator/model-based-
ui/wiki/Cameleon reference framework.

CHESTA, C., PATERNO, F., AND SANTORO, C. 2004. Methods and tools for designing and developing
usable multi-platform interactive applications. PsychNology J. 2, 1, 123–139.

CLERCKS, T., LUYTEN, K., AND CONIX, K. 2004. DynaMo-AID: A design process and a runtime ar-
chitecture for dynamic model-based user interface development. In Proceedings of the Working

Conference on Engineering for Human-Computer Interaction and International Workshop on De-

sign Specification and Verification of Interactive Systems (EHCI/DS-VIS). 77–95.
FOLEY, D. AND NOI SUKAVIRIYA, P. 1994. History, results, and bibliography of the user interface de-

sign environment (UIDE), an early model-based system for user interface design and implemen-
tation. In Proceedings of Design, Verification and Specification of Interactive Systems (DSVIS’94).

3–14.
JACOB, R., DELIGIANNIDIS, L., AND MORRISON, S. 1999. A software model and specification language

for non-WIMP user interface. ACM Trans. Comput.-Hum. Interact. 6, 1, 1–46.
JOHN, B. AND KIERAS, D. 1996. The GOMS family of analysis techniques: Comparison and contrast.

ACM Trans. Comput.-Hum. Interact. 3, 4, 320–351.
JOHNSON, P., WILSON, S., MARKOPOULOS, P., AND PYCOCK, J. 1993. ADEPT: Advanced design envi-

ronment for prototyping with task models. In Proceedings of the International Conference on

Human Computer Interaction and ACM Conference on Human Aspects on Computer Systems

(INTERCHI). 56.
HELMS, J. AND ABRAMS, M. 2008. Retrospective on UI description languages based on eight years’

experience with the user interface markup language (UIML). Int. J. Web Engin. Technol. 4, 2,
138–162.

LIN, J. AND LANDAY, J. 2008. Employing patterns and layers for early-stage design and prototyping
of cross-device user interfaces. In Proceedings of the 26th Annual SIGCHI Conference on Human

Factors in Computing Systems (CHI). 1313–1322.
MESKENS, J., VERMEULEN, J., LUYTEN, K., AND CONINX, K. 2008. Gummy for multi-device user inter-

face designs: Shape me, multiply me, fix me, use me. In Proceedings of the International Working

Conference on Advanced Visual Interfaces (AVI’08). 233–240.
LIMBOURG, Q., VANDERDONCKT, J., MICHOTTE, B., BOUILLON, L., AND LÓPEZ-JAQUERO, V. 2004.

USIXML: A language supporting multi-path development of user interfaces. In Proceedings

of the Working Conference on Engineering for Human-Computer Interaction and Interna-

tional Workshop on Design Specification and Verification of Interactive Systems (EHCI/DS-VIS).
200–220.

MORI, G., PATERNO’, F., AND SANTORO, C. 2004. Design and development of multidevice user inter-
faces through multiple logical descriptions. IEEE Trans. Softw. Engin. 30, 8, 507–520.

MYERS, B., HUDSON, S., AND PAUSCH, R. 2000. Past, present, future of user interface tools. ACM

Trans. Comput.-Hum. Interact. 7, 1, 3–28.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

19:30 • F. Paterno’ et al.

PATERNO’, F. 1999. Model-Based Design and Evaluation of Interactive Applications. Springer.
PATERNO’, F., SANTORO, C., MÄNTYJÄRVI, J., MORI, G., AND SANSONE, S. 2008. Authoring pervasive

multimodal user interfaces. Int. J. Web Engin. Technol. 4, 2, 235–261.
PATERNO’, F., SANTORO, C., AND SCORCIA, A. 2008. Automatically adapting Web sites for mobile

access through logical descriptions and dynamic analysis of interaction resources. In Proceedings

of the Working Conference on Advanced Visual Interfaces (AVI). 260–267.
SALBER, D., ANIND, D., AND ABOWD, G. 1999. The context toolkit: Aiding the development of context-

enabled applications. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. 434–441.
SHAER, O., LELAND, N., CALVILLO-GAMEZ, E. H., AND JACOB, R. J. K. 2004. The TAC paradigm:

Specifying tangible user interfaces, Personal Ubiq. Comput. 8, 5, 359–369.
SOTTET, J., CALVARY, G., COUTAZ, J., AND FAVRE, J. 2007. A model-driven engineering approach for

the usability of plastic user interfaces. In Proceedings of the Working Conference on Engineering

Interactive Systems. 140–157.
VAN DER VEER, G., LENTING, B., AND BERGEVOET, B. 1996. GTA: Groupware task analysis — Modelling

complexity. Acta Psychologica 91, 297–322.

Received January 2009; revised June 2009; accepted July 2009

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 4, Article 19, Publication date: November 2009.

