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Abstract

The marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how

microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the

ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent

decades; however, individual populations of microbes do not function alone in nature. The diverse array of

hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial

modification of oil components and the surrounding environment will lead to temporal succession. But even when

just one type of hydrocarbon is present, a network of direct and indirect interactions within and between species is

observed. In this review we consider competition for resources, but focus on some of the key cooperative

interactions: consumption of metabolites, biosurfactant production, provision of oxygen and fixed nitrogen. The

emphasis is largely on aerobic processes, and especially interactions between bacteria, fungi and microalgae. The

self-construction of a functioning community is central to microbial success, and learning how such “microbial

modules” interact will be pivotal to enhancing biotechnological processes, including the bioremediation of

hydrocarbons.
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The problem of marine oil pollution
Our seas, oceans and coastal zones are under great stress;

and pollution, particularly by crude oil, remains a major

threat to the sustainability of planet Earth [1]. An estimated

1.3 million tonnes of petroleum enters the marine environ-

ment each year [2]. Acute pollution incidents cause great

public concern, notably ~600,000 tonnes of crude oil

released after the Deepwater Horizon explosion in the Gulf

of Mexico [3] and ~63,000 tonnes from the Prestige oil-

tanker [4] off the coast of north-west Spain. The fate of

crude oil spilled at sea (Figure 1) depends on both the

prevailing weather and the composition of the oil; but its

environmental impact is exacerbated on reaching the shore-

line, especially in low-energy habitats, such as lagoons and

salt marshes. Acute pollution events can result in mass

mortality; for example, more than 66% of total species

richness (including polychaetes, molluscs, crustaceans and

insects) was lost in the worst affected beaches following the

Prestige spill [5]. Hydrocarbons also contaminate the feath-

ers and fur of marine birds and mammals, resulting in the

loss of hydrophobic properties, leading to death from

hypothermia [6], or lethal doses following ingestion of oil

during preening.

Moreover, the impact of hydrocarbons, especially poly-

cyclic aromatic hydrocarbons (PAHs), on wildlife and

fisheries may be long-lasting; for example the Fisheries

Exclusion Zone imposed after the Braer spill (Shetland

Islands, United Kingdom, 1993) due to contaminated fish

and shellfish, remained in place for over 6 years. Chronic

pollution can cause physiological or behavioural damage

at sub-lethal concentrations; and genetic damage and

decreases in both growth and fecundity have been

observed in fish [7,8]. Deep-sea sediments and associated

biota are also chronically affected by drilling, which

deposits vast amounts of oil-contaminated drill cuttings

on the seafloor [9]. Even when oil-contaminated coastal

sediments appear to be clean (e.g. Prince William Sound

that was contaminated by the Exxon Valdez spill in

1989), toxic oil components, such as high molecular
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weight (HMW) PAHs, may remain buried and sorbed to

sediment particles, and can be released to the

environment by bioturbation or human activities such as

dredging [10].

Crude oil is a natural, heterogeneous mixture of hydro-

carbons, with potentially 20,000 chemical components

[11], consisting mainly of alkanes with different chain

lengths and branch points, cycloalkanes, mono-aromatic

and polycyclic aromatic hydrocarbons (Figure 2; [12]).

Some compounds contain nitrogen, sulfur and oxygen

[12]; while trace amounts of phosphorus, and heavy metals

such as nickel and vanadium are also found [13]. Its

composition varies widely, and each oil component has

different physico-chemical properties, including viscosity,

solubility and capacity to absorb (Table 1), as well as vary-

ing in its bioavailability and toxicity. Crude oil, released

naturally from the geosphere to the biosphere (e.g. from

cold seeps [14]) may supply up to half of the oil in the sea

[2]. Although hydrocarbons are relatively stable molecules,

their “fuel value” and presence in the environment for mil-

lions of years have led to the evolution of many microbes

able to activate and use them as a major or sole source of

carbon and energy, including at least 175 genera of

Bacteria [15]. Several haloarchaeal genera [16] and many

Eukarya can grow on or transform hydrocarbons [17].

Biodegradation of crude oil to carbon dioxide and water is

the major process by which hydrocarbon-contaminated

environments are remediated.

Figure 1 Fate of a marine oil spill (for a more detailed explanation, see http://www.itopf.com/marine-spills/fate/weathering-process/).

Spreading is affected by the action of winds, waves, water currents, oil type and temperature, and enhances evaporation of the volatile fractions

such as low molecular weight alkanes and monoaromatic hydrocarbons. Spilt oil is broken into droplets and dispersed through the water column,

enhancing the biodegradation of hydrocarbons and dissolution of water-soluble fractions of oil. Turbulent seas cause water droplets to be

suspended in the oil, resulting in water-in-oil emulsions, alternatively known as chocolate mousse, which is difficult to degrade because of its high

viscosity and reduced surface area. Photo-oxidation is the process by which hydrocarbons, especially PAHs, react with oxygen in the presence of

sunlight, resulting in structural changes that can on the one hand lead to increased water solubility or, conversely, increased recalcitrance to

biodegradation. Sedimentation will general only occur when oil adsorbs to particles owing to nearly all crude oils having a lower density than

seawater.
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The principal marine hydrocarbon degraders
The starting point in elucidating potential complex inter-

actions involved in hydrocarbon biodegradation is to

identify the microbes primarily responsible for biodeg-

radation, and their catabolic pathways. It has long been

known that the enzymatic activation of hydrocarbons by

oxygen is a pivotal step in their biodegradation, and sev-

eral mechanisms have been elucidated for aromatic

[12,18,19] and aliphatic [12,20] compounds. However,

our understanding of the catabolic processes for HMW

PAHs [21] and anaerobic activation mechanisms and

pathways, e.g. fumarate addition, carboxylation and O2-

independent hydroxylation, have emerged only recently

[22-25].

The microbial response to an oil spill at sea is dependent

on numerous factors, including the oil composition and

degree of weathering, as well as environmental conditions,

particularly temperature and nutrient concentrations.

Nevertheless, there are some typical patterns; most notable

is the large increase in abundance of Alcanivorax spp.,

which degrade straight-chain and branched alkanes [26-

Decane Tetradecane

Hexocosane Pristane

Cyclohexane Benzene

Naphthalene 2-methylnaphthalene

Phenanthrene Pyrene

Benzo[a]pyrene Dibenzothiophene

Figure 2 Structure of selected components of petroleum.

Table 1 Selected hydrocarbons and their solubility in

deionised water at 25°C and hydrophobicity indicated as

Log Kow

Compound Solubility (mg L-1) Log Kow

Decane 0.091 6.1

Tetradecane 0.009 7.2

Hexocosane NA 14.7

Pristane 5 × 10-5 11.4

Cyclohexane 43.0 3.2

Dibenzothiophene 2.41 4.3

Benzene 1790 2.1

Naphthalene 31.7 3.3

2-methylnaphthalene 24.6 3.9

Phenanthrene 1.29 4.5

Pyrene 0.14 5.3

Benzo[a]pyrene 0.004 6.0
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32], followed by Cycloclasticus spp., which degrade PAHs

[26-30,33-36].

Since the cultivation of Alcanivorax borkumensis [37],

functional genomic, biochemical and physiological analyses

have revealed the underlying basis of its success [28,38-40].

While it lacks catabolic versatility, utilising alkanes almost

exclusively as carbon and energy sources, it has multiple

alkane-catabolism pathways, with key enzymes including

alkane hydoxylases (a non-haem diiron monooxygenase;

AlkB1 and AlkB2) and three cytochrome P450-dependent

alkane monooxygenases [38]. Their relative expression is

influenced by the type of alkane supplied as carbon and

energy source and phase of growth [38]. Alcanivorax

borkumensis also possesses a multitude of other adaptations

to access oil (e.g. synthesis of emulsifiers and biofilm for-

mation [38]) and to survive in open marine environments

(e.g. scavenging nutrients and resistance to ultraviolet light

[38,40]). Acinetobacter spp., which are commonly isolated

from oil-contaminated marine environments [41], also have

a diverse array of alkane hydroxylase systems enabling

them to metabolize both short- and long-chain alkanes

[20,42]. For example, Acinetobacter strain DSM 17874 con-

tains a flavin-binding monooxygenase, AlmA, which allows

it to utilize C32 and C36 n-alkanes [43]. The almA gene has

also been found in Alcanivorax dieselolei B-5 and is

induced by long-chain n-alkanes of C22 - C36 [44]. A di-

verse array of alkB gene sequences, encoding alkane hydro-

xylase, has been detected in the environment [45,46] and in

a wide range of bacteria [38,42,46], however Païssé et al.

[47] argue that alkB expression may not always be a good

indicator for microbial oil degradation, implying that we

have not fully explored the gene diversity and/or that other

hydrocarbon catabolic processes were prevalent in the en-

vironment under investigation.

In cold marine environments, the obligate alkane-

degrading psychrophile, Oleispira, rather than Alcanivorax

spp., are commonly associated with oil spills [29,48]; and

Alcanivorax spp. are sometimes outcompeted by Thalasso-

lituus spp. in temperate environments [34]. Such obligate

hydrocarbon-degrading bacteria can constitute 90% of the

microbial community in the vicinity of the oil spill and have

a wide global distribution [28]. New genera of obligate al-

kane degraders are still being discovered, e.g. Oleibacter sp.

[31,49], and there are likely to be many more, such as the

uncharacterised Oceanospirillales strain ME113 [50], which

has been detected in abundance in other oil-rich marine

environments [51,52].

The role of the generalists that degrade alkanes and/or

PAHs as well as non-hydrocarbons is often overlooked, yet

they can constitute a significant proportion of a

hydrocarbon-degrading community. For example, Bucha-

nan and Gonzalez [53] outline eight studies in which

members of the Roseobacter lineage, which harbours a

diversity of ring-hydroxylating dioxygenases and alkane

hydroxylases, increase in abundance in hydrocarbon-

enriched marine waters. Other generalists, including

Acinetobacter, Marinobacter, Pseudomonas and Rhodococ-

cus spp. [54-57], contribute to hydrocarbon degradation.

Sediments add to the complexity of identifying the main

hydrocarbonoclastic microbes, but nearly all of the above

genera are detected in the aerobic zone of marine sedi-

ments and presumed to be active in hydrocarbon degrad-

ation. It is important to recognise that within most of the

genera labelled here as generalists (e.g. Marinobacter)

there are many species, ranging from those that do not

degrade hydrocarbons to specialists like Marinobacter

hydrocarbonoclasticus, which almost exclusively utilises n-

alkanes [56].

Although Cycloclasticus is frequently the main marine

PAH-degrading microbe detected, many others from sev-

eral tens of genera are known [15], and the underlying

mechanisms of their interactions with, and degradation of

PAHs are only beginning to be elucidated. For example, in

San Diego Bay sediments, isolates able to grow on phenan-

threne or chrysene were from the genera Vibrio, Marino-

bacter, Cycloclasticus, Pseudoalteromonas, Marinomonas

and Halomonas [58]. Another marine specialist PAH

degrader, named Porticoccus hydrocarbonoclasticus, was

recently isolated [59], and strains of Microbacterium and

Porphyrobacter, previously not known to be involved in

PAH degradation, were isolated on benzo[a]pyrene after

enriching for two years [60]. Based on DGGE analysis,

Hilyard et al. [61] suggested that Planctomyces and Bacter-

oidetes were involved in PAH degradation, and many more

species from diverse genera that are implicated in PAH

degradation remain to be cultivated, particularly those

growing on HMW PAHs.

Incubation of marine sediment in the presence of phen-

anthrene and bromodeoxyuridine (BDU), followed by

analysis of BDU-labelled DNA, revealed a remarkable di-

versity of putative PAH degraders belonging to the genera

Exiguobacterium, Shewanella, Methylomonas, Pseudo-

monas, Bacteroides, as well as Deltaproteobacteria and

Gammaproteobacteria that were not closely related to cul-

tivated organisms [62]. Some were also cultivated, includ-

ing a novel Exiguobacterium strain, but the rest remain to

be grown [62]. Similarly, stable-isotope probing (SIP) of

DNA was used to identify the involvement of a novel clade

of Rhodobacteraceae in biodegradation of low molecular

weight (LMW) PAHs in marine algal blooms [63]. Obtain-

ing pure cultures of the main microbes responsible for

hydrocarbon biodegradation is no longer a prerequisite for

their study, but it makes their investigation very much eas-

ier, allowing genomic, biochemical and physiological ana-

lyses that in turn can help to explain their in-situ function

and interactions. It is also frequently their reliance on

other microbes that prevents cultivation in the first in-

stance, and growth in the proximity of microbes (or their
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diffusible products) from the same habitat [64] can be

employed to improve recovery. Numerous other proce-

dures can enhance cultivation [65], especially by increasing

the bioavailability of hydrocarbons. Calvo et al. [66], for

example, extracted extracellular polymeric substances

(EPS) from Halomonas eurihalina, not a PAH-degrader,

which enhanced the isolation of other microbes growing

on PAHs.

General considerations of microbial interactions
A volume of 1 mm3 of surface seawater, approximately

equivalent to the size of a poppy-seed, contains ~600 bac-

teria, 150 cyanobacteria, 9 small algae, <1 protozoan [67]

and ~10,000 viruses [68]. Numerous ecophsyiological

investigations [69] together with modelling the co-

occurrence of bacterial phylotypes [70] reveal a network of

direct and indirect interactions within and between species

in seawater that are vital for maintaining the microbial

loop that drives marine biogeochemical cycles [71]. Some

interactions exist between spatially separated species that

use soluble or volatile metabolites to transmit information;

while other interactions involve species in very close prox-

imity, either as a biofilm on the same particle or physically

associated to one another. Grossart [69] noted that a chain

of the marine diatom, Thalassiosira rotula, can host up to

108 bacteria [72], while a single copepod can harbour up

to 109 bacteria [73]. Surprisingly, in many studies, the

attached microbiota, which is numerically equivalent to

the non-attached microbiota, is removed by pre-filtration

[69], and so not considered.

Microbial communities from coastal sediments vary

more from one location to another than those from open

waters, and have much greater community evenness

[74]. Moreover, in sediments, cells are much more con-

centrated, resulting in a greater likelihood of interac-

tions, which becomes even more prevalent in biofilms

where cells are more densely packed. Highly productive

photosynthetic microbial mats develop at the water-

sediment interface. These multispecies biofilms consist

of horizontally stratified layers with extremely steep gra-

dients of light, redox potential, oxygen, sulfur species

etc. The exceptionally high microbial diversity within a

few microns covers a large range of metabolic groups

(oxygenic and anoxygenic phototrophs, sulfate reducers,

methanogens etc.) [75]. We are at an early stage in our

understanding of communication mechanisms in each of

these environments (open water, sediment and biofilms),

where small molecules, either diffusing from cell to cell

[76], or transported by vesicles [77] or via nanotubes

bridging cells [78], elicit intra- and inter-species effects

that could be antagonistic or beneficial.

Microbes exhibit all of the types of social behaviour

(mutual benefit, selfishness, altruism and spite [79]) seen

in multicellular organisms. However, it is often difficult

to categorise such behaviour in complex multi-species

natural environments, and so in this review we talk

largely in terms of cooperation and competition, and

how they are affected by hydrocarbons, and in turn influ-

ence their fate. Our knowledge gained from studying

pure cultures of hydrocarbon degraders is important, but

hydrocarbonoclastic bacteria rarely, if ever, function in

isolation in nature. Therefore, a better understanding of

crude-oil biodegradation, and thus the capability to more

rationally remediate contaminated environments, requires

us to consider the mechanisms of the interactions between

different hydrocarbon-degrading microbes and with non-

degrading organisms [27]. This review considers such

interactions, with most emphasis on aerobic processes and

interactions between phototrophic microalgae and hydro-

carbonoclastic bacteria.

Interactions between microbes during aerobic
degradation of hydrocarbons
When crude oil is added to seawater, the microbial com-

munity changes and consists of multiple co-existing spe-

cies [80], which can be explained most simply by resource

sharing. As indicated above, crude oil consists of a variety

of chemically distinct hydrocarbons, which require specific

mechanisms for activation and degradation. In seawater

microcosms, each supplied with a different hydrocarbon,

McKew et al. [34] observed that: 1) Alcanivorax domi-

nated when the branched alkane, pristane, was supplied,

but was not detected in other microcosms, 2) Cycloclasti-

cus was dominant with most PAHs, but was undetected

when fluorene was supplied, and 3) Thalassolituus was the

dominant species when n-alkanes with 12 to 32 carbons

were added, but was not detected when decane was the

sole alkane added to seawater. Thus, it appears that the

ability to be competitive in the marine / estuarine environ-

ment requires that hydrocarbonoclastic bacteria are rela-

tively specialised. Probably the extra genetic and cellular

load needed to allow bacteria to grow on a wider range of

hydrocarbons would demand greater nutrient resources,

making them less competitive overall, especially in oligo-

trophic oceans. This, in turn, requires the presence of a con-

sortium of microbes for complete degradation of crude oil.

Competition for resources is also an important element

of petroleum biodegradation: all known Alcanivorax spp.

can degrade n-alkanes, yet in the above study [34] Thalas-

solituus out-competed Alcanivorax. Furthermore, in a

follow-up study Alcanivorax was undetected in the micro-

cosms to which Thalassolituus oleivorans had been added

previously, whereas it grew in all other microcosms,

though its abundance was negatively correlated with that

of Thalassolituus [30]. The nature of this competition

deserves more detailed study. It could simply be competi-

tion for common resources, such as nutrients, but the idea

that Thalassolituus actively releases bioactive compounds
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to inhibit competitors must be considered. Nevertheless,

as noted above, in most oil-amended experiments and en-

vironmental surveys Alcanivorax is the dominant microbe,

so it is pertinent to consider whether it produces antibac-

terial molecules. Alcanivorax jadensis produces an anti-

biotic which has been termed “alcanivorone” [81], but the

impact of this antibiotic on other microorganisms during

hydrocarbon degradation is still unknown. In a two-

species experiment, Alcanivorax borkumensis outcom-

peted Acinetobacter venetianus, but the filtered spent

medium from Alcanivorax borkumensis did not influence

the growth of Acinetobacter venetianus, rather Hara et al.

[82] proposed the former’s ability to use branched alkanes

as a key factor. However, such branched alkanes are a rela-

tively minor component of crude oil, and so the extra car-

bon and energy available to Alcanivorax borkumensis may

be just one of several possible explanations.

Even when a single hydrocarbon is added to sea-

water microcosms, multiple species are always detected

[34,36,80,83], and frequently mixed cultures outperform

single species isolated from a consortium [83]. For ex-

ample, the dominant benzo[a]pyrene-degrading bacteria

from a marine enrichment were isolated, and faster deg-

radation was seen when the three strains (Ochrabactrum,

Stenotrophomonas and Pseudomonas spp.) were com-

bined than when tested individually [84]. Both Cycloclas-

ticus and Pseudomonas were abundant in estuarine

waters enriched with naphthalene, but Pseudomonas

appeared in the latter stages of the enrichment [36]. Per-

haps the most compelling explanation for multiple spe-

cies growing on one carbon and energy source, is that a

measurable amount of the PAH is not completely oxi-

dized to CO2 and H2O by one organism, resulting in oxi-

dation products being liberated into the environment.

Numerous microbes may take advantage of this so-called

epimetabolome [85,86] as sources of carbon and energy

[87,88].

It is becoming apparent that metabolite sharing is wide-

spread in nature and in the laboratory as shown using

auxotrophic mutants of Escherichia coli that complemen-

ted each other's growth by cross-feeding essential metabo-

lites [89]. The cooperative behaviour of microbes to self-

construct a functioning community is central to their

success, and learning how such “microbial modules” inter-

act will be pivotal to enhancing biotechnological processes,

including the bioremediation of hydrocarbons. However,

few studies have tracked the flow of hydrocarbon-derived

metabolites between microbes in a consortium, and many

interesting metabolites are transient and therefore difficult

to detect. Pelz et al. [87] tracked the biodegradation of

4-chlorosalicylate through a three-member consortium of

Pseudomonas MT1, Pseudomonas MT4 and Achromobac-

ter MT3 using 13C-labelled substrates. Analysis revealed a

network of carbon sharing: strain MT1, the only member

able to degrade 4-chlorosalicylate, provided carbon skele-

tons to the other strains (MT3 and MT4), while they

degraded toxic metabolites that inhibited strain MT1 if

allowed to accumulate [87]. One of the toxic intermediates

(4-chlorocatechol) was partially taken up by strain MT3

and further degraded [87]; and a proteomic and metabolite

analysis of a co-culture of strains MT1 and MT3 revealed

the importance of strain MT3, not only in consuming the

toxic intermediate but also in reducing the degradation rate

of the parent compound by strain MT1; both of which

minimized the stress experienced by strain MT1 as judged

by negligible detection of stress-response proteins in the

mixed culture compared with the pure culture [90].

Reducing the stress imposed by metabolites may also

be a typical feature in bacterial members of consortia de-

grading PAHs. However, our current knowledge of the

catabolic routes for PAH degradation requires consider-

able development as diverse novel metabolites are pro-

duced by PAH-degrading microbes [43,91]; for example

Cycloclasticus strain P1, derived from a deep-sea pyrene-

degrading consortium, produced three metabolites, two

of which could be identified as cyclopenta[d,e,f]phenan-

threone and 4-phenanthrenol [83]. These metabolites are

unusual as they involve the creation of a pentagonal ring

suggesting a novel catabolic pathway is adopted by strain

P1 [83].

Chen and Aitken [92] showed that salicylate, an inter-

mediate produced by a Pseudomonas sp. pre-grown on

phenanthrene as a sole source of carbon and energy,

induced production of a PAH dioxygenase leading to

degradation of HMW PAHs that the isolate could not

use for growth [92]. The importance of metabolites as

inducers of co-metabolic degradation may be significant

also in natural communities.

A wide variety of fungi are known to be important in ini-

tiating biodegradation of HMW PAHs in terrestrial envir-

onments by co-metabolism using a battery of enzymes

(e.g. lignin peroxidases, manganese peroxidases, laccases

and epoxide hydrolases) that probably evolved to break-

down other compounds such as lignin, but which

fortuitously degrade PAHs [91,93-95]. Extracellular

enzymes and radicals produced by ligninolytic fungi are

not constrained by slow desorption and mass transfer

which limit the activity of those microbes that need

PAHs to enter the cell. Moreover, these metabolites are

generally more polar, and so more bioavailable, than the

parent compounds [96]. An increase in bioavailability of

polar metabolites was demonstrated by experiments

undertaken with the white rot fungus Bjerkandera strain

BOS55 [97]. As a pure culture it was able to degrade

74% of 14C-benzo[a]pyrene but only produced a limited

amount of 14CO2. The addition of soil, sludge or LMW

PAH enrichment cultures led to a rapid increase in
14CO2 production as the polar metabolites produced by
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the fungus were mineralised, but only up to 34%, indi-

cating that some 14C- benzo[a]pyrene fungal metabolites

were readily biodegraded while others persisted [97].

This has also been demonstrated with fungal-bacterial co-

cultures containing the non-ligninolytic fungus Penicillium

janthinelum VUO 10,201, which showed significant deg-

radation of a range of HMW PAHs including pyrene and

benzo[a]pyrene compared with either the fungal or bacter-

ial species incubated alone [98]. Twenty-five percent of

benzo[a]pyrene was mineralised to CO2 over 49 days by

the co-cultures, accompanied by the detection of transient

intermediates [98].

Figure 3 provides a schematic illustration of some of the

interactions involved in hydrocarbon biodegradation.

When present in mixtures, PAHs have the capacity to

negatively influence the rate and extent of biodegradation

of other components in the mixture [99]. Some metabo-

lites may not be degraded further in a particular environ-

ment (dead-end metabolites), and while they are usually

less toxic than the parent compound, some are more toxic,

and so it is important to monitor production of metabo-

lites and the overall toxicity during bioremediation pro-

cesses. For example, metabolites, such as pyrene-4,5-dione

derived from pyrene transformation have the potential to

accumulate in PAH-contaminated systems and signifi-

cantly inhibit the biodegradation of other PAHs [100].

Although fungi are considered to be largely terrestrial,

they have been found in marine mats [101] and it is known

that many can function in saline conditions [102], but in

general salt-adapted fungi have received little attention

despite a potentially major role in coastal PAH degrad-

ation. The ubiquitous co-existence of bacteria and fungi in

soil and sediments [103] and their known catabolic co-

operation suggests that physical interactions between them

may be of importance for PAH degradation. There is also

evidence that filamentous fungal networks may facilitate

the movement of hydrocarbon-degrading bacteria through

soils and sediments – the so-called “fungal highway” – by

providing continuous liquid films in which gradients of

chemo-attractants can form and chemotactic swimming

can take place, thus greatly increasing the accessibility to

pollutants [104].

Biosurfactants and the interactions between
hydrocarbon-degrading microbes and their
environment
PAHs are usually found mixed with other organic pollu-

tants (commonly petroleum and derived products) in

contaminated sites, which may alter their fate and trans-

port. This is of particular relevance when considering

aged or weathered oils, in which PAHs will be less bio-

available because they are more effectively partitioned

within the residual oil phase [105]. PAHs, particularly

HMW PAHs, adsorb strongly to minerals and their asso-

ciated organic matter [106], further diminishing their

bioavailability. Owing to the low solubility and high

levels of adsorption of PAHs, many microbes have

evolved mechanisms to access them more readily. For

Figure 3 Schematic illustration of some of the interactions seen in a microbial consortium degrading polycyclic aromatic hydrocarbons

(PAHs). Different microbial cells are represented by shaded shapes surrounded by a dashed line. Elements of these interactions have been seen

in several studies (see text for details). Further complexity can be built into this simple schematic if one considers multiple PAHs invoking several

pathways in one or more microbes, as well as co-metabolic degradation.
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example some PAH-degrading microbes have high-

affinity uptake systems that efficiently reduce the PAH

concentration close to the cell surface, thereby enhan-

cing diffusive flux [107,108]. Living on the mineral sur-

faces to which PAHs are adsorbed is another strategy

that reduces diffusion time [109] by physically reducing

the distance between cells and substrate. During such

interactions, the nature of the cell surface is extremely

important; for example the mycolic acids of mycobac-

teria and related Actinobacteria enhance cell-surface

hydrophobicity which serves to encourage biofilm forma-

tion and uptake of lipophilic compounds into the cell

[110]. The production of extracellular polymeric sub-

stances (EPS) has also been shown to be an important

mechanism in allowing attachment of Pseudomonas

putida to solid PAHs [111]. Vaysse et al. [112] showed

that Marinobacter hydrocarbonoclasticus exhibited a

major change in the proteome of cells freshly detached

from hexadecane compared with those attached to hexa-

decane. Their mobilization may be fuelled by intracellu-

lar wax esters accumulated while growing as a biofilm

on hexadecane, and the dispersed cells demonstrated a

high capacity to reattach to the n-alkane [112]. Thus,

the ability to readily attach to hydrocarbons and then

move to a new patch appears to be essential for many

hydrocarbon-degrading bacteria. During this process

the hydrocarbon surface will be modified by excreted

microbial products, and would thus be expected to

lead to colonization by a succession of different

microbes, however we are not aware of any studies ex-

ploring this in detail. Wouters et al. [113] used differ-

ential fluorescence staining to analyse a model, three-

species community on the surface of PAH crystals,

which looks like a promising tool to investigate their

interactions and succession on the hydrocarbon surface.

Another mechanism for increasing the bioavaliabilty of

these compounds is the production of biosurfactants

(biological surface-active agents that have both hydro-

philic and hydrophobic moieties). Some biosurfactants

are known to inhibit certain microbes, while at the same

time benefiting others by increasing the bioavailability of

hydrophobic compounds that can serve as a carbon and

energy source, thus acting as “common goods” [79]. Nu-

merous studies have shown that production of biosurfac-

tants, by either degrading or non-degrading microbes,

is essential in enhancing the bioavailability of poorly

soluble and adsorbed hydrocarbons [114,115]. Low-

molecular-weight biosurfactant molecules are mostly gly-

colipids, including rhamnolipid, trehalose lipids and

sophorolipids, or lipopeptides such as surfactin, gramici-

din S, and polymyxin [114,115]. High molecular weight

EPS can also act as a biosurfactant, and represents a

heterogeneous range of polymers composed of polysac-

charides, proteins, lipopolysaccharides, lipoproteins or

complex mixtures of these biopolymers [114,115].

Biosurfactants preferentially partition at the interface be-

tween polar and apolar molecules (e.g. hydrocarbons and

water), producing micro-emulsions which in many cases

enhance bioavailability and desorption of the hydrocar-

bon [115].

McKew et al. [30] demonstrated that the addition of

Alcanivorax borkumensis to seawater microcosms con-

taining crude oil, increased PAH-degradation rates des-

pite the fact that A. borkumensis does not mineralise

PAHs. A. borkumensis is known to produce biosurfac-

tants, which enhance uptake of alkanes, its main source

of carbon and energy [38]. It is probable that such bio-

surfactants produced by A. borkumensis fortuitously in-

crease the availability of PAHs thereby enhancing their

biodegradation by other microbes in the seawater [30].

The release of such “common goods” may benefit A. bor-

kumensis by reducing the concentration of stress-

inducing PAHs, however those PAH-degraders will be

competing for nitrogen and phosphorous that are com-

monly limiting nutrients in petroleum-contaminated

environments. Furthermore, the biosurfactants may bene-

fit other alkane degraders competing directly with A. bor-

kumensis for alkanes. Rhodanobacter strain BPC1 from an

eight-strain consortium degrading benzo[a]pyrene in a

mixture of diesel fuel components, was found to be the

pivotal organism in making benzo[a]pyrene ~500 times

more soluble, thus enhancing its degradation [116]. Strain

BPC1 was unable to grow on the mixture, but grew in the

presence of the other microbes, indicating that it was

probably utilizing metabolites produced by other consor-

tium members [116]. Similarly, the addition to seawater of

EPS from Rhodococcus rhodochrous. S-2, that serves to

protect this strain from aromatic-hydrocarbon-induced

stress, enhanced crude oil degradation and stimulated the

growth of Alcanivorax and especially Cycloclasticus spp.

[117]. Although Cycloclasticus spp. grow in pure culture,

they are frequently difficult to maintain, which together

with the above observations [30,117], suggests that in na-

ture they may typically take advantage of biosurfactants

produced by other microbes.

Biosurfactants may also serve an antagonistic role –

they are after all important virulence factors in many

pathogens – and their effects will be dose- and species-

dependent. Rhamnolipid generally enhances hydrocarbon

bioavailability and degradation [30,118], but Shin et al.

[119] reported that it inhibited degradation of phenan-

threne by a two-species consortium of Sphingomonas and

Paenibacillus sp., even though in pure culture the rham-

nolipid inhibited only Sphingomonas sp. It was therefore

suggested that the increased stress caused by the solubi-

lized phenanthrene, or the rhamnolipid in the presence of

solubilized phenanthrene, was responsible for inhibition of

Paenibacillus sp. It is also important to consider the
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potential synergistic role of multiple biosurfactants.

Rambeloarisoa et al. [120] studied an eight-strain micro-

bial consortium from the French coast, and found that

biosurfactants produced by a pure strain did not emulsify

crude oil, whereas those produced by the whole bacterial

community did emulsify oil and led to rapid hydrocarbon

degradation [120]. The extent to which such multi-species

synthesis of biosurfactants may be coordinated remains to

be discovered. Microbial, petroleum and clay interactions

are important but very poorly understood. Chaerun et al.

[121], for example, showed that montmorillonite and kao-

linite enhanced growth on heavy oil, acting as supports for

microbes producing EPS, as well as buffering the pH. Deg-

radation of adsorbed PAHs involves specific adaptations

that are still not well understood, and some microbes spe-

cialise in accessing and degrading adsorbed PAHs [107].

Vacca et al. [122] showed that none of the 25 soil strains

isolated with non-sorbed phenanthrene could mineralise

humic-acid sorbed phenanthrene (HASP), whereas all

three strains that were enriched on HASP were proficient

at mineralising it, clearly indicating that different capacities

are needed for the biodegradation of adsorbed PAHs.

Microbial interactions during anaerobic
degradation of hydrocarbons
Biodegradation of hydrocarbons in anoxic marine sedi-

ments is slower than in oxic zones, and it is generally

assumed that the primary mechanism of hydrocarbon deg-

radation even in marine sediments is aerobic respiration

[123]. Despite the absence of oxygen to activate hydrocar-

bons, other mechanisms [124] can lead to the initiation of

their degradation by a wide range of anaerobic species uti-

lising diverse terminal electron acceptors [124]. In the envir-

onment, anaerobic hydrocarbon biodegradation is most

likely to involve syntrophic consortia. Conversion of n-

hexadecane to methane in an anaerobic enrichment culture

was shown to involve a consortium of microorganisms,

which on the basis of phylogenetic affiliation had the follow-

ing putative phenotypes: syntrophs belonging to the Syntro-

phaceae (called Syntrophus but probably Smithella [125])

that convert n-hexadecane to acetate, hydrogen and CO2;

methanogens that convert acetate to methane and CO2;

other methanogens that convert hydrogen and CO2 to me-

thane; and a Desulfovibrio sp. that may couple hydrogen

and CO2 consumption with sulfate reduction [126]. How-

ever, a fermentative, syntrophic role for Desulfovibrio sp.

must be considered given its metabolic flexibility [127]. A

methanogenic consortium with a remarkably similar struc-

ture was also found to degrade toluene [128]. Such micro-

bial teamwork is common in the anaerobic mineralisation

of structurally complex compounds. The syntrophic associ-

ation is important because the methanogens lower the con-

centrations of hydrogen and acetate, which makes the

breakdown of the alkane energetically favourable. It will be

important to elucidate the precise nature of such interac-

tions involved in the thermodynamically challenging

anaerobic degradation of hydrocarbons, particularly identi-

fying the microbes responsible for the initial activation and

their mode of action [129]. The extremely high level of

enrichment in methanogenic hydrocarbon-degrading con-

sortia provides strong evidence [125,126] that Smithella

spp. play this role. Better means of identifying and tracking

intermediate metabolites will also be essential to better

understanding the mechanism of these closely coupled syn-

trophic consortia.

It is important to consider that in many environments a

gradient of oxygen concentrations can be found, with con-

sequent microbial adaptations to a microaerobic lifestyle.

Benzene degradation, for example, has been shown to occur

at 0.05 mg l-1 of oxygen [130]. Moreover, aerobes and anae-

robes can co-exist in chemostats [131,132]. For example,

the strict aerobe, Comamonas testosteroni, and strict anaer-

obe, Methanosarcina barkeri, grew together, with the aer-

obe consuming the oxygen and maintaining it at a sub-

inhibitory concentration for the methanogen [132]. Similar

mixed cultures were detected in a benzene-contaminated

aquifer [133], but the nature of the interaction in situ

remains to be elucidated. Diurnal fluctuation in photosyn-

thetically derived oxygen is an important consideration in

coastal biofilms, and sequential aerobic-anaerobic hydrocar-

bon degradation may be an important mechanism. For in-

stance, Chayabutra and Ju [134] investigated the sequential

degradation of n-hexadecane by Pseudomonas aeruginosa

using aerobic resting cells in the initial aerobic

mineralization and inducing nitrate-reducing conditions for

subsequent anaerobic degradation of oxidized metabolites.

Providing oxic-anoxic transitions for the treatment of oily

sludge proved as effective as oxic conditions alone in the

degradation of PAHs by a microbial community domi-

nated by Pseudomonas spp. [135]. Rocchetti et al. [136]

also compared microbial degradation of hydrocarbons

under both oxic and anoxic conditions in addition to se-

quential oxic-anoxic treatment in microcosms containing

contaminated sediments. They reported that hydrocarbon

degradation was significantly enhanced via sequential

anaerobic-aerobic degradation involving sulfate-reducing

bacteria in the anaerobic step, compared to degradation

under either aerobic or anaerobic conditions. A more

thorough review of this topic that describes other out-

comes as well as the effect of the starting conditions (oxic

or anoxic) is provided by Cravo-Laureau et al. [137].

Phototroph-heterotroph interactions
Marine phototrophs (primarily eukaryotic microalgae

and cyanobacteria) contribute half the Earth’s primary

production and half of the oxygen liberated to the at-

mosphere [138]. However, they do not exist in isolation,

and their phycosphere (loosely defined as the zone
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around algal cells in which bacteria feed on algal pro-

ducts) constitutes an important habitat that is colonised

by an abundant and diverse community of heterotrophic

bacteria [72,139]. Bacteria are also found living inside

microalgal cells - many with unknown function [140].

The composition of free-living marine microbial commu-

nities is frequently very different from those attached to

microalgae [141], with certain groups often preferring

the attached lifestyle [142] and showing higher levels of

activity [143]. Moreover, different species of microalgae

host distinct bacterial communities that change with

time and environmental conditions [72,144]. However,

there is likely to be a large spectrum of bacterial

heterotroph-phototroph specificity [145], and certainly

many attached bacteria can also live in the absence of a

microalgal or cyanobacterial host [146]. While antagonis-

tic interactions occur between marine phototrophs and

their attached microbiota [147,148], mutualistic interac-

tions are common, with the host supplying carbon and

energy sources [149], as well as potential protection from

desiccation and grazing via their EPS; while the bacteria

have been shown to provide iron [150], haem [151], vita-

min B12 [152], to consume oxygen [153] and provide

protection from reactive oxygen species [154]. Symbiotic

cyanobacteria supply fixed nitrogen to diatoms [155] and

other algae and protists [156], and heterotrophic N2-fix-

ing bacteria may also be important in interactions with

microalgae, as evidenced by the abundance of alphapro-

teobacterial diazotrophs in seawater size fractions of >10

μm [157]. Attached bacteria can affect microalgal mor-

phogenesis [158], the composition of their EPS [159] and

enhance aggregate formation [160]. Indeed, many micro-

algae function less efficiently or do not even grow as

axenic cultures [161]. Bruckner et al. [162] showed that

a complex network of chemical cues, including amino

acids and EPS, may be involved in regulation of diatom-

bacteria biofilms. The variety of metabolites released

from both microalgal and bacterial cells is immense

[163], and dissecting out those that are important or es-

sential for nurturing specific or general interactions is a

major task for the marine biochemist.

Such heterotroph-phototroph interactions are of direct

relevance to hydrocarbon degradation, not least because

oil has most environmental impact where it floats on the

sea surface and especially intertidal areas where microal-

gal biofilms are usually dominant. Although the water-

soluble fraction from oil was shown to reduce the

abundance of marine phytoplankton (primarily Prochlor-

ococcus), the effect on coastal planktonic diatoms was

stimulatory for small (<20 μm) species and either inhibi-

tory or stimulatory depending on the concentration for

larger diatoms [164]. Many marine phototrophs can

withstand high concentrations of crude oil, and some

cyanobacteria appear to accumulate hydrocarbons

without degrading them in inter-thylakoid spaces [165].

Coastal biofilms are particularly resistant to oil pollution,

which can even result in enhanced photosynthetic activity

[166]. The cyanobacterial genus, Oscillatoria, is particu-

larly common in oil-polluted mats [167-169]. Diatoms too

are often abundant in diverse oil-polluted sediments,

including a chronically oil-polluted lagoon in which dia-

tom chloroplast 16S rRNA gene sequences constitute up

to 21% of the sequences from the surface sediment [170].

Although there are many reports of hydrocarbon deg-

radation directly by microalgal species, primarily chloro-

phytes and diatoms (as summarised by Prince [17]), but

also cyanobacteria, it is questionable whether microalgae

would be competitive with specialist aerobic heterotrophs,

and they are probably involved only in partial oxidation

[171-174]. For example, Todd et al. [174] showed that the

chlorophyte, Chlorella vulgaris slowly metabolized naph-

thalene to 1- naphthol. However, other evidence implicates

photo-(mixo)trophs in complete hydrocarbon oxidation.

For example, fatty acid analysis of cyanobacteria grown

with and without hydrocarbons, suggests that they are

incorporated into biomass [175]. Also, Lei et al. [176]

reported that six strains from diverse microalgal genera,

including Chlamydomonas, Chlorella, Scenedesmus, Sele-

nastrum and Synechocystis, could degrade 34 to 100% of

the supplied pyrene in 7 days.

It is difficult to obtain axenic cultures of microalgae, and

so in some reports of more complete and rapid hydrocar-

bon degradation by phototrophs the degradation could

have been performed wholly or partly by associated

microbes [177]. For example, the medium used to check

for the absence of heterotrophic bacteria in cyanobacterial

cultures that degraded 50% of hexadecane and up to 90%

of PAHs in 10 days [178] contained peptone-glucose that

would not have allowed Alcanivorax spp. to grow, and so

they would evade detection. De Oteyza et al. [179] have

shown that while cyanobacterial filaments surround oil

droplets, biodegradation was most likely due to associated

heterotrophic bacteria. Cohen [168] found rapid degrad-

ation in cyanobacterial mats, whereas pure cyanobacterial

cultures could not degrade hydrocarbons. Therefore, while

cyanobacteria-dominated mats can degrade hydrocarbons,

it is the heterotrophic bacteria that are mainly responsible

for the degradation [166,168,177,180-182]. However, it is

important to determine the extent to which microalgal

biodegradation of hydrocarbons and their metabolites

[173,183] is relevant in the marine environment.

Phototroph-heterotroph interactions are very import-

ant to hydrocarbon biodegradation. Many algae produce

hydrocarbons [184,185], and nearly all produce the vola-

tile hydrocarbon, isoprene [186,187], which could serve

to sustain hydrocarbon-degrading communities in the

absence of an oil spill [188], and may explain why

hydrocarbon-degrading bacteria, such as Alcanivorax spp.,

McGenity et al. Aquatic Biosystems 2012, 8:10 Page 10 of 19

http://www.aquaticbiosystems.org/content/8/1/10



are often associated with micro-[189] and macro-[190]

algae. PAHs adsorb to the cell surface of marine microal-

gae at relatively high concentrations [191], and have been

shown to be transported by phytoplankton cells from the

surface layers of the Southern Baltic to the sea floor [192].

Thus, exogenous hydrocarbons may also support hydro-

carbonoclastic bacteria attached to algae. Other bacterial

genera that have many species with the capacity for hydro-

carbon degradation, such as Marinobacter and Roseobac-

ter, are also commonly associated with algae

[144,160,168,189,193]; however both are nutritionally ver-

satile and so could use diverse sources of carbon and en-

ergy supplied by their hosts. Gutierrez et al. [59] isolated a

new species of specialist PAH degrader, named Porticoccus

hydrocarbonoclasticus, from the marine dinoflagellate Lin-

gulodinium polyedrum, and also used quantitative PCR to

show that it was associated with other phytoplankton.

Figure 4 shows some of the means by which algae and

associated bacteria collectively interact, as discussed previ-

ously. These associations may be enhanced by the presence

of hydrocarbons; for example oxygen liberated by photosyn-

thesis is likely to be very important in activating hydrocar-

bons and serving as an electron acceptor in aerobic

respiration [75,168,179,194]. In turn, the locally increased

concentration of CO2 produced by the heterotrophs, will

generally allow enhanced photosynthesis. Abed [194] stud-

ied the interactions between cultivated cyanobacteria and

aerobic heterotrophic bacteria in the degradation of hydro-

carbons, showing an increase in growth of the bacteria and

enhanced hydrocarbon degradation in the presence of

cyanobacterial organic exudates. Similarly, extracts from a

chlorophyte enhanced benzo[a]pyrene degradation by a

Mycobacterium sp. and Sphingomonas sp. [195]. The con-

sortium constructed by Tang et al. [196] consisted of an

alga, Scenedesmus obliquus GH2, that could not degrade

petroleum hydrocarbons but promoted the degradation of

both aliphatic and aromatic hydrocarbons (especially HMW

PAHs) by the added bacterial members of the consortium.

In this interesting study it was also observed that when a

unialgal, but non-axenic, culture of Scenedesmus obliquus

GH2 was added to the consortium, degradation was inhib-

ited, implying that unidentified non-hydrocarbon-degrading

bacteria associated with the alga outcompeted the added

oil-degrading bacteria.

The organic compounds produced by algae may influ-

ence hydrocarbon degradation in different ways. Algal EPS

could serve to emulsify hydrocarbons as suggested by

Cohen [168]. Additionally, EPS together with excreted

amino acids and sugars provide a source of carbon and en-

ergy for associated bacteria (as well as the microbial com-

munity beyond the phycosphere) [197]. It is not known

what effect algal dissolved organic matter (DOM) might

have on hydrocarbon biodegradation, but in other envir-

onments the addition of organic compounds led to both

increased and decreased hydrocarbon consumption [198-

200]. Such simple organic compounds significantly en-

hance microbial populations, a proportion of which may

also have the capacity to degrade hydrocarbons. (This is

the explanation often given for the success of phytoreme-

diation of polluted land, where plant-root exudates stimu-

late microbial growth). Alternatively, the stimulated

populations may out-compete hydrocarbon-degrading

bacteria, especially obligate hydrocarbonoclastic species.

In summary, we do not yet have a mechanistic explanation

for the above [194-196] observations of stimulation of

hydrocarbon degradation by algal exudates. The possibility

should also be considered that algae produce secondary

metabolites to specifically nurture hydrocarbonoclastic

Figure 4 Schematic illustration of the transfer of metabolites between a photoautotrophic alga (gold) and an organoheterotrophic

bacterium (dark grey) embedded in algal extracellular polymeric substances (light grey). The right-hand diagram is an expansion of the

area in the box. EPS = extracellular polymeric substances, DOM=dissolved organic matter, VOC= volatile organic compounds, ROS= reactive

oxygen species.
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bacteria, as removal of stressful hydrocarbons would bene-

fit the host.

Hydrocarbon-degrading bacteria could supply the algae

with the benefits outlined in Figure 4. Alcanivorax and

Marinobacter spp., for example, are well adapted to

sequestering iron [40,150]. Most importantly, hydrocar-

bonoclastic bacteria will decrease the concentration and

toxicity of hydrocarbons in the immediate vicinity of

algal cells. There are several studies that demonstrate the

benefit of such a co-culture; for example Abed [194]

showed that the cyanobacterium Synechocystis sp. grew

best in the presence of aerobic hydrocarbon-degrading

bacteria and hexadecane. Alcanivorax spp., which have

been shown to inhabit the phycosphere of algae such as

the dinoflagellate Gymnodinium catenatum [189], can

reduce the lag phase and enhance the maximum chloro-

phyll fluorescence of the cyanobacterium Prochlorococcus

by means of diffusible molecules [201].

Nitrogen often becomes limiting in petroleum-

contaminated environments [202], yet there are few studies

on the impact of hydrocarbons on fixation of atmospheric

nitrogen and in turn how this may influence biodegrad-

ation. Oil had little effect on nitrogen fixation in Arctic

marine sediments [203] and marine-sediment microcosms

[204], and had variable impact in salt-marsh sediments

[205]. However, nitrogen limitation in other oil-polluted

habitats can be overcome by dinitrogen fixation [206,207].

Musat et al. [204] demonstrated that cyanobacteria were

the most active dinitrogen fixers in nitrogen-limited pris-

tine and oil-polluted marine sediments reconstructed in

aquaria, by combining acetylene-reduction assays with

light–dark incubations and sequence analysis of expressed

nifH genes. The capacity to fix atmospheric nitrogen and

solubilise phosphate should be advantageous for microbes

that rely largely on a diet of hydrocarbons. Also, the ability

to scavenge iron, a major component of hydrocarbon-

activating oxygenases, would be important in oligotrophic

environments. There was little data suggesting that these

capabilities may be widespread in hydrocarbon degraders

until two recent studies showed that many hydrocarbon-

degrading bacterial isolates potentially [208] or actually

[190] fix nitrogen, and 84% of isolates produced sidero-

phores to access iron and 51% solubilised phosphate [208].

Grazers and viruses
In order to better understand natural attenuation and

determine the potential for bioaugmentation of oil-

contaminated marine environments, it is essential to

understand the effect of oil on grazers [27]. Grazing

organisms play a role in the transfer of hydrocarbons or

their metabolites to higher trophic levels, and also affect

degradation rates, both positively and negatively [209]. It

is pertinent to ask whether hydrocarbonoclastic bacteria

forming biofilms on oil droplets are grazed by protozoa

(e.g. ciliates and flagellates) or meiofauna (e.g. nema-

todes, copepods and ostracods) to the same extent as

other bacteria. The grazer would have to avoid co-

ingestion of oil or subsequently tolerate or expel it.

Stoeck and Edgcomb [209], summarising the rather scant

literature on this topic, state that defence mechanisms

include release of protective mucous and complexation

of hydrocarbons with lipids. Many grazers are resistant

to crude-oil components, for example Gertler et al. [210]

found an abundant, fluctuating protozoal community

alongside an abundant, inversely fluctuating and active

hydrocarbon-degrading bacterial community in a marine

mesocosm. The main protozoal species changed over

time, with selection in the oiled mesocosm of Scuticocili-

tia spp. initially and Euplotes spp. later, both of which

had been found by other researchers in polluted environ-

ments [210]. Also, Dalby et al. [211] concluded that

cosmopolitan generalist protozoa could effectively graze

bacteria in crude-oil amended microcosms. In the pres-

ence of oil, the flagellate, Paraphysomonas foraminifera,

became dominant (48-82% of 18S rRNA phylotypes),

keeping the bacterial population below 107 cells ml-1.

Grazing frequently leads to enhanced rates of organic

matter mineralisation by releasing nutrients and/or

maintaining heterotrophic populations in exponential

growth phase [209]. However, there are few studies in-

vestigating the effects on hydrocarbon mineralisation,

and the outcomes are sometimes conflicting, perhaps as

a consequence of environmental differences or technical

approaches. Using eukaryote inhibitors, Tso and Taghon

[212] showed that grazing had a beneficial effect on

naphthalene degradation in estuarine sediments, possibly

because the protozoa selectively grazed those bacteria

that were not attached to naphthalene, thus allowing

attached naphthalene-degrading bacteria to flourish by

reducing competition for nutrients and other resources.

Mattison and Harayama [213] reported a four-fold in-

crease in toluene mineralization by a Pseudomonas sp. in

the presence of the bacterivorous flagellate Heteromita

globosa than in its absence, though Pseudomonas num-

bers reduced to 60% of the original biomass in the pres-

ence of the flagellate. In this case it was suggested that,

in addition to selectively grazing the less-active bacteria,

H. globosa enhanced naphthalene degradation by excret-

ing growth-stimulating metabolites or ammonium and

phosphate. Rogerson and Berger [214] proposed that

stimulation of crude-oil degradation by Colpidium col-

poda may additionally have been due to increasing oxy-

gen flow caused by the swimming action of the ciliate

and/or production of oil-emulsifying mucus that may

have enhanced hydrocarbon bioavailability. Stoeck and

Edgcomb [209] provide examples of other indirect bene-

fits of protozoa to oil biodegradation. In contrast,
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Näslund et al. [215] found that meiofaunal grazers

reduced naphthalene degradation in marine sediments.

By reducing the number of larger grazers, oil pollution can

result in microalgal blooms [216,217]. Although the bene-

fits of phototrophs have been outlined earlier, such a

bloom may be disadvantageous because of algal competi-

tion for nutrients with hydrocarbon-degrading bacteria.

More systematic studies investigating the role of different

types of grazers under defined scenarios with varying levels

of complexity are required to provide a clearer under-

standing of the nature of the interactions involved and the

impact of grazers on hydrocarbon degradation.

Bacteriovorax spp. are obligate predatory bacteria that

prey on other bacteria, but information regarding their

potential role in oil-degrading communities is limited

and conflicting. During hydrocarbon-degradation meso-

cosm experiments, Bacteriovorax were detected in mi-

crobial communities between days 21 and 35 [218] and

days 21 and 28 [210]. However, in a similar experiment

Bacteriovorax represented 11% of the bacterial commu-

nity at day 0, but by day 15 none were detected [219].

Bacteriophages might also affect microbial oil degrad-

ation either positively or negatively. Pollutants can induce

prophage [27,220], and the resultant bacteriophage-

induced lysis of bacterial cells, unlike grazing, releases all

cellular components back into the marine environment for

reuse by other microbes. Such a phage-driven microbial-

loop was implicated in enhancing total organic carbon re-

moval in reactors treating oil-contaminated waters [221].

Rosenberg et al. [221] found extremely high densities of

bacteria and phages in these reactors, and they isolated

phages, including one that infected a strain of Marinobac-

ter cultured from the same location. Using the GeoChip-

based high-throughput microarray, Lu et al. [222] observed

significantly higher numbers of bacteriophage replication

genes in the Deepwater Horizon deep-sea oil plume sam-

ples than in non-plume control samples collected at the

same depth. Because previous studies had reported a sig-

nificant increase in biomass in the plume samples [223], it

was surmised that the bacteriophages provided a constant

supply of nutrients needed for bacterial hydrocarbon deg-

radation through phage-mediated biomass turnover.

Furthermore, phages, together with various mobile genetic

elements, are important in dissemination of valuable

genetic material, including hydrocarbon-degradation genes

and in the generation of new catabolic pathways via lateral

gene transfer [224,225].

A brief overview of microbial interactions with
macrofauna and plants
There exists substantial evidence that bioturbation by lar-

ger fauna has a significant impact on the degradation of

petroleum hydrocarbons in oil-contaminated sediments.

By selective-removal experiments, Cuny et al. [226] found

that the marine polychaete, Nereis diversicolor, increased

the abundance of bacteria known to play important roles

in aerobic hydrocarbon degradation. It was suggested that

digestive solubilizers produced by the polychaete via feed-

ing might have enhanced the bioavailability of the hydro-

carbons and/or burrowing activities enhanced oxygen

transfer to hydrocarbon-degrading bacteria. Gilbert et al.

[227] had demonstrated previously that the digestive

process of the polychaete Nereis virens altered the com-

position and reduced the concentration of ingested ali-

phatic hydrocarbons. It was therefore surmised that

surfactant production in the gut of the worm led to these

changes in the hydrocarbons. In addition to aerating dee-

per sediments, burrowing animals may transport pollu-

tants or degrading bacteria deeper into sediments or

return buried pollutants back to the surface [228,229].

Plant roots oxygenate their rhizosphere and provide

sugars and other compounds that stimulate microbial ac-

tivity; and ultimately their major polymers, such as lig-

nin, upon entering the soil will be attacked by a suite of

(fungal) extracellular enzymes, which will initiate fungal

degradation of PAHs. Phytoremediation, which exploits

these features, has been employed in terrestrial soils, but

only trials have been carried out in coastal zones [230].

For example, Lin and Mendelssohn [231] investigated

both tolerance limit to crude oil and phytoremediation

potentials of the salt-marsh grass Spartina patens. It

could survive at concentrations up to 320 mg oil g-1 dry

sediment, and at oil doses of between 40 and 160 mg g-1

oil degradation was significantly higher than in un-

planted sediments. The rhizopheres of mangrove species

were shown to harbour a variety of bacteria that both

degraded oil and potentially stimulated plant growth

[208]. As with algal-bacterial interactions, a more complete

understanding of the molecular interactions between plants

and associated bacteria and fungi will only improve the pos-

sibility of this technology being rationally applied to remove

oil in the coastal zone [232].

Concluding remarks and prospects for using
interacting microbes for oil-spill cleanup
There has been a lot of debate about the validity of

bioaugmentation, specifically supplementing the environ-

ment with microbes to enhance biodegradation or detoxi-

fication of pollutants. Examples of success and failure

abound. The key reasons for failure include: use of a single

organism, focus on biodegrading strains only, microbes

not adapted to the environment, inadequate dispersion/

access to the pollutant, lack of protection (e.g. from gra-

zers), other factors limiting biodegradation (e.g. nutrients).

Now, there is overwhelming evidence that using a consor-

tium of microbes rather than a single strain greatly

enhances the chances of successful bioaugmentation.
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A well designed microbial consortium will have com-

plementary catabolic pathways, as well as the potential

to disperse and make the hydrocarbons readily bioavail-

able. Gallego et al. [233], for example, demonstrated the

vastly superior efficacy of a designed four-species consor-

tium over individual species in the bioremediation of oil-

tank sludge. A six-species manufactured consortium, in-

cluding a fungus, Fusarium sp., mineralised 78% of the

PAHs from soil in 70 days, compared with negligible

mineralization in an uninoculated control, and much

lower degradation with single-species inocula [234]. Suc-

cessful bioaugmentation is also a function of the compe-

tition between the introduced microorganisms and the

autochthonous microbial community, and the study of

this biotic pressure requires more attention.

Despite the improved biodegradation of hydrocarbons

in bacterial co-cultures with microalgae, there have been

few attempts to exploit this in the remediation of petrol-

eum contamination. Munoz and Guieysse [235] describe

ex-situ bioremediation using photobioreactors, but for

marine pollution an in-situ approach is preferred owing

to the large volume of polluted material. The critical

phase of crude-oil contamination of the shoreline is the

first few days. If the oil is not rapidly degraded then it

will start to sink into the sediment where it can remain

for decades. While it is true that hydrocarbonoclastic

microbes will emerge from the native community, this

process may take days. Thus, there is a role for bioaug-

mentation to bolster the in-situ hydrocarbon-degrading

community in this crucial period. The potential to apply

relevant hydrocarbonoclastic bacteria with or without

associated microalgae should be investigated further.

Clearly there are many fundamental gaps in our under-

standing of microbial interactions; however, by a com-

bination of reductionist experiments through to

modelling the co-occurrence of microbial communities

on a large scale, the field is advancing. The nature of

interactions can be captured by single-cell and in-situ-

metabolism imaging techniques such as Raman-FISH

[236] and Nano-SIMS [237], as well as co-localisation

studies using Magneto-FISH [238]. The requisite tools

are constantly being developed, such that we can charac-

terise and analyse in more depth the function of diverse

components of DOM or the epimetabolome, as well as

the volatile organic compounds, including the all-

important signalling molecules. It is essential to make

greater sense of metabolomics and protein and gene ex-

pression analyses in microbial consortia via the tools of

systems biology [86,239]. A better understanding of mi-

crobial community metabolic networks will arise from

recreating natural consortia in which modifications can

be made a gene at a time. The result will be a clearer pic-

ture of microbial interactions and thus the functioning of

global biogeochemical cycles, with potential practical

offshoots, not least a more rational approach to the re-

mediation of marine pollution.
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