
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 116–121

Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

116

Marian: Fast Neural Machine Translation in C++

Marcin Junczys-Dowmunt† Roman Grundkiewicz∗‡ Tomasz Dwojak∗

Hieu Hoang Kenneth Heafield‡ Tom Neckermann‡

Frank Seide† Ulrich Germann‡ Alham Fikri Aji‡

Nikolay Bogoychev‡ André F. T. Martins¶ Alexandra Birch‡

†Microsoft Translator ∗Adam Mickiewicz University in Poznań
‡University of Edinburgh ¶Unbabel

Abstract

We present Marian, an efficient and self-

contained Neural Machine Translation

framework with an integrated automatic

differentiation engine based on dynamic

computation graphs. Marian is written en-

tirely in C++. We describe the design of the

encoder-decoder framework and demon-

strate that a research-friendly toolkit can

achieve high training and translation speed.

1 Introduction

In this paper, we present Marian,1 an efficient Neu-

ral Machine Translation framework written in pure

C++ with minimal dependencies. It has mainly

been developed at the Adam Mickiewicz Univer-

sity in Poznań and at the University of Edinburgh.

It is currently being deployed in multiple European

projects and is the main translation and training

engine behind the neural MT launch at the World

Intellectual Property Organization.2

In the evolving eco-system of open-source NMT

toolkits, Marian occupies its own niche best char-

acterized by two aspects:

• It is written completely in C++11 and inten-

tionally does not provide Python bindings;

model code and meta-algorithms are meant

to be implemented in efficient C++ code.

• It is self-contained with its own back end,

which provides reverse-mode automatic dif-

ferentiation based on dynamic graphs.

1Named after Marian Rejewski, a Polish mathematician
and cryptologist who reconstructed the German military
Enigma cipher machine sight-unseen in 1932. https://

en.wikipedia.org/wiki/Marian_Rejewski.
2https://slator.com/technology/neural-

conquers-patent-translation-in-major-

wipo-roll-out/

Marian has minimal dependencies (only Boost

and CUDA or a BLAS library) and enables barrier-

free optimization at all levels: meta-algorithms

such as MPI-based multi-node training, efficient

batched beam search, compact implementations of

new models, custom operators, and custom GPU

kernels. Intel has contributed and is optimizing a

CPU backend.

Marian grew out of a C++ re-implementation of

Nematus (Sennrich et al., 2017b), and still main-

tains binary-compatibility for common models.

Hence, we will compare speed mostly against Ne-

matus. OpenNMT (Klein et al., 2017), perhaps one

of the most popular toolkits, has been reported to

have training speed competitive to Nematus.

Marian is distributed under the MIT license

and available from https://marian-nmt.

github.io or the GitHub repository https:

//github.com/marian-nmt/marian.

2 Design Outline

We will very briefly discuss the design of Marian.

Technical details of the implementations will be

provided in later work.

2.1 Custom Auto-Differentiation Engine

The deep-learning back-end included in Marian is

based on reverse-mode auto-differentiation with

dynamic computation graphs and among the es-

tablished machine learning platforms most similar

in design to DyNet (Neubig et al., 2017). While

the back-end could be used for other tasks than

machine translation, we choose to optimize specifi-

cally for this and similar use cases. Optimization

on this level include for instance efficient imple-

mentations of various fused RNN cells, attention

mechanisms or an atomic layer-normalization (Ba

et al., 2016) operator.

https://en.wikipedia.org/wiki/Marian_Rejewski
https://en.wikipedia.org/wiki/Marian_Rejewski
https://slator.com/technology/neural-conquers-patent-translation-in-major-wipo-roll-out/
https://slator.com/technology/neural-conquers-patent-translation-in-major-wipo-roll-out/
https://slator.com/technology/neural-conquers-patent-translation-in-major-wipo-roll-out/
https://marian-nmt.github.io
https://marian-nmt.github.io
https://github.com/marian-nmt/marian
https://github.com/marian-nmt/marian


117

2.2 Extensible Encoder-Decoder Framework

Inspired by the stateful feature function framework

in Moses (Koehn et al., 2007), we implement en-

coders and decoders as classes with the following

(strongly simplified) interface:

class Encoder {

EncoderState build(Batch);

};

class Decoder {

DecoderState startState(EncoderState[]);

DecoderState step(DecoderState, Batch);

};

A Bahdanau-style encoder-decoder model

would implement the entire encoder inside

Encoder::build based on the content of the batch

and place the resulting encoder context inside the

EncoderState object.

Decoder::startState receives a list of

EncoderState (one in the case of the Bahdanau

model, multiple for multi-source models, none

for language models) and creates the initial

DecoderState.

The Decoder::step function consumes the tar-

get part of a batch to produce the output logits of a

model. The time dimension is either expanded by

broadcasting of single tensors or by looping over

the individual time-steps (for instance in the case

of RNNs). Loops and other control structures are

just the standard built-in C++ operations. The same

function can then be used to expand over all given

time steps at once during training and scoring or

step-by-step during translation. Current hypothe-

ses state (e.g. RNN vectors) and current logits are

placed in the next DecoderState object.

Decoder states are used mostly during transla-

tion to select the next set of translation hypotheses.

Complex encoder-decoder models can derive from

DecoderState to implement non-standard selec-

tion behavior, for instance hard-attention models

need to increase attention indices based on the top-

scoring hypotheses.

This framework makes it possible to combine

different encoders and decoders (e.g. RNN-based

encoder with a Transformer decoder) and reduces

implementation effort. In most cases it is enough to

implement a single inference step in order to train,

score and translate with a new model.

2.3 Efficient Meta-algorithms

On top of the auto-diff engine and encoder-decoder

framework, we implemented many efficient meta-

algorithms. These include multi-device (GPU or

CPU) training, scoring and batched beam search,

ensembling of heterogeneous models (e.g. Deep

RNN models and Transformer or language models),

multi-node training and more.

3 Case Studies

In this section we will illustrate how we used the

Marian toolkit to facilitate our own research across

several NLP problems. Each subsection is meant as

a showcase for different components of the toolkit

and demonstrates the maturity and flexibility of

the toolkit. Unless stated otherwise, all mentioned

features are included in the Marian toolkit.

3.1 Improving over WMT2017 systems

Sennrich et al. (2017a) proposed the highest scor-

ing NMT system in terms of BLEU during the

WMT 2017 shared task on English-German news

translation (Bojar et al., 2017a), trained with the

Nematus toolkit (Sennrich et al., 2017b). In this

section, we demonstrate that we can replicate and

slightly outperform these results with an identi-

cal model architecture implemented in Marian and

improve on the recipe with a Transformer-style

(Vaswani et al., 2017) model.

3.1.1 Deep Transition RNN Architecture

The model architecture in Sennrich et al. (2017a)

is a sequence-to-sequence model with single-layer

RNNs in both, the encoder and decoder. The RNN

in the encoder is bi-directional. Depth is achieved

by building stacked GRU-blocks resulting in very

tall RNN cells for every recurrent step (deep transi-

tions). The encoder consists of four GRU-blocks

per cell, the decoder of eight GRU-blocks with an

attention mechanism placed between the first and

second block. As in Sennrich et al. (2017a), em-

beddings size is 512, RNN state size is 1024. We

use layer-normalization (Ba et al., 2016) and varia-

tional drop-out with p = 0.1 (Gal and Ghahramani,

2016) inside GRU-blocks and attention.

3.1.2 Transformer Architecture

We very closely follow the architecture described

in Vaswani et al. (2017) and their ”base” model.

3.1.3 Training Recipe

Modeled after the description3 from Sennrich et al.

(2017a), we perform the following steps:

3The entire recipe is available in form of multi-
ple scripts at https://github.com/marian-nmt/

marian-examples.

https://github.com/marian-nmt/marian-examples
https://github.com/marian-nmt/marian-examples


118

System test2016 test2017

UEdin WMT17 (single) 33.9 27.5

+Ensemble of 4 35.1 28.3

+R2L Reranking 36.2 28.3

Deep RNN (single) 34.3 27.7

+Ensemble of 4 35.3 28.2

+R2L Reranking 35.9 28.7

Transformer (single) 35.6 28.8

+Ensemble of 4 36.4 29.4

+R2L Reranking 36.8 29.5

Table 1: BLEU results for our replication of the

UEdin WMT17 system for the en-de news transla-

tion task. We reproduced most steps and replaced

the deep RNN model with a Transformer model.

• preprocessing of training data, tokenization,

true-casing4, vocabulary reduction to 36,000

joint BPE subword units (Sennrich et al.,

2016) with a separate tool.5

• training of a shallow model for back-

translation on parallel WMT17 data;

• translation of 10M German monolingual news

sentences to English; concatenation of artifi-

cial training corpus with original data (times

two) to produce new training data;

• training of four left-to-right (L2R) deep mod-

els (either RNN-based or Transformer-based);

• training of four additional deep models with

right-to-left (R2L) orientation; 6

• ensemble-decoding with four L2R models re-

sulting in an n-best list of 12 hypotheses per

input sentence;

• rescoring of n-best list with four R2L models,

all model scores are weighted equally;

• evaluation on newstest-2016 (validation set)

and newstest-2017 with sacreBLEU.7

We train the deep models with synchronous

Adam on 8 NVIDIA Titan X Pascal GPUs with

12GB RAM for 7 epochs each. The back-

translation model is trained with asynchronous

Adam on 8 GPUs. We do not specify a batch size as

Marian adjusts the batch based on available mem-

4Proprocessing was performed using scripts from Moses
(Koehn et al., 2007).

5https://github.com/rsennrich/subword-

nmt
6R2L training, scoring or decoding does not require data

processing, right-to-left inversion is built into Marian.
7https://github.com/mjpost/sacreBLEU

0

20

40

60

80

100

12.4

23.5

35.3

46.6

54.8

67.9
73.0

83.9

S
o

u
rc

e
to

k
en

s
p

er
se

co
n

d
×
1
0
3

Shallow RNN

0

20

40

60

80

100

7.8
13.1

17.2
22.8

28.2
33.4

37.1
42.5

S
o

u
rc

e
to

k
en

s
p

er
se

co
n

d
×
1
0
3

Deep RNN

1 2 3 4 5 6 7 8
0

20

40

60

80

100

9.1

16.4
23.4

30.4

37.6
42.9

49.0
54.9

Number of GPUs

S
o

u
rc

e
to

k
en

s
p

er
se

co
n

d
×
1
0
3

Transformer

Figure 1: Training speed in thousands of source

tokens per second for shallow RNN, deep RNN and

Transformer model. Dashed line projects linear

scale-up based on single-GPU performance.

ory to maximize speed and memory usage. This

guarantees that a chosen memory budget will not

be exceeded during training.

All models use tied embeddings between source,

target and output embeddings (Press and Wolf,

2017). Contrary to Sennrich et al. (2017a) or

Vaswani et al. (2017), we do not average check-

points, but maintain a continuously updated expo-

nentially averaged model over the entire training

run. Following Vaswani et al. (2017), the learning

rate is set to 0.0003 and decayed as the inverse

square root of the number of updates after 16,000

updates. When training the transformer model, a

linearly growing learning rate is used during the

first 16,000 iterations, starting with 0 until the base

learning rate is reached.

https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/mjpost/sacreBLEU


119

W
äh

le
n

Sie ei
ne

n

Tas
ta

tu
r-

be
-

fe
hl

-
ss

at
z
im M

en
ü

fe
st
le
ge

n

. EO
S

Wählen

Sie

einen

Tastatur-

be-

fehl-

ssatz

im

Menü

“

Satz

”
aus

.

EOS

mt

Sel
ec

t

a sh
or

tc
ut

se
t

in th
e

Set m
en

u
. EO

S

Wählen

Sie

einen

Tastatur-

be-

fehl-

ssatz

im

Menü

“

Satz

”
aus
.

EOS

src

Figure 2: Example for error recovery based on dual attention. The missing word “Satz” could only be

recovered based on the original source (marked in red) as it was dropped in the raw MT output.

Model 1 8 64

Shallow RNN 112.3 25.6 15.7

Deep Transition RNN 179.4 36.5 21.0

Transformer 362.7 98.5 71.3

Table 2: Translation time in seconds for newstest-

2017 (3,004 sentences, 76,501 source BPE tokens)

for different architectures and batch sizes.

3.1.4 Performance and Results

Quality. In terms of BLEU (Table 1), we match

the original Nematus models from Sennrich et al.

(2017a). Replacing the deep-transition RNN model

with the transformer model results in a signifi-

cant BLEU improvement of 1.2 BLEU on the

WMT2017 test set.

Training speed. In Figure 1 we demonstrate the

training speed as thousands of source tokens per

second for the models trained in this recipe. All

model types benefit from using more GPUs. Scal-

ing is not linear (dashed lines), but close. The

tokens-per-second rate (w/s) for Nematus on the

same data on a single GPU is about 2800 w/s for

the shallow model. Nematus does not have multi-

GPU training. Marian achieves about 4 times faster

training on a single GPU and about 30 times faster

training on 8 GPUs for identical models.

Translation speed. The back-translation of 10M

sentences with a shallow model takes about four

hours on 8 GPUs at a speed of about 15,850 source

tokens per second at a beam-size of 5 and a batch

size of 64. Batches of sentences are translated in

parallel on multiple GPUs.

In Table 2 we report the total number of seconds

to translate newstest-2017 (3,004 sentences, 76,501

source BPE tokens) on a single GPU for different

batch sizes. We omit model load time (usually

below 10s). Beam size is 5.

3.2 State-of-the-art in Neural Automatic

Post-Editing

In our submission to the Automatic Post-Editing

shared task at WMT-2017 (Bojar et al., 2017b)

and follow-up work (Junczys-Dowmunt and Grund-

kiewicz, 2017a,b), we explore multiple neural ar-

chitectures adapted for the task of automatic post-

editing of machine translation output as implemen-

tations in Marian. We focus on neural end-to-end

models that combine both inputs mt (raw MT out-

put) and src (source language input) in a single

neural architecture, modeling {mt, src} → pe di-

rectly, where pe is post-edited corrected output.

These models are based on multi-source neural

translation models introduced by Zoph and Knight

(2016). Furthermore, we investigate the effect of

hard-attention models or neural transductors (Aha-

roni and Goldberg, 2016) which seem to be well-

suited for monolingual tasks, as well as combina-

tions of both ideas. Dual-attention models that are



120

combined with hard attention remain competitive

despite applying fewer changes to the input.

The encoder-decoder framework described in

section 2.2, allowed to integrate dual encoders and

hard-attention without changes to beam-search or

ensembling mechanisms. The dual-attention mech-

anism over two encoders allowed to recover miss-

ing words that would not be recognized based on

raw MT output alone, see Figure 2.

Our final system for the APE shared task scored

second-best according to automatic metrics and

best based on human evaluation.

3.3 State-of-the-art in Neural Grammatical

Error Correction

In Junczys-Dowmunt and Grundkiewicz (2018),

we use Marian for research on transferring meth-

ods from low-resource NMT on the ground of au-

tomatic grammatical error correction (GEC). Pre-

viously, neural methods in GEC did not reach

state-of-the-art results compared to phrase-based

SMT baselines. We successfully adapt several low-

resource MT methods for GEC.

We propose a set of model-independent meth-

ods for neural GEC that can be easily applied in

most GEC settings. The combined effects of these

methods result in better than state-of-the-art neu-

ral GEC models that outperform previously best

neural GEC systems by more than 8% M2 on the

CoNLL-2014 benchmark and more than 4.5% on

the JFLEG test set. Non-neural state-of-the-art sys-

tems are matched on the CoNLL-2014 benchmark

and outperformed by 2% on JFLEG.

Figure 3 illustrates these results on the CoNLL-

2014 test set. To produce this graph, 40 GEC

models (four per entry) and 24 language models

(one per GEC model with pre-training) have been

trained. The language models follow the decoder

architecture and can be used for transfer learning,

weighted decode-time ensembling and re-ranking.

This also includes a Transformer-style language

model with self-attention layers.

Proposed methods include extensions to Mar-

ian, such as source-side noise, a GEC-specific

weighted training-objective, usage of pre-trained

embeddings, transfer learning with pre-trained lan-

guage models, decode-time ensembling of indepen-

dently trained GEC models and language models,

and various deep architectures.

B
as

el
in

e

+D
ro

po
ut

-S
rc

.

+D
om

ai
n-

A
da

pt
.

+Err
or

-A
da

pt
.

+Tie
d-

Em
b.

+Edi
t-M

LE

+Pre
tra

in
-E

m
b.

+Pre
tra

in
-D

ec
.

D
ee

p
R
N

N

Tra
ns

fo
rm

er

30

35

40

45

50

55
Best Sys-Comb

Best SMT

Best NMT

30.9

41.7

43.3

47.8 48.0

51.0
51.4

54.1

55.2
56.1

48.9

50.3 50.6

52.5
52.9

53.4

51.7

54.6
55.5

55.9

M2

Average of 4

Ensemble of 4

Ens. with LM

Figure 3: Comparison on the CoNLL-2014 test set

for investigated methods.

4 Future Work and Conclusions

We introduced Marian, a self-contained neural ma-

chine translation toolkit written in C++ with focus

on efficiency and research. Future work on Mar-

ian’s back-end will look at faster CPU-bound com-

putation, auto-batching mechanisms and automatic

kernel fusion. On the front-end side we hope to

keep up with future state-of-the-art models.

Acknowledgments

The development of Marian received funding from the Eu-
ropean Union’s Horizon 2020 Research and Innovation Pro-
gramme under grant agreements 688139 (SUMMA; 2016-
2019), 645487 (Modern MT; 2015-2017), 644333 (TraMOOC;
2015-2017), 644402 (HimL; 2015-2017), the Amazon Aca-
demic Research Awards program (to Marcin Junczys-Dow-
munt and Adam Lopez), and the World Intellectual Property
Organization. The CPU back-end was contributed by Intel
under a partnership with the Alan Turing Institute.

This research is based upon work supported in part by the
Office of the Director of National Intelligence (ODNI), Intel-
ligence Advanced Research Projects Activity (IARPA), via
contract #FA8650-17-C-9117. The views and conclusions
contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies, either
expressed or implied, of ODNI, IARPA, or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding
any copyright annotation therein.



121

References

Roee Aharoni and Yoav Goldberg. 2016. Sequence
to sequence transduction with hard monotonic atten-
tion. arXiv preprint arXiv:1611.01487.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Ondrej Bojar, Christian Buck, Rajen Chatterjee, Chris-
tian Federmann, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno-Yepes, Philipp
Koehn, and Julia Kreutzer, editors. 2017a. Proc. of
the 2nd Conference on Machine Translation, WMT
2017. Association for Computational Linguistics.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi.
2017b. Findings of the 2017 Conference on Ma-
chine Translation (WMT17). In Proceedings of the
Second Conference on Machine Translation, Volume
2: Shared Task Papers, pages 169–214, Copenhagen.
Association for Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2017a. The AMU-UEdin submission to the WMT
2017 shared task on automatic post-editing. In
Proceedings of the Second Conference on Machine
Translation, Volume 2: Shared Task Papers, pages
639–646, Copenhagen. Association for Computa-
tional Linguistics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2017b. An exploration of neural sequence-to-
sequence architectures for automatic post-editing.
In Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 120–129. Asian Fed-
eration of Natural Language Processing.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2018. Approaching neural grammatical error cor-
rection as a low-resource machine translation task.
In Proceedings of NAACL-HLT 2018, New Orleans,
USA. Association for Computational Linguistics.
Accepted for publication.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,
pages 67–72.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra

Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL. The Association for Computer Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel Cloth-
iaux, Trevor Cohn, Kevin Duh, Manaal Faruqui,
Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng
Kong, Adhiguna Kuncoro, Gaurav Kumar, Chai-
tanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. DyNet: the dy-
namic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, volume 2, pages 157–163.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017a. The University of Edinburgh’s neural MT
systems for WMT17. In (Bojar et al., 2017a), pages
389–399.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde.
2017b. Nematus: a toolkit for neural machine trans-
lation. In Proceedings of the Software Demonstra-
tions of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 65–68, Valencia, Spain. Association for Com-
putational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 30–34, San Diego, Cali-
fornia. Association for Computational Linguistics.

https://arxiv.org/pdf/1611.01487
https://arxiv.org/pdf/1611.01487
https://arxiv.org/pdf/1611.01487
https://arxiv.org/pdf/1607.06450.pdf
http://aclanthology.info/volumes/proceedings-of-the-second-conference-on-machine-translation
http://aclanthology.info/volumes/proceedings-of-the-second-conference-on-machine-translation
http://aclanthology.info/volumes/proceedings-of-the-second-conference-on-machine-translation
http://www.aclweb.org/anthology/W17-4717
http://www.aclweb.org/anthology/W17-4717
https://pdfs.semanticscholar.org/39f7/830cfb2436ff215892fafb6899c7d937042a.pdf
https://pdfs.semanticscholar.org/39f7/830cfb2436ff215892fafb6899c7d937042a.pdf
https://pdfs.semanticscholar.org/39f7/830cfb2436ff215892fafb6899c7d937042a.pdf
http://www.aclweb.org/anthology/W17-4774
http://www.aclweb.org/anthology/W17-4774
http://aclweb.org/anthology/I17-1013
http://aclweb.org/anthology/I17-1013
http://aclweb.org/anthology/P17-4012
http://aclweb.org/anthology/P17-4012
http://dblp.uni-trier.de/db/conf/acl/acl2007.html#KoehnHBCFBCSMZDBCH07
http://dblp.uni-trier.de/db/conf/acl/acl2007.html#KoehnHBCFBCSMZDBCH07
https://arxiv.org/pdf/1701.03980.pdf
https://arxiv.org/pdf/1701.03980.pdf
http://www.aclweb.org/anthology/E17-2025
http://www.aclweb.org/anthology/E17-2025
https://aclanthology.info/papers/W17-4739/w17-4739
https://aclanthology.info/papers/W17-4739/w17-4739
http://aclweb.org/anthology/E17-3017
http://aclweb.org/anthology/E17-3017
http://www.aclweb.org/anthology/P16-1162
http://www.aclweb.org/anthology/P16-1162
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://www.aclweb.org/anthology/N16-1004
http://www.aclweb.org/anthology/N16-1004

