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Abstract

The remineralization of organic material via heterotrophy in the marine environment is performed by a diverse and varied
group of microorganisms that can specialize in the type of organic material degraded and the niche they occupy. The marine
Dadabacteria are cosmopolitan in the marine environment and belong to a candidate phylum for which there has not been a
comprehensive assessment of the available genomic data to date. Here in, we assess the functional potential of the marine
pelagic Dadabacteria in comparison to members of the phylum that originate from terrestrial, hydrothermal, and subsurface
environments. Our analysis reveals that the marine pelagic Dadabacteria have streamlined genomes, corresponding to
smaller genome sizes and lower nitrogen content of their DNA and predicted proteome, relative to their phylogenetic
counterparts. Collectively, the Dadabacteria have the potential to degrade microbial dissolved organic matter, specifically
peptidoglycan and phospholipids. The marine Dadabacteria belong to two clades with apparent distinct ecological niches in
global metagenomic data: a clade with the potential for photoheterotrophy through the use of proteorhodopsin, present
predominantly in surface waters up to 100 m depth; and a clade lacking the potential for photoheterotrophy that is more
abundant in the deep photic zone.

Introduction

Heterotrophy in the marine environment is a complex pro-
cess with many organisms contributing to the reminer-
alization of organic matter. In the surface ocean, ~50% of
new organic carbon is remineralized by heterotrophs within
the first 100 m [1, 2]. Despite the importance of this process
to the overall ocean carbon budget, the specific contribu-
tions of the phylogenetically diverse marine bacter-
ioplankton community remain poorly constrained. The

metabolic capacity of the community members directly
governs the types of organic material that can be degraded
in a particular environment [3]. Heterotrophs occupy a
spectrum of metabolic diversity and growth strategies [4].
While copiotrophs exploit multiple organic resources and/or
undergo rapid growth in response to nutrient availability,
oligotrophs specialize in a limited number of resources and
dominate in low nutrient environments [5]. Because of the
interplay of heterotrophs on this spectrum of metabolic
diversity, it is important to understand the role(s) that spe-
cific groups play in the degradation of organic matter in the
surface ocean.

An evolutionary feature that has been observed among
marine oligotrophs is the reduction and simplification of the
genome. This evolutionary trajectory has been posited as the
theory of genome streamlining, in which organisms that grow
in nutrient limited environments undergo selection to reduce
cellular demand for specific compounds and nutrients [6].
While originating in the marine environment [7, 8], genome
streamlining has been identified in numerous habitats for a
variety of microorganisms [9–12]. Streamlined genomes will
tend to have smaller genome sizes as a result of increased
coding density and a decreased number of paralogs/gene
duplication events, which overall reduce cellular demand for
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nutrients [13]. Additionally, in nitrogen-limited environments,
streamlined genomes may reduce the contribution of nitrogen
to the DNA by decreasing genomic GC content and the
proteome through the selection of amino acids with side
chains that contain fewer nitrogen atoms [13]. The theory of
genome streamlining is an important avenue for under-
standing microbiology and provides important insights into
the evolutionary history and ecological distributions of a
microorganism.

Here in, we assess the potential contributions of the
Dadabacteria to marine heterotrophy. A phylum level group
phylogenetically clustered near the phyla Campylobacteria,
Aquificota, and Deferribacteres. The Dadabacteria (formerly
SBR1093) lack a cultured representative and have not been
extensively assessed for their potential contributions to bio-
geochemical cycles though they have been detected in
numerous environments. The first Dadabacteria genome was
reconstructed from industrial activated sludge and reported to
possess the capacity for carbon fixation through the 3-
hydroxybutyrate/4-hydroxypropionate cycle [14]. Interest-
ingly, multiple Dadabacteria metagenome-assembled gen-
omes (MAGs) were reconstructed from the Tara Oceans
global, marine metagenomic samples, though their exact role
in the marine environment was unknown [15–17]. Our ana-
lysis reveals that the marine Dadabacteria are likely hetero-
trophic oligotrophs that have undergone genome streamlining
with the capacity to degrade microbially derived peptidogly-
can as a carbon source with further metabolic diversification
between shallow and deep photic zone niches.

Materials and methods

Collect, assess and clean genomes, and construct
phylogenomic trees

MAGs generated from several studies using the Tara Oceans
metagenomics dataset were initially identified as Dada-

bacteria based on 16S rRNA phylogeny and 16 concatenated
ribosomal proteins (ribosomal proteins L2, L3, L4, L5, L6,
L14, L16, L18, L22, L24, S3, S8, S10, S17, and S19) [18].
All Dadabacteria metagenome-assembled genomes (MAGs)
identified in NCBI (as of August 2019) [19–23] and one
Dadabacteria genome (formally Candidate Phylum
SBR1093) derived from Wang et al. [14] were also included.
Genomes reconstructed from Tully et al. [15] and Tully et al.
[24] were subjected to manual assessments for quality using
the same methodology as in Graham et al. [25]. Briefly, read
coverage and DNA compositional data were utilized to bin
additional contigs (>5 kb) from the Tara Oceans Longhurst
province where the original Dadabacteria MAG was recon-
structed using CONCOCT (v.0.4.1; parameters: -c 800 -I 500)
[26]. Bins determined through CONCOCT with overlapping

contigs in a Dadabacteria MAG were profiled (anvi-profile
default parameters), combined (anvi-merge default para-
meters) and visualized (anvi-interactive default parameters) in
anvi’o [27] (v5.0). MAGs were manually refined by removing
contigs with incongruent composition metrics or coverage
values. Genomes from Delmont et al. [17] were also visua-
lized in anvi’o and manually curated based on composition
metrics only. Bin refinement was conducted to minimize
contamination estimates and improve genome completion.

Dadabacteria MAGs were assessed for quality through
the PhyloSanity workflow (default parameters) of the tool
MetaSanity [28] (beta version; v1). Estimated complete-
ness, contamination, and strain heterogeneity were deter-
mined using CheckM (v1.0.18; lineage_wf default
parameters) [29]. The estimated completeness and MAG
size were used to calculate an approximate genome size for
the complete genome. Additionally, the CheckM Reported
Statistics subcommand (checkm qa --tab-table) was used to
calculate the coding density. Phylogeny was confirmed
using GTDB-Tk (v1.0.0; database ver. 89; classify_wf
default parameters) [30]. The GTDB-Tk de novo workflow
was used to construct a multiple sequence alignment (MSA)
of the Dadabacteria MAGs using the bac120 marker set
and with f_SZUA-79 set as the outgroup. The full MSA was
reduced to include the following lineages related to the
Dadabacteria: SZUA-79, Chrysiogenetota, Deferribacter-
ota, Thermosulfidibacterota, Aquificota, Camplyobacterota.
The MSA was refined using MUSCLE (v3.8.31, parameter:
-refine) [31] and FastTree (v2.1.10, parameters: -lg,
-gamma) [32] was used to generate a phylogenetic tree that
was visualized using the Interactive Tree of Life (IToL) [33]
(Supplementary Data 1).

Functional annotation

For functional annotation and evidence of genomic
streamlining, due to the limited number of available MAGs,
all genomes were considered during the analysis. Dada-
bacteria MAGs were assessed for putative metabolic
functionality through the FuncSanity workflow of the tool
MetaSanity [28] (beta version;v1). All downstream analyses
use the putative CDS (coding DNA sequences) as predicted
by Prokka (v1.13.3) [34]. Putative CDS were assigned to
carbohydrate-active enzyme (CAZy) families based on
HMMs (hidden Markov models) from dbCAN (v6) [35]
using hmmsearch (v3.1b2; parameter: -T 75) [36]. The
output from MetaSanity that combines the CAZy matches
for all submitted genomes (MetaSanity output file: com-
bined.cazy) was used to determine the number of CAZy
matches per Mbp in each MAG, including a curated
selection of glycoside hydrolases (GH) and carbohydrate-
binding module (CBM) containing proteins and excluding
matches to CAZy subfamily HMMs (e.g., matches to GH13
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model were included, while matches to GH13_9 model, etc.
were excluded).

CDS were determined to be putative peptidases through
hmmsearch (parameter: -T 75) using PFAM [37] HMMs
selected to represent the MEROPS families [38]. Putative
peptidases were screened for signatures denoting possible
extracellular localization using PSORTb (v3.0; parameters:
--cutoff 1, --divergent 1, -M 10, -c 70) [39] and SignalP
(v4.1; defaults) [40]. First, PSORTb was used to identify all
putative peptidases with the localization assignment of
“extracellular”, “cellwall”, or “unknown”. For any putative
peptidase that had “unknown” localization, if SignalP pre-
dicted a transmembrane helix, the peptidase was determined
to be putatively extracellular.

Metabolic functions of interest were identified based on
the KEGG-Decoder [25] output (v1.0.10) as implemented
in MetaSanity (MetaSanity output file: KEGG.final.tsv). As
part of this workflow, CDS were assigned to KEGG
Ontology (KO) identifiers using KofamScan (v1.2.0) [41]
and the accompanying KOfam HMMs. KO annotations
were then assigned to a set of manually curated pathways
and processes. Additionally, metabolisms of interest, espe-
cially those lacking KOfam HMMs, were searched inde-
pendently and incorporated using KEGG-Expander as
implemented in MetaSanity.

Additional databases were used to identify feature of
interests within the Dadabacteria MAGs. Putative metabolic
functions of interest shared between the four phylogenetic
clades were identified using eggNOG-mapper [42] (http://
eggnog-mapper.embl.de/; default parameters for “Auto adjust
per query”) and precomputed eggNOG clusters (v5.0) [43].
antiSMASH (v5.0.0) [44] was used to detect secondary
metabolite biosynthetic gene clusters (parameters: --cb-gen-
eral --cb-knownclusters --cb-subclusters --asf --pfam2go
--smcog-trees). Based on matches to the rhodopsin PFAM
HMM model (PF01036) performed as part of the KEGG-
Decoder analysis, putative rhodopsin CDS were compared to
the MicRhoDE database [45] using BLASTP [46] (http://a
pplication.sb-roscoff.fr/micrhode/doblast; default parameters
for “All Micrhode” option) and assigned to a previously
identified clades of rhodopsins based on the highest scoring
result (Supplementary Data 2). Additionally, putative rho-
dopsins were aligned with MUSCLE (parameter: -iter 8) and
the 17 amino acid (aa) region that contains the crucial aa for
determining function (aa site 97 & 108) and spectral tuning
(aa site 105) were categorized based on known rhodopsin
relationships (Supplementary Data 3).

Genomic streamlining

Putative CDS were used to calculate the total number of
carbon and nitrogen atoms present in the predicted proteome
and the corresponding ratio of each MAG (https://github.

com/edgraham/CNratio). For identifying duplicate genes in
a MAG, first, all putative CDS in a MAG was compared
against each other using DIAMOND BLASTP [47] (para-
meters: --more-sensitive –max-taget-seqs 300). BLAST
matches were filtered using the minbit approach [48], where
significant matches were determined based on the relative
comparison of bitscore values. Minbit was calculated for
protein A compared to protein B, as in Eq. (1),

bitscore A½ � B½ �ð Þ

min bitscore A½ � A½ �ð Þ; bitscore B½ � B½ �ð Þð Þ
ð1Þ

retaining all BLAST matches ≥0.5. BLAST matches above
this threshold were reformatted and clustered using MCL [49]
(mcxload parameters: --abc --stream-mirror --stream-neg-
log10 -stream-tf ceil(200); mcl default parameters; mcxdump
parameter: -icl). All clusters in the mcxdump output were
considered to be gene duplication events within the MAG.

Ecological distribution and environmental
correlations

For determining the ecological distribution and environmental
correlations, a nonredundant set of MAGs was determined
using FastANI [50] (v1.3; parameters: --frag-length 1500)
with a representative selected from a cluster of genomes with
≥98.5% average nucleotide identity [51]. Metagenomes
derived from bioGEOTRACES [52] (bGT) and Tara Oceans
[53] were mapped against the nonredundant set of Dada-

bacteria genomes using bowtie2 [54] (v2.3.4.1, parameters:
-q, --no-unal), converted from a SAM to BAM file using
samtools [55] (v.1.9; view; sort), and filtered using BamM
(v1.7.0, parameters: --percentage_id 0.95, --percentage_aln
0.75). featureCounts [56] (v1.5.3, default parameters) imple-
mented through Binsanity-profile [57] (v0.3.3, default para-
meters) was used to generate read counts for each contig from
the filtered BAM files. Read counts were used to calculate the
relative fraction of each genome in the sample (Eq. (2)) and
determine the reads per kbp of each genome per Mbp of
metagenomic sample (RPKM) (Eq. (3)).

relative fraction ¼
#reads recruited to genome

total reads in sample
ð2Þ

RPKM ¼
#reads recruited to a genome� genome length in bp� 1000ð Þ

total bp inmetagenome � 1; 000:000

ð3Þ

Environmental data were accessed from GEOTRACES
Intermediate Data Product 2017 (Version 2) [58] and paired
with the corresponding metagenome sample ID. In many
cases there were multiple CTD casts associated with a par-
ticular station and depth (Supplementary Data 4). The mean
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value was used in cases where a parameter was measured
multiple times at the same depth and station. Environmental
data were paired with a metagenome only if the depth was
within 1 m of the metagenome. RPKM values for Dada-

bacteria genomes from all samples with available environ-
mental data were used in a canonical correspondence
analysis (CCA) in Past4 [59] (v.4.01). Only environmental
data that were measured for ≥90% of the samples were used
to perform the CCA. RPKM values were normalized (log(n
+ 1)) prior to CCA. Transect plots were made in Ocean
Data View (v5.2.1; DIVA Gridding; Schlitzer, Reiner,
Ocean Data View, https://odv.awi.de, 2020). Bathymetry
was pulled from General Bathymetric Chart of the
Oceans (GEBCO 2014; https://doi.org/10.1564/PANGAEA.
708081).

Results and discussion

As a candidate phylum, a broad understanding of the eco-
logical role of the Dadabacteria has remained elusive due
to the limited amount of metabolic information available for
the clade. Based on the phylogenetic reconstruction of 48

MAGs (mean ± s.d. completeness 75.72% ± 17.77% and
contamination 1.85 ± 1.48%; Fig. 1a; Supplementary
Table 1), the phylum partitions into three distinct clades
which share common environmental features: hydrothermal
systems (terrestrial hot springs and hydrothermal vents),
organic carbon-associated systems (the terrestrial subsur-
face, oil-polluted marine systems, marine sponges, marine
sediment, and hydrothermal vent sediments), and marine
pelagic systems. Within the “marine pelagic” clade,
there are two distinct subclades, designated as marine
pelagic clade I and II. The marine pelagic clades harbor
genomic features that differentiate them from the other
clades, specifically with regards to genomic evolutionary
selection (e.g., streamlining) and putative metabolisms.

The pelagic marine Dadabacteria have undergone a
genome streamlining process in comparison to the organic
carbon-associated and hydrothermal lineages. The marine
pelagic Dadabacteria exhibit all five traits associated with
genome streamlining: reduced genome size, decreased %
GC content, increased C/N ratio in the predicted proteome,
increased coding density, and limited/no gene duplication
events (Fig. 1b–d; Supplementary Table 1) [6, 13]. The
estimated complete marine pelagic Dadabacteria genome

Fig. 1 Phylogenomic, functional, and evolutionary relationships

amongst the Dadabacteria. a A phylogenomic tree of the bac120
marker set for the Dadabacteria and related phyla and a heatmap
displaying functions of interest for each Dadabacteria MAG. Boot-
strap (1000 resamples) values are scaled proportionally between 0.75
and 1. Putative extracellular peptidase, secondary metabolite, glyco-
side hydrolase, and carbohydrate-binding module counts are displayed
on a scale from 0 to 5. Functions inferred from eggNOG counts are
displayed on a scale from 0–20+. Metabolic processes inferred from

KEGG are displayed on a scale for 0–1, as a fraction of a particular
metabolism detected. MAGs abbreviations: TOBG from Tully et al.
[15]; TMED from Tully et al. [24]; TARA from Delmont et al. [17];
MED from López-Pérez et al. [69]; UBA from Parks et al. [16]. b A
scatter plot of percent G+ C (%G+ C) and approximate complete
genome size in megabase pairs (Mbp) for each Dadabacteria MAG.
c A scatterplot of putative proteome carbon-to-nitrogen content ratio
and percent coding density for each Dadabacteria MAG. d The
number of duplicate gene events in each Dadabacteria MAG.

Marine Dadabacteria exhibit genome streamlining and phototrophy-driven niche partitioning 1251

https://odv.awi.de
https://doi.org/10.1564/PANGAEA.708081
https://doi.org/10.1564/PANGAEA.708081


is ~1.22Mb (± 0.05 95% CI) with >96% coding density,
smaller in size and similar in coding density to the well-
studied marine SAR11 clades [8, 60]. The presence of the
Dadabacteria MAGs reconstructed from multiple oligo-
trophic Tara Oceans regions would suggest that these
organisms, like other oligotrophs, are adapted to environ-
ments with low nutrient concentrations [6] (Supplementary
Fig. 1). Modifications in GC content and proteome C/N
ratio are associated with lowering the nitrogen demand for
organisms in nitrogen-limited environments [6]. While
small genomes, devoid of paralogs and with high coding
density, are thought to have reduced energy requirements
for division and growth. These genomic modifications
which confer an advantage in oligotrophic marine envir-
onments are the result of changes in selection pressure that
occurred at the transition between the marine pelagic and
hydrothermal/organic carbon-associated Dadabacteria

clades [61, 62]. These results provide further evidence that
the theory of genome streamlining is a common evolu-
tionary response to organisms that undergo a transition from
nutrient rich to nutrient poor environments [63].

While the SBR1093 MAG was implicated in carbon
fixation via the 3-hydroxypriopinate/4-hydroxybutyrate
cycle [14], analysis of the Dadabacteria phylum reveals,
especially for the marine pelagic clades, a predominantly
heterotrophic lifestyle (Fig. 1a). Except for the SBR1093
MAG, none of the publicly available Dadabacteria MAGs
have the potential for carbon fixation (Supplementary
Table 2). Several MAGs from the hydrothermal and organic
carbon-associated clades have the potential to interface with
the nitrogen and sulfur cycles with metabolic processes
involved in denitrification, dissimilatory nitrate reduction to
ammonia (DNRA), sulfate reduction, sulfide oxidation, and
the production of dimethylsulfoniopropionate (DMSP)
(Fig. 1a). However, while both marine pelagic clades lack
these particular metabolic pathways, all four clades share in
the potential for the heterotrophic degradation of proteins
and complex carbohydrates, including starch/glycogen (β-
glucosidase and α-amylase). One consistent target for the
extracellular peptidases (LysM) and carbohydrate-active
enzymes (CAZymes; peptidoglycan lyase and CBM Family
50) across the Dadabacteria clades is peptidoglycan, the
polymer of the microbial cell wall. It may be possible that
these predicted proteins are responsible for the internal
recycling of the cell wall during cell division or an indi-
cation that the Dadabacteria occupy a niche capable of
recycling microbially derived dissolved organic
matter (DOM).

Interestingly, the number of extracellular peptidases,
CAZymes, and ATP-binding cassette-type (ABC-type)
transporter components normalized for MAG length across
all four clades remains consistent even as the overall
diversity within each group of proteins decreases (Fig. 1a;

Supplementary Tables 3–5). This may highlight an interplay
between heterotrophic metabolic diversity and changes in
carbon utilization as Dadabacteria genome size decreases
during streamlining. Additionally, there are several other
metabolic processes that distinguish the four clades and
highlight the divide between the hydrothermal and organic
carbon-associated clades and marine pelagic clades. Speci-
fically, for the hydrothermal clade, the prevalence of
CRISPR-associated proteins (used as proxy for CRISPR
arrays due low recovery in MAGs), motility, and two-
component regulatory chemotaxis suggest that both avoid-
ance of viral predation and physical adjustments within the
hydrothermal environment are important evolutionary
advantages (Supplementary Tables 2 and 5). Distinct for the
hydrothermal and organic carbon-associated clades, are the
presence of phosphonate and phosphate ABC transporters,
the Entner-Doudoroff pathway, an alternative pathway to
glycolysis for glucose degradation, and a Type II secretion
system (Supplementary Tables 2 and 6). In many marine
systems, phosphorous, like nitrogen, can be a limiting
resource. All four clades possess ABC-type phospholipid
transporters (Supplementary Table 6), so while most of the
marine pelagic clades (63%) lack phosphonate and phos-
phate transporters, the presence of phospholipid transporters
suggest these organisms may recover phosphorous for cel-
lular demand from DOM.

The marine pelagic I and II clades have several distin-
guishing metabolic properties. Potentially most importantly
are the mechanisms related to utilizing light energy.
Uniquely amongst the Dadabacteria, the marine pelagic I
clade possesses rhodopsins and the biosynthetic capacity for
retinal synthesis (Fig. 1a). Based on the present amino
acids, it is predicted that all of the identified rhodopsins are
H+-pumping proteorhodopsins [64] (Supplementary
Table 7). For the eight identified proteorhodopsins within
the marine pelagic I clade, all but one are predicted to be
spectrally tuned to absorb blue light [65, 66] (Supplemen-
tary Table 7). The marine pelagic I clade also has the
capacity to produce terpene secondary metabolites (Sup-
plementary Table 8). Terpenes are organic hydrocarbons
that have been shown to be associated with carotenoid
synthesis [67]. These terpenes may be related to the pro-
duction of β-carotene, a biological precursor to retinal, or to
production of other unidentified carotenoids (Supplemen-
tary Table 6). The marine pelagic II clade lack proteorho-
dopsins, retinal biosynthesis, and terpene secondary
metabolites (Fig. 1a). Like all other Dadabacteria clades,
the marine pelagic clades possess starch/glycogen and
peptidoglycan degradation mechanisms may suggest that
these heterotrophic processes are the predominant avenues
for energy acquisition.

The metabolic division based on the utilization of light
via proteorhodopsins between the marine pelagic clades is
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reflected in the ecological distribution of the clades. Using a
nonredundant set of the marine pelagic Dadabacteria

MAGs, the large global metagenomic datasets (Tara
Oceans and bGT) were mapped against the MAGs and used
to assess where the Dadabacteria occurred through the
water column (Supplementary Tables 9 and 10). The two
datasets have distinct properties that allow for varying
perspectives on the ecology of the Dadabacteria. Tara

Oceans is globally distributed with multiple size
fractions and samples from the mesopelagic, while bGT
provides several high-resolution cruise tracks with multiple
depths between the surface and ~250 m depth. The results
from Tara Oceans demonstrate that, broadly, the marine
clades are present in the planktonic size fraction (<3 μm)
and almost exclusively found in the epipelagic (Supple-
mentary Fig. 2).

As exemplified by the GA03 cruise track in the North
Atlantic, the resolution provided by bGT reveals that the
marine pelagic I and II clades tend to be dominant above
and below ~100 m depth (~1% light level), respectively,
and that this niche transition can be sharp, with the marine
pelagic I clade dropping to a negligible component of the
microbial community at this partitioning depth (Fig. 2;
Supplementary Table 11). This relationship can be observed
for the other three cruise tracks, station ALOHA (Hawaii
Ocean Time-series), and hydrostation S (Bermuda Atlantic
Time-series) with some localized variation, potentially due

to surficial mixing and/or downwelling/upwelling events,
where the marine pelagic II clade can be found at the sur-
face and the marine pelagic I clade can be found at 250 m.
However, for many of the sampling stations there remains a
divide between the two clades at the ~1% light depth
(Supplementary Figs. 2 and 3). Canonical correspondence
analysis (CCA) of the GA03 environmental parameters
support this niche transition as a majority of the marine
pelagic II clade MAGs correlated with depth and depth-
associated parameters (nutrients, temperature, etc.; Fig. 2c).
Similar correlations between depth-associated parameters
and the marine pelagic clades are observed for the other
cruise tracks (Supplementary Fig. 4). As has been shown
previously, deep euphotic zone blue-light proteorhodopsins
are adapted to low light incidence and capture a limited
amount of light at 75 m [68], the apparent depth partitioning
linked to encoding proteorhodopsin likely reflects an evo-
lutionary selective pressure against maintaining a light-
responsive protein apparatus at depth and manifests as
depth-specific niche boundaries between the two marine
pelagic clades.

Conclusion

The Dadabacteria phylum is an understudied clade with a
limited number of genomic representatives. The broad analysis

Fig. 2 Distribution of the Dadabacteria across the North Atlantic.

a Ocean Data View plot of percent relative fraction for the Dada-

bacteria marine pelagic I clade along the GEOTRACES transect
GA03. b Ocean Data View plot of percent relative fraction for the
Dadabacteria marine pelagic II clade along the GEOTRACES transect

GA03. c Canonical correspondence analysis of the nonredundant
marine Dadabacteria MAGs. Vectors denote correlations with envir-
onmental parameters and have been modified for easier visualization:
trioplot amp 1.5, scaling type 2. d Cruise track of GA03. Red circle
denotes start of cruise track (0 km).
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of the four major clades represented among publicly available
genomes reveals a broad range of heterotrophic organisms,
putatively involved in the recycling of microbially derived
DOM, such as peptidoglycan and phospholipids. The hydro-
thermal and organic carbon-associated clades appear to be
facultative anaerobes capable of using alternative electron
acceptors, while the marine pelagic clades appear to be obli-
gate aerobes. The marine pelagic clades have genomic features
indicating extensive genome streamlining evolutionary pres-
sures that mirror their ecological distribution in oligotrophic
environments. Genome streamlining theory is an important
hypothesis for explaining the prevalence of small genomes
among cosmopolitan microorganisms and the Dadabacteria

represent a clear example of the theory in action. The two
distinct marine pelagic clades are differentiated in metabolic
potential by the presence of light-associated adaptations, such
as proteorhodopsin, terpenes, and carotenoids, supporting an
argument that marine pelagic I clade possess a photo-
heterotrophic lifestyle. These adaptations are reflected in the
ecological distribution of these clades with depth-partitioned
niches for marine pelagic I and II clades. The Dadabacteria

have multiple transitions that are of interest for understanding
evolutionary pressures and adaptations in different environ-
ments, including: terrestrial to marine transitions; high to
moderate/low temperature transitions; and adaptations from
organic rich to organic poor environments. Further studies and
the expansion of available genomes for this clade may provide
specific insights as to how these transitions occur and manifest
in microbial genomes.

Data availability

Several of the MAGs (TOBG-EAC99, TARA-RED-00009,
TOBG-IN994, TOBG-MED731, TOBG-MED713, and
TOBG-SP357) used in this study and underwent manual
curation originated from the Tara Oceans dataset and were
never submitted to NCBI to avoid duplication in GenBank.
These curated MAGs are noted in Supplementary Table 1
and are available here: https://doi.org/10.6084/m9.figshare.
12344207. As noted in Supplementary Table 1, MAGs with
corresponding submissions in NCBI GenBank have been
updated.
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