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Abstract: As the IMO aims to reduce greenhouse gas emissions from ships by more than 50% by 2050
compared to 2008, the paradigm of the shipbuilding and shipping industries is changing. The use
of carbon-free fuels, such as hydrogen and ammonia, is progressing, along with the incorporation
of batteries and fuel cells in ships. With the introduction of various propulsion power sources, the
application of electric propulsion systems to ships is also expected to accelerate. The verification of
reliability and safety is of paramount importance in the development of new technologies designed
in response to environmental regulations. However, maritime demonstration is time-consuming
and expensive. Therefore, an effective means of demonstrating the performance, reliability, and
safety of various marine carbon-neutral technologies with a small burden is required. This study
introduces a ship design for marine demonstration, integrating eco-friendly alternative fuels and
electric propulsion system components. We further demonstrate a preparation process for the
realization of marine carbon neutrality and future ship design through international joint research,
standardization, and ship development, which can be linked to manpower training.

Keywords: greenhouse gas regulation; alternative fuels; electrification; electric propulsion; DC
switch board

1. Introduction

Environmental issues remain a major global concern, and in 2018, the International
Maritime Organization (IMO) set a target to reduce greenhouse gas emissions from ships
by 50% by 2050 [1,2]. Alternative marine fuels, such as LNG, methanol, biofuel, and e-fuels,
are considered [3–5]. Therefore, many shipyards and shipping companies are developing
technologies to comply with greenhouse gas (GHG) regulations. Representative examples
of reducing greenhouse gas emissions include optimizing ship hull forms, using energy-
saving devices (ESDs), air lubrication systems, slow steaming, and route optimization [6,7].
Although liquefied natural gas (LNG) propulsion systems are known to reduce carbon
emissions by about 20% compared to marine fuel oil (MFO)-based systems, they face
limitations due to increasingly strict greenhouse gas regulations [8]. It is expected that
propulsion power sources will eventually be replaced with carbon-neutral fuels, and
that electric/hybrid propulsion systems that can accommodate various propulsion power
sources will become more common.

So far, various types of demonstration vessels have been developed in response to
GHG regulations, as shown in Table 1. However, designing and building a demonstration
ship takes a long time and is expensive. According to research conducted by RICARDO
(www.ricardo.com) at the request of the IMO, more than USD 10 billion is expected to be
spent on developing eco-friendly ship technology in response to the IMO’s greenhouse
gas regulations. Furthermore, more than 60% of this cost is projected to be spent on
test evaluation and demonstration, to verify the reliability and safety of the developed
technology [9].
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Table 1. Research for demonstration vessels in response to GHG regulations.

Research Topic Key Findings References

Development of a demonstrator ship
for IMO greenhouse gas

emissions regulations

This study describes the development and testing of a
demonstration ship designed to meet IMO greenhouse
gas emissions regulations. The ship is equipped with a
hybrid propulsion system consisting of a diesel engine
and a battery system, and the results of the testing show

that the ship can reduce its emissions by up to 70%
compared to a conventional ship.

A. Haglind, et al., 2016 [10]

Development and testing of a
full-scale battery-powered ferry

This paper presents the design and testing of a full-scale
battery-powered ferry. The ferry was equipped with a

large battery bank, electric propulsion, and regenerative
braking system. The study found that the ferry was able
to operate for a full day on a single charge, and it was
expected to reduce CO2 emissions by more than 95%

compared to conventional diesel ferries.

J.T. Holen, et al., 2021 [11]

Development of a hybrid
LNG-electric propulsion system for a

cruise ship

This paper describes the design and testing of a hybrid
LNG-electric propulsion system for a cruise ship. The

system consisted of two electric propulsion motors, two
gas turbine generators, and two LNG engines. The

study found that the system was able to reduce CO2
emissions by up to 30% compared to conventional

diesel-electric systems.

P. Carbone, et al., 2021 [12]

Development of an ammonia-fueled
tanker ship

This paper presents the design and analysis of an
ammonia-fueled tanker ship for zero-emission shipping.

The ship is designed to use ammonia as fuel, which
produces no greenhouse gas emissions when burned.

The results of the analysis show that the ship can
operate efficiently and with zero emissions.

S. Seo, et al., 2021 [13]

Development of a hydrogen fuel
cell-powered ferry

This paper describes the design and testing of a
hydrogen fuel cell-powered ferry. The study found that
the ferry was able to operate for up to 12 h on a single
tank of hydrogen, and it was expected to reduce CO2

emissions by more than 95% compared to conventional
diesel ferries.

R. Skontorp, et al., 2021 [14]

The purpose of this study is to construct a marine demonstration vessel capable of
collectively and rapidly demonstrating various GHG regulatory response technologies,
with economic feasibility and commercialization potential through track record acquisition.
Establishing a testbed ship as a center for collecting empirical data on different alternative
fuels and propulsion system components can greatly contribute to the development of
green ship and shipping technologies, by reducing the time and cost required for marine
validation.

By applying the research presented in Table 2 on batteries, fuel cells, and electric/hybrid
propulsion systems for the proposed marine demonstration vessel, objective and compara-
ble data can be obtained, which can accelerate the practical application of green ship and
shipping technologies.
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Table 2. Research for alternative fuels and electric/hybrid propulsion systems.

Research Topic Key Findings References

Improvement and optimization of inland
ship power and propulsion system

This paper discusses the improvement and
optimization of inland ship power and

propulsion systems. They combined diesel
engines, electrical propulsion, and energy

storage devices to achieve higher efficiency
and reduced emissions.

Z. Du, et al., 2023 [15]

Concept design of a hybrid offshore
patrol vessel

The paper presents a concept design of a
hybrid offshore patrol vessel (OPV) that

integrates various power sources, including
diesel engines, electric motors, and

renewable energy sources.

A. Ljulj, et al., 2023 [16]

Deployment of electric ships for
green shipping

The study investigates the technical,
economic, and regulatory challenges of
electric ship deployment and provides
recommendations for ship owners and
operators to overcome these challenges.

W. Wang, et al., 2022 [17]

Multi-energy integrated ship energy
management system

The paper proposes a multi-energy
integrated ship energy management system
based on a hierarchical control collaborative

optimization strategy.

Y. Ren, et al., 2022 [18]

Impact of SOFC power generation plant on
carbon intensity index for cruise ships

The study finds that the integration of SOFCs
can significantly reduce the CII of cruise

ships, thus improving their
environmental performance.

M. Gianni, et al., 2022 [19]

To achieve maritime decarbonization and expedite the practical application of related
research results, it would be particularly advantageous to have a ship capable of accom-
modating MW-class alternative fuels and electric/hybrid propulsion system components
simultaneously for sea trials, especially for large ships subject to IMO GHG regulations.
To this end, the marine demonstration vessel in this study is named the Korea Green
Ship Testbed (K-GTB). The K-GTB will be used for international joint research, technology
standardization, and the training of technical personnel for the realization of marine car-
bon neutrality. The K-GTB is designed to have the ability to simultaneously mount and
demonstrate MW-class alternative fuels and electric/hybrid system components [20].

2. Characteristics of the K-GTB

The propulsion system consists of two permanent magnet (PM) motors, inverters,
converters, a DC switchboard, and two LNG DF main generators. The MW-class batter-
ies, fuel cells, and non-carbon fuel mixed combustion internal combustion engines were
evaluated for ship applicability, performance, reliability, and safety via assessing the main
generator and propulsion load. Figure 1 shows the K-GTB alternative fuel demonstration
concept. The shape and specifications of the K-GTB were decided in consideration of the
portability of various eco-friendly ship technologies, and their operability in the coastal
waters of Korea.

Figure 2 shows the general arrangement of the K-GTB. The marine battery, fuel cell,
and non-carbon fuel mixed combustion internal combustion engine are mounted in a
separate area around the mid-ship.
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The K-GTB is the first marine demonstration vessel acquired and operated by the
KRISO (Korea Research Institute of Ships and Ocean Engineering). It weighs approximately
1722 tons in deadweight, and although it does not reach the scale of full-scale ocean-going
cargo ships, its hull form and propulsion structures are similar to those of large cargo ships.
In the KRISO, it is possible to acquire all required data from CFD (computational fluid
dynamics) analysis, basin model tests, and real-ship operation tests, to be used in various
ways to estimate and verify the performance of eco-friendly ship technologies.
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3. Ship Resistance Estimation and Propulsion Power Setting

We conducted a review to configure the K-GTB’s propulsion system for the demon-
stration of MW-class batteries, fuel cells, and carbon-free fuel mixed combustion engines.
First, the ship resistance characteristics of the K-GTB were evaluated considering both
experimental and numerical results. First, calm water resistance was achieved in model
tests conducted in KRISO’s towing tank, at speeds ranging from 10 kts to 16 kts.

The real ship performance in calm water was then estimated via the ITTC-1978 ex-
trapolation method. The added resistance, induced by waves at different ship speeds, was
calculated through a well-known commercial program, WASIM. The essential background
of this numerical scheme is explained as follows. As the fluid is inviscid and incompressible,
and the flow is irrotational, and the velocity field should satisfy the Laplace equation. The
governing equation, the continuity equation, is illustrated in Equation (1). As we adopted
the simple Rankine source, only three nonlinear boundary conditions were applied: the
body boundary condition (shown in Equation (2)), the kinematic boundary condition
(shown in Equation (3)), and the dynamic boundary condition (shown in Equation (4)).
Here, we show the velocity potential function, the position vector, the time, the total veloc-
ity of a point on the hull, which includes both the steady forward speed and the oscillatory
velocity components, the normal vector, the wetted surface of the hull, and the total free
surface elevation.
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In the Rankine theory, the velocity potential can be split into four independent poten-
tials: basic, local, memory flow, and incoming wave. Basis flow is assumed to be on the
order of one, and is the basis for the linearization. Other flows are assumed to be small
perturbations of the basis flow. The formulas, features, and computational algorithms for
each flow are illustrated in references [21,22].

The computed meshes of the K-GTB are shown in Figure 3. The section model was
converted from the CAD design file, and the sectional hull mesh was generated in three
domains: bow, mid-ship, and stern. The additional mesh, the control mesh, was artificially
generated under the free surface to calculate the diffracted wave effect.

We initially conducted a test under the conditions of the vessel moving forward in
calm water. The ship speed was varied from 0 knots (Knots) to 10 knots, as shown in
Table 3. The heave and pitch displacements of the center of gravity were also set to be
in the steady-state range. The Froude number was set at a maximum of 0.196, so high
Froude number conditions were excluded. As the ship speed increased, the trim of the
vessel also increased. Under the highest vessel speed condition, the heave displacement
was −0.2 m and the pitch displacement was 1.2 degrees, which resulted in relatively small
values. These static changes, according to the ship speed, were used as an initial input
value for subsequent calculations.

Next, the resistance induced by waves was calculated. The wave direction was fixed
at 180 degrees, and only 2, 6, and 10 knots were used in this study for ship speed. The
wavelength was increased from 0.2 to 2.3 compared to the length of the ship. The time
series of the added resistance is shown in Figure 4. When the results were stabilized in
the latter part of the analysis, the load displacement according to the regular wave was
confirmed with five waves.
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Table 3. Calculated equilibrium heel and trim values with forward speeds.

Vs (Knots) Vs (m/s) Froude No. Heave (m) Pitch (Deg.)

0 0 0 −0.069 0.964

1 0.5144 0.020 −0.070 0.966

2 1.0288 0.039 −0.074 0.971

3 1.5432 0.059 −0.079 0.980

4 2.0576 0.079 −0.087 0.992

5 2.572 0.098 −0.097 1.011

6 3.0864 0.118 −0.110 1.034

7 3.6008 0.137 −0.126 1.062

8 4.1152 0.157 −0.142 1.099

9 4.6296 0.177 −0.164 1.142

10 5.144 0.196 −0.190 1.201

Figure 5 represents the non-dimensional added resistance Raw in the frequency domain,
which was normalized by the water density, gravitational acceleration, wave amplitude, the
K-GTB’s width, and length between perpendiculars (ρ× g× Amp2 × B2/Lpp). The results
from the empirical method, STAwave-2 [23], are also shown in this figure for validation.
Although relatively similar values were achieved at the slow speed, it was confirmed
that the maximum value in the empirical equation was approximately twice as high at
the fastest vessel speed. Additionally, the resonance period in the empirical results was
generally shorter than that of the 3D Rankine source method. The analysis results suggest
that the empirical formula can achieve a higher added resistance than the 3D Rankine panel
method. The model test results were evaluated to verify the effect of ship specifications on
the ship resistance.



J. Mar. Sci. Eng. 2023, 11, 567 7 of 17

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

latter part of the analysis, the load displacement according to the regular wave was con-
firmed with five waves. 

 
Figure 4. Time series of added resistance at ω = 0.6 rad/s and Vs = 6 kts. 

Figure 5 represents the non-dimensional added resistance 𝑅௔௪ in the frequency do-
main, which was normalized by the water density, gravitational acceleration, wave am-
plitude, the K-GTB’s width, and length between perpendiculars (ρ ൈ g ൈ 𝐴𝑚𝑝ଶ ൈ 𝐵ଶ/𝐿௣௣). 
The results from the empirical method, STAwave-2 [23], are also shown in this figure for 
validation. Although relatively similar values were achieved at the slow speed, it was 
confirmed that the maximum value in the empirical equation was approximately twice as 
high at the fastest vessel speed. Additionally, the resonance period in the empirical results 
was generally shorter than that of the 3D Rankine source method. The analysis results 
suggest that the empirical formula can achieve a higher added resistance than the 3D Ran-
kine panel method. The model test results were evaluated to verify the effect of ship spec-
ifications on the ship resistance. 

Figure 4. Time series of added resistance atω = 0.6 rad/s and Vs = 6 kts.

Our results are similar to those of many previous studies, which showed that the
empirical formula achieves a relatively high value. In addition, we inferred from the
Rankine source method that the amount of trim changes according to the ship speed
in the initial stage, and thus the resonance period increases with the length of the ship.
Experimental studies should be carried out for a more precise ship load estimation in the
future.

In order to consider the total resistance, it is necessary to add the calm water resistance
obtained through the experiment. Only extreme conditions of 10 knots or more were tested,
due to the limited towing tank slots and the need to evaluate the ship’s performance in more
dangerous conditions. Therefore, the low speed, reflected in the numerical calculations,
was only achieved via extrapolation according to the exponential law. As a result, the
calm water resistance was 12.6 kN, 31.1 kN, and 75.0 kN for 2 knots, 6 knots, and 10 knots,
respectively.

Added resistance components in the frequency domain were converted into the time
domain via Newman’s approximation [24]. The considered wave conditions were generated
using the JONSWAP spectrum, which is shown in Figure 6. These included a significant
wave height of 1.88 m, a peak period of 8.8 s, a wave direction of 180 degrees, and a peak
parameter of 2.5, all of which are commonly seen in South Korea.
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The total resistance of the K-GTB at three different ship speeds is shown in Figure 7,
including means and standard deviations. The fluctuation range due to waves was rela-
tively large compared to its resistance in calm water. It was confirmed that the greatest
resistance achieved was 270 kN. In the case of the average value, it was confirmed that as
the speed increased, a second-order polynomial level was reached. The above results were
obtained via the three-dimensional Rankin source method, and are more realistic than the
empirical-based estimates. In the future, the time series of these loads will be used as input
values for eco-friendly marine fuel system evaluation in the ocean environment.
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Considering the above, the total propulsion power of the K-GTB was set to around
2 MW, to allow it to handle the required propulsion load while operating at a speed of at
least 10 knots along the coast of Korea. Afterwards, considering the inner ship space for
equipment and the maintainability of the propulsion system, including the PM motor, it
was finally decided to install two 1.1 MW PM motors. The K-GTB is expected to be able to
achieve a speed of more than 10 knots at 2.2 MW propulsion, even in actual sea operation.

When ammonia or hydrogen fuel is used as fuel for demonstration fuel cells or internal
combustion engines, it may be necessary to increase the size of the storage tank due to
these fuels’ low energy storage density. In preparation for this, we installed a fuel tank for
demonstration purposes separately on the open-air deck of the K-GTB, to secure sufficient
space for safety reasons [25].
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4. Marine Demonstration by Load Sharing of Propulsion Power

A hybrid propulsion system that transfers the power generated by two LNG dual-fuel
(DF) main generators to two 1.1 MW-class permanent motors (PMs) through a direct current
(DC) switchboard was installed in the K-GTB. A DC switchboard was used because it is
easy to connect to various propulsion power sources, such as MW-class batteries, fuel cells,
and carbon-free fuel hybrid engines, for demonstration. During K-GTB operation, the LNG
DF main generator and the alternative fuels to be demonstrated share the propulsion load,
enabling the evaluation of various operational profiles.

For example, in the case of MW-class marine battery evaluation, the battery during K-
GTB operation is evaluated by increasing the output load shared by one LNG DF generator,
from 0 to 100%. The battery system is then assessed for its performance, reliability, and
safety under the required charging and discharging conditions, and data related to the
shipboard demonstration are secured.

In the future, a separate measurement device for verifying NOx, SO2/CO2 ratio, and
CO2 emissions will be added; however, for this study, the value calculated based on the fuel
consumption of the DF main generator, with the use of eco-friendly alternative fuel, was
compared with the measured value. The greenhouse gas reduction effect can be calculated
or measured by considering the use of alternative fuels and the amount of fossil fuels
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used. After securing objectivity through third-party verification, the verification results are
reflected in the Energetic Efficiency Design Index (EEDI) and the Energy Efficiency Existing
Ship Index (EEXI) formulas.

The K-GTB was designed to enable simultaneous installation of three types of MW-
class batteries, fuel cells, and carbon-free fuel mixed engines, as well as the simultaneous
demonstration of two or more types of propulsion power sources. The alternative fuel
loading area was designed according to the relevant rules of the classification society, and
was equipped with an emergency response system (or damage control system), which is an
expanded alarm, monitoring, and fire protection system designed to respond to accidents
that may occur during the demonstration process [26].

The bus voltage of the main switchboard equipped on the K-GTB was designed to
operate at DC 1000 V. This is in consideration of the scalability constraints of the existing
DC 750 V system, the construction cost, and the difficulty in obtaining the appropriate
components when configuring a system with more than 1000 volts (V). LNG DF generators
are reflected as two alternating currents: (AC) 690 V and 1596 kW. These were configured
to drive two 1100 kW-class propulsion motors, without the involvement of a separate
alternative-fuel-based propulsion power source, for demonstration at a speed of 10 knots or
more in actual sea conditions. For port entry and departure support, one bow thruster with
a capacity of 550 kW was installed in the bow section. Figure 8 shows the configuration of
the K-GTB’s propulsion system for the DC-switchboard-based electric load sharing design.
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In the K-GTB, marine batteries can achieve up to 2000 kW at 770~900 V DC. The fuel
cell can achieve up to 1000 kW at 790~900 V DC. The carbon-free hybrid engine can achieve
up to 2000 kW at 790~690 V DC. As shown in Table 4, the voltage of the generator on board
was finally set at 690 V, after considering the advantages and disadvantages of 450 V and
690 V.

Table 4. K-GTB verifiable battery, fuel cell, and internal combustion engine specifications.

450 V 2000 kW 690 V 2000 kW

� Required current is approximately
3200 ampere (A) at 450 V PF0.8;

� Requires four Fl13 modules;
� Increase in size and cost of

main switchboard;
� A 1692 kW capacity is possible when four

Fl13 modules are applied.

� Required current is approximately 2091 A
based on 690 V PF0.8;

� Requires three Fl13 modules;
� Cable savings due to reduced

current capacity;
� A 1692 kW capacity is possible when

three Fl13 modules are applied.

The K-GTB’s propulsion load sharing specifications were set as follows. The connected
DC guards, No. 1 bus bar, and No. 2 bus bar were charged, and operated the power grid.
Supplying power in the single or parallel mode with No. 1 generator (Gen. 1) and No. 2
generator (Gen. 2) was considered as the base mode. The interval for the best efficiency
for Gen. 1 and Gen. 2 was established as 70~90 % of the rated output. Achieving a
high efficiency of the alternative fuel power source, the eco-friendly power source (EFPS),
depends on the conditions of the test and the test subject. The operating section of the
EFPS, subject to verification, depends on the conditions of the test and the test subject. In
considering the main bus connection situation of multiple EFPSs, the provision of power to
the main bus with only the EFPS was prohibited.

The operation mode is divided into two types: the base mode in which only Gen. 1
and Gen. 2 are operated as propulsion power sources, and the test mode, in which the
EFPS is operated as well (preparation, status transition, and EFPS operation modes).

When converting from the base mode to the test mode, a preparation step (test prepa-
ration) is performed, to ensure safety and smooth switching between modes. Table 5 shows
the operating modes, and Figure 9 shows the process of switching between modes.

Table 5. Propulsion system operation mode of the K-GTB.

Operation Mode Description Operable PMS Mode

[M1] base mode
In the case of operating Gen. 1
and/or Gen. 2 with main bus

power supply

Single running
Parallel running

[M2] status
transition mode

A transition step during the EFPS
test or after the test that changes the
operation mode, checking the status

and moving the load

Single running
Parallel running

[M3] EFPS mode

Gen. 1/Gen. 2 is responsible for the
minimum load required for the bus
bar, and EFPS operates according to

the load required for
the demonstration

Parallel running

Figure 10 shows the diagram of the propulsion system configuration which manages
power for the K-GTB. Gen. 1 and Gen. 2 operate alone or in parallel, and both supply
power to the K-GTB. Figure 10a shows Gen. 1 as a single operation mode with Gen. 2 in a
standby state. Figure 10b shows Gen. 2 as a single operation mode with Gen. 1 in a standby
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state. Figure 10c shows Gen. 1 and Gen. 2 in parallel operation. Symmetric mode, asymmetric
mode, and fixed mode were considered for PMS modes available in parallel operation.
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The power operation mode is divided into a single mode that uses only the main
generator, and a parallel mode that receives power from alternative fuel for demonstration.
During operation for marine demonstration, each mode can be transitioned into the other.

Setting the status transition mode to enter the EFPS mode from the base mode can be
performed as follows.

• Preprocess
※ It is mandatory to input operation-related information for the EFPS and check the
connection of the target.

• Step 1: Gen. 1(2) minimum load condition set up
Gen. 1(2) switch to a single running state and proceed with load reducing:
{Gen. 1(2) load target level = Gen. 1(2) minimum load + EFPS minimum required load}
. . . (Equation (1)).

• Step 2: EFPS preparation
EFPS start-up and preparation: EFPS is ready to connect.

• Step 3: Status check (Always)
Check for alarms or warnings and take action when necessary:

(i) Switch to base mode in the case of alarm/emergency with flag.
(ii) Wait for user response when alert occurs with flag.

• Step 4: Waiting for operator confirmation
Wait for the operator to accept entry into EFPS mode, and continuously check for
alarms and warnings. Operator help pop-up.

• END of mode change from base to EFPS mode.
Next, set the status transition mode to return to base mode from EFPS mode via the
following steps.

• Step 1: EFPS load removal
Cut off the connected load so that the load added to the EFPS for the test reaches the
EFPS minimum required load (※ can be achieved according to Gen. 1(2) operation
method).

• Step 2: EFPS disconnect
Block the EFPS and let Gen. 1(2) take the remaining load:
Gen. 1(2) residual load capacity > EFPS remain load . . . (Equation (2)).

• Step 3: Status check (Always)
Check for alarms or warnings and take action when necessary:

(i) Switch to base mode in the case of alarm/emergency with flag.
(ii) Wait for user response when alert occurs with flag.

• Step 4: Waiting for operator confirmation
Wait for the operator to accept entry into EFPS mode and continuously check for
alarms and warnings.

• END of mode change from EFPS to base mode.

Figure 11 shows the load change process between base mode and EFPS mode.
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Figure 12 shows the DC switchboard system and the energy management system from
the above system design results.
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5. Institutional Considerations

To date, R.O. Korea has no rules for type approval, or related laws for propulsion
systems that can change the propulsion power source during operation. Therefore, a tempo-
rary exemption from related laws and regulations is required for the marine demonstration
of eco-friendly alternative fuel and electric propulsion system components, through the
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configuration and utilization of the proposed propulsion system. It is necessary to promote
the marine demonstration of developed eco-friendly technologies, secure track records,
and promote commercialization. It is possible to secure a verified empirical data technical
background for enactment and revision of domestic and international laws.

6. Concluding Remarks

For the development and commercialization of technology designed in response to
the IMO’s GHG regulations, it is critical to verify the performance, reliability, and safety
of new equipment through marine demonstration and to secure track records. On the
other hand, the time and cost required for the design, construction, and operation of
demonstration vessels is a heavy burden, not only for developing countries, but also for
organizations and companies in developed countries. The K-GTB proposed in this study
is a marine demonstration vessel that can be used for the development of eco-friendly
technologies, with minimum burden of time and cost. The K-GTB is also designed to
facilitate international joint research, the dissemination of marine carbon-neutral technology,
and information sharing from a model basin test period to real ship operation. In this
study, a model test was conducted based on the initial specifications of the K-GTB, and
the main propulsion output was set after examining the fluctuation range of the required
propulsion power for real sea operation. The main generator and the alternative fuel
propulsion power source were designed to share the load required for K-GTB propulsion,
using a 1000 V D/C switchboard. The basic design of the K-GTB has been completed, and
construction has been in progress since September 2022. The K-GTB is expected to be ready
for commercialization in 2025 after a launch in 2024, and is expected to serve as a tool for
the realization of marine carbon neutrality. Various technologies designed to meet GHG
regulations can be tested, evaluated, and demonstrated with the K-GTB, before application
for next-generation eco-friendly ship design.

Author Contributions: Conceptualization, H.J.K.; methodology, Y.H.K., H.S., D.H. and H.J.K.; soft-
ware, Y.H.K.; validation, J.-P.H. and D.H.; writing—original draft preparation, H.S. and H.J.K.;
writing—review and editing, H.J.K. All authors have read and agreed to the published version of the
manuscript.

Funding: This study was supported by a grant from the National R&D Project “Development of
1 MW class Marine Test-bed for Adoptability Demonstration of Alternative Fuels” funded by the
Ministry of Oceans and Fisheries of Korea [1525012293/PMS5560].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: As authors, we would like to express our sincere gratitude to the support from
the Ministry of Oceans and Fisheries, Republic of Korea. Authors would also like to thank KTE
Corporation for their contribution to the research and development work, as well as their support for
the writing of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IMO(MEPC72). “Resolution MEPC.304(72).” Initial IMO Strategy on Reductin of GHG Emissions from Ships. Available

online: https://www.imo.org/en/OurWork/Environment/Pages/Index-of-MEPC-Resolutions-and-Guidelines-related-to-
MARPOL-Annex-VI.aspx (accessed on 4 January 2023).

2. IMO(MARPOL). Annex VI, Regulation 22A IMO (MEPC72). “Resolution MEPC.304(72).” Initial IMO Strategy on Reductin
of GHG Emissions from Ships. 2018. Available online: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/
IndexofIMOResolutions/MEPCDocuments/MEPC.304(72).pdf (accessed on 4 January 2023).
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