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Tracks of marine animals in the wild, now increasingly acquired by electronic tagging of individuals, are of

prime interest not only to identify habitats and high-risk areas, but also to gain detailed information about

the behaviour of these animals. Using recent satellite-derived current estimates and leatherback turtle

(Dermochelys coriacea) tracking data, we demonstrate that oceanic currents, usually neglected when

analysing tracking data, can substantially distort the observed trajectories. Consequently, this will affect

several important results deduced from the analysis of tracking data, such as the evaluation of the

orientation skills and the energy budget of animals or the identification of foraging areas. We conclude that

currents should be systematically taken into account to ensure the unbiased interpretation of tracking data,

which now play a major role in marine conservation biology.

Keywords: biologging; travelling versus foraging behaviour; impact of ocean currents;
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1. INTRODUCTION
Understanding how marine animals use the oceanic

environment and its constraints is crucial for the

development of sound management strategies for marine

ecosystems that are threatened by climate change

(Parmesan & Yohe 2003; Schmittner 2005) and direct

anthropogenic pressure (Myers & Worm 2003; Lewison

et al. 2004a). This could not be achieved without the

detailed observation of free-ranging organisms, which is

now possible through the electronic tagging of individuals

(Block 2005). In the last few years, this biologging approach

has been widely used for various marine species, greatly

enhancing our knowledge of physiology, habitat use and

movements of long-distance migrants (McConnell et al.

1992; Bost et al. 1997; Lutcavage et al. 1999; Costa &

Sinervo 2004; Block et al. 2005). Biologging also provides

us with unique observations, which are helpful in

developing effective marine ecosystem conservation

measures. In particular, electronic tracking provides

evidence that the foraging hot spots frequented by pelagic

fish and their associated fishing fleets are also exploited by

endangered species, such as sea turtles (Spotila et al.

1996). Hence, the probability of incidentally catching

endangered species is greatly increased in these areas

(Ferraroli et al. 2004; Hays et al. 2004a; Lewison et al.

2004b). Accurately locating these zones and understand-

ing how animals use these critical areas is indispensable if

we want to define how, where and when fishery manage-

ment procedures must be applied, so that we can ensure

the sustainable exploitation of commercial species while
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minimizing the by-catch of endangered species (Lewison

et al. 2004a,b).

Identifying when and where marine animals forage is

therefore crucial and such information can be deduced

from the recorded trajectories of tagged animals (Sibert

et al. 1999; Benhamou 2004; Newlands et al. 2004;

Gutenkunst et al. submitted). Other information that can

be deduced from track analyses includes the identification

of migration corridors (Morreale et al. 1996), dispersion

patterns (e.g. Block et al. 2005), environmental prefer-

ences (e.g. Polovina et al. 2004) and navigation strategies

(e.g. Akesson et al. 2003).

While the influence of ocean currents on recorded

trajectories has been detected and qualitatively assessed

(Luschi et al. 1998, 2003a,b; Hays et al. 1999; Polovina

et al. 2000), their impact on the results of track analyses

has never been quantitatively assessed. The lack of

detailed current estimates along the trajectories of aquatic

species has prevented such an assessment, while the effects

of wind on migrating birds are well documented (e.g.

Richardson 1990; Weimerskirch et al. 2000). Recent

progress in satellite oceanography (Rio & Hernandez

2003, 2004) allows the synoptic estimation of surface

currents. We use these current estimates here to conduct

the first quantitative evaluation of the impact of oceanic

currents on the trajectories of marine animals and

investigate the consequences of the results deduced from

tracking analysis.
2. MATERIAL AND METHODS
(a) Separating swimming and drifting

The trajectories of marine animals reflect the combined

effects of the animal’s voluntary motion (swimming) and
q 2006 The Royal Society
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Figure 1. Trajectory of Argos-tracked leatherback turtle T8
(red line) with superimposed surface current vectors (green).
This track is resampled at 3 h intervals and a current vector is
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its transportation by oceanic currents (drift). More

precisely, trajectories are time-series of the animal’s location

[X(t0), X(t1), ., X(tN)] at the sea surface. The observed

velocity of the animal over ground (Vg) is the time derivative

of X. In practice, Vg is estimated by computing the distances,

in the x and y directions, between the two consecutive

locations and then dividing these distances by the time

elapsed. This velocity is the sum of the animal’s swimming

velocity (Vs) and the velocity of the fluid in which the animal

moves, i.e. the velocity of the current (Vc):

V g ZV s CV c: ð2:1Þ

Tracks are thus simple linear combinations of the animal’s

own motion and the motion of the surrounding fluid:

XðtÞZXðt0ÞC

ðt

t0

V gðtÞdt

ZXðt0ÞC

ðt

t0

V sðtÞdt C

ðt

t0

V cðtÞdt: ð2:2Þ

Depending on whether the animal, or the ocean, is quiet or

active, the relative importance of these two components on the

observed motion can be highly variable and affect most results

regarding the animal’s behaviour inferred from track analyses.
plotted every 12 h. Each vector has its origin on the track.
Black dots labelled A–G are used for track segmentation. T8
reaches these milestones at the following dates: A (depar-
ture), 29 June 2000; B, 10 September 2000; C, 14 October
2000; D, 14 December 2000; E, 17 January 2001; F, 22
February 2001; G (end of data transmission), 20 April 2001.
A zoom showing details of the E–F segment is inserted.
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(b) Processing satellite tracking data

To quantify the impact of ocean currents on a wide range of

oceanic conditions, we analyse a very long (11 635 km,

295 days) trajectory of an Argos-tracked female leatherback

turtle (Dermochelys coriacea), hereafter referred to as T8

(figure 1). T8 left French Guyana, South America on 29 June

2000 and circulated through most of the North Atlantic

Ocean, crossing major current systems and quiet oceanic

areas, before transmission stopped on 20 April 2001.

The trajectory of T8 was edited as follows. All Argos

locations implying an apparent velocity above 10 km hK1

were discarded (Eckert 2002). The track was then smoothed

and resampled at 3 h intervals using simple local linear

regression with a time window of 2 days. Such smoothing is

needed to filter out most of the Argos location error, which

acts as high-frequency noise that would subsequently be

amplified in the velocity-derivation process. The associated

resampling is a standard procedure allowing the computation

of homogeneous velocities (Vg) over constant time-intervals.

With 3 h intervals, the mean distance between successive

resampled positions is close to 5 km. This spatial resolution

provides a more than sufficient sampling of the mesoscale

variations of the ocean current field (see §2c).
0
290 300 310 320

longitude
330 340

Figure 2. Comparison of the observed (red) and current-
corrected (blue) track of T8. Milestones are positioned on the
current-corrected track at the same dates as on the observed
track. A zoom showing details of the B–C segment is inserted.
Note that the current-corrected track displays the animal’s
own motion (Vs) integrated in time but, taken alone, a
position along that track bears no direct interpretation (and
could very well be on the continent!).
(c) Estimating currents from satellite observations

Strictly speaking, the velocity of the current (Vc) should be

estimated at the depth of the tracked animal. This is not a

simple task as currents are not easily monitored over vast

oceanic areas, except for surface currents which can be

estimated using satellite observations (e.g. Ducet et al. 2000).

Fortunately, leatherback turtles mostly dive in the near-

surface epipelagic zone (Hays et al. 2004b) where the current

velocity generally differs little from its surface value (see §4).

Satellite-derived surface current estimates can thus be used to

approximate Vc. They are obtained as the sum of the mean

(Vm) and anomaly (Va) of the surface geostrophic current

plus the surface Ekman current (Ve):

V c ZVm CV a CV e: ð2:3Þ
Proc. R. Soc. B (2006)
The mean geostrophic velocity is provided by Rio &

Hernandez (2004) on a regular 1!18 grid. The geostrophic

relation is used to deduce Va from gridded fields of sea-level

anomalies (SLA) measured by the radar altimeters onboard the
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Figure 3. Straightness index (S) computed along the observed
(red) and current-corrected (blue) tracks. S is computed over
4 day long segments and the computed value is attributed to the
central time of each segment. This yields values of S every 3 h,
except for the first and last 2 days of the tracking period.
Travelling is diagnosed for SO0.8 and foraging for S!0.8.
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Figure 4. Localization of the travelling (red) and foraging
(green) segments on the observed track, based on the value of
the current-corrected straightness index. All fixes corre-
sponding to SO0.8 are plotted in red. Fixes with S!0.8 are
plotted in green.
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TOPEX/POSEIDON and ERS-2 satellites. Weekly SLA fields

are obtained from AVISO (http://www.aviso.oceanobs.com)

on a 1/3!1/38 Mercator grid. The Ekman component of

the current (Ve) is computed as a function of the surface

wind stress using the Rio & Hernandez (2003) model. Daily

wind stresses, derived from QuickSCAT scatterometer

measurements, are obtained from CERSAT (http://www.

ifremer.fr/cersat) on a regular 25!25 km grid. Then, based

on these gridded velocity fields, the three components of the

surface current are linearly interpolated (in space and time) at

each position of the resampled track.

This surface velocity reconstruction technique was

recently evaluated by Pascual et al. (2006), who compared

the velocities using this technique to a large set (over 600 000

measurements) of surface velocity observations from the Global

Drifter Program (http://www.aoml.noaa.gov/phod/dac).

Velocity estimates prove to be essentially unbiased with a

mean error below 1 cm sK1 for both the meridional and the

zonal component of the velocity vector. In energetic areas

(with root-mean-square velocities above 20 cm sK1), esti-

mated velocities explain 73.3% of the drifter zonal velocity

variance and 66.4% of the drifter meridional velocity

variance. Most of the unexplained variance appears to lie in

high-frequency signals, not resolved by altimetric obser-

vations (Le Traon & Dibarboure 2002). The comparison with

drifter observations excluded shallow coastal areas, where

significant deviations from geostrophic equilibrium are

known to occur, and the Equatorial band, where both the

geostrophic and Ekman approximations break down. In our

case, these limitations only impact the first 4 days of tracking

after which T8 leaves the Guiana shelf and enters the open

waters of the North Atlantic Ocean. The reconstructed

currents thus provide realistic surface velocity estimates along

almost the entire T8 track. Still, as pointed out earlier,

surface velocity estimates are only used as a proxy for the

current velocity at the depth of the tracked animal. This

approximation is justified here as recent observations of the

open-ocean diving behaviour of leatherback turtles indicate

that adult leatherbacks, like T8, generally spend over 50% of

their time near the surface (typically between 0 and 50 m)

and rarely dive below 200 m (Hays et al. 2004b; James et al.

2005). These animals thus mostly occupy the upper oceanic

layers where the vertical variations of the current are

essentially the vertical variations of its Ekman component.

This relatively small current component (mean velocity of the

Ekman current below 3 cm sK1 for a mean total current

velocity of 19 cm sK1 along T8 track) is maximum at the

surface and decreases with depth. An animal regularly diving

from the surface to modest depths shall thus experience an

average current speed differing from the surface current value

by only a few centimetres per second. More important

deviations from the surface current will only be experienced

in rare circumstances when the turtle dives down to several

hundred metres (Hays et al. 2004b) below the core of major

surface currents or mesoscale features.
(d) Defining a current-corrected track

At first sight, the relationship between the apparent move-

ment of T8 and the current direction (figure 1) is not at all

obvious. It is better analysed comparing (figure 2) the

observed track with the current-corrected track Xcc(t), i.e.

the trajectory that the animal would have followed in a
Proc. R. Soc. B (2006)
motionless ocean, swimming exactly the way she swam:

XccðtÞZXðt0ÞC

ðt

t0

V sðtÞdt: ð2:4Þ

In practice, this current-corrected track is readily com-

puted using the available tracking and current data:

Xccðt0 CnDtÞZXðt0ÞC
XnK1

iZ0

Dt½V gKV c�ðt0 C iDtÞ;

for n Z1;N ; ð2:5Þ

where Dt is the period at which the observed track has been

resampled and N is the total number of locations in this track.

http://www.aviso.oceanobs.com
http://www.ifremer.fr/cersat
http://www.ifremer.fr/cersat
http://www.aoml.noaa.gov/phod/dac
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3. RESULTS
(a) New evidence for strong compass sense

Between departure (A) and 348 N, over more than

3250 km, the observed track is remarkably straight, and

the current-corrected track is even slightly straighter.

Then, between 348 N and milestone B (another 1000 km),

the observed trajectory displays several marked heading

changes, while the current intensifies as T8 crosses the

Gulf Stream system. Interestingly, unlike the observed

track, the current-corrected track (figure 2) remains

remarkably straight in this highly dynamic area. This

reveals an interesting navigation strategy in which T8 does

not change her swimming direction to compensate for the

current drift but, on the contrary, maintains a steady

heading while crossing strong currents pushing at cross-

angles. This behaviour, not detectable without current

correction, is an additional proof of the strong compass

sensepreviously detected in leatherback turtles (Lohmann &

Lohmann 1993).

(b) Swimming and drifting: impact on energy

budget

After a period of apparent erratic motion (between B and C),

T8 started moving east in the frontal area between the

subtropical and subpolar gyres (between C and D), where

she is pushed by the powerful flow of the Gulf Stream

Extension and then the North Atlantic Current with

estimated velocities often above 0.5 m sK1, peaking at

0.95 m sK1. Current impact on the track is remarkable:

the current-corrected track reveals that T8 has little active

motion towards the east. The distance actually swam by

T8 between C and D (length of the current-corrected

track) is only 1196 km, while the distance travelled is

2144 km. Thus, almost half of the observed displacement

is due to the current drift. Since the work done by the

animal is essentially proportional to the distance swum,

any energy budget using the distance computed along the

observed track would be grossly wrong. Segment C–D is

obviously the track segment where the current impact is

the largest. Over the other segments, the difference

between the current-corrected track length and the

observed track length remains between 5 and 20% of

the latter.

(c) Navigation strategy in the presence of strong

currents

In the last recorded part of the trajectory (D–G), T8

appears to progressively come back to the western part of

the Atlantic Basin, with the conspicuous exception of the

E–F segment. But, the current-corrected track (figure 2)

reveals that, even if apparent motion from E to F is

towards the east, T8 actually kept swimming towards west

between these two points. More precisely, computed

velocities indicate that, while T8 was swimming at

0.11 m sK1 (mean of the westward component of her

swimming velocity), the Azores current, centred around

358 N, pushed her faster to the east (mean of the eastward

component of the current velocity: 0.20 m sK1). The

convoluted shape of the E–F segment (figure 1) indicates

that T8 was actually foraging, while slowly swimming

against the current, in the very productive Azores front.

After this feeding event, the T8 trajectory becomes

straighter as she steadily heads northwest (right after F).

By doing so, T8 gets out of the narrow core of the Azores
Proc. R. Soc. B (2006)
current and starts actually moving west again in a region

where her motion is no longer opposed by a strong

eastward flow. She then heads to the south, encountering

the Azores current again. This time, she crosses it

completely and then keeps moving to the west. Further

work is needed to understand the exact navigation

mechanisms used to shape such a complex trajectory,

but our analysis shows that this can only be done with

detailed knowledge of the currents.

(d) Diagnosing travelling or foraging behaviour in

the presence of currents

Going one step further, new current data allow us to revisit

more elaborate track analyses aiming at the identification

of the two main movement behaviours, i.e. travelling

versus food prospecting. These two motion types are

characterized by long-range directed displacements and

erratic motions, respectively. Based on this simple

characterization, several techniques (e.g. Benhamou

2004; Newlands et al. 2004) have been developed to

automatically identify track segments where either travel-

ling (directed motion) or foraging (erratic motion)

dominates. Such analyses are extremely useful when no

other behavioural information is available. They provide

important information on feeding ground locations,

migration areas and switching frequency between travel-

ling and foraging behaviour (Newlands et al. 2004). Track

analyses are also useful when combined with comp-

lementary biologging measurements (e.g. dive profiles)

to obtain more precise descriptions of the animal’s

movement and behaviour in relation to its environment

(e.g. Georges et al. 2000; LeBoeuf et al. 2000; Hays et al.

2004b; James et al. 2005; Sale et al. 2006).

It is apparent that this movement characterization

(erratic or directed) concerns the animal’s own motion

(Vs) and not the combined motion of the animal and

surrounding fluid (VsCVc). In other words, such track

analyses should be performed on current-corrected tracks,

not on observed tracks as usually done.

To show the differences between the two approaches we

analysed the impact of the current correction on the

straightness index S of the T8 track. This index, defined

by the ratio of the beeline distance between two points on

the track and the actual length of the track between these

two points (Batschelet 1981), is often used to distinguish

between travelling and foraging behaviours in track

analyses (Benhamou 2004). If the animal travels straight

from one point to the other, SZ1, whereas S/0 in the

case of erratic motion. We computed the value of S to the

middle of 4 day long periods for both the actual and

the current-corrected tracks. This period of 4 days was

chosen to detect travelling or foraging events extending

over several days as the original sampling frequency of

data, and their subsequent smoothing, prevents detailed

analysis at shorter periods. Both the original and the

current-corrected straightness indices showed a bimodal

distribution, with SZ0.8 threshold value separating both

modes. Accordingly, we used SZ0.8 for separating

travelling (SO0.8) from foraging (S!0.8) behaviour, for

both the original and the current-corrected straightness

indices (figure 3). Figure 3 shows that current correction

neither modifies the ‘travelling diagnosis’ on segments

A–B, D–E and F–G, nor the ‘foraging diagnosis’ on B–C

and F–G. But on segment C–D, the uncorrected index
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points at a dominant travelling behaviour (SO0.8 during

51 days of this 61-day period), whereas the current-

corrected value of S clearly indicates a foraging behaviour,

except for the last 7 days of that period. The difference in

the diagnosis is huge as the current-corrected index

suggests that, between C and D, T8 foraged during

54 days along a 1807 km track segment (figure 4). On

the contrary, the uncorrected index only points at a

10-day, 191 km long foraging episode. The diagnosis of a

much longer foraging period obtained with the current-

correction is otherwise supported by the fact that the

concerned track segment between C and D lies in the

transition zone between the subtropical and subpolar

gyres where food abounds (Polovina et al. 2001). In

addition, T8 was particularly slow along that C–D

segment (mean swimming velocity: 0.26 m sK1),

suggesting that she was indeed searching and/or proces-

sing food.
4. DISCUSSION
T8’s track is remarkable as it displays various types of

animal movement patterns occurring in various ocean

regions with widely different dynamics. Analysis of over 10

other postnesting trajectories of leatherback turtles

tracked from French Guyana (Ferraroli et al. 2004)

provides similar results, even if no single other trajectory

is as complete and as informative as T8’s track. In all

trajectories, currents prove to commonly add sinuosity to

long-range directed track segments confirming that

leatherback turtles tend to maintain a more stable heading

than indicated by the observed tracks. Their compass

sense is truly remarkable, even in the presence of strong

currents. The other tracks also provide examples of

(probably) foraging turtles either swimming with the

current (like in the C–D segment), or actively swimming

against it (like in the E–F segment). The reason for such

different navigation strategies relative to the current needs

to be further analysed with support from complementary

diving data.

Altogether, our results reveal that currents have a highly

variable but rarely negligible impact on marine animals’

tracks. Ignoring current effects can thus be misleading

when trying to infer animal behaviour from tracking data.

Additionally, precise information on the currents signi-

ficantly modifies, and moreover improves, our interpre-

tation of observed trajectories. We thus conclude that

currents should be systematically taken into account to

warrant unbiased analysis of marine animals’ tracking

data. Surface currents, derived from satellite observations,

are readily available to analyse tracks from (mostly)

epipelagic animals. For deeper-diving animals, realistic

current estimates at all depths should soon be available

from operational global ocean models.

Marine animals faster than leatherback turtles will

clearly be less impacted by currents, but oceanographic

information will remain important for interpreting their

actual behaviour. An accurate determination of the

currents will indeed be needed to understand how

travelling animals shape their trajectories as a function of

currents. This might help unravel some of the remaining

mysteries of animal navigation.

Currents will be even more important to analyse

foraging behaviour. Indeed, foraging typically occurs in
Proc. R. Soc. B (2006)
rich, dynamically active areas where currents tend to be

faster while feeding animals tend to slow down. In such

areas, the balance between oceanic movements and animal

motion will be subtle. Current correction will thus be

critically needed to properly assess foraging habitat and

the time budget of individuals. This shall lead to a more

accurate estimation of food requirements, and ultimately

to a better quantification of the way animal populations

impact on trophic resources and respond to changes in

food availability, throughout marine ecosystems.

We thank the customary chiefs and inhabitants of Awala-
Yalimapo (French Guyana) and the Amana Natural Reserve
for their support in the field, and Ph. Schaeffer for assistance
with data visualization. This study was carried out under
CNRS institutional license (B67 482 18) and adhered to the
legal requirements of the country in which the work was
carried out, and all institutional guidelines.
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