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Abstract

We present Marian, an efficient and self-

contained Neural Machine Translation

framework with an integrated automatic

differentiation engine based on dynamic

computation graphs. Marian is written en-

tirely in C++. We describe the design of the

encoder-decoder framework and demon-

strate that a research-friendly toolkit can

achieve high training and translation speed.

1 Introduction

In this paper, we present Marian,1 an efficient Neu-

ral Machine Translation framework written in pure

C++ with minimal dependencies. It has mainly

been developed at the Adam Mickiewicz Univer-

sity in Poznań and at the University of Edinburgh.

It is currently being deployed in multiple European

projects and is the main translation and training

engine behind the neural MT launch at the World

Intellectual Property Organization.2

In the evolving eco-system of open-source NMT

toolkits, Marian occupies its own niche best char-

acterized by two aspects:

• It is written completely in C++11 and inten-

tionally does not provide Python bindings;

model code and meta-algorithms are meant

to be implemented in efficient C++ code.

• It is self-contained with its own back end,

which provides reverse-mode automatic dif-

ferentiation based on dynamic graphs.

1Named after Marian Rejewski, a Polish mathematician
and cryptologist who reconstructed the German military
Enigma cipher machine sight-unseen in 1932. https://

en.wikipedia.org/wiki/Marian_Rejewski.
2https://slator.com/technology/neural-

conquers-patent-translation-in-major-

wipo-roll-out/

Marian has minimal dependencies (only Boost

and CUDA or a BLAS library) and enables barrier-

free optimization at all levels: meta-algorithms

such as MPI-based multi-node training, efficient

batched beam search, compact implementations of

new models, custom operators, and custom GPU

kernels. Intel has contributed and is optimizing a

CPU backend.

Marian grew out of a C++ re-implementation of

Nematus (Sennrich et al., 2017b), and still main-

tains binary-compatibility for common models.

Hence, we will compare speed mostly against Ne-

matus. OpenNMT (Klein et al., 2017), perhaps one

of the most popular toolkits, has been reported to

have training speed competitive to Nematus.

Marian is distributed under the MIT license

and available from https://marian-nmt.

github.io or the GitHub repository https:

//github.com/marian-nmt/marian.

2 Design Outline

We will very briefly discuss the design of Marian.

Technical details of the implementations will be

provided in later work.

2.1 Custom Auto-Differentiation Engine

The deep-learning back-end included in Marian is

based on reverse-mode auto-differentiation with

dynamic computation graphs and among the es-

tablished machine learning platforms most similar

in design to DyNet (Neubig et al., 2017). While

the back-end could be used for other tasks than

machine translation, we choose to optimize specifi-

cally for this and similar use cases. Optimization

on this level include for instance efficient imple-

mentations of various fused RNN cells, attention

mechanisms or an atomic layer-normalization (Ba

et al., 2016) operator.

https://en.wikipedia.org/wiki/Marian_Rejewski
https://en.wikipedia.org/wiki/Marian_Rejewski
https://slator.com/technology/neural-conquers-patent-translation-in-major-wipo-roll-out/
https://slator.com/technology/neural-conquers-patent-translation-in-major-wipo-roll-out/
https://slator.com/technology/neural-conquers-patent-translation-in-major-wipo-roll-out/
https://marian-nmt.github.io
https://marian-nmt.github.io
https://github.com/marian-nmt/marian
https://github.com/marian-nmt/marian
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2.2 Extensible Encoder-Decoder Framework

Inspired by the stateful feature function framework

in Moses (Koehn et al., 2007), we implement en-

coders and decoders as classes with the following

(strongly simplified) interface:

class Encoder {

EncoderState build(Batch);

};

class Decoder {

DecoderState startState(EncoderState[]);

DecoderState step(DecoderState, Batch);

};

A Bahdanau-style encoder-decoder model

would implement the entire encoder inside

Encoder::build based on the content of the batch

and place the resulting encoder context inside the

EncoderState object.

Decoder::startState receives a list of

EncoderState (one in the case of the Bahdanau

model, multiple for multi-source models, none

for language models) and creates the initial

DecoderState.

The Decoder::step function consumes the tar-

get part of a batch to produce the output logits of a

model. The time dimension is either expanded by

broadcasting of single tensors or by looping over

the individual time-steps (for instance in the case

of RNNs). Loops and other control structures are

just the standard built-in C++ operations. The same

function can then be used to expand over all given

time steps at once during training and scoring or

step-by-step during translation. Current hypothe-

ses state (e.g. RNN vectors) and current logits are

placed in the next DecoderState object.

Decoder states are used mostly during transla-

tion to select the next set of translation hypotheses.

Complex encoder-decoder models can derive from

DecoderState to implement non-standard selec-

tion behavior, for instance hard-attention models

need to increase attention indices based on the top-

scoring hypotheses.

This framework makes it possible to combine

different encoders and decoders (e.g. RNN-based

encoder with a Transformer decoder) and reduces

implementation effort. In most cases it is enough to

implement a single inference step in order to train,

score and translate with a new model.

2.3 Efficient Meta-algorithms

On top of the auto-diff engine and encoder-decoder

framework, we implemented many efficient meta-

algorithms. These include multi-device (GPU or

CPU) training, scoring and batched beam search,

ensembling of heterogeneous models (e.g. Deep

RNN models and Transformer or language models),

multi-node training and more.

3 Case Studies

In this section we will illustrate how we used the

Marian toolkit to facilitate our own research across

several NLP problems. Each subsection is meant as

a showcase for different components of the toolkit

and demonstrates the maturity and flexibility of

the toolkit. Unless stated otherwise, all mentioned

features are included in the Marian toolkit.

3.1 Improving over WMT2017 systems

Sennrich et al. (2017a) proposed the highest scor-

ing NMT system in terms of BLEU during the

WMT 2017 shared task on English-German news

translation (Bojar et al., 2017a), trained with the

Nematus toolkit (Sennrich et al., 2017b). In this

section, we demonstrate that we can replicate and

slightly outperform these results with an identi-

cal model architecture implemented in Marian and

improve on the recipe with a Transformer-style

(Vaswani et al., 2017) model.

3.1.1 Deep Transition RNN Architecture

The model architecture in Sennrich et al. (2017a)

is a sequence-to-sequence model with single-layer

RNNs in both, the encoder and decoder. The RNN

in the encoder is bi-directional. Depth is achieved

by building stacked GRU-blocks resulting in very

tall RNN cells for every recurrent step (deep transi-

tions). The encoder consists of four GRU-blocks

per cell, the decoder of eight GRU-blocks with an

attention mechanism placed between the first and

second block. As in Sennrich et al. (2017a), em-

beddings size is 512, RNN state size is 1024. We

use layer-normalization (Ba et al., 2016) and varia-

tional drop-out with p = 0.1 (Gal and Ghahramani,

2016) inside GRU-blocks and attention.

3.1.2 Transformer Architecture

We very closely follow the architecture described

in Vaswani et al. (2017) and their ”base” model.

3.1.3 Training Recipe

Modeled after the description3 from Sennrich et al.

(2017a), we perform the following steps:

3The entire recipe is available in form of multi-
ple scripts at https://github.com/marian-nmt/

marian-examples.

https://github.com/marian-nmt/marian-examples
https://github.com/marian-nmt/marian-examples
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System test2016 test2017

UEdin WMT17 (single) 33.9 27.5

+Ensemble of 4 35.1 28.3

+R2L Reranking 36.2 28.3

Deep RNN (single) 34.3 27.7

+Ensemble of 4 35.3 28.2

+R2L Reranking 35.9 28.7

Transformer (single) 35.6 28.8

+Ensemble of 4 36.4 29.4

+R2L Reranking 36.8 29.5

Table 1: BLEU results for our replication of the

UEdin WMT17 system for the en-de news transla-

tion task. We reproduced most steps and replaced

the deep RNN model with a Transformer model.

• preprocessing of training data, tokenization,

true-casing4, vocabulary reduction to 36,000

joint BPE subword units (Sennrich et al.,

2016) with a separate tool.5

• training of a shallow model for back-

translation on parallel WMT17 data;

• translation of 10M German monolingual news

sentences to English; concatenation of artifi-

cial training corpus with original data (times

two) to produce new training data;

• training of four left-to-right (L2R) deep mod-

els (either RNN-based or Transformer-based);

• training of four additional deep models with

right-to-left (R2L) orientation; 6

• ensemble-decoding with four L2R models re-

sulting in an n-best list of 12 hypotheses per

input sentence;

• rescoring of n-best list with four R2L models,

all model scores are weighted equally;

• evaluation on newstest-2016 (validation set)

and newstest-2017 with sacreBLEU.7

We train the deep models with synchronous

Adam on 8 NVIDIA Titan X Pascal GPUs with

12GB RAM for 7 epochs each. The back-

translation model is trained with asynchronous

Adam on 8 GPUs. We do not specify a batch size as

Marian adjusts the batch based on available mem-

4Proprocessing was performed using scripts from Moses
(Koehn et al., 2007).

5https://github.com/rsennrich/subword-

nmt
6R2L training, scoring or decoding does not require data

processing, right-to-left inversion is built into Marian.
7https://github.com/mjpost/sacreBLEU
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Figure 1: Training speed in thousands of source

tokens per second for shallow RNN, deep RNN and

Transformer model. Dashed line projects linear

scale-up based on single-GPU performance.

ory to maximize speed and memory usage. This

guarantees that a chosen memory budget will not

be exceeded during training.

All models use tied embeddings between source,

target and output embeddings (Press and Wolf,

2017). Contrary to Sennrich et al. (2017a) or

Vaswani et al. (2017), we do not average check-

points, but maintain a continuously updated expo-

nentially averaged model over the entire training

run. Following Vaswani et al. (2017), the learning

rate is set to 0.0003 and decayed as the inverse

square root of the number of updates after 16,000

updates. When training the transformer model, a

linearly growing learning rate is used during the

first 16,000 iterations, starting with 0 until the base

learning rate is reached.

https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/mjpost/sacreBLEU
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Figure 2: Example for error recovery based on dual attention. The missing word “Satz” could only be

recovered based on the original source (marked in red) as it was dropped in the raw MT output.

Model 1 8 64

Shallow RNN 112.3 25.6 15.7

Deep Transition RNN 179.4 36.5 21.0

Transformer 362.7 98.5 71.3

Table 2: Translation time in seconds for newstest-

2017 (3,004 sentences, 76,501 source BPE tokens)

for different architectures and batch sizes.

3.1.4 Performance and Results

Quality. In terms of BLEU (Table 1), we match

the original Nematus models from Sennrich et al.

(2017a). Replacing the deep-transition RNN model

with the transformer model results in a signifi-

cant BLEU improvement of 1.2 BLEU on the

WMT2017 test set.

Training speed. In Figure 1 we demonstrate the

training speed as thousands of source tokens per

second for the models trained in this recipe. All

model types benefit from using more GPUs. Scal-

ing is not linear (dashed lines), but close. The

tokens-per-second rate (w/s) for Nematus on the

same data on a single GPU is about 2800 w/s for

the shallow model. Nematus does not have multi-

GPU training. Marian achieves about 4 times faster

training on a single GPU and about 30 times faster

training on 8 GPUs for identical models.

Translation speed. The back-translation of 10M

sentences with a shallow model takes about four

hours on 8 GPUs at a speed of about 15,850 source

tokens per second at a beam-size of 5 and a batch

size of 64. Batches of sentences are translated in

parallel on multiple GPUs.

In Table 2 we report the total number of seconds

to translate newstest-2017 (3,004 sentences, 76,501

source BPE tokens) on a single GPU for different

batch sizes. We omit model load time (usually

below 10s). Beam size is 5.

3.2 State-of-the-art in Neural Automatic

Post-Editing

In our submission to the Automatic Post-Editing

shared task at WMT-2017 (Bojar et al., 2017b)

and follow-up work (Junczys-Dowmunt and Grund-

kiewicz, 2017a,b), we explore multiple neural ar-

chitectures adapted for the task of automatic post-

editing of machine translation output as implemen-

tations in Marian. We focus on neural end-to-end

models that combine both inputs mt (raw MT out-

put) and src (source language input) in a single

neural architecture, modeling {mt, src} → pe di-

rectly, where pe is post-edited corrected output.

These models are based on multi-source neural

translation models introduced by Zoph and Knight

(2016). Furthermore, we investigate the effect of

hard-attention models or neural transductors (Aha-

roni and Goldberg, 2016) which seem to be well-

suited for monolingual tasks, as well as combina-

tions of both ideas. Dual-attention models that are
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combined with hard attention remain competitive

despite applying fewer changes to the input.

The encoder-decoder framework described in

section 2.2, allowed to integrate dual encoders and

hard-attention without changes to beam-search or

ensembling mechanisms. The dual-attention mech-

anism over two encoders allowed to recover miss-

ing words that would not be recognized based on

raw MT output alone, see Figure 2.

Our final system for the APE shared task scored

second-best according to automatic metrics and

best based on human evaluation.

3.3 State-of-the-art in Neural Grammatical

Error Correction

In Junczys-Dowmunt and Grundkiewicz (2018),

we use Marian for research on transferring meth-

ods from low-resource NMT on the ground of au-

tomatic grammatical error correction (GEC). Pre-

viously, neural methods in GEC did not reach

state-of-the-art results compared to phrase-based

SMT baselines. We successfully adapt several low-

resource MT methods for GEC.

We propose a set of model-independent meth-

ods for neural GEC that can be easily applied in

most GEC settings. The combined effects of these

methods result in better than state-of-the-art neu-

ral GEC models that outperform previously best

neural GEC systems by more than 8% M2 on the

CoNLL-2014 benchmark and more than 4.5% on

the JFLEG test set. Non-neural state-of-the-art sys-

tems are matched on the CoNLL-2014 benchmark

and outperformed by 2% on JFLEG.

Figure 3 illustrates these results on the CoNLL-

2014 test set. To produce this graph, 40 GEC

models (four per entry) and 24 language models

(one per GEC model with pre-training) have been

trained. The language models follow the decoder

architecture and can be used for transfer learning,

weighted decode-time ensembling and re-ranking.

This also includes a Transformer-style language

model with self-attention layers.

Proposed methods include extensions to Mar-

ian, such as source-side noise, a GEC-specific

weighted training-objective, usage of pre-trained

embeddings, transfer learning with pre-trained lan-

guage models, decode-time ensembling of indepen-

dently trained GEC models and language models,

and various deep architectures.
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Figure 3: Comparison on the CoNLL-2014 test set

for investigated methods.

4 Future Work and Conclusions

We introduced Marian, a self-contained neural ma-

chine translation toolkit written in C++ with focus

on efficiency and research. Future work on Mar-

ian’s back-end will look at faster CPU-bound com-

putation, auto-batching mechanisms and automatic

kernel fusion. On the front-end side we hope to

keep up with future state-of-the-art models.
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