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Abstract: Marine life has proved to be an invaluable source of new compounds with significant
bioactivities, such as xanthones. This review summarizes the advances made in the study of marine-
derived xanthones from 2010 to 2021, from isolation towards synthesis, highlighting their biological
activities. Most of these compounds were isolated from marine-derived fungi, found in marine
sediments, and associated with other aquatic organisms (sponge and jellyfish). Once isolated,
xanthones have been assessed for different bioactivities, such as antibacterial, antifungal, and cytotoxic
properties. In the latter case, promising results have been demonstrated. Considering the significant
bioactivities showed by xanthones, efforts have been made to synthesize these compounds, like
yicathins B and C and the secalonic acid D, through total synthesis.
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1. Introduction

Xanthones are considered polyketide derivatives due to their biosynthetic precursor.
They are aromatic oxygenated heterocyclic compounds with a dibenzo-γ-pyrone scaffold,
known as 9H-xanthen-9-one (Figure 1) [1]. This molecule can accommodate various sub-
stituents at different positions [2], making xanthones recognized as privileged scaffolds in
searching for new drugs [1,3].
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1. Introduction 
Xanthones are considered polyketide derivatives due to their biosynthetic precursor. 

They are aromatic oxygenated heterocyclic compounds with a dibenzo-γ-pyrone scaffold, 
known as 9H-xanthen-9-one (Figure 1) [1]. This molecule can accommodate various 
substituents at different positions [2], making xanthones recognized as privileged 
scaffolds in searching for new drugs [1,3]. 
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Figure 1. Xanthone (9H-xanthen-9-one) core structure. 

Xanthones are widely distributed in nature in higher plants, lichens, and fungi from 
terrestrial origins [4–9]. In addition, the marine environment, the least explored area of 
this planet, has also proven to be an invaluable source [10,11]. Many xanthones have been 
isolated from marine-derived fungi [10–40], which can be found in marine sediments and 
associated with other marine organisms [12–40]. Marine environments, such as 
temperature, salinity, and pressure, to which marine organisms are subject, sometimes 
force them to develop unique defenses against the conditions in which they live [41,42]. 
These unique defenses can lead to the biosynthesis of new secondary metabolites, 
different from those synthesized by terrestrial sources [41]. The chemically 
different/unique structures allow xanthones to have important biological activities, such 
as cytotoxic [12,15–17,21–23,27,32,37,43], antibacterial [12,16–20,22,26,29,30,35,36,39], and 
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Figure 1. Xanthone (9H-xanthen-9-one) core structure.

Xanthones are widely distributed in nature in higher plants, lichens, and fungi from
terrestrial origins [4–9]. In addition, the marine environment, the least explored area of this
planet, has also proven to be an invaluable source [10,11]. Many xanthones have been isolated
from marine-derived fungi [10–40], which can be found in marine sediments and associated
with other marine organisms [12–40]. Marine environments, such as temperature, salinity, and
pressure, to which marine organisms are subject, sometimes force them to develop unique
defenses against the conditions in which they live [41,42]. These unique defenses can lead to
the biosynthesis of new secondary metabolites, different from those synthesized by terrestrial
sources [41]. The chemically different/unique structures allow xanthones to have important
biological activities, such as cytotoxic [12,15–17,21–23,27,32,37,43], antibacterial [12,16–20,22,
26,29,30,35,36,39], and antifungal [20,22,33,40] activities, giving them great potential as
natural products with medicinal value [1].
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Therefore, the chemical uniqueness of marine-derived xanthones and the significant
bioactivities support the idea that the marine environment could be a valuable source of
new hits, leads, and drugs [44]. However, access to some marine natural products may be
difficult, and in some cases, isolation may yield small amounts of compounds [45]. Different
techniques have been applied to increase the availability of the new natural compounds,
which can be produced by bacteria or yeasts, or through a chemical approach, such as
laboratory synthesis [45]. Synthetic routes can help to overcome supply problems, but it is
also very important since it allows the preparation of structures with different substitution
patterns relative to those provided by nature, which rise to the opportunity to generate new
bioactive agents [46–48]. Bioinspiration is very useful in medicinal chemistry as it allows
the selection of molecular structures to be used as scaffolds and the strategy to follow for
molecular transformations [2].

This review highlights the marine xanthones isolated from 2010 to 2021, emphasizing the
ones isolated for the first time in this period and highlighting the most prominent bioactivities
presented by the isolated compounds. Finally, the synthetic pathways used for the total
synthesis of essential xanthones, such as yicathins B, C, and secalonic acid D, are presented.

2. New Marine Xanthones Isolated since 2010

Under the period covered by this review, several studies were carried out to iden-
tify biologically active marine compounds, of which the xanthones stand out. Around
100 xanthones were isolated, from which 51 are considered new natural compounds.

Nowadays, the isolation of xanthone derivatives from marine sources usually involves
fermentation to increase the compound′s final amount. Fermentation involves putting the
fungi in a culture broth, which comprises all the nutrients, such as glucose, iron phosphate,
calcium carbonate, malt extract, and controlled pH [21,26], necessary for its growth. The du-
ration of fermentation can be variable but usually involve several days, at least 14 days and
the highest 45 days [14,17]. Then, the cultured broth is filtered and extracted, most often,
with EtOAc. This extract is subjected to a vacuum liquid chromatography over a silica gel
column [15,16,21,23], flash chromatography [19] or, most commonly, to normal column chro-
matography (CC) [14,17,18,20,22], originating different fractions, which can be subjected to
analysis by HPLC or TLC, obtaining sub-fractions, or be directly purified to obtain pure
compounds. Most of the xanthones herein referred to were obtained after semi-preparative
HPLC purifications of these sub-fractions. Naturally, the eluents and gradients used differ
depending on the extracts/fractions being analyzed. The most common eluents used are
organic solvents mixtures, such as n-hexane/CH2Cl2/MeOH [16], n-hexane/EtOAc [15],
CH2Cl2/MeOH [15,18,20,21,23], gradient of petroleum ether/EtOAc [14,17,18], but mix-
tures of H2O/MeOH can also be used successfully [19].

The new xanthone derivatives isolated include simple ones (Figure 2), mainly iso-
lated from marine-derived fungi found in marine sediments [15,18,20,31–36,46–49]. These
xanthones are usually highly substituted, with different substituent patterns being the
substituents found to be essential for four types; hydroxy, methoxy, methyl, and methoxy-
carbonyl groups. It seems that the methoxy group is not common in bioactive marine
xanthones [50], but yicathins B (3) and C (4) (Figure 2), which were recently prepared by
total synthesis [51], present such a group at C-8. Other examples include xanthones bearing
a 6-methoxy group (2) and (6) and 7-methoxy group (13) and (15) (Figure 2). On the other
hand, marine xanthones (14) and (16) present two methoxy groups, respectively, at C-3 and
C-7 and at C-2 and C-7 (Figure 2).
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Figure 2. Marine xanthones with simple structures isolated for the first time from 2010 to 2021. 

Figure 2. Marine xanthones with simple structures isolated for the first time from 2010 to 2021.

The more complex xanthones isolated during the covered period are depicted in
Figure 3 and present the xanthone skeleton fused with other rings. The most interesting
examples include (2S,3aS,12cS)-8-hydroxy-2,6-dimethoxy-1,2,3a,12c-tetrahydro-7H-furo
[3′,2′:4,5] furo [2,3-c] xanthen-7-one (18), isolated from the marine fungus Aspergillus versi-
color and named oxisterigmatocystin D due to its similarity with the known oxisterigmato-
cystin C [37]. Although the similarities with oxisterigmatocystin C and other isomers were
previously isolated, the authors established the stereogenic centers′ configurations and
demonstrated that oxisterigmatocystin D is a new natural compound [37]. Compound (19),
named monacyclione G, is another example isolated from Streptomyces sp. HDN15129 [21].
Its stereochemistry was confirmed by the NMR data mainly through the correlations found
in HMBC [21] and was established as depicted in Figure 3.



Mar. Drugs 2022, 20, 347 4 of 20Mar. Drugs 2022, 20, x 5 of 22 
 

 

 

Mar. Drugs 2022, 20, x 6 of 22 
 

 

 
Figure 3. Marine xanthones with more complex structures isolated for the first time from 2010 to 2021. 

Figure 3. Marine xanthones with more complex structures isolated for the first time from 2010
to 2021.

The most prevalent nucleus in these new marine xanthones is the 11-hydroxy-5-methyl-
2-(prop-1-en-2-yl)-2,3-dihydropyrano [3,2-a]xanthen-12(1H)-one, found in fourteen of the
twenty-one new derivatives (Figure 3). Twelve marine xanthones with this core were
isolated from the fungus Aspergillus sp. ZA-01, respectively, aspergixanthones A-K (20–24
and 26–31) and the 15-acetyltajixanthone hydrate (25) (Figure 3) [14,17]. Varioxiranols F
(37) and G (38) (Figure 3) were isolated from the Emericella variecolor, a fungus associated
with a Cinachyrella sp. Sponge [28].

The aspergixanthones (20–24, 26 and 27) and the 15-acetyltajixanthone hydrate (25)
have a 3-hydroxy-3-methylbutyl moiety at C-8, whereas the remaining aspergixanthones
(28–31) have at the same position a 3-methylbut-3-en-1-yl substituent (Figure 3), in both
cases, hydroxy, methoxy or acetyloxy groups at C-1′ and C-2′ are also present (Figure 3).

The last examples are xanthone derivatives bearing a 1,7,8,10-tetrahydroxy-11-methoxy-
5,6-dihydro-9H-naphtho [2,1-c]xanthen-9-one (32, 33) and a 1,9,14-trihydroxy-5,6-dihydro-
8H-naphtho [2,1-b]xanthen-8-one nucleus (34–36) (Figure 3). Buanmycin (34) was extracted
from a marine Streptomyces cyaneus [52], and the remaining examples, citreamicin θ A (32),
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citreamicin θ B (33), citreaglycon A (36), and dehydrocitreaglycon A (35), were isolated
from Streptomyces caelestis [19].

In the last years, complex tetrahydroxanthone derivatives were also isolated
(Figure 4) [23,26,27,40]. Compounds (39–44), named versixanthones A-F, were isolated from
the fungus Aspergillus versicolor HDN1009 [27]. Compounds (45, 46) were isolated from the
fungus Engyodontium album strain LF069 [26] and the Tritirachium sp. SpB081112MEf2 a
marine sponge fungus [40]. Finally, compounds (47–51) were also isolated from the fungus
Aspergillus versicolor HDN1009 [23].
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Figure 4. Marine tetrahydroxanthones isolated for the first time from 2010 to 2021. 

Figure 4. Marine tetrahydroxanthones isolated for the first time from 2010 to 2021.

Versixanthones A–F have a methyl (3R,4S,4aS)-1,4,8-trihydroxy-3-methyl-9-oxo-2,3,4,9-
tetrahydro-4aH-xanthene-4a-carboxylate moiety linked to a methyl (2′R,2”S,3”S)-5-hydroxy-
2-(3-methyl-5-oxotetrahydrofuran-2-yl)-4-chromanone-2-carboxylate (39, 41–43) and methyl
(2′R,1”R,2”S)-5-hydroxy-2-(1-hydroxy-4-methoxy-2-methyl-4-oxobutyl)-4-chromanone-
2-carboxylate (40, 44). The main differences are the linkage between the two moieties since
the authors establish the stereocenter configurations as equal in all isomers (Figure 4) [27].
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Compounds (45, 46) represent two diastereomers fully characterized by Wu et al.
in 2016 [26], although the isomers JBIR-99 (45a) and JBIR-97/98 (46a) were previously
isolated by Ueda et al. in 2010 [40]. The absolute configuration of these isomers and the
engyodontochone A (46b) and B (45b) was established using NMR experiments and is
depicted in Figure 4 [26].

Our final examples are the dimeric tetrahydroxanthones (47–51) isolated from the
fungus Aspergillus versicolor HDN1009 and named versixanthones G-K (Figure 4) [23]. The
structure depicted in Figure 4, including the absolute configuration, was established using
NMR experiments.

3. Bioactivities Presented by Marine Xanthones

Recognizing the drug potential of xanthone derivatives, several new isolated members
were subjected to biological evaluations, in some cases with exciting results. The results
are presented and critically discussed [1–3]. Although we could find some antifungal
activity evaluations, their cytotoxicity and antibacterial potential are the compounds′ most
common assessments. For example, compound (1) isolated from mangrove fungi, strains nº
K38 and E33 [33], is reported to present inhibitory activity of the fungi Gloeasporium musae,
Blumeria graminearum, Fusarium oxysporum, Peronophthora cichoralearum, and Colletotrichum
glocosporioides [33]. In particular, the fungi Gloeasporium musae (rate of inhibition 53%) and
Peronophthora cichoralearum (rate of inhibition 48%); however, the authors reported the use
of a negative control but not a positive one, so it is difficult to establish the compound
potential [33]. Compounds (2–4), isolated from Aspergillus wentii pt-1 found in the marine
red alga Gymnogongrus flabelliformi and named yicathin A-C, were also evaluated for their
ability to inhibit the fungi Colletotrichum lagenarium, Fusarium oxysporum, as well as the
bacteria Escherichia coli and Staphylococcus aureus. Unfortunately, the data are incomplete,
which limits conclusions regarding the potential of compounds (2–4) [48]. Nevertheless,
it seems that these results motivated the total synthesis of yicathins B (3) and C (4) [51],
which we will discuss in the next section.

The derivatives (45, 46) were evaluated for antifungal activity against Candida al-
bicans and Trichophyton rubrum [26]. Compounds (45a), (45b), (46a), and (46b) demon-
strated activity against T. rubrum with IC50 values (45a 5.3 ± 1.0 µM; 45b 6.0 ± 1.7 µM;
46a 4.1 ± 0.8 µM; 46b 4.3 ± 0.9 µM), which were higher than the positive control (clotri-
mazol IC50 0.16 ± 0.03 µM) [26]. Compounds (45a), (45b), (46a), and (46b) were also
evaluated for antibacterial activity against clinically relevant bacteria, Staphylococcus epider-
midis, Staphylococcus aureus, and Propionibacterium acnes. In this case, the results obtained
with S. epidermidis and S. aureus are, for all compounds, lower than the positive control
(Table 1) and indicate some drug potential. Furthermore, these compounds (45a, 45b,
46a, and 46b) also inhibited the growth of mouse fibroblast cell line NIH 3T3 with IC50
similar to the positive control (Table 1) [26]. Some of these compounds were also evaluated
against human cervical carcinoma HeLa cells and human malignant pleural mesothelioma
ACC-MESO-1. Unfortunately, the reported values do not have an associated error, and the
IC50 value of the positive control is not reported [40].

Compound (8), 1,4,7-trihydroxy-6-methylxanthone, isolated from marine fungus Ta-
laromyces islandicus EN-501, which is found in red alga Laurencia okamurai, is another
example that was evaluated against several bacterial strains (Table 1) [35]. The obtained
values suggest some activity, although much higher than the positive control; moreover,
the compound (8) antioxidant was also assessed. A potent ability to scavenge the DPPH
and ABTS radicals was observed, respectively, IC50 6.92 µg/mL and 2.35 µg/mL. In this
case, the values are lower than the positive control, respectively, BHT (IC50 16.27 µg/mL)
and ascorbic acid (IC50 3.01 µg/mL), but we should highlight that the authors do not report
the value error indicating that only one analysis was performed [35].
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Table 1. Summary of the biological evaluations results.

Compound Source Antibacterial (Positive Control
Value) Cytotoxic (Positive Control Value)

JBIR-99 (45a)

marine sponge-derived fungus
Tritirachium sp. Sp081112MEf2 and
marine fungus Engyodontium album
Strain LF069

Staphylococcus epidermidis IC50 0.21
± 0.09 µM (chloramphenicol IC50
1.8 ± 0.04 µM)
Staphylococcus aureus IC50 0.25 ±
0.07 µM (chloramphenicol IC50
2.9 ± 0.5 µM)

NIH 3T3 IC50 13.2 ± 2.7 µM
(amoxifen citrate IC50 16.5 ± 0.2 µM)

Engyodontochone B (45b) marine fungus Engyodontium album
Strain LF069

Staphylococcus epidermidis IC50 0.22
± 0.03 µM (chloramphenicol IC50
1.8 ± 0.04 µM)
Staphylococcus aureus IC50 0.24 ±
0.04 µM (chloramphenicol IC50
2.9 ± 0.5 µM)

NIH 3T3 IC50 14.4 ± 2.6 µM
(amoxifen citrate IC50 16.5 ± 0.2 µM)

JBIR-97/98 (46a)

marine sponge-derived fungus
Tritirachium sp. Sp081112MEf2 and
marine fungus Engyodontium album
Strain LF069

Staphylococcus epidermidis IC50 0.20
± 0.04 µM (chloramphenicol IC50
1.8 ± 0.04 µM)
Staphylococcus aureus IC50
0.19 ± 0.02 µM (chloramphenicol
IC50 2.9 ± 0.5 µM)

NIH 3T3 IC50 14.0 ± 1.1 µM
(amoxifen citrate IC50 16.5 ± 0.2 µM)

Engyodontochone A
(46b)

marine fungus Engyodontium album
Strain LF069

Staphylococcus epidermidis IC50
0.19 ± 0.04 µM (chloramphenicol
IC50 1.8 ± 0.04 µM)
Staphylococcus aureus IC50
0.17 ± 0.02 µM (chloramphenicol
IC50 2.9 ± 0.5 µM)

NIH 3T3 IC50 11.0 ± 1.6 µM
(amoxifen citrate IC50 16.5 ± 0.2 µM)

Compound (8)
marine fungus Talaromyces islandicus
EN-501 found in red alga Laurencia
okamurai

Escherichia coli MIC 32 µg/mL
(chloramphenicol MIC 1 µg/mL)
Pseudomonas aeruginosa MIC 32
µg/mL (chloramphenicol MIC
4 µg/mL)
Staphylococcus aureus MIC > 64
µg/mL (chloramphenicol MIC
2 µg/mL)
Vibrio alginolyticus MIC 32 µg/mL
(chloramphenicol MIC 0.5 µg/mL)
Vibrio harveyi MIC 32 µg/mL
(chloramphenicol MIC 2 µg/mL)
Vibrio parahaemolyticus MIC 32
µg/mL (chloramphenicol MIC
2 µg/mL)

Aspergixanthone A (20) marine fungus Aspergillus sp. ZA-01

Micrococcus lysodeikticus
Bacillus anthraci
Salmonella typhi
Enterobacter aerogenes

MDA-MB-231 IC50 > 10.0 µM
(cisplatin IC50 1.3 µM)
MCF-7 IC50 > 10.0 µM (cisplatin IC50
0.97 µM)
MGC-803 IC50 > 10.0 µM (cisplatin
IC50 1.1 µM)
HeLa IC50 > 10.0 µM (cisplatin IC50
0.82 µM)
A-549 IC50 1.80 µM
(cisplatin IC50 0.74 µM)

Aspergixanthone B (21) marine fungus Aspergillus sp. ZA-01

Micrococcus lysodeikticus
Bacillus anthraci
Salmonella typhi
Enterobacter aerogenes

MDA-MB-231 IC50 > 10.0 µM
(cisplatin IC50 1.3 µM)
MCF-7 IC50 > 10.0 µM (cisplatin IC50
0.97 µM)
MGC-803 IC50 > 10.0 µM (cisplatin
IC50 1.1 µM)
HeLa IC50 > 10.0 µM (cisplatin IC50
0.82 µM)
A-549 IC50 >10.0 µM (cisplatin IC50
0.74 µM)
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Table 1. Cont.

Compound Source Antibacterial (Positive Control
Value) Cytotoxic (Positive Control Value)

Aspergixanthone C (22) marine fungus Aspergillus sp. ZA-01

Micrococcus lysodeikticus
Bacillus anthraci
Salmonella typhi
Enterobacter aerogenes

MDA-MB-231 IC50 3.3 µM (cisplatin
IC50 1.3 µM)
MCF-7 IC50 2.8 µM (cisplatin IC50
0.97 µM)
MGC-803 IC50 3.6 µM (cisplatin IC50
1.1 µM)
HeLa IC50 2.9 µM (cisplatin IC50
0.82 µM)
A-549 IC50 3.2 µM (cisplatin IC50
0.74 µM)

Aspergixanthone E (23) marine fungus Aspergillus sp. ZA-01

Micrococcus lysodeikticus
Bacillus anthraci
Salmonella typhi
Enterobacter aerogenes

MDA-MB-231 IC50 > 10.0 µM
(cisplatin IC50 1.3 µM)
MCF-7 IC50 > 10.0 µM (cisplatin IC50
0.97 µM)
MGC-803 IC50 > 10.0 µM (cisplatin
IC50 1.1 µM)
HeLa IC50 > 10.0 µM (cisplatin IC50
0.82 µM)
A-549 IC50 > 10.0 µM (cisplatin IC50
0.74 µM)

Aspergixanthone F (24) marine fungus Aspergillus sp. ZA-01

Micrococcus lysodeikticus
Bacillus anthraci
Salmonella typhi
Enterobacter aerogenes

MDA-MB-231 IC50 9.8 µM (cisplatin
IC50 1.3 µM)
MCF-7 IC50 2.7 µM (cisplatin IC50
0.97 µM)
MGC-803 IC50 3.6 µM (cisplatin IC50
1.1 µM)
HeLa IC50 1.7 µM (cisplatin IC50
0.82 µM)
A-549 IC50 1.1 µM (cisplatin IC50
0.74 µM)

Aspergixanthone D (26) marine fungus Aspergillus sp. ZA-01

Micrococcus lysodeikticus
Bacillus anthraci
Salmonella typhi
Enterobacter aerogenes

MDA-MB-231 IC50 > 10.0 µM
(cisplatin IC50 1.3 µM)
MCF-7 IC50 > 10.0 µM (cisplatin IC50
0.97 µM)
MGC-803 IC50 > 10.0 µM (cisplatin
IC50 1.1 µM)
HeLa IC50 > 10.0 µM (cisplatin IC50
0.82 µM)
A-549 IC50 > 10.0 µM (cisplatin IC50
0.74 µM)

Aspergixanthone G (28) marine fungus Aspergillus sp. ZA-01

Micrococcus lysodeikticus MIC
0.78 µg/mL
Bacillus anthraci MIC 12.5 µg/mL
Salmonella typhi MIC 6.13 µg/mL
Enterobacter aerogenes MIC
6.13 µg/mL

MDA-MB-231 IC50 > 10.0 µM
(cisplatin IC50 1.3 µM)
MCF-7 IC50 > 10.0 µM (cisplatin IC50
0.97 µM)
MGC-803 IC50 > 10.0 µM (cisplatin
IC50 1.1 µM)
HeLa IC50 > 10.0 µM (cisplatin IC50
0.82 µM)
A-549 IC50 > 10.0 µM (cisplatin IC50
0.74 µM)
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Table 1. Cont.

Compound Source Antibacterial (Positive Control
Value) Cytotoxic (Positive Control Value)

Aspergixanthone H (29) marine fungus Aspergillus sp. ZA-01

Micrococcus lysodeikticus MIC
6.13 µg/mL
Bacillus anthraci MIC 12.5 µg/mL
Salmonella typhi MIC 6.13 µg/mL
Enterobacter aerogenes MIC
6.13 µg/mL

MDA-MB-231 IC50 > 10.0 µM
(cisplatin IC50 1.3 µM)
MCF-7 IC50 > 10.0 µM (cisplatin IC50
0.97 µM)
MGC-803 IC50 > 10.0 µM (cisplatin
IC50 1.1 µM)
HeLa IC50 > 10.0 µM (cisplatin IC50
0.82 µM)
A-549 IC50 > 10.0 µM (cisplatin IC50
0.74 µM)

Aspergixanthone I (27) marine fungus Aspergillus sp. ZA-01

Vibrio anguillarum MIC 1.56 µM
(ciprofloxacin MIC 0.312 µM)
Vibrio parahemolyticus MIC 1.56 µM
(ciprofloxacin MIC 0.078 µM)
Vibrio alginolyticus MIC 3.12 µM
(ciprofloxacin MIC 0.625 µM)

Aspergixanthone J (30) marine fungus Aspergillus sp. ZA-01

Vibrio anguillarum MIC 6.25 µM
(ciprofloxacin MIC 0.312 µM)
Vibrio parahemolyticus MIC 25 µM
(ciprofloxacin MIC 0.078 µM)
Vibrio alginolyticus MIC 25 µM
(ciprofloxacin MIC 0.625 µM)

Aspergixanthone K (31) marine fungus Aspergillus sp. ZA-01

Vibrio anguillarum MIC 3.12 µM
(ciprofloxacin MIC 0.312 µM)
Vibrio parahemolyticus MIC 25.0 µM
(ciprofloxacin MIC 0.078 µM)
Vibrio alginolyticus MIC 12.5 µM
(ciprofloxacin MIC 0.625 µM)

Citreamicin θ A (32) marine Streptomyces sp.

Staphylococcus haemolyticus
UST950701-004 MIC 0.5 µg/mL
(penicillin G MIC 0.13 µg/mL,
streptomycin MIC 8.0 µg/mL)
Staphylococcus aureus UST950701-005
MIC 1.0 µg/mL (penicillin G MIC
0.25 µg/mL, streptomycin MIC 8.0
µg/mL)
Bacillus subtillis 769 MIC 0.25 µg/mL
(penicillin G MIC 0.13 µg/mL,
streptomycin MIC 8.0 µg/mL)
Staphylococcus aureus
ATCC43300 MIC 0.25 µg/mL
(penicillin G MIC > 50 µg/mL,
streptomycin MIC > 50 µg/mL)

HeLa IC50 0.055 µg/mL (cisplatin IC50
18.14 µg/mL)

Citreamicin θ B (33) marine Streptomyces sp.

Staphylococcus haemolyticus
UST950701-004 MIC 0.5 µg/mL
(penicillin G MIC 0.13 µg/mL,
streptomycin MIC 8.0 µg/mL)
Staphylococcus aureus UST950701-005
MIC 1.0 µg/mL (penicillin G MIC
0.25 µg/mL, streptomycin MIC 8.0
µg/mL)
Bacillus subtillis 769 MIC 0.25 µg/mL
(penicillin G MIC 0.13 µg/mL,
streptomycin MIC 8.0 µg/mL)
Staphylococcus aureus
ATCC43300 MIC 0.25 µg/mL
(penicillin G MIC > 50 µg/mL,
streptomycin MIC > 50 µg/mL)

HeLa IC50 0.072 µg/mL (cisplatin IC50
18.14 µg/mL)
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Table 1. Cont.

Compound Source Antibacterial (Positive Control
Value) Cytotoxic (Positive Control Value)

Citreaglycon A (35) marine Streptomyces sp.

Staphylococcus haemolyticus
UST950701-004 MIC 8.0 µg/mL
(penicillin G MIC 0.13 µg/mL,
streptomycin MIC 8.0 µg/mL)
Staphylococcus aureus UST950701-005
MIC 16.0 µg/mL (penicillin G MIC
0.25 µg/mL, streptomycin MIC 8.0
µg/mL)
Bacillus subtillis 769 MIC 8.0 µg/mL
(penicillin G MIC 0.13 µg/mL,
streptomycin MIC 8.0 µg/mL)
Staphylococcus aureus
ATCC43300 MIC 8.0 µg/mL
(penicillin G MIC > 50 µg/mL,
streptomycin MIC > 50 µg/mL)

HeLa IC50 > 40 µg/mL (cisplatin IC50
18.14 µg/mL)

Dehydrocitreaglycon A
(36) marine Streptomyces sp.

Staphylococcus haemolyticus
UST950701-004 MIC 8.0 µg/mL
(penicillin G MIC 0.13 µg/mL,
streptomycin MIC 8.0 µg/mL)
Staphylococcus aureus UST950701-005
MIC 16.0 µg/mL (penicillin G MIC
0.25 µg/mL, streptomycin MIC 8.0
µg/mL)
Bacillus subtillis 769 MIC > 50
µg/mL (penicillin G MIC 0.13
µg/mL, streptomycin MIC 8.0
µg/mL)
Staphylococcus aureus
ATCC43300 MIC 0.25 µg/mL
(penicillin G MIC > 50 µg/mL,
streptomycin MIC > 50 µg/mL)

HeLa IC50 > 40 µg/mL (cisplatin IC50
18.14 µg/mL)

Buanmycin (34) marine Streptomyces sp.

Staphylococcus aureus MIC 10.5 µM
(ampicillin MIC 4.5 µM)
Bacillus subtilis MIC 0.7 µM
(ampicillin MIC 1.1 µM)
Kocuria rhizophila MIC 10.5 µM
(ampicillin MIC 0.6 µM)
Salmonella enterica MIC 0.7 µM
(ampicillin MIC 4.5 µM)
Proteus hauseri MIC 21.1 µM
(ampicillin MIC < 0.6 µM)

A-549 IC50 1.7 µM (etoposide IC50 0.8
µM)
HCT-116 IC50 0.9 µM (etoposide IC50
1.9 µM)
SNU-638 IC50 0.8 µM (etoposide IC50
0.5 µM)
K-562 IC50 > 100 µM (etoposide IC50
3.1 µM)
SK-HEP1 IC50 1.9 µM (etoposide IC50
1.1 µM)
MDA-MB-231 IC50 1.2 µM (etoposide
IC50 10.6 µM)

Compound (7) marine fungus Phomopsis sp. (No.
SK7RN3G1)

Hep-2 IC50 8 µg/mL
HepG2 IC50 9 µg/mL

Versixanthone A (39)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 2.6 µM (doxorubicin
hydrochloride IC50 0.02 µM)
K562 IC50 7.1 µM (doxorubicin
hydrochloride IC50 0.3 µM)
A549 IC50 > 50 µM (doxorubicin
hydrochloride IC50 0.2 µM)
H1975 IC50 11.2 µM (doxorubicin
hydrochloride IC50 0.8 µM)
803 IC50 > 50 µM (doxorubicin
hydrochloride IC50 0.2 µM)
HO-8910 IC50 10.1 µM (doxorubicin
hydrochloride IC50 0.5 µM)
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Table 1. Cont.

Compound Source Antibacterial (Positive Control
Value) Cytotoxic (Positive Control Value)

Versixanthone B (40)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 9.9 µM (doxorubicin
hydrochloride IC50 0.02 µM)
A549 IC50 > 50 µM (doxorubicin
hydrochloride IC50 0.2 µM)
H1975 IC50 > 50 µM (doxorubicin
hydrochloride IC50 0.8 µM)
803 IC50 21.6 µM (doxorubicin
hydrochloride IC50 0.2 µM)
HO-8910 IC50 > 50 µM (doxorubicin
hydrochloride IC50 0.5 µM)

Versixanthone C (41)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 7.8 µM (doxorubicin
hydrochloride IC50 0.02 µM)
K562 IC50 18.2 µM (doxorubicin
hydrochloride IC50 0.3 µM)
A549 IC50 > 50 µM (doxorubicin
hydrochloride IC50 0.2 µM)
H1975 IC50 25.6 µM (doxorubicin
hydrochloride IC50 0.8 µM)
HO-8910 IC50 > 50 µM (doxorubicin
hydrochloride IC50 0.5 µM)
HCT-116 IC50 > 50 µM (doxorubicin
hydrochloride IC50 0.2 µM)

Versixanthone D (42)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 3.3 µM (doxorubicin
hydrochloride IC50 0.02 µM)
K562 IC50 9.1 µM (doxorubicin
hydrochloride IC50 0.3 µM)
A549 IC50 12.7 µM (doxorubicin
hydrochloride IC50 0.2 µM)
H1975 IC50 > 50 µM (doxorubicin
hydrochloride IC50 0.8 µM)
803 IC50 9.8 µM (doxorubicin
hydrochloride IC50 0.2 µM)
HO-8910 IC50 13.9 µM (doxorubicin
hydrochloride IC50 0.5 µM)
HCT-116 IC50 6.1 µM (doxorubicin
hydrochloride IC50 0.2 µM)

Versixanthone E (43)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 1.6 µM (doxorubicin
hydrochloride IC50 0.02 µM)
K562 IC50 11.1 µM (doxorubicin
hydrochloride IC50 0.3 µM)
H1975 IC50 2.7 µM (doxorubicin
hydrochloride IC50 0.8 µM)
803 IC50 2.2 µM (doxorubicin
hydrochloride IC50 0.2 µM)
HO-8910 IC50 2.0 µM (doxorubicin
hydrochloride IC50 0.5 µM)

Versixanthone F (44)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 2.7 µM (doxorubicin
hydrochloride IC50 0.02 µM)
K562 IC50 6.7 µM (doxorubicin
hydrochloride IC50 0.3 µM)
A549 IC50 10.6 µM (doxorubicin
hydrochloride IC50 0.2 µM)
HO-8910 IC50 20.8 µM (doxorubicin
hydrochloride IC50 0.5 µM)
HCT-116 IC50 0.7 µM (doxorubicin
hydrochloride IC50 0.2 µM)
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Table 1. Cont.

Compound Source Antibacterial (Positive Control
Value) Cytotoxic (Positive Control Value)

Versixanthone G (47)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 13.4 µM
K562 IC50 20.9 µM
A549 IC50 17.8 µM
H1975 IC50 9.8 µM
MGC803 IC50 4.6 µM
HEK293 IC50 > 50 µM
HO-8910 IC50 9.6 µM
HCT-116 IC50 16.2 µM

Versixanthone H (48)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 6.9 µM
K562 IC50 22.1 µM
A549 IC50 19.2 µM
H1975 IC50 5.3 µM
MGC803 IC50 6.2 µM
HEK293 IC50 > 50 µM
HO-8910 IC50 6.9 µM
HCT-116 IC50 15.2 µM

Versixanthone I (49)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 27.8 µM
K562 IC50 >50 µM
A549 IC50 > 50 µM
H1975 IC50 > 50 µM
HEK293 IC50 > 50 µM
HO-8910 IC50 > 50 µM
HCT-116 IC50 > 50 µM

Versixanthone J (50)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 47.3 µM
K562 IC50 > 50 µM
A549 IC50 > 50 µM
H1975 IC50 > 50 µM
HEK293 IC50 > 50 µM
HO-8910 IC50 > 50 µM
HCT-116 IC50 > 50 µM

Versixanthone K (51)
fungus Aspergillus versicolor
HDN1009 found in soil around a
mangrove

HL-60 IC50 49.5 µM
K562 IC50 > 50 µM
A549 IC50 > 50 µM
H1975 IC50 49.5 µM
MGC803 IC50 > 50 µM
HEK293 IC50 > 50 µM
HO-8910 IC50 > 50 µM
HCT-116 IC50 > 50 µM

IC50 = The concentration causing 50% inhibition of cell survival; MIC = minimum inhibitory concentration;
ACC-MESO-1 = human malignant pleural mesothelioma cell line; A-549, human lung cancer; BEL-7402 = hu-
man hepatocellular carcinoma cell line; C-A120 = doxorubicin-selected derivative ABCC1-overexpressing cell
line; GLC-82 = human lung cancer cell line; H460 = human lung cancer cell line; H1975 = human lung cancer
cell line; HCT-15, human colon cancer; HCT-116 = human colorectal carcinoma cell line; HEK-293 = human
embryonic kidney cell line; HeLa = Human cervical cancer cell line; Hep-2 = Human Epidermoid carcinoma;
HepG2 = Human liver cancer cell line; HL-60 = human leukemia cell line; HO-8910 = human ovarian cancer
cell line; K562 = leukemia cell line; KB = human oral epidermoid carcinoma cell line; KB-3-1 = human epi-
dermoid carcinoma cell line; KBv200 = vincristine-selected derivative ABCB1-overexpressing cell line; MCF-7
= Breast adenocarcinoma cell line; MCF-7/Adr = doxorubicin-selected derivative ABCB1-overexpressing cell
line; MDA-MB-231 = human breast cancer cell line; MGC-803 = Gastric mucinous adenocarcinoma cell line;
NIH-3T3 = mouse fibroblasts cell line; S1 = human colon carcinoma cell line; S1-M1-80 = mitoxantrone-selected
derivative ABCG2-overexpressing cell line; SK-HEP1 = human liver cancer cell line; SK-MEL-2, human skin
cancer; SK-OV-3, human ovarian cancer; SNU-638 = human gastric cancer cell line; XF- 498, human CNS cancer.

The aspergixanthone derivatives (20–24, 26, 28, 29), isolated from marine-derived As-
pergillus sp. ZA-01 were evaluated for their antibacterial and cytotoxic activities
(Table 1) [17]; unfortunately, there is no evidence that replicates were performed, and
the positive control used in the antibacterial activity result was not reported. So, although
some derivatives show an interesting ability to inhibit some of the tested cell lines, it is
clear that additional studies are essential. The other aspergixanthone derivatives (27, 30,
31) were evaluated against the three Vibrio species, and again it seems that the authors
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performed just one analysis; nevertheless, the positive control result was reported, which
allows some comparisons [14].

The compounds (32, 33, 35, 36) were isolated from marine-derived Streptomyces sp.
and were tested against Bacillus subtillis 769, Staphylococcus haemolyticus UST950701-004,
Staphylococcus aureus UST950701-005, and Staphylococcus aureus ATCC 43300. The diastere-
omers (32, 33) showed similar antibacterial activity against these four strains. Compounds
(35, 36) also displayed similar biological activity, although compound (36) revealed no
activity against S. aureus ATCC 43300. In general, the values are higher than the positive
control penicillin G but similar to the streptomycin value (Table 1) [19]. Therefore, com-
pounds (32, 33) exhibited much stronger antibacterial activity than compounds (35, 36),
suggesting that the presence of the five-membered nitrogen heterocycle is essential for
the activity. These compounds were also tested for their cytotoxicity against HeLa cells,
and again, compounds (32, 33) show significant cytotoxic activity, much higher than the
positive control, whereas compounds (35, 36) did not demonstrate the capacity to inhibit
the cancer cells in lower concentrations (Table 1) [19].

Our final example of compounds tested for their antibacterial activity is buanmycin
(34), which was tested against Gram-positive and Gram-negative bacteria (Table 1) [52].
The results revealed that buanmycin (34) showed strong inhibition of S. enterica, compared
with the positive control (Table 1), indicating its drug potential to treat salmonellosis.
Additionally, buanmycin (34) exhibited potent cytotoxicity against colorectal carcinoma
cells (HCT-116), breast cancer cells (MDA-MB231), and gastric carcinoma cells (SNU-638)
with IC50 values, lower or similar to the ones displayed by the positive control (Table 1) [52].

Regarding cytotoxicity evaluations, compound (7) displayed interesting inhibitory
values for both Hep-2 (human epidermoid cancer cell line) and HepG2 (human liver cancer
cell line) cells (Table 1). However, the authors do not report the positive control result, nor
do they report any statistical analysis [34].

The in vitro cytotoxic effects of (39–44) isolated from the mangrove-derived fungus
Aspergillus versicolor were evaluated against a cancer cell line panel (HL-60, K562, A549,
H1975, 803, HO-8910, and HCT-116). Compounds (39–41) displayed selective, potent
cytotoxicity against HL-60 and K562, while (42–44) exhibited extensive cytotoxicity against
all seven cancer lines, with IC50

′s ranging from 0.7 to 14.0 µM (Table 1) [27]. Again, we
regret highlighting that no statistical data are reported, although some of the displayed
values could be comparable to the positive control IC50 [27].

From the mangrove-derived fungus Aspergillus versicolor, five new dimeric xanthones
(47–51) were also isolated and assessed for their cytotoxic activity against different human
cell lines (HL-60, K562, A549, H1975, MGC803, HEK293, HO-8910, HCT-116) [23]. Although
no statistical data, nor the IC50 value for a positive control were reported, it seems that
these compounds exhibited cytotoxicity at different levels (Table 1). Nevertheless, some
extra experiments were performed to disclose the compounds′ mechanism of action, and
(47, 48, 51) displayed topo I inhibition activity. The compound (51) showed topo I inhibitory
activity in a concentration-dependent manner. This study also showed that (47) inhibited
topo I via trapping the topo I-DNA complex, arresting the cell cycle at the G2/M phase
and inducing necrosis in cancer cells [23].

It should be emphasized, in this section, that our aim was to report and discuss the new
marine xanthone derivatives found during the period covered by this revision; however,
several known marine xanthones were studied and displayed biological activities [53–61].
From all those, it is imperative that we highlight secalonic acid D (SAD) (52) (Figure 5). This
compound was isolated from several marine sources, such as marine-derived Penicillium ox-
alicum, marine sponge-derived fungus Aspergillus sp. SCSIO XWS03F03, the marine-derived
fungus Aspergillus versicolor HDN1009, and marine lichen-derived fungus Gliocladium sp.
T31 [27,39,43,56,57,62]. However, this compound was isolated for the first time in 1969
from Penicillium oxalicum [59]. Before 2010 some studies on the antitumor effects such as
leukemia [60] and bladder carcinoma [61] were carried out but never tested for pituitary
adenoma. Thus, Liao et al. investigated the anti-pituitary adenoma effect of SAD (52) [63],
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and the authors concluded that the compound in question inhibits the proliferation of
pituitary adenoma cells in a time and dose-dependent manner. The cytotoxic effect was
mainly due to apoptosis. SAD (52) causes G1/S phase arrest and induces apoptosis as
indicated by the activation of caspases. Furthermore, the authors also found that SAD (52)
suppresses the growth hormone (GH) expression levels in GH3 cells, without changing the
expression of GH mRNA [63].
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Different studies have shown that SAD (52) exhibited considerable inhibitory activity
on DNA topo I [43,56]. In fact, SAD (52) displays a significant inhibition of topo I in a
dose-dependent manner and although SAD (52) inhibits the binding of topo I to DNA, it
does not induce the formation of topo I-DNA covalent complexes. The data explain that
SAD (52) is a DNA topo I inhibitor rather than a poison-like prototypic DNA topo I poison
camptothecin (CPT) [56].

SAD (52) was tested against HL-60, K562, A549, H1974, 803, HO-8910, and HCT-116
cell lines presenting interesting results [27]. Moreover, it exerted potent cytotoxicity against
various MDR cells and several human lung cancer cells (KB, KBv200, MCF-7, MCF-7/Adr,
Kb-3-1, C-A120, S1, S1-M1-80, A549, and GLC-82) (Table 1) [56]. The authors proposed that
the SAD (52) mechanism of action consists of the ability to down-regulate the expression of
ABCG2 and decrease the percentage of SP cells in lung cancer cells due to the induction
of ABCG2 degradation by calpain 1 activation [56]. SAD (52) showed cytotoxic activity
on the human pancreatic carcinoma PANC-1 cells adapted to glucose-starved conditions
with an IC50 value of 0.6 µM [64]. In addition, SAD (52) was also tested for antimicrobial
activity, having shown moderate activity against Staphyloccocus aureus and Mycobacterium
tuberculosis [39]. Given its full potential, its total synthesis has been tested in the laboratory
and will be addressed later in this review [64].

4. Xanthones Obtained by Total Synthesis

Some of the xanthones reported in this review have shown considerable interest on
the part of researchers due to their bioactive properties, such as secalonic acid D (52) and
yicathins B (3) and C (4), thus showing potential to be promising leads to drug development.
However, since these compounds are isolated from marine sources, thus not allowing large
amounts, the possibilities of synthesizing them in the laboratory have been explored. The
pathways for the total synthase of yicathins B (3) and C (4) and secalonic acid D (52) are
described below.

4.1. Total Synthesis of Secalonic Acid D

Qin et al. developed a concise methodology to obtain natural tetrahydroxanthones [65],
and during their study blennolide B (53) was obtained with an overall yield of 52%. Later
on, the same research group used this compound for the secalonic acid D total synthe-
sis [64]. First, it was essential to develop a selective methodology for the o-iodination,
and the authors used several compounds as models and applied the methodology to a
racemic blennolide B (53), obtaining the 7-iodo derivative in a very low overall yield (25%)
(Scheme 1) [64]. The main problems are related to by-products; for example, during the
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methylation to obtain compound (54) and due to the tautomeric equilibria, another isomer
was obtained. Next, the authors obtained the racemic 7-iodoblennolide B (55) in excellent
yield, and the acylative kinetic resolution afforded both the (−)-7-iodoblennolide B (55)
and the desired compound (+)-(57) in moderate yields, respectively, 48% and 49% [64].
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Encouraged by previous studies and having in hand the desired starting material, the
authors performed the synthesis of the secalonic acid D (52), which was obtained with a low
overall yield of 23% (Scheme 2) [64]. First, the 8-OH was protected with MOM giving an 81%
yield. The stannane derivative (−)-(58) was made with a 56% yield, and the overall yield
of (−)-(58) was 45% (Scheme 2). Copper-mediated oxidative coupling provided the dimeric
product (+)-(59) in good yield, which by an acidic treatment underwent the deprotection and
afforded the secalonic acid D (52) in excellent yield (Scheme 2). The proposed methodology
allows the synthesis of the desired secalonic acid D (52) in several steps that, if analyzed
separately, gave good to excellent yields but a very low overall yield (10%).

4.2. Total Synthesis of Yicathins B and C and Analogues

Yicathins B (3) and C (4) are simple xanthones prevalent in terrestrial plants, besides
their occurrence in marine organisms. Due to the medicinal significance of xanthones,
they can be considered interesting building blocks for the synthesis of new bioactive
compounds. So their synthesis seems to be of utmost importance and was recently achieved
(Scheme 3) [51]. The first steps consist of synthesizing the building blocks (60) and (61),
obtained through simple procedures using commercially available reagents, in excellent to
good yields, respectively, 87% and 55%.
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Acyl substitution of the benzoate (61) by the aryllithium intermediate, prepared in situ
from (60), yielded the benzophenone (62) in excellent yield. This benzophenone is after-
ward deprotected, under acidic conditions, to give benzophenone (63) in moderate yield
(Scheme 3) [51]. Benzophenone (63) undergoes an intramolecular nucleophilic aromatic
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substitution under microwave irradiation affording the xanthone (64) in excellent yield.
Yicathin C (4) was obtained by oxidation with a modified Jones reagent in moderate yield.
Yicathin B (3) was obtained by Fischer esterification of the carboxylic group in moderate
yield (Scheme 3. Considering the overall yield, yicathin C (4) and yicathin B (3) are obtained,
respectively, in 10% and 4%, which are very low yields. However, the methodology can be
used to obtain several derivatives, just by modifications in the substitution pattern of the
building blocks (60) and (61).

5. Conclusions

This review explores the family of xanthones isolated from 2010 to 2021 and demon-
strates the diversity of works carried out in this field. We verified that many xanthones
were isolated from marine sources, particularly marine-derived fungi. The compounds
discussed here demonstrated potential in terms of bioactive properties, such as antitumor
and antibacterial. However, in our opinion, most of the compounds need to be studied
more carefully, involving the use of proper positive control, statistical analysis, toxicological
studies, mechanisms of action, and in vivo assays.

In recent years, xanthones have been explored as compounds with possible applications
in medicine. They have been tested for different and varied bioactivities, showing promising
results, which intensifies the motivation to study their structure and potential applications
in treating various diseases. Given that these compounds are sometimes found in sources
that are difficult to access, it is essential to find pathways that allow their synthesis without
resorting to their natural origin. This review discusses the possibility of some of these marine
xanthones being obtained through their total synthesis. Unfortunately, only the total syntheses
of secalonic acid D and some yicathins have been reported until now. In our opinion, although
some marine xanthones synthesis would be a challenge, it is crucial to develop efficient
methodologies to obtain at least the more bioactive ones by total synthesis.
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