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Abstract: Marine organisms harbor numerous bioactive substances that can be utilized in the phar-
maceutical and cosmetic industries. Scientific research on various applications of collagen extracted
from these organisms has become increasingly prevalent. Marine collagen can be used as a bio-
material because it is water soluble, metabolically compatible, and highly accessible. Upon review
of the literature, it is evident that marine collagen is a versatile compound capable of healing skin
injuries of varying severity, as well as delaying the natural human aging process. From in vitro
to in vivo experiments, collagen has demonstrated its ability to invoke keratinocyte and fibroblast
migration as well as vascularization of the skin. Additionally, marine collagen and derivatives have
proven beneficial and useful for both osteoporosis and osteoarthritis prevention and treatment. Other
bone-related diseases may also be targeted by collagen, as it is capable of increasing bone mineral
density, mineral deposition, and importantly, osteoblast maturation and proliferation. In this review,
we demonstrate the advantages of marine collagen over land animal sources and the biomedical
applications of marine collagen related to bone and skin damage. Finally, some limitations of marine
collagen are briefly discussed.

Keywords: marine collagen; wound healing; bone regeneration; collagen peptides; antiaging; osteoporosis;
osteoarthritis; fish collagen; marine sponge

1. Introduction

The extracellular matrix (ECM) plays important roles in the physical integrity of cells,
where it is involved in cell proliferation, differentiation, migration, and adhesion [1–6].
Collagen is the main structural protein in the ECM and connective tissue of animals. In
mammals, collagen protein is highly abundant and mainly localized in the ECM of fibrous
connective tissues, such as the tendon and skin [7–10]. It plays key structural roles by
supporting the formation, tensile strength, and flexibility of joints [11–15]. Collagen types
I, II, III, V, and XI are able to form fibrils that are necessary for structural support and
resistance to mechanical stress in connective tissues [16,17]. Type I collagen is the most
abundant form and is mainly present in the tendons and skin [18–20].

Collagen has numerous biomedical applications ranging from wound healing, bone
and tissue regeneration, and drug delivery (Figure 1) [21,22]. Its accessibility, flexibility,
and biocompatibility make it a useful biomaterial in several fields [22–24]. Collagen is
a trimeric molecule made up of three polypeptide alpha-chains, forming highly organized
three-dimensional structures capable of resisting mechanical stress and supporting the
growth of cells [25,26].

Marine organisms such as fish, jellyfish, sponges, and other invertebrates harbor
a significant source of collagen and are highly advantageous over other sources, as they are
metabolically compatible, lack religious constraints and are free of animal pathogens [27–30].
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In fact, fish skins are commonly used for type I collagen extraction, as they are not only
immensely abundant but also do not have religious restrictions and are not a risk of disease
transmission [31–33]. Land animals possess many transmittable diseases, which makes
them less favorable for use in industries. For example, cattle, although a large source of
collagen, pose risks for bovine spongiform encephalopathy (BSE) as well as transmissible
spongiform encephalopathy (TSE) [29,34,35]. These progressive neurological disorders
affect cattle and can result in life-threatening infections in humans [29]. In addition, some
religious constraints on the use of bovines for the pharmaceutical and cosmetic industries
are up for debate [35]. These factors make marine sources of collagen a much safer, easier,
and promising alternative.
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Skin wounds may take a long time to heal and often do not heal completely. Marine
collagen isolated from organisms like fish, jellyfish, and sponges has been implicated in
several studies on its potential for increasing wound healing rates [36–41]. The processes
involve increased fibroblast and keratinocyte migration as well as vascularization and
epidermal growth [42–44]. In addition to accelerating wound healing, marine collagen has
also been shown to have anti-aging properties by slowing the aging process in mice [45–48].
Studies on humans have also shown that marine collagen can reduce wrinkles, improve
skin elasticity, and enhance the overall structure and appearance of skin. Furthermore,
collagen’s ability to regenerate bone has been shown to be successful in rat models of
menopausal osteoporosis [49]. Marine collagen is able to increase bone mineral density and
osteoblastic activity, serving protective effects against bone degeneration [49–53]. Collagen
has also been shown to induce chondrogenic differentiation and prevent the development
of osteoarthritis (OA) [54,55].

Here, we review the potential application of marine collagen in facilitating wound
healing and highlight that marine collagen can enhance skin elasticity and thus, reduce the
aging process of the skin. Furthermore, we describe the suitability of marine collagen for
bone tissue engineering and cartilage formation due to its high biocompatibility. Although
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some limitations associated with the use of marine collagen exist, it is evident that the advan-
tageous and efficacious potential of marine collagen significantly outweighs its drawbacks.

2. Collagen Application in Wound Healing and Anti-Aging

Our skin epidermis is the most important innate defense barrier against all pathogens
and plays a significant role in tissue homeostasis [56–58]. Skin injuries are difficult to treat
yet are becoming increasingly common as a result of burns, infections, scarring, genetic
disorders, and other diseases [59,60]. Treatments aim to restore the integrity of the tissue,
involving processes such as inflammation, cell division, differentiation, and vascularization.
Endothelial permeability enables cell adhesion, which is followed by cell differentiation
and maturation [61,62]. Marine collagen has been shown to be an effective biomaterial
for wound healing. Collagen can be utilized in various formulations, such as the use of
collagen peptides and hydroxylates, or collagen fibers, and scaffold-like structures [44,63].

Marine collagen peptides are produced from collagen through both chemical and
enzymatic hydrolysis, and their smaller molecular weight increases their water solubil-
ity, making them more absorbable [63,64]. Hu et al. used an in vitro scratch assay to
demonstrate that marine collagen peptides improve wound closure at concentrations of
50 µg mL−1 starting at 12 h post-treatment with collagen (Figure 2) [63]. It was shown that
at 50-µg mL−1, the cell migration induced was similar to migration seen by 10.0 ng mL−1

of epidermal growth factor, a factor that is known to play a crucial role in wound healing.
Furthermore, using marine collagen peptides isolated from the skin of tilapia, wounded
rabbits treated with collagen healed significantly faster compared to the control group after
11 days [63].
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Figure 2. The effect of varying concentrations (6.25, 12.5, 25.0, 50.0 µg mL−1) of marine collagen
peptides (MCPs) on scratch closure was determined by an in vitro assay [63].

Moreover, Yang et al. isolated collagen peptides from Alaska pollock and demon-
strated that oral administration of collagen peptides to wounded rats significantly increased
recovery rates compared to the control groups [65]. Hydroxyproline, which promotes the
deposition of collagen and thus healing, was shown to be greater in the collagen-treated
group (10.6 µg mg−1) over time than in the control group (9.25 µg mg−1) [65]. On day 12
of healing, the treated groups displayed complete re-epithelialization, and the presence of
hair follicles was observed, whereas the control group had poor keratinocyte migration
and no hair follicles [65].
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Similar to the studies mentioned above, Wang et al. found that marine collagen
peptides (MCPs) isolated from salmon skin significantly improved skin wound tensile
strength in rats [42]. As seen in Figure 3, the observed improvement was dependent
on the dose of collagen peptides and the time after cesarean section [42]. Furthermore,
hydroxyproline levels were remarkably increased in the collagen-treated groups compared
with the control groups, increasing in a time- and dose-dependent manner [42]. Not
surprisingly, rats in the collagen-treated group showed elevated fibroblast proliferation
and vascularization at 7 days post-treatment [42]. These results are similar to the experiment
of Zhang et al., who demonstrated that marine collagen peptides enhanced wound closure
rates in rats, tensile strength at the incision site and collagen deposition [43]. Histological
analysis revealed improved vascularization, epithelization, and fibroblast infiltration in the
collagen-treated groups [43]. Collagen deposition is an important part of the recovery from
skin injuries and the development of granulation tissue, and hydroxyproline, which promotes
collagen deposition, was elevated in the treated groups at 7- and 11-days post-injury [43].
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Additionally, Pozzolini et al. isolated and purified marine collagen hydroxylates from
the marine sponge Chondrosia reniformis [66]. Using an in vitro scratch assay, 50 ug/mL of
collagen peptide fractions were added, and cells were analyzed at 0, 6, 24, and 30 h post-
administration. Compared to the control groups, the treated cells demonstrated fibroblast
and keratinocyte migration and proliferation, increasing wound gap closure of both dermal
and epidermal cells. Cells were first observed migrating and colonizing the scratch gap area,
followed by increased cell proliferation by the 24-h time point [66]. These results suggest
the promising wound-healing abilities of the marine collagen hydroxylates isolated from
C. reniformis. Similarly, hydrolyzed peptide collagen isolated and purified from the jellyfish
Rhopilema esculentum demonstrated wound healing activity both in vitro and in vivo. First,
using a scratch wound-healing assay the authors demonstrated that collagen peptide
treated groups had increased cell migration and wound closure dose-dependently at 18-,
36- and 48-h post-treatment [67]. When investigated on wounded mice, collagen peptides
(0.9 g/kg) improved wound healing effects, in part by promoting increased expression
of chemotactic factors (i.e., β-FGF and TGF-β1). These factors play a role in protecting
the wound from infection by recruiting inflammatory cells, which can also regulate the
migration of fibroblasts and keratinocytes; thus, promoting wound healing [67].
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Moreover, Veeruraj et al. isolated astaxanthin, an antioxidant and anti-inflammatory
compound as well as acid and pepsin soluble collagen from the squid, Doryteuthis sing-
halensis [68]. Wounded rats were treated with an astaxanthin and collagen combination,
and a faster wound healing rate was observed compared to the saline- treated wounds.
The study also found that collagen-treated groups had increased epithelization, angiogen-
esis, keratinization, and presence of collagen fibers, which together contribute to wound
healing [68].

Likewise, Chen et al. isolated collagen from marine tilapia skin and bovine skin
collagen nanofibers and showed that collagen-treated rat groups had faster wound recovery
rates than controls [44]. In addition, the study found that hydroxyproline, a component
of collagen, played an important role in the rate of wound healing by promoting re-
epithelization. The collagen-treated groups had more fibroblasts, more vascularization, less
inflammation, and more collagen fibers than the control groups [44].

Studies on larger animals, such as sheep, have also been performed to illustrate the
effect of collagen on wound healing. For example, Melotti et al. manufactured collagen-
based skin-like scaffolds (CBSSs) from collagen isolated from sea urchin food waste to
treat skin wounds in sheep [69]. They showed that wounds treated with CBSS healed
at a much faster rate than control groups. Beginning at day 14 post-injury, the treated
groups displayed a significantly greater amount of keratinocyte migration compared to the
untreated control groups. Furthermore, CBSS-treated groups had less inflammation over
time and more deposition of granular tissue than the control group [69]. Gene expression
analysis showed an upregulation of an important growth factor, VEGF-A, in the treated
groups compared to the control [69]. In addition, hKER, a marker for hair follicle expression,
was first observed at day 14 post-injury, only in the treated groups [69]. Taken together,
these results indicate that collagen is a promising biomaterial for wound healing and
skin regeneration.

In another experiment by Ferrario et al., the integrity and performance of 3D-produced
CBSS were evaluated under the condition of adding varying concentrations of ethanol and
different freezing temperatures [21]. Their experimental results showed that the addition of
ethanol in the process of producing collagen-based scaffolds at different temperatures can
increase the thickness of these scaffolds, and the density of collagen fibers in the upper and
lower surfaces of these scaffolds could also be enhanced (Figure 4). These factors ultimately
led to greater mechanical stability and reduced deformation of this scaffold in cell culture
and in vivo wound microenvironments [21].

The biomedical applications of collagen for the purpose of skin regeneration are
further prevalent in the anti-aging industry, as age-related changes associated with the skin
can negatively impact aesthetic aspects of skin structure [70]. The elasticity, mechanical
strength and overall structure of the skin are mainly maintained by collagen and elastin
fibers [71,72]. Collagen synthesis decreases as one age, and this is one of the dominant
contributions to changes associated with aging skin [73,74]. Many compounds, such as
dietary vitamins, fatty acids, and essential amino acids, have been proven beneficial to skin
health and appearance [75–77]. However, plant-derived dietary compounds are limited
by their low bioavailability through the intestinal barrier and high metabolism rates [78].
Promisingly, marine collagen and collagen peptides have high bioavailability, potency, and
a favorable safety profile [79,80]. A study performed by Ito et al. demonstrated that dietary
supplementation with collagen peptide and ornithine (CPO) derived from fish significantly
reduced trans-epidermal water loss and skin pore number and increased elasticity in the
CPO-treated groups (Figure 5) [45].
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Furthermore, aging is known to be associated with decreased growth hormone levels.
Insulin-like growth factor-1 (IGF-1) levels are related to higher growth hormone secretion,
and it was found that IGF-1 levels were significantly elevated from baseline in the CPO
group [45]. The study also reported no adverse effects in response to one 30 mL CPO
dietary supplement [45]. Similarly, De Luca et al. found that after taking 570 mg collagen
peptides isolated from fish, participants had enhanced dermal thickness and acoustic
density, an ultrasonic marker [46]. In addition, skin elasticity and sebum production were
also significantly increased after collagen peptide supplementation, and no toxic effects
were observed [45]. Alves et al. demonstrated that collagen type I isolated from salmon
and codfish skins displayed no irritation on human skin [81]. The cytokines interleukin
(IL)-6 and IL-8 were used as markers for inflammation and irritation in the study, and
it was observed that there was no cytokine release after collagen administration [81]. In
addition, collagen is high in the amino acids glycine, proline, and hydroxyproline, which
contribute to the stability of collagen and its ability to withstand high temperatures due
to a high number of hydrogen bonds [81]. Collagen was also able to retain a significant
amount of water, which is important for its use in cosmetics [81].

Evans et al. conducted a randomized and triple-blinded clinical trial on 45–60-year-old
women to demonstrate the impact of collagen from a freshwater fish on wrinkled skin and
elasticity [82]. After three months of taking the collagen supplement, there was a significant
reduction (35%) in wrinkles of participants compared to baseline [82]. It was also observed
that cheek skin elasticity significantly improved at 6 weeks post-treatment. Furthermore,
compared to the placebo group, it was noted that in addition to elasticity and wrinkle
improvements, there was a 14% improvement in hydration, 22% improvement in radiance,
and a 25% improvement in skin firmness [82]. In another experiment using chronologically
aged mice, topical application or oral consumption of collagen hydrolysates was shown to
have positive effects on skin aging [83]. Six months post-treatment, there were significant
increases in collagen content and important antioxidant enzymes, including superoxide
dismutase and glutathione peroxidase. Together, these factors improved the structure
and appearance of the skin. It was found that when treated with collagen, the density
and spread of type I and type III collagen fibers improved the structure of the epidermis
and dermis [83]. Pei et al. also found that when aged mice were treated with marine
collagen peptides, epidermal thickness, fibroblast activity, and antioxidant enzyme activity
increased [84].

These antioxidant properties of marine collagen are promising as highly reactive
and unstable free radicals, and oxidizing species damage cellular membranes, DNA, and
macromolecules of skin cells, and are known to be heavily involved in skin aging [85–87].
Antioxidant enzymes such as superoxide dismutase and glutathione peroxidase are sig-
nificant in that they protect against oxidative stress by inhibiting free radicals and other
dangerous oxygen species [88]. Chi et al. isolated acid-soluble collagen from the scales
of croceine croaker and demonstrated the antioxidant capabilities of three collagen pep-
tides [89]. Upon using an oxygen radical absorbance capacity (ORAC), it was shown that
collagen peptides displayed protective effects against hydroxyl, superoxide, and other
radicals. Furthermore, the effect of collagen peptides (ACH-P1, P2, P3) on lipid peroxida-
tion, a pathway involved in the formation of oxidant species, was investigated. As seen
in Figure 6, compared to controls, lipid peroxidation was significantly reduced because of
a decrease in absorbance, which measures the degree of oxidation [89]. Collagen peptides
performed similarly to BHT, a known and effective antioxidant [89].
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Taken together, it is evident that marine collagen is a successful and promising bioma-
terial for wound healing and cosmetics.

3. The Potential Role of Collagen in Bone and Cartilage Regeneration

Marine collagen sources serve not only as a promising avenue for healing skin injuries
but also for bone-related trauma and regeneration. Bone fracture repair and healing is
a form of tissue regeneration and is a complex process involving bone formation and
breakdown [90,91]. Often, patients present with conditions that require reconstruction of
large bones as a result of genetic abnormalities, trauma, infection, and tumors [92]. There
is an increasing demand to improve methods of bone repair and regeneration, such as
functional bone grafts [93].

Marine collagen bioactive peptides are known to aid in the absorption of calcium and
zinc, which are important components of bone and are beneficial for osteoporosis preven-
tion [94,95]. A study performed by Xu et al found that marine collagen peptides isolated
and derived by hydrolysis from chum salmon increased serum osteocalcin in treated rats
compared to controls. Osteocalcin is a protein hormone secreted by osteoblasts and plays
a role in bone maintenance and regeneration through interaction with calcium. The study
also found that bone organic matrix, density, femoral length, and femur mineral ions were
significantly higher in the collagen-treated group than in the controls [94]. It was hypoth-
esized that the increase in bone mineral density was likely due to increased osteoblast
activity, as seen by the increase in bone size and serum osteocalcin [94]. These results
shed light on the potential collagen peptides involved in mineral deposition, bone matrix
development and an increase in osteoblastic activity, which strongly suggests that collagen
is a promising biomaterial for the prevention and treatment of osteoporosis [94]. Osteo-
porosis and net bone loss are prevalent among aging women going through menopause
resulting from estrogen deficiency [49]. Nomura et al. demonstrated that 20 mg of collagen
isolated from shark gelatin also increased the bone mineral density of the spongy bone in
rat models of menopausal osteoporosis [49].

Furthermore, the biological effect of marine collagen on rat-derived bone marrow
stem cells has also been demonstrated. Liu et al. showed that 0.2 mg/mL collagen isolated
from fish promoted cell survival and upregulated the expression of several osteogenic
and endothelial markers [50]. As shown in Figure 7, there was a significant increase in
cell viability at 0.2 and 0.02 mg/mL in the collagen-treated groups [50]. Interestingly, the
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2 mg/mL-treated group showed no significant differences due to the high dose resulting
in a complex negative feedback mechanism that suppressed cell proliferation [50].
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treated group revealed no significant differences due to the high dose resulting in a complex negative
feedback mechanism that suppressed cell proliferation.

In addition, osteogenic markers, such as alkaline phosphatase (which enhances the
differentiation of cells into osteoblast/bone-forming cells), were significantly upregulated
in the collagen-treated groups at 3 and 10 days post-treatment [50]. Similar to this study,
Elango et al. found that collagen-treated bone marrow stem cells and mature osteoblastic
cells depicted dose-dependent increased proliferation compared to controls [52]. Addi-
tionally, osteogenic marker mRNA and protein expression significantly increased in the
treated groups compared to controls [52]. These results suggest that collagen is able to
promote stem cell differentiation and osteoblastic activity. Yamada et al. also showed that
marine collagen peptides extracted from both bone and skin of fish were able to increase
osteoblastic cell proliferation, expression of osteogenic markers and mineral deposition [96].

In addition to the use of hydrolyzed collagen peptides, collagen scaffold structures
have been shown to be beneficial with regards to bone regeneration. Diogo et al. found
that collagen-calcium phosphate scaffold structures crosslinked with EDC/NHS supported
the attachment and production of bone-building cells [97]. A more recent study found
that within the jellyfish collagen scaffolds, there was greater de novo bone formation
and increased macrophage recruitment compared to control groups [98]. Inflammatory
cells, such as macrophages, are known to promote tissue repair, regulate inflammation
and homeostasis, which is promising for bone tissue regeneration [98]. Similar to the
above studies, Rachmawati et al. found that collagen scaffolds isolated from the Aurelia
aurita jellyfish helped regenerate alveolar bone [99]. When treated with the collagen
scaffold, there was increased osteoblasts and decreased osteoclasts compared to the control
group suggesting a potential for alveolar bone regeneration. STRO-1, a biomarker for
mesenchymal stem cells and osteocalcin, a protein hormone synthesized by osteoblasts
were also increased in the collagen treated groups. These results suggest promising bone
regeneration properties [99].

Marine sponges, also known as poriferans, serve as an important source of collagen
and have a structure that resembles the cancellous architecture of bone tissue. Lin et al.
conducted an in vitro assay using fibrinous collagen isolated from the Callyspongiidae
marine sponge [100]. The study observed osteoblasts were able to anchor onto the surface
of sponge fibers, proliferate, and grow on the cell-sponge constructs. The study also
assessed the osteoconductive potential of the sponge collagen scaffold constructs and
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found that after 7 days the gene expression of two osteogenic markers, osteocalcin, and
osteopontin, significantly increased [100]. On day 14, alkaline phosphatase gene expression,
an indicator of osteoblastic differentiation, also significantly increased [100]. Similarly,
Green et al. also utilized a marine sponge skeleton scaffold to assess whether collagen
could induce osteogenesis [101]. The study found that human osteoprogenitor cells were
able to attach to the scaffold within 16 h, and by 21 days, osteoprogenitor cells secreted
an extracellular matrix. Furthermore, at 9 and 14 days, alkaline phosphatase activity
significantly increased compared to controls [101]. All together, these results indicate that
collagen fibers in the marine sponge skeleton provide a scaffold framework for osteoblast
attachment, proliferation, and migration, which suggest a promising potential for use in
bone tissue engineering [100,101].

The biomedical applications of marine collagen are not limited to skin and bone but
also encompass cartilage regeneration. Osteoarthritis (OA) is characterized by a distur-
bance in cartilage homeostasis, which lacks self-repair and regenerative potential [102,103].
In OA, degradation of the cartilage occurs, which results in exposure of the subchondral
bone, and this negatively impacts ones quality of life due to painful and stiff joints [103].
Promisingly, marine collagen has been shown to induce chondrogenic differentiation,
paving the pathway for potential cartilage regeneration. Raabe et al. found that hydrolyzed
fish collagen as well as the growth factor TGFB1 induced proteoglycan and collagen fiber
synthesis [104]. Fish collagen also induced chondrogenic differentiation [104]. Similarly,
Bourdon et al. investigated the effects of three collagen hydrolysates from fish skin and car-
tilage on the breakdown of chondrocytes [55]. The study found that 0.5, 50 and 100 µg/mL
collagen hydrolysates elevated the level of collagen type I and II collagen. In addition,
collagen-treated cells had decreased expression of protease markers known to be involved
in OA development, Htra1, Mmp103, Adamts5 and Cox2 [55]. Ohnishi et al. also found
that rabbits administered a combination of fish collagen peptides and glucosamine were
protected from induced cartilage degradation (OA), whereas control groups developed
OA [105]. It was found that fish collagen peptide and glucosamine, which are present in
large amounts in connective tissue, and help maintain cartilage structure and integrity,
had some protective effects alone, but their combined effects provided the most protection
against OA [105].

In a histological experiment by Ahmed et al., the effect of collagen from jellyfish sponge
scaffolds on the chondrogenicity of bovine cartilage was observed [106]. Chondrogenicity
is a complex process involving the proliferation and differentiation of chondroprogenitors
and deposition of the extracellular matrix (ECM) [106]. In this experiment, chondrocytes
derived from bovine cartilage tissue were seeded on jellyfish scaffolds to evaluate the
amount of collagen deposition, and picrosirius red dye was applied to observe the content
and orientation of collagen fibers (Figure 8) [106]. They used three different culture media:
native tissue (bovine-derived immature cartilage) and bovine cartilage tissue containing
chondroprogenitor cells in the presence and absence of transforming growth factor-β1
(TGFβ1) [106]. TGFβ1 has been shown to be an effective growth factor in cartilage formation
and is present at high levels in healthy cartilage, but its level is greatly reduced in the
cartilage of OA patients [106]. Staining results showed that in native bovine tissue, collagen
fibers are mainly located on the tissue surface, but in chondrogenic culture, both at the tissue
surface and in deeper areas, deposition of collagen fibers is more visible. Moreover, the
addition of TGFβ1 to the culture medium further contributed to increasing the deposition
of collagen fibers [106]. Taken together, the present data support the application of marine
collagen in cartilage regeneration.
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4. Advantages and Limitations Associated with Marine Collagen Use

Marine resources of collagen have many advantages over land animals and other
sources. Not only are they available in abundance, have no religious constraints and are
easily accessible, there have been few reported toxic effects at effective doses [32,33]. This
is significant as a major source of collagen is from cattle, which have a risk of transmitting
highly dangerous BSE and TSE [29,35]. In addition to its promising safety profile, the use of
marine collagen is environmentally friendly. Fish skin, bones, and scales are vast sources of
collagen, yet they are often discarded by seafood processing industries [30]. By using marine
collagen, useful waste is reduced, and no further organisms are harmed in the isolation of
collagen. Furthermore, collagen has a variety of applications in many fields, such as drug
delivery, wound healing, skin aging, and tissue regeneration. Marine collagen was also
shown to be as effective as sham collagen. In the example mentioned above, marine collagen
was as effective as the currently administered antioxidant BHT [89]. In addition, other
comparisons of sponge collagen membrane versus polyurethane membrane on healing of
grant donor sites depicted that collagen use significantly increased wound healing quality
and reduced healing time [107]. Marine collagens are also hydrolyzed more easily than
mammalian collagen, which makes them more suited for further processing into peptide
derivatives [108]. Furthermore, collagen has both structural and functional properties
that make it a natural substrate for cell attachment, growth, and differentiation [109]. It is
important to note, however, that although minor, some limitations do exist. It has been
shown that marine collagen is less thermally stable than collagen from bovines, as they
have fewer proline and hydroxyproline residues [110]. Additionally, most studies have
investigated marine collagen’s efficacy in vitro or in animal models; however, more studies
are needed that investigate the efficacy and potential adverse effects of marine collagen on
human skin. Overall, the few limitations of marine collagen are strongly outweighed by
their wide variety of benefits.

5. Concluding Remarks

The present review highlights the biomedical applications of marine collagen in
wound healing, skin antiaging, and bone and cartilage regeneration. It is evident that
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marine collagen sources are significantly more advantageous than land animal sources.
The ability of marine collagen to promote skin re-epithelization, vascularization, fibroblast
migration, and overall faster wound healing rates has been demonstrated. Furthermore, the
antiaging effects of marine collagen related to greater skin elasticity and wrinkle reduction
are highly promising for the cosmetic industry. Furthermore, the significant impact on
osteoporosis prevention and treatment by increasing bone density and mineral deposition
is also evident. Bone-related diseases such as osteoporosis and OA can negatively impact
one’s quality of life. Marine collagen and its derivatives were shown to delay and protect
against OA and, thus, reduce mortality outcomes. Therefore, there should be continued
investigation and discoveries of marine collagen sources, as they have thus far proven
extremely beneficial.
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