
Article

Marine DNA Viral Macro- and Microdiversity from
Pole to Pole

Graphical Abstract

Highlights

d Metagenomic assembly of 145 marine viromes uncovered

195,728 viral populations

d Read mapping revealed discrete sequence boundaries

among >99% viral populations

d Viral communities separated into five distinct ecological

zones in the global ocean

d Viral macro- and microdiversity did not follow the latitudinal

diversity gradient

Authors

Ann C. Gregory, Ahmed A. Zayed,
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Ann C. Gregory,1,24 Ahmed A. Zayed,1,24 Nádia Conceição-Neto,2,3 Ben Temperton,4 Ben Bolduc,1 Adriana Alberti,5,17

Mathieu Ardyna,6,25 Ksenia Arkhipova,7 Margaux Carmichael,8,17 Corinne Cruaud,9,17 Céline Dimier,6,10,17
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SUMMARY

Microbes drive most ecosystems and are modulated

by viruses that impact their lifespan, gene flow, and

metabolic outputs. However, ecosystem-level im-

pacts of viral community diversity remain difficult to

assess due to classification issues and few reference

genomes. Here, we establish an �12-fold expanded

global ocean DNA virome dataset of 195,728 viral

populations, now including the Arctic Ocean, and

validate that these populations form discrete geno-

typic clusters. Meta-community analyses revealed

five ecological zones throughout the global ocean,

including two distinct Arctic regions. Across the

zones, local and global patterns and drivers in viral

community diversity were established for both mac-

rodiversity (inter-population diversity) and microdi-

versity (intra-population genetic variation). These

patterns sometimes, but not always, paralleled those

from macro-organisms and revealed temperate and

tropical surface waters and the Arctic as biodiversity

hotspots and mechanistic hypotheses to explain

them. Such further understanding of ocean viruses

is critical for broader inclusion in ecosystem models.
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INTRODUCTION

Biodiversity is essential for maintaining ecosystem functions and

services (for review, see Tilman et al., 2014). In the oceans, the

vast majority of biodiversity is contained within the microbial frac-

tion containing prokaryotes and eukaryotic microbes, which rep-

resents�60%of its biomass (Bar-On et al., 2018). Meta-analyses

looking at changes in marine biodiversity show that biodiversity

loss increasingly impairs the ocean’s capacity to produce food,

maintain water quality, and recover from perturbations (Worm

et al., 2006). To date, marine conservation efforts have focused

on specific organismal communities, such as fisheries or coral

reefs, rather than conservingwhole ecosystem biodiversity. How-

ever, emerging studies across diverse environments show that

the stability and diversity of higher trophic level organisms rely

upon diversity throughout the food web (Soliveres et al., 2016).

Despite being the foundation of the foodweb,mostmarinemicro-

bial biodiversity numbers are based on a few well-studied loca-

tions (e.g., Hawaii Ocean Time Series, Bermuda Atlantic Time

Series, and San Pedro Ocean Time Series). For ocean microbes

and their viruses, global surveys that parallel century-old global

terrestrial and decades-old marine macro-organismal global

biodiversity surveys (Reiners et al., 2017) are only now emerging

(de Vargas et al., 2015; Sunagawa et al., 2015; Brum et al.,

2015; Roux et al., 2016; Ser-Giacomi et al., 2018) (Table S1).

Key to assessing biodiversity changes acrossmarine ecosystems

is improving our understanding of current microbial biodiversity

levels, distribution patterns, and their ecological drivers.

Despite their tiny size, viruses play a large role in marine eco-

systems and food webs. For example, mortality due to viruses is

credited with lysing �20%–40% of bacteria per day and

releasing carbon and other nutrients that impact the food web

(for review, see Suttle, 2007). Beyond mortality, viruses can alter

evolutionary trajectories of microbial communities by transfer-

ring�1029 genes per day globally (Paul, 1999) and biogeochem-

ical cycling by metabolically reprogramming host photosyn-

thesis, as well as central carbon metabolism and nitrogen and

sulfur cycling (for review, see Hurwitz and U’Ren, 2016). Finally,

as the oceans are estimated to capture half of human-caused

carbon emissions (Le Quéré et al., 2018), it is notable that

genes-to-ecosystems modeling has placed viruses as central

players of the ocean ‘‘biological pump’’ (Guidi et al., 2016).

Many of these discoveries are very recent as ocean viral genome

sequence space is just now being explored at the level of viral

macrodiversity (i.e., inter-population diversity) throughout the

global oceans—at least for the most abundant double-stranded

DNA viruses sampled (Table S2).

In spite of this progress in studying marine viral macrodiversity,

virtually nothing is known about microdiversity (i.e., intra-popula-

tion genetic variation). This is due to the controversy surrounding

the existence of viral species (Gregory et al., 2016; Bobay and

Ochman, 2018). In eukaryotic organisms, where species bound-

aries are more widely accepted, such microdiversity has been

studied and is thought to drive adaptation and speciation to

promote and maintain stability in ecosystems (Hughes et al.,

2008; Larkin and Martiny, 2017). This is likely also true in viruses

because even a few mutations can alter host interactions and

ecological and evolutionary dynamics for the genotype (Marston

et al., 2012; Petrie et al., 2018). In nature, viral microdiversity

measurements havebeen limited tomarker genes (e.g., genes en-

codingmajor capsid proteins), which capture neither community-

wide variability (Sullivan, 2015) nor genome-wide evidence of

selection (AchtmanandWagner, 2008).Recently, deepermetage-

nomic sequencing and population genetic theory-grounded spe-

cies delimitations (Shapiro et al., 2012; Cadillo-Quiroz et al.,

2012) have begun to reveal such microdiversity in microbes, and

this has elucidated unknown features of speciation, adaptation,

pathogenicity, and transmission (Snitkin et al., 2011; Schloissnig

et al., 2013; Rosen et al., 2015; Lee et al., 2017; Smillie et al.,

2018). Although parallel species delimitations are now available

for viruses (Gregoryetal., 2016;BobayandOchman, 2018), noda-

tasets are yet available to explore genome-wide microdiversity in

viruses, particularly at the global scale.

Here, we leverage the Tara Oceans global oceanographic

research expedition sampling to establish a deeply sequenced,

global-scale ocean virome dataset and use it to assess the val-

idity of the current viral population definition and to establish

and explore baseline macro- and micro-diversity patterns with

their associated drivers across local to global scales. These

data have been collected and analyzed in the context of the

larger Tara Oceans Consortium systematically sampled,

global-scale, viruses-to-fish-larvae datasets (de Vargas et al.,

2015; Sunagawa et al., 2015; Brum et al., 2015; Lima-Mendez

et al., 2015; Pesant et al., 2015; Roux et al., 2016) and help

establish foundational ecological hypotheses for the field and a

roadmap for the broader life sciences community to better study

viruses in complex communities.

RESULTS AND DISCUSSION

The Dataset

The Global Ocean Viromes 2.0 (GOV 2.0) dataset is derived from

3.95 Tb of sequencing across 145 samples distributed

throughout the world’s oceans (Figure 1A; Table S3; STAR

Methods). These data build on the prior GOV dataset (Roux

et al., 2016) by increased sequencing for mesopelagic samples

(defined in our dataset as waters between 150 m to 1,000 m)

and upgrading assemblies, both of which drastically improved

sampling of the ocean viruses in these samples (results below).

Additionally, we added 41 new samples derived from the

Tara Oceans Polar Circle (TOPC) expedition, which traveled

25,000 km around the Arctic Ocean in 2013. These 41 Arctic

Ocean viromes were generated to represent the most signifi-

cantly climate-impacted region of the ocean and an extreme

environment. No such metagenome-based viral data exist

for the Arctic region (Deming and Collins, 2017), andmore gener-

ally, for many planktonic organisms, systematic sampling is

uneven throughout the Arctic Ocean (Circumpolar Biodiversity

Monitoring Program, 2017) due to geopolitical and physical chal-

lenges of sampling these regions.

The first step to studying viral biodiversity from the assembled

GOV 2.0 dataset (Figure S1A; STAR Methods) was to identify

contigs that likely derive from viruses using tools that collectively

utilize homology to viral reference databases, probabilistic

models on viral genomic features, and viral k-mer signatures

(STAR Methods). These putative viral contigs were then
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assigned to ‘‘populations,’’ which are currently defined as viral

contigs R10 kb where R70% of the shared genes have

R95% average nucleotide identity (ANI) across its members

(Brum et al., 2015; Roux et al., 2016, 2018) (population definition

also discussed below). This process identified 195,728 viral pop-

ulations in the GOV 2.0 dataset, which is an �12-fold increase

over the 15,280 identified in the original GOV dataset and assem-

blies (Roux et al., 2016) and augments prior marine viromic work

(Table S2). Of these original GOV viral populations, 12,708 were

represented by single contigs and, of these, most (92%) were

recovered in GOV 2.0 (Figure 1B, inset), with average lengths

increased 2.4-fold from 18 kbp to 44 kbp (Figure 1B). Outside

these GOV-known and now improved viral populations, an

additional 180,448 new GOV 2.0 viral populations were

identified—derived mostly (58%) from improved assemblies

and deeper sequencing of the original GOV samples and the

rest (42%) from the 41 new Arctic Ocean viromes. Finally, new

methods to identify shorter viral contigs (STAR Methods) were

applied and these identified another 292,402 contigs as viral

(5–10 kb length and/or circular), which, when added to the earlier

data and clustered atR95% ANI, resulted in a total of 488,130

viral populations (N50 = 15,395; L50 = 105,286; mean read depth

per population = 17x). Ninety percent of the populations could

not be taxonomically classified to a known viral family, but the

10% that could were predominantly dsDNA viral families and

bacteriophages (Figures 1C and 1D).

Although the focus of this study is DNA viruses, a remarkable

diversity of RNA viruses has been described in nature, although

largely outside of marine systems. For example, transcriptome

sequencing from plants (Roossinck et al., 2010), arthropods

(Shi et al., 2016), and birds and bats (for review, see Greninger,

2018) have shown a genomic and phylogenetic diversity of

RNA viruses far beyond those in culture (Shi et al., 2018). In the

oceans, however, RNA viral diversity and abundance remains

largely unknown. The few estimates of marine RNA virus

abundance are based on the relative quantification of RNA

and DNA from purified viral particles and genome size extrapo-

lations and suggest that up to half of the viral particles in

seawater are RNA viruses (Steward et al., 2013; Miranda et al.,

2016). Direct RNA virus counts are not yet available for any envi-

ronment due to the lack of RNA-specific stains. To date, our un-

derstanding of marine RNA viral diversity is based on single-

gene surveys that target subgroups of viruses (for review, see

Culley, 2018) and a few viromes generated from extracellular

viral particles (Culley and Steward, 2007; Culley et al., 2006;

Miranda et al., 2016; Steward et al., 2013; Urayama et al.,

2018; Zeigler Allen et al., 2017) or from RNA viral sequences

identified inmetatranscriptomes (Carradec et al., 2018; Moniruz-

zaman et al., 2017; Urayama et al., 2018; Zeigler Allen et al.,

2017). Together, these studies suggest that themarine RNA viro-

sphere is composed of a large diversity of positive-polarity sin-

gle-stranded RNA (ssRNA) and double-stranded RNA (dsRNA)

Figure 1. The Global Ocean Viromes 2.0

(A) Arctic projection of the global ocean highlighting the new sampling stations of viromes in the GOV 2.0 dataset. Datasets from non-arctic samples were

previously published in Brum et al. (2015) and Roux et al. (2016).

(B) Histograms of the average assembled contig lengths for viral populations >10 kb shared between GOV and GOV 2.0. Inset: more than 92% of the unbinned

GOV viral populations were reassembled and identified in GOV 2.0 >10 kb populations.

(C) Pie charts showing how many of the 488,130 total viral populations comprising GOV 2.0 can be annotated and, of those, their viral family level taxonomy.

(D) Barplot showing the host affiliations for each viral population at the domain level.

See also Figures S1 and S7 and Tables S1, S2, and S3.
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viruses diverge from established taxa, with an apparent predom-

inance of viruses that infect eukaryotes (Culley, 2018). Due to

current methodological limitations, comprehensive, systematic

assessments of marine RNA viral diversity on the global scale

are not yet available and are excluded from our analysis.

Validating Viral ‘‘Population’’ Boundaries

Defining species is controversial for eukaryotes and prokary-

otes (Kunz, 2013; Cohan, 2002; Fraser et al., 2009) and even

more so for viruses (Bobay and Ochman, 2018), largely

because of the paradigm of rampant mosaicism stemming

from rapidly evolving ssDNA and RNA viruses, whose evolu-

tionary rates are much higher than dsDNA viruses (for review,

see Duffy et al., 2008). The biological species concept, often

referred to as the gold standard for defining species, defines

species as interbreeding individuals that remain reproductively

isolated from other such groups. To adapt this to prokaryotes

and viruses, studies have explored patterns of gene flow to

determine whether they might maintain discrete lineages as

reproductive isolation does in eukaryotes. Indeed, gene flow

and selection define clear boundaries between groups of bac-

teria, archaea, and viruses, although the required scale of data

are only available for cyanophages and mycophages among vi-

ruses (Shapiro et al., 2012; Cadillo-Quiroz et al., 2012; Gregory

et al., 2016; Bobay and Ochman, 2018).

Because measuring gene flow requires extensive datasets not

yet available for many groups, the term ‘‘species’’ is rarely used

for prokaryotes or viruses, and instead discrete lineages are

described as ‘‘populations.’’ Separate from these population ge-

netic theory grounded observations, evidence of discrete line-

ages, or sequence-discrete populations, is to use metagenomic

read-mapping to evaluate naturally occurring sequence variation

across organisms. Sequence-discrete populations have now

been observed for prokaryotes (Konstantinidis and Tiedje,

2005) and more recently for some dsDNA viruses (viral-tagged

metagenomes and 142 isolate genomes for marine cyanoph-

ages) (Deng et al., 2014; Gregory et al., 2016) (Table S4). Buoyed

by this and signatures of at least some double-stranded DNA

(dsDNA) viruses obeying the biological species concept (Bobay

and Ochman, 2018), viral ecologists have established the defini-

tion of viral populations described above (Brum et al., 2015;

Roux et al., 2016, 2018). Notably, however, only deeply

sequenced groups, cyano- and mycophages, have been evalu-

ated to date (Gregory et al., 2016; Bobay and Ochman, 2018),

and an emergent hypothesis suggests that phages evolve with

different modes and tempos driven by differing temperate or

obligately lytic lifestyles (Mavrich and Hatfull, 2017). Thus, there

is a need to evaluate how generalizable this empirically derived

R95% ANI cut-off viral population definition is in nature.

To test this, we permissively mapped metagenomic reads

against our 488,130 GOV 2.0 viral populations by allowing

‘‘local’’ matching as low as 18% nucleotide identity and statisti-

cally identifying ‘‘breaks’’ in the resulting read frequency histo-

grams (STAR Methods). This revealed that, on average, the

break occurred such that reads <92% nucleotide identity failed

to map (Figure 2C; Table S5 for full results), which resulted in a

genome-wide signature of R95% ANI for nearly all (99.9% or

487,875) of the GOV 2.0 viral populations, including the smaller

<10 kb viral populations (Figure 2D). This implies that the

observed viral populations in the dataset are predominantly

and detectably sequence-discrete. This result is consistent

with data from viral-tagged metagenomes (Deng et al., 2014)

and gene-sharing networks of prokaryotic virus genomes (Iranzo

et al., 2016; Bolduc et al., 2017), which also showed that

sampled viral genome sequence space is clustered at each

‘‘species’’ and ‘‘genus’’ levels, respectively. Thus, while ssDNA

and RNA viruses have variable and elevated genome evolu-

tionary rates that can erode species boundaries (for review,

see Duffy et al., 2008), it appears that virtually all metagenome-

assembled dsDNA viral populations form discrete genotypic

clusters and can be appropriately delineated via a R95%

genome-wide ANI cut-off.

Meta-Community Analysis Reveals Five

Ecological Zones

Having organized this global sequence space into discrete and

biologically meaningful populations, we next sought to use

metagenome-derived abundance estimates to establish pat-

terns and drivers of viral population diversity across the global

ocean acrossmultiple levels of ecological organization (Figure 3).

This revealed that the 145 GOV 2.0 viral communities robustly

assorted into just five meta-communities, denoted ecological

zones, whether assessed using Bray-Curtis dissimilarity dis-

tances in principal coordinate analysis (Figure 4A), non-metric

multidimensional scaling (Figure S2A), or hierarchical clustering

(Figure S2B) and after accounting for variable sample sizes

(see STAR Methods and Figure S3). We designated these five

emergent ecological zones as the Arctic (ARC), Antarctic

(ANT), bathypelagic (BATHY), temperate and tropical epipelagic

(TT-EPI), and mesopelagic (TT-MES) and used these for further

study. Depth ranges overlapped with those previously defined

(Reygondeau et al., 2018), with epipelagic, mesopelagic, and

bathypelagic being waters of depths 0–150 m, 150–1,000 m,

and deeper than 2,000 m, respectively.

Comparison of our virome-inferred ecological zones to those

inferred for the oceans in other ways was telling. Our zones

differed from traditional oceanographic biogeographical biomes

(e.g., Longhurst), where four biomes and �50 provinces have

been designated across surface ocean waters based on annual

cycles of nutrient chlorophyll a (Longhurst et al., 1995; Long-

hurst, 2007), and from mesopelagic ecoregions and biogeo-

chemical provinces based on biogeography and environmental

climatology, respectively (Sutton et al., 2017; Reygondeau

et al., 2018). However, they were similar to those observed for

marine bacterial communities, which clustered by mid-latitude

surface, high-latitude, and deep waters (Ghiglione et al., 2012).

This implies that the physicochemical structuring of marine

microbial communities is likely the most important factor in

structuring marine viral communities, perhaps reflecting a rela-

tive stability in host range of viruses in the oceans (de Jonge

et al., 2019). To evaluate this physicochemical structuring, we

examined the universal predictors and drivers of viral ecological

zones, across one (Figure 5A) and multiple ordination dimen-

sions (Figure 5B; STAR Methods). This suggested that tempera-

ture was the major driver structuring these ecological zones, as

previously shown from global microbial surveys (Sunagawa
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et al., 2015) and our own smaller ocean virome surveys, where

we posited previously that temperature likely directly impacts

microbial community structure, and indirectly viral community

structure (Brum et al., 2015). Moreover, temperature has been

shown to play an important role in virus-host interactions, espe-

cially in the Arctic (Maat et al., 2017).

To look for specific viral adaptations in each ecological zone,

we identified genes under positive selection by evaluating the ra-

tio of non-synonymous to synonymous mutations observed in

gene sequences using the pN/pS equation (Schloissnig et al.,

2013). Of 1,139,501 genes tested from populations with enough

coverage (R103mean read depth; mean number of populations

assessed per sample: 14,852 viral populations), 124,882 genes

were identified as being under positive selection in at least one

sample. Most (82%) of the positively selected genes were func-

tionally unannotatable, with the remaining 18% annotatable as

predominantly genes related to structure or DNA metabolism

(Table S6). In model systems, such genes are often under strong

selective pressures during adaptations to new hosts (Marston

et al., 2012; Jian et al., 2012; Enav et al., 2018). Thus, we

Figure 2. GOV 2.0 Viral Populations Have Discrete Population Boundaries

(A) Barplots showing the read mapping results for the most abundant viral population >10 kb in length for each of the top four viral families. Despite differences in

read boundaries across the representative viral populations, there is no difference in the average read boundaries across the different viral families.

(B) Histogram showing the read distribution frequency break (i.e., read boundary) between spuriously mapped reads and legitimate reads mapping to the

genome.

(C) Histograms showing the average percent identity of reads mapped to each genome after removing spuriously mapped reads.

See also Tables S4 and S5.
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hypothesize that host availability in each ecological zone is a

strong selective pressure on our marine viral populations. Given

the lack of functional annotations for most of the genes, we clus-

tered all translated GOV 2.0 viral genes into protein clusters

(PCs) based on sequence homology (Sensu) (Holm and Sander,

1998) to identify positively selected zone-specific PCs. This

resulted in 823,193 PCs, of which �10% (79,588 PCs)

appeared under positive selection, with a subset of these spe-

cific to a single zone (ARC = 80%; ANT = 33%; BATHY = 37%;

TT-EPI = 75%; TT-MES = 69% of positively selected PCs per

zone; see Table S6). These findings of many zone-specific

positively selected PCs is indicative of niche-differentiation.

However, functional stories from these data are challenging as

85% of these zone-specific PCs were of unknown function,

with the remaining mostly being the structural and DNA meta-

bolism genes described above. This suggests that we have a

lot to learn about the function of genes that most likely drive

niche-differentiation across the ecological zones.

Viral Macro- and Microdiversity and Potential Drivers

within and between Ecological Zones

To explore diversity patterns across ecological zones, we calcu-

lated per sample diversity using Shannon’s H0 for macrodiversity

andanewly establishedmethod for community-widemicrodiver-

sity. This new method for community-wide microdiversity is

limited in that it can only assess well-sampled, abundant popula-

tions because it estimates the average nucleotide diversity (or p)

from the mean of p from 100 randomly subsampled well-

sequenced populations sampled 1,000 times (STAR Methods).

These zone-normalized (STAR Methods) comparisons revealed

that macrodiversity was highest in TT-EPI (p < 0.05), closely

followed by the ARC, and lowest in TT-MES and ANT (Fig-

ure 4B, bottom), whereas microdiversity was highest in TT-MES

(p < 0.05) and lowest in ARC (Figure 4B, left). At the zonal level,

a negative trend between macro- and microdiversity emerges

(Figure 4B, right), althoughwenote that the small number of zonal

points limits our statistical inferences, even in this global dataset.

Figure 3. Ecological Levels of Organization

Schematic showing the different ecological levels of organization studied in this paper.
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Recent work suggests that higher microdiversity can impede

the maintenance of macrodiversity by promoting competitive

exclusion (Hart et al., 2016). Thus, we posit that, if the zonal level

negative macro-/microdiversity trends are real, this may result

from increased intrapopulation niche variation that reduces inter-

population niche variation resulting in competitive exclusion by

the superior competitors, which may occur slowly and may be

why it only appears at this regional scale (Figure S4). Because

estimates of microdiversity in our dataset and even currently

available single virus genomics approaches (Martı́nez-Hernán-

dez et al., 2017) remain limited to only the most abundant popu-

lations, testing such a hypothesis awaits critically needed ad-

vances and scalability in single-virus genomics technologies.

At the per-sample level, however, macro- and microdiversity

were not correlated, even within each zone (Figure 4B, right).

Although these are the first data available for viruses, for larger

organisms, macro- and microdiversity are often correlated

across habitats sharing similar species pools, presumably due

to habitat characteristics altering immigration, drift, and selec-

tion (Vellend and Geber, 2005). These ecological correlations

are generally positive and significantly stronger in discrete hab-

itats (e.g., islands) in contrast to more connected communities

like the ocean (for review, see Vellend et al., 2014). Thus, we posit

that the lack of correlation between marine viral macro- and mi-

crodiversity at this per-sample level is driven by differences in

local drivers (Figure 4C). Consistent with this, local potential

Figure 4. Viral Communities Partition into Five Ecological Zones with Different Macro- and Microdiversity Levels

(A) Principal coordinate analysis (PCoA) of a Bray-Curtis dissimilarity matrix calculated from GOV 2.0. Analyses show that viromes significantly (Permanova

p = 0.001) structure into five distinct global ecological zones: ARC, ANT, BATHY, TT-EPI, and TT-MES zones. Ellipses in the PCoA plot are drawn around the

centroids of each group at 95% (inner) and 97.5% (outer) confidence intervals. Four outlier viromes that did not cluster with their ecological zones were removed

(Figure S3A) and all the sequencing reads were used (see Figure S3B and STAR Methods).

(B) Right: scatterplots showing correlations between macrodiversity (Shannon’s H0 ) and microdiversity (average p for viral populations withR103 median read

depth coverage; see STAR Methods) values for each sample across GOV 2.0. The larger circles represent the average per zone. Left: boxplots showing median

and quartiles of average microdiversity per ecological zone. Bottom: boxplots showing median and quartiles of macrodiversity for each ecological zone. Zonal

samples were randomly downsampled to n = 5 to account for zone sampling difference. All pairwise comparisons shown were statistically significant (** p < 0.01

and **** p < 0.001) using two-tailed Mann-Whitney U tests.

(C) Positive (blue) and negative (red) Pearson’s correlation results comparing macrodiversity (top) and microdiversity (bottom) with different biogeographical and

biogeochemical parameters at the global scale (see Figure S3E; Table S3 for all abbreviations; STARMethods). The significance of the correlations is indicated by

the size of the black circles on top of the bars, and the variables on the x axis are ordered from the strongest to theweakest correlation withmacrodiversity (except

for the top four variables correlating with microdiversity for readability).

See also Figures S1, S2, S4, and S7 and Tables S6 and S7.
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drivers differed as nutrients strongly (and negatively) correlated

with viral macrodiversity, whereas photosynthetically active radi-

ation (PAR; an indicator of productivity) best (and positively)

correlated with viral microdiversity in the epipelagic waters

(Figure 4C).

Mechanistically, these results suggest several possible hypoth-

eses. We interpret that, at the viral macrodiversity level,

decreased host diversity in algal blooms, which themselves rely

on nutrient pulses (Farooq and Malfatti, 2007), could skew viral

rank abundance curves toward dominance by increasing abun-

dance of bloom-associated viral populations. Even though algal

blooms were not targeted in the Tara Oceans expedition, we

did find that viralmacrodiversity negatively correlatedwith chloro-

phyll a (Figure 5C), and particulate inorganic carbon concentration

(PIC) (Figure 4C), which is commonly used as a proxy for cocco-

lithophore abundance (Groom and Holligan, 1987). Additionally,

viral macrodiversity negatively correlated with the relative abun-

dance of coccolithophores based on the V9 region of the 18S

rRNA genes in the sequencing reads (Figure 4C). For viral micro-

diversity in epipelagic waters, we interpret that PAR is potentially

themain driver (Figure 4C). PAR is known to impact host diversity,

particularly in nutrient-poor surface waters, by inhibiting photoau-

totrophs through overwhelming their photosystems with too

many electrons that can back up and even damage the photosys-

tems (Feng et al., 2015). Further PAR can inhibit the growth of the

dominant heterotroph, SAR11 (Ruiz-González et al., 2013), and

Figure 5. Ecological Drivers of Global Viral

Macrodiversity

(A) Regression analysis between the first coordinate

of a PCoA (Figure 4A) and temperature showed that

samples were separated by their local temperatures

with an r2 of 0.82.

(B) Potential ecological drivers & predictors of beta-

diversity across GOV 2.0 for the first two dimensions

(goodness of fit r2 using a generalized additive

model) and across all dimensions (Mantel test

based on Spearman’s correlation). Temperature

was uniformly reported as the best predictor of viral

beta-diversity globally.

(C) Regression analysis between viral macro-

diversity at the deep chlorophyll maximum (DCM)

layer and areal chlorophyll a concentration (after

cube transformation) showed that the negative

correlation between viral macrodiversity and nutri-

ents (Figure 4C) is mediated (at least partially) by

primary productivity. The Shannon’s H outlier

32_DCM (Figure S3) and a chlorophyll a concen-

tration outlier (173_DCM; D) have been excluded

from the regression analysis.

(D) Boxplot analysis of areal chlorophyll a concen-

trations showing a single outlier concentration that

fell above the fourth quantile of the data points

(function geom_boxplot of ggplot).

can stimulate other key microbes such as

Roseobacter, Gammaproteobacteria, and

NOR5 (Ruiz-González et al., 2013). We hy-

pothesize that the shorter-term impacts of

high PAR in the surface waters on host

communities may create new niches for viruses, whereby micro-

diversity increases to enable differentiation of existing viral popu-

lations. As above, advances in single-virus genomics would be

invaluable for testing this hypothesis.

Viral Macro- and Microdiversity and Potential Drivers

against Classical Ecological Gradients

Ecologists have long explored the relationship between diversity

and geographic range, which in eukaryotes and bacteria are

highly (and positively) correlated and thought to be due to the

accumulation of niche-specific selective mutations across pop-

ulations with large heterogeneous geographic ranges (i.e., the

niche variation hypothesis) (Van Valen, 1965; Hedrick, 2006;

Rosen et al., 2015). No parallel studies have looked at viruses.

To explore this for viruses, we determined the geographic range

of viral populations based on their distribution within and be-

tween ecological zones (Figure 6A) and then calculated their

average p (STARMethods) to assess patterns in macro- and mi-

crodiversity, respectively. Viral populations were designated as

‘‘multi-zonal’’ if they were observed in >1 ecological zone,

‘‘zone-specific regional’’ if they were observed in only one

zone but R2 viral communities, or ‘‘zone-specific local’’ if they

were observed in only 1 viral community within a single zone.

These analyses first revealed differences in the dominant

viral geographic ranges across the different ecological zones.

For example, multi-zonal viral populations dominated ANT and
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BATHY (>60% of viral populations found within zone), both

across the zone (Figure 6B) and within each station (Figure S5),

whereas zone-specific regional viral populations dominated

TT-EPI and ARC, and the multi-zonal and zone-specific viral

populations were approximately equally represented in TT-

MES (Figure 6B). The high levels of zone-specific viral popula-

tions in TT-EPI and ARC, as well as the high levels of viral

macrodiversity (Figure 4B, bottom), are indicative of high

endemism and suggest these regions may be biodiversity hot-

spots for marine viruses. In contrast, the ANT and BATHY are

composed mostly of multi-zonal viral populations suggesting

that they may be sink habitats that are more dependent on

migration (Sensu) (Watkinson and Sutherland, 1995). However,

across all ecological zones, viral population microdiversity

increased with virus geographic range (Figure 6C; p < 0.05),

presumably from varied ecologies providing differing selective

niches for the single, widely distributed population that then

drive differentiation through isolation-by-environment pro-

cesses (Sensu) (Shapiro et al., 2012). Such findings are new

for viruses, but parallel the results for eukaryotes (Hedrick,

2006) and bacteria (Rosen et al., 2015), and suggest a univer-

sality to isolation-by-environment processes across organ-

ismal kingdoms and viruses.

Ecologists have also long observed, across most flora and

fauna, that there are latitudinal patterns in diversity across both

terrestrial and marine environments. Briefly, the latitudinal diver-

sity gradient suggests that both macro- and microdiversity are

highest at mid-latitudes and decrease poleward (Pianka 1966;

Hillebrand 2004; Mannion et al., 2014; Miraldo et al., 2016). We

found that both viral macro- and microdiversity followed the

latitudinal diversity gradient except in ARC, where both

increased (Figure 7A). This high equatorial macro- and microdi-

versity was consistent across the Indian, Atlantic, and Pacific

Oceans as expected (Figures 7B and 7C). The Arctic Ocean,

however, was not only unexpectedly elevated in diversity, but

it also displayed a unique pattern. Specifically, two distinct

zones—definable by climatology-derived water mass nutrient

stoichiometry (N*) (Figure 7D; see ‘‘Comparing ARC-H and

ARC-L’’ in STAR Methods)—emerged as high (ARC-H) and low

(ARC-L) diversity regions that were significantly differentiable

at both macro- and microdiversity levels (Figure 7E). Further,

ARC-H was characterized by low nutrient ratios (N*; >93 lower

in ARC-H than ARC-L on average; p < 5E�04) and drove the

divergence from the latitude diversity gradient (Figure S6A).

Mechanistically, we interpret these observations as follows.

Prior work in this region has shown (1) strong denitrification in

the Bering Strait (Devol et al., 1997), which explains the low N*

in the west, and (2) increasing oligotrophy in the Beaufort Gyre

due to increasing vertical stratification, which selects against

larger algae and for smaller algae and bacteria in the ARC-H (Li

et al., 2009). As above, we hypothesize that shorter-term

increased host diversity results in increased viral macro- and mi-

crodiversity in ARC-H. Although our GOV 2.0 dataset is

confounded by seasonality of sampling, we posit that this

elevated summertime macro- and microdiversity in ARC may

fuel viral ecological differentiation and represent an unrecog-

nized ‘‘cradle’’ of viral biodiversity beyond the tropics. Although

this elevated diversity in the Arctic was surprising, together with

a similar deviation seen in mollusks (Valdovinos et al., 2003) and

recently reported in ray-finned fish (Rabosky et al., 2018), these

results call into question whether this decades-old paradigm

needs revisiting and suggests that polar regions may be impor-

tant biodiversity hotspots for viruses, as well as larger

organisms.

Finally, as ocean exploration accelerates (see Figure S7), pat-

terns in diversity through the vertical layers of the ocean have

become a focus. An emergent depth diversity gradient hypothe-

sis suggests that macrodiversity decreases with depth (Costello

and Chaudhary, 2017), which has been explored across the

World Register of Marine Species that includes some microbes

and viruses (http://www.marinespecies.org/), but microdiversity

has not yet been explored for any organism. Overall, our vi-

rome-inferred diversity patterns were less obviously consistent

with the depth diversity gradient, although deep water ocean

Figure 6. Size of Geographic Range Positively Correlates with Microdiversity

(A) Venn diagram showing the number of viral populations found only in one zone (zone-specific) and those that are shared between and among the five ecological

zones (multi-zonal).

(B) Stacked barplots showing the number of multi-zonal, regional, and local viral populations found within the species pool of each ecological zone.

(C) Boxplots showing median and quartiles of microdiversity (average p for viral populations with R103 median read depth coverage) per populations found

within each zone defined as multi-zonal, regional, or local. Statistics were the same as in Figure 2.

See also Figure S5.
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data were limited (Figure 7F). Briefly, viral macrodiversity largely

followed the depth diversity gradientwith high diversity in the sur-

facewaters anddecreaseddiversitywith depth,whereas viralmi-

crodiversity did not as it decreased until 200 m depth, but then

sharply increased (Figure 7F). This deep water increase coin-

cidedwith an increase in bacterial macrodiversity in themesope-

lagic region (Figures S6B and S6C), and in TT-MES, this bacterial

macrodiversity correlated with viral microdiversity (Figure S6D).

Figure 7. Viral Macro- and Microdiversity Global Biodiversity Trends

(A) Locally estimated scatterplot smoothing (LOESS) plots showing the latitudinal distributions of macro- and microdiversity.

(B) Equirectangular projections of the globe showing macrodiversity.

(C) Equirectangular projection of the globe showingmicrosdiversity levels within each sample across the global ocean. Samples collected at different depths from

the same latitude and longitude are overlaid and the colors representing their macro- and microdiversity values are merged.

(D) Arctic projection of the global ocean showing the geographical division between ARC-H and ARC-L stations. The patterns are largely concordant with the

Arctic division by climatology-derived N*. While we did sample across different seasons, the calculated N* values are not dependent on the season (see ‘‘Impact

of the coast, depth, and seasons’’ in STAR Methods).

(E) Boxplots showing median and quartiles of macrodiversity (left) and microdiversity (right) of the ARC-H and ARC-L regions. Statistics were the same as in

Figure 2.

(F) LOESS smooth plots showing the depth distributions of macro- and micropopulation diversity. On all the smooth plots, the line represents the LOESS best fit,

while the lighter band corresponds to the 95% confidence window of the fit. Abbreviations: N*, the departure from dissolved N:P stoichiometry in the Redfield

ratio and a geochemical tracer of Pacific and Atlantic water mass (STAR Methods).

See also Figure S6.
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If more extensive deep water sampling confirms these pat-

terns, we see several scenarios that could explain these data.

First, we hypothesize that viral microdiversity may, in part, be

driven by an increase inmacrodiversity of zone-specific bacterial

populations in TT-MES, which we interpret as an expansion of

host ‘niches’ available for infection that could drive diversifica-

tion in viruses (Elena et al., 2009). Second, we hypothesize that

the decrease in viral macrodiversity may be driven by increased

viral microdiversity of some viral populations in the mesopelagic

region that can promote competitive exclusion (Sensu) (Hart

et al., 2016) as discussed above. Alternatively, lower cell density

in the mesopelagic layer (Sunagawa et al., 2015) may result in

less encounters between ‘‘predator’’ and ‘‘prey,’’ reducing viral

speciation (as a function of reduced number of viral generations),

but selecting for viruses with broader host range. Again, testing

these hypotheses will require technological advances to mea-

sure in situ host ranges and sensitivities of viruses and cells,

respectively, at scales relevant to the diversity in nature.

Conclusions

This study provides a systematic and global-scale view of pat-

terns and drivers of marine viral macro- and microdiversity that

reveals three overarching advances. First, five ecological zones

emerge for the global ocean, which contrasts known Longhurst

biogeographic patterning in other organisms, but is consistent

with observations from the largely co-sampled ocean micro-

biome (Sunagawa et al., 2015). Second, patterns and drivers

of viral macro- and microdiversity differ per sample and posi-

tively correlate to geographic range. These findings offer hints

at underlying mechanisms that impact these two levels of di-

versity that will guide researchers from discovery to hypothe-

sis-testing as technologies, such as scalable single virus geno-

mics and in situ host range assays, advance toward sampling

scales relevant to those in nature. Third, epipelagic waters

and the Arctic Ocean emerge from our work as biodiversity hot-

spots for viruses. While this is surprising given the latitudinal di-

versity gradient paradigm that the tropics rather than the poles

are the cradles of diversity, it is in line with other observations in

larger organisms (Valdovinos et al., 2003; Rabosky et al., 2018)

and emphasizes the importance of these drastically climate-

impacted Arctic regions for global biodiversity. Together, these

advances, along with the parallel global-scale ecosystem-wide

measurements of Tara Oceans (de Vargas et al., 2015; Suna-

gawa et al., 2015; Brum et al., 2015; Lima-Mendez et al.,

2015; Roux et al., 2016) provide the foundation for incorpo-

rating viruses into emerging genes-to-ecosystems models

(Guidi et al., 2016; Garza et al., 2018) that guide ocean

ecosystem management decisions that are likely needed if hu-

mans and the Earth System are to survive the current epoch of

the planet-altering Anthropocene.
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Poulton, Jeroen Raes, Christian Sardet, Sabrina Speich, Lars Stemmann,

Matthew B. Sullivan, Shinichi Sunagawa, and Patrick Wincker. Affiliations for

Tara Oceans coordinators can be found in Document S1.

ACKNOWLEDGMENTS

Tara Oceans (that includes both the Tara Oceans and Tara Oceans Polar Circle

expeditions) would not exist without the leadership of the Tara Expeditions

Foundation and the continuous support of 23 institutes (https://oceans.

taraexpeditions.org). We further thank the commitment of the following spon-

sors: CNRS (in particular Groupement de Recherche GDR3280 and the

Research Federation for the study of Global Ocean Systems Ecology and Evo-

lution, FR2022/Tara Oceans-GOSEE), European Molecular Biology Labora-

tory (EMBL), Genoscope/CEA, The French Ministry of Research, and the

French Government ‘‘Investissements d’Avenir’’ programmes OCEANOMICS

(ANR-11-BTBR-0008), FRANCE GENOMIQUE (ANR-10-INBS-09-08), MEMO

LIFE (ANR-10-LABX-54), and PSL* Research University (ANR-11-IDEX-0001-

02). We also thank the support and commitment of Agnès b. and Etienne Bour-

gois, the Prince Albert II deMonaco Foundation, the Veolia Foundation, Region

Bretagne, Lorient Agglomeration, Serge Ferrari, Worldcourier, and KAUST.

Cell 177, 1109–1123, May 16, 2019 1119

https://doi.org/10.1016/j.cell.2019.03.040
https://doi.org/10.1016/j.cell.2019.03.040
https://oceans.taraexpeditions.org
https://oceans.taraexpeditions.org


The global sampling effort was enabled by countless scientists and crew

who sampled aboard the Tara from 2009–2013, and we thank MERCATOR-

CORIOLIS and ACRI-ST for providing daily satellite data during the expedi-

tions. We are also grateful to the countries who graciously granted sampling

permissions. The authors declare that all data reported herein are fully and

freely available from the date of publication, with no restrictions, and that all

of the analyses, publications, and ownership of data are free from legal entan-

glement or restriction by the various nations whose waters the Tara Oceans

expeditions sampled in. This article is contribution number 86 of Tara Oceans.

Computational support was provided by an award from the Ohio Supercom-

puter Center (OSC) to M.B.S. Study design and manuscript comments from

Bonnie T. Poulos, Ho Bin Jang, M. Consuelo Gazitúa, Olivier Zablocki, Janaina

Rigonato, Damien Eveillard, Frédéric Mahé, Federico Ibarbalz, and Hisashi
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER(S)

Sequencing Reagents and Kits

NEBNext DNA Sample Prep Master Mix New England Biolabs, Ipswich, MA Cat n� E6040S

NEXTflex PCR free barcodes Bioo Scientific, Austin, TX Cat n� NOVA-514110

Kapa Hifi Hot Start Library Amplification kit KAPA Biosystems, Wilmington, MA Cat n� KK2611

DNA SMART ChIPSeq Kit Takara Bio USA, Mountain View, CA Cat N� 634865

Deposited Data

Tara Oceans Viromes Raw Reads Brum et al., 2015; Roux et al., 2016 European Nucleotide Archive (ENA) - see

Table S3 for details

Tara Oceans Polar Circle Raw Reads This paper European Nucleotide Archive (ENA) - see

Table S3 for details

Malaspania Viromes Raw Reads Roux et al., 2016 Integrated Microbial Genomes (IMG) with

Joint Genome Institute - see Table S3 for

details

16S rRNA gene Tara Oceans data Logares et al., 2014 Supplementary materials in Logares

et al. (2014)

Biogeographical and Physicochemical data Pesant et al., 2015 PANGAEA (Data Publisher for Earth &

Environmental Science) - see Table S3

for details

N* Arctic Data This paper Table S3

Software and Algorithms

nucmer (MUMmer3.23) Kurtz et al., 2004 https://sourceforge.net/projects/mummer/

bbmap 37.57 https://jgi.doe.gov/data-and-tools/bbtools/ https://jgi.doe.gov/data-and-tools/bbtools/;

RRID:SCR_016965

metaSPAdes 3.11 Nurk et al., 2017 https://github.com/ablab/spades/releases;

RRID:SCR_000131

prodigal 2.6.1 Hyatt et al., 2010 https://github.com/hyattpd/Prodigal;

RRID:SCR_011936

diamond Buchfink et al., 2015 https://github.com/bbuchfink/diamond;

RRID:SCR_016071

VirSorter v1.0.4 Roux et al., 2015 https://github.com/simroux/VirSorter

VirFinder Ren et al., 2017 https://github.com/jessieren/VirFinder

CAT Cambuy et al., 2016 https://github.com/dutilh/CAT

blast 2.4.0+ ftp://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/

ftp://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/

vConTACT2 Jang et al., 2019 https://bitbucket.org/MAVERICLab/

vcontact2

bowtie2 Langmead and Salzberg, 2012 https://github.com/BenLangmead/bowtie2

BamM https://github.com/Ecogenomics/BamM https://github.com/Ecogenomics/BamM

Bedtools Quinlan and Hall, 2010 https://github.com/arq5x/bedtools2/blob/

master/docs/content/overview.rst;

RRID:SCR_006646

Vegan (R package) Dixon, 2003 https://cran.r-project.org/web/packages/

vegan/index.html; RRID:SCR_011950

BiodiversityR (R package) https://cran.r-project.org/web/packages/

BiodiversityR/index.html

https://cran.r-project.org/web/packages/

BiodiversityR/index.html

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Matthew

B. Sullivan (mbsulli@gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tara Oceans Polar Circle (TOPC) expedition sample collection and virome creation

Between June 2013 and December 2013, 41 samples were collected at different depths from 20 different sites near or within the

Arctic Ocean (see full list of samples in Table S3). Physicochemical measurements, sample collection, and DNA extractions were

performed using the methods described in Roux et al. (2016). Extracted DNA was prepared for sequencing using library preparation

method described in Alberti et al. (2017) for viral samples collected during the TOPC campaign (section 4.2) and sequenced using the

HiSeq 2000 system (101 bp, paired end reads). Importantly, our sample collection and library preparation methods have known bias

toward < 0.2umdsDNA viruses (Roux et al., 2017). The TOPC samples were combinedwith the previously published viromes in (Brum

et al., 2015; Roux et al., 2016). Of the previously published dataset, the mesopelagic samples at (Tara stations 37, 39, 56, 68, 70, 76,

78, 111, 122, 137, 138) and the Southern Ocean samples (Tara stations 82_DCM, 84, 85) were sequenced deeper. These combined

samples comprise the GOV 2.0 dataset. The number of reads found in each sample can be found in Table S3.

METHODS DETAILS

Tara Oceans Polar Circle (TOPC) expedition sample processing and sequencing analyses

Due to different library preparation for the TOPC samples than the original Tara Oceans samples, the previously sequenced meso-

pelagic samples (Tara stations 68, 78, 111, 137) were prepped using the TOPC library preparation to determine if it impacted our

ability to assemble viral populations. We found no significant difference between library preparations in terms of the number of

viral genomes assembled and the average genome length (Figures S7A and S7B). Additionally, to directly assess the impact of

experimental variation between Tara Oceans and TOPC on our ecological interpretations, we applied hierarchical clustering on a

Bray-Curtis dissimilarity matrix of our viromes and we found that all of the mesopelagic samples prepared using the TOPC protocols

clustered with their respective samples prepared using the original Tara Ocean protocols, and the variation between them was far

less than the ecological variation across our viromes (see distances in hierarchical clustering in Figure S7D). For two surface samples

(Tara Stations 100 and 102), we also re-prepped the DNA using the DNA SMART ChIP-Seq kit which allows us to catch ssDNA in the

library preparation (Takara) and further sequenced these two samples using the HiSeq 2000 system.

While the Tara Oceans and Malaspina expeditions used the same sampling and storage approaches (described in Roux et al.,

2016), the sequencing reads were longer for the latter (101 bp for Tara and 151 bp for Malaspina). Given this, we have performed

further analyses to evaluate whether the contribution of this experimental method variation surpasses the ecological variation pre-

sented in this study or not. These analyses, which are further described below, showed that ecological variation much better ex-

plained the data than experimental methods. To evaluate this, we compared the deep ocean samples collected from the TaraOceans

andMalaspina expeditions to assess their power to predict the correct ecological zone (mesopelagic or bathypelagic) based on the

depth of collection (ecological variation) and the sequencing read length (experimental variation). Using three different metrics,

namely the r2 value in a univariate regression analysis, the bayesian information criterion (BIC) of such constructed univariate model,

and the p-value associated with different components in a multivariate regression analysis, we found that the depth of collection,

rather than the experimental variation, best predicts the ecological zone (higher r2), with a better model fit (lower BIC), and lower

p-value (Figure S7C). Additionally, we have oneMalaspina sample from the mesopelagic ecological zone (the rest are Tara samples),

and there is no significant difference between the Malaspina sample and Tara samples in the mesopelagic (Figures S3C and S3D).

Together these findings demonstrate that the differences between the samples collected during the different expeditions are pre-

dominantly the result of ecology and community structure rather than experimental artifact.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER(S)

heatmap3 (R package) https://cran.r-project.org/web/packages/

heatmap3/index.html

https://cran.r-project.org/web/packages/

heatmap3/index.html

ggplot2 (R package) https://cran.r-project.org/web/packages/

ggplot2/index.html

https://cran.r-project.org/web/packages/

ggplot2/index.html; RRID:SCR_014601

ggpubr (R package) https://cran.r-project.org/web/packages/

ggpubr/index.html

https://cran.r-project.org/web/packages/

ggpubr/index.html

Analyses scripts (per Figure) This paper https://bitbucket.org/MAVERICLab/GOV2
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All the remaining STARMethodswe used are quantifications and statistical analyses. All the details related to these STARMethods

are therefore provided in the following section, QUANTIFICATION AND STATISTICAL ANALYSES

QUANTIFICATION AND STATISTICAL ANALYSIS

Viral contig assembly, identification, and dereplication

All samples in the GOV 2.0 dataset (Roux et al., 2016) as well as the previously sequenced TOPC library-prepped mesopelagic sam-

ples and the DNA SMART ChIP-Seq kit surface samples were individually assembled using metaSPAdes 3.11.1 (Nurk et al., 2017).

Prior to assembly, Malaspina samples from GOV 2.0 were further quality controlled. Briefly, adaptors and Phix174 reads

were removed and reads were trimmed using bbduk.sh (https://jgi.doe.gov/data-and-tools/bbtools/; minlength = 30 qtrim = rl

maq = 20 maxns = 0 trimq = 14 qtrim = rl). Following assembly, contigs R 1.5kb were piped through VirSorter (Roux et al., 2015)

and VirFinder (Ren et al., 2017) and those that mapped to the human, cat or dog genomes were removed. Contigs R 5kb or R

1.5kb and circular that were sorted as VirSorter categories 1-6 and/or VirFinder score R 0.7 and p < 0.05 were pulled for further

investigation. Of these contigs, those sorted as VirSorter categories 1 and 2, VirFinder scoreR 0.9 and p < 0.05 or were identified

as viral by both VirSorter (categories 1-6) and VirFinder (scoreR 0.7 and p < 0.05) were classified as viral. The remaining contigs were

run through CAT (Cambuy et al., 2016) and those with < 40% (based on an average gene size of 1000) of the genome classified as

bacterial, archaeal, or eukaryotic were considered viral. In total, 848,507 viral contigs were identified. Viral contigs were grouped into

populations if they sharedR 95% nucleotide identity acrossR 80% of the genome (sensu) (Brum et al., 2015) using nucmer (Kurtz

et al., 2004). This resulted in 488,130 total viral populations found inGOV 2.0 (see Table S5 for VirSorter, VirFinder, andCAT results), of

which 195,728 wereR 10kb.

Viral taxonomy

For each viral population, ORFs were called using Prodigal (Hyatt et al., 2010) and the resulting protein sequences were used as input

for vConTACT2 (Jang et al., 2019) and for blastp. Viral populations represented by contigs > 10kb were clustered with Viral RefSeq

release 85 viral genomes using vConTACT2. Those that clustered with a virus from RefSeq based on amino acid homology based on

diamond (Buchfink et al., 2015) alignments were able to be assigned to a known viral taxonomic genus and family. For GOV 2.0 viral

populations that could not be assigned taxonomy or were < 10kb, family level taxonomy was assigned using a majority-rules

approach, where if > 50% of a genome’s proteins were assigned to the same viral family using a blastp bitscoreR 50 with a Viral

RefSeq virus, it was considered part of that viral family.

Viral population boundaries

To determine if our viral populations had discrete sequence boundaries, all reads across the GOV 2.0 dataset (excluding the Tara

stations 68, 78, 111, 137 prepped using the TOPC library preparation methods and the DNA SMART ChIP-Seq kit prepped libraries)

were pooled and mapped non-deterministically to our viral populations using the ‘very-sensitive-local’ setting in bowtie2 (Langmead

and Salzberg, 2012). The percent nucleotide identity (% ID) of each mapped read and the positions in the genome where the read

mapped were determined. The frequency of reads mapping at a specific % IDs were weighted based on the length of each read

mapped across the genomes. Frequencies of reads mapping at specific % IDs were smoothed using Loess smooth functions

(span = 1 to be more permissive of lower % ID reads) to create read frequency histograms (% ID versus frequency). To determine

break in the distribution of read frequencies between the different % IDs, Euclidean distances calculated were calculated

between % ID frequencies and then hierarchically clustered in R.

Calculating viral population relative abundances, average read depths, and population ranks

To calculate the relative abundances of the different viral populations in each sample, reads from eachGOV 2.0 viromewere first non-

deterministically mapped to the GOV 2.0 viral population genomes using bowtie2. BamM (https://github.com/ecogenomics/BamM)

was used to remove reads that mapped at < 95% nucleotide identity to the contigs, bedtools genomecov (Quinlan and Hall, 2010)

was used to determine how many positions across each genome were covered by reads, and custom Perl scripts were used to

further filter out contigs without enough coverage across the length of the contig. For downstreammacrodiversity calculations, con-

tigsR 5kb in length that had < 5kb coverage or less than the total length of the contig covered for contigs < 5kb were removed. For

downstream microdiversity calculations, all contigs with < 70% of the contig covered were removed. BamM was used to calculate

the average read depth (‘tpmean’ -minus the top and bottom 10% depths) across each contig. For the macrodiversity calculations,

the average read depth was used as a proxy for abundance and normalized by total read number per metagenome to allow for sam-

ple-to-sample comparison. The rank abundance of all the viral populations was calculated using the normalized abundances and the

‘rankabundance’ in the BiodiversityR R package.

Subsampling reads

Unequal sequencing depth can have large impacts on diversity measurements, specifically a-diversity measurements (Lemos et al.,

2011). Due to 5x more sequencing depth in TOPC samples and the deeply sequenced mesopelagic and Southern Ocean samples

(Table S3), all viromes in theGOV 2.0 dataset were randomly subsampledwithout replacement to 20M reads for Tara or 10M reads for
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Malaspina (as manyMalaspina samples were < 20M reads and there was no significant difference between the 10M and 20M reads

assemblies; p = 1) using reformat.sh from bbtools suite (https://sourceforge.net/projects/bbmap/). The subsampled read libraries

were assembled using metaSPAdes 3.11.1. ContigsR 1.5kb that sharedR 95% nucleotide identity acrossR 80% of the genome

with the 488,130 viral populations in GOV 2.0 were pulled out and grouped into populations to be used as the subsampled GOV 2.0

viral populations. In total, there were 46,699 viral populations. Relative abundances were calculated per sample as aforementioned

for macrodiversity calculations, but using the subsampled GOV 2.0 viral populations and the subsampled reads.

Macrodiversity calculations

The macrodiversity a- (Shannon’s H) and b- (Bray-Curtis dissimilarity) diversity statistics were performed using vegan in R (Dixon,

2003). The a-diversity calculations were based on the relative abundances produced from the subsampled reads. Loess smooth

plots with 95% confidence windows in ggplot2 in R were used to look at changes in Shannon’s H across latitude (Figure 7A) and

depth (Figure 7F). For the b-diversity, both the subsampled and the total reads abundances were used to look at community structure

(Figure S3). Principal Coordinate analysis (function capscale of vegan package with no constraints applied) and NMDS analysis

(function metaMDS; K = 2 and trymax = 100) were used as the ordination methods on the Bray-Curtis dissimilarity matrices from

both the subsampled and total reads calculated from GOV 2.0 (function vegdist; method ‘‘bray’’) after a cube root transformation

(function nthroot; n = 3). The ecological zones that emerged were verified using a permanova test (function ‘‘adonis’’) and the con-

fidence intervals were plotted using function ‘‘ordiellipse’’ at the specified confidence limits (95% and 97.5%) using the standard de-

viation method. There were no significant differences in clustering between the subsampled and all reads Bray-Curtis dissimilarity

PCoA plots (Figure S3). Hierarchical clustering (function pvclust; method.dist = ’’cor’’ and method.hclust = ’’average’’) was conduct-

ed on the same Bray-Curtis dissimilarity matrices using 1000 bootstrap iterations and only the approximately unbiased (AU) boot-

strap values were reported. The heatmaps were generated using the heatmap3 package with appropriate rotations of the branches

in the dendrograms. Samples that did not cluster with their ecological zone (Tara mesopelagic stations 72, 85, and 102 and Tara

surface station 155) were considered outliers and removed from further analyses (Figures S3A and S3C).

Microdiversity calculations

Viral populations with an average read depth ofR 10x across 70%of their representative contig in at least one sample in the GOV 2.0

dataset were flagged formicrodiversity analyses. We used 10x as the minimum coverage because population genetic statistics were

found to be relatively consistent down to 10x based on previous downsampling coverage analyses (Schloissnig et al., 2013). BAM

files containing readsmapping atR 95%nucleotide identity were filtered for just the flagged viral populations. Samtoolsmpileup and

bcftools were used to call single nucleotide variants (SNVs) across these populations. SNV calls with a quality call > 30 thresholdwere

kept. Coverage for each allele for each SNV locus was summed across all the metagenomes. For each SNV locus, the consensus

allele was re-verified and those with alternative alleles that had a frequency > 1% (Abecasis et al., 2012), the classical definition

of a polymorphism, and supported by at least 4 reads were considered SNP loci (Schloissnig et al., 2013). Nucleotide diversity (p)

per genomewere calculated using equation fromSchloissnig et al. (2013). Due to the variable coverage across the genome, coverage

was randomly downsampled to 10x coverage per locus in the genome. For the downsampling, if there was not the target 10x

coverage for the locus, all of the alleles were sampled. Nucleotide diversity (p) was calculated for each genome with an average

read depth R 10x across 70% of their contig in each sample. For each sample, p values of 100 viral populations were randomly

selected and averaged. This was repeated 1000x and the average of the all 1000 subsamplings was used as the final microdiversity

value for each sample. Loess smooth plots with 95% confidence windows in ggplot2 in R were used to look at changes in average p

across latitude (Figure 7A) and depth (Figure 7F).

Annotating Genes & Making Protein Clusters

Genes were annotated by translating the sequences into proteins and running a combination of reciprocal best blast hit analyses

against the KEGG database (Kanehisa et al., 2002), and blast against the UniProt Reference Clusters database (Suzek et al.,

2015), searching for matches against the InterPro protein signature database using InterProScan (Zdobnov and Apweiler, 2001),

and running HMM searches against Pfams (Bateman et al., 2004). A diamond ‘blastall’ alignment search (Buchfink et al., 2015) of

all the protein sequences was performed against all the protein sequence was performed and the protocol ‘‘Clustering similarity

graphs encoded in BLAST results’’ with a granularity of I = 2 from the MCL website (https://micans.org/mcl/; Enright et al., 2002)

was used to create protein clusters.

Selection Analyses

Natural selection (pN/pS) was calculated using themethod from Schloissnig et al. (2013). The pN/pSmethod compares the expected

ratio of non-synonymous and synonymous substitutions based on a uniform model of occurrence of mutations across the genome

with the observed ratio of non-synonymous and synonymous substitutions. The original method treats each SNP locus as indepen-

dent from each other. Thus, if two SNPs occur in the same codon, the alternate codon produced from each SNPwould be considered

in the pN/pS calculation. Thus, if two SNPs occur in one codon, the effect of the SNPs could potentially cancel each other out or

amplify a non-synonymous signal leading to false positive selection calls. In order to minimize this bias, SNPs found within the
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same codon in the same gene were tested for linkage in each metagenome. If SNP alleles from loci within the same codon had depth

coverage within 15% of each other within each metagenome, they were considered linked in that sample.

For each codonwith SNP loci in a gene, theminimum coverage was identified based on the lowest read depth coverage among the

three base pair position. The initial number of the consensus codon was determined based on the lowest coverage of the consensus

alleles at the SNP locus or loci if linked. The initial numbers of potential alternate codons was based on the coverage of the alternate

allele at that position or the lowest coverage between two linked SNPs. The final coverage of the each codon per SNP locus was

calculated by taking the rounded down number of the product of the initial number x (initial number/ minimum coverage for the

codon). These codons then subsampled down to 10x. The number of observed non-synonymous and synonymous substitutions

were counted and pN/pS was calculated. Genes were considered under positive selection if pN/pS was > 1.

Drivers of Macro- and Micro-diversity

Regression analysis between the first coordinate of the PCoA (Figure 5A) and available temperature measurements was conducted

using the lm function in R. The environmental variables were fitted to the first two dimensions of the PCoA using a generalized additive

model (function envfit; permutations = 9999 and na.rm = TRUE). Then, they were correlated with all the PCoA dimensions using a

mantel test (function mantel; permutations = 9999 and method = ’’spear’’) after scaling (function scale) and calculating their

distance matrices (function vegdist; method ‘‘euclid’’ and na.rm = TRUE). Finally, they were correlated with Shannon’sH and p using

Pearson’s correlation (function cor; use = ’’pairwise.complete.obs’’) after removing Shannon’sH outliers based on a boxplot analysis

(Figure S4). Both Pearson’s and Spearman’s correlations are provided in (Table S7).

Subsampling macro- and micro- diversity

Due to unequal sampling across each ecological zone, we chose to normalize the number of samples between each ecological zone

by subsampling the down to lowest zone sample size (ANT; n = 5). Shannon’s H outliers were not included in the subsampling. Five

samples within each zone were randomly subsampled without replacement and their macro- and micro- diversity values averaged,

respectively. We subsampled 1000x and plotted the averages and assessed for significant differences using Mann-Whitney U-tests

in ggboxplot from the R package ggpubr (Figure 4B).

Classifying multi-zonal, regional, and local viral populations

To determine geographic range, viral populations were evaluated for their distributions across the five ecological zones and plotted

using the VennDiagram package in R (Figure 6A). If present inR 1 sample in more than one ecological zone, it was considered multi-

zonal (58% GOV 2.0 viral populations). If present only in samples found within a single zone, it was considered zone-specific (48%

GOV 2.0 viral populations). Zone-specific viral populations were further divided into regional (R2 samples within a zone) and local

(only 1 sample within a zone). The proportion of multi-zonal, regional, and local viral populations found across each zone (Figure 6B)

and across each station (Figure S6) were calculated by dividing the number of each type by the total number of viral populations found

across a zone or station, respectively. To assess the impact of geographic range onmicrodiversity per zone, stations were randomly

subsampled without replacement as described above. Within each sample, p values of 50, 100, and 20 viral populations of each

geographic distribution (multi-zonal, regional, and local, respectively) were randomly selected and averaged. All the viral populations

with a geographic range were sampled and averaged in samples that lacked enough deeply-sequenced viral populations with partic-

ular geographic range. This was repeated 1000x and the averages plotted and assessed for significant differences usingMann-Whit-

ney U-tests in ggboxplot from the R package ggpubr (Figure 6C).

Comparing ARC-H and ARC-L

The ARC-H and ARC-L regions were defined based on their biogeography; the ARC-H stations were located in the Pacific Arctic re-

gion, the Arctic Archipelago, and the Davis-Baffin Bay, in addition to one station (Station 189) in the Kara-Laptev sea, which was

separated by a land mass from the rest of the stations in the same area (Figure 7D). The ARC-L stations were located in the Kara-

Laptev Sea (except Station 189), the Barents Sea, and subpolar areas (stations 155 and 210). The departure from the dissolved

N:P stoichiometry in the Redfield ratio (N*) was calculated as in Tremblay et al. (2015) to represent the deficit in dissolved inorganic

nitrogen (DIN) in the ratio and as a geochemical tracer of pacific and atlantic water masses. Macro- and micro- diversity values for

each station in ARC-H and ARC-L were plotted and assessed for significant differences using Mann-Whitney U-tests in ggboxplot

from the R package ggpubr (Figure 7E).

Comparing GOV to GOV 2.0

Viral populations assembled in the GOV (Roux et al., 2016) were compared to the GOV 2.0 viral populations (Figure 1B) using blastn.

Unbinned GOV viral populations with a nucleotide alignment to a GOV 2.0 viral populations withR 95% nucleotide identity and an

alignment lengthR 50% the length were considered present in the GOV 2.0. These results were plotted in a venn diagram using the

VennDiagram package in R. The frequency of contig lengths of viral populations that were shared across both samples were plotted

using ggplot2 (function ‘‘geom_histogram’’; binwidth = 5000).
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Calculating 16S OTU Macrodiversity

Previously published 16S OTU data were taken from Logares et al. (2014). The macrodiversity a- (Shannon’s H) statistics were per-

formed using vegan in R (Dixon, 2003). Loess smooth plots with 95% confidence windows in ggplot2 in R were used to look at

changes in bacterial Shannon’s H down the depth gradient. Differences between surface, deep chlorophyll maximum, and mesope-

lagic bacterial samples were compared using Mann-Whitney U-tests and plotted in ggboxplot from the R package ggpubr. Finally,

viral microdiversity was correlated with bacterial Shannon’s H using Pearson’s correlation (function cor; use = ’’pairwise.comple-

te.obs’’) and a linear regression (Figure S6D).

IMPACT OF THE COAST, DEPTH, AND SEASONS

GOV 2.0 samples are largely open ocean samples. Even though the arctic samples were more coastal, we didn’t observe any

significant coastal impact on the globalmacrodiversity (Pearson’s r =�0.25; Bonferroni-corrected p-value = 0.15) andmicrodiversity

(Pearson’s r = 0.11; p-value = 0.23) levels (Figure 4C). Although nitrate and phosphate levels generally increase with depth,

we observed higher negative correlations and significantly lower p-values for these nutrients with macrodiversity levels than

between depth and macrodiversity (Figure 4C) which suggests an impact of nutrients on viral diversity via primary production

(Figure 5C). Additionally, since the sampling was largely at discrete depth layers with different densities in the TT region (epipelagic,

mesopelagic, and bathypelagic), rather than sampling gradients, we discerned a clearer signal for the separation between these

ecological zones (Figure 4A). On the other hand, all the arctic epipelagic and mesopelagic samples fell within the same ecological

zone due to the absence of a pycnocline in this area (Figure 4A). Finally, the circumnavigation of the Arctic Ocean spanned multiple

seasons (spring, summer, and fall). Based on our previous observation from a time-series data in a sub-arctic system (Hurwitz and

Sullivan, 2013), our viralmacrodiversity is expected to be lowest during the spring and summer and increase toward the winter sea-

son. However, our calculated N* values are not dependant on the season and represent the largest magnitude of change among all of

the environmental variables that correlated with macrodiversity between the ARC-H and ARC-L regions.

Assessment of microbial contamination

To quantifyingmicrobial contamination across our samples, we screened ourmetagenomic reads using singleM (https://github.com/

wwood/singlem) for 16S sequences using the dedicated 16S SingleM package. We found that our viromes are exceptionally clean.

Specifically, the number of 16S sequences in our samples ranged from 0-40 per million reads (Table S3), and hence the samples are

considered to have ‘‘likely negligible bacterial contamination’’ according to themetric proposed by authors evaluating such signals in

published viromes (threshold was 200 16S sequences permillion; Roux et al., 2013). In spite of our viromes being exceptionally clean,

we sought to evaluate the impact of any variation in 16S, and hence bacterial contamination, however small, on our findings. We

found that even though microbial contamination increases with depth (most probably due to the decrease in cell size; linear regres-

sion r2 = 0.89), this increase was driven mainly by the bathypelagic samples. Briefly, the average contamination in BATHY was

28.7 per million reads (standard deviation = 6.8) as compared to the rest of the samples (average contamination = 1.7 per million

reads and standard deviation = 2). These bathypelagic samples were not included in any of the ecological driver analyses due to

the unavailability of the environmental data to us. Further, it is clear that our estimates of diversity were not influenced by the minor

variations in the negligible contamination in our viroomes as a linear regression between Shannon’s H and the number of 16S reads

from deep ocean samples resulted in a negligible r2 value (0.06). These data (used for conducting the regression analysis) represent a

large range of diversity (3.3-7.8) and the full range of contamination (0-40), but avoid the convolution from the ecological difference

between the surface and deep ocean layers. Thus, we conclude that the diversity observations we make in this study are driven by

ecological variation far greater than microbial contamination.

DATA AND SOFTWARE AVAILABILITY

Code availability

Scripts used in this manuscript are available on the Sullivan laboratory bitbucket under GOV 2.0.

Data availability

All raw reads are available through ENA (Tara Oceans and TOPC) or IMG (Malapsina) using the identifiers listed in Table S3. Pro-

cessed data are available through iVirus, including all assembled contigs, viral populations and genes.
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Figure S1. Bioinformatic Workflow, Related to Figures 1 and 4

Flow diagrams showing the bioinformatic workflow for (A) the assembly and identification of viral populations, (B) the population coverages and abundances

and how they were used to calculate macro- and micro-diversity calculations, (C) prediction of population boundaries, and (D) how average macro- and micro-

diversity calculations per ecological zone were calculated.



Figure S2. Non-metric Multidimensional Scaling and Hierarchical Clustering of GOV 2.0, Related to Figure 4

As observed with the Principal Coordinate analysis (Figure 4A), NMDS analysis (A) and correlation-based hierarchical clustering (B) of a Bray-Curtis dissimilarity

matrix calculated from GOV 2.0 structured the viromes into five distinct global ecological zones with an approximately unbiased (AU) bootstrap valueR 77 in the

hierarchical clustering. Four outlier viromes were removed and all the sequencing reads were used, with justification provided in Figures S3C and S3D,

respectively. Abbreviations: ARC, Arctic; ANT, Antarctic; BATHY, bathypelagic; TT-EPI, temperate and tropical epipelagic; TT-MES, temperate and tropical

mesopelagic.



Figure S3. Beta Diversity of the Total Reads and Subsampled Reads GOV 2.0 Dataset and Outlier Analyses, Related to Figure 4

PCoA of a Bray-Curtis dissimilarity matrix calculated from GOV 2.0 using all the sequencing reads (A) and after randomly subsampling the reads to the same

sequencing depth (B). The dissimilarity matrices from (A) and (B) were used to conduct hierarchical clustering on the samples as shown in (C) and (D), respectively.

The four viromes which were removed from Figures 4 and S2 are highlighted with asterisks; sample 1 (station 155_SUR) is the only surface sample in the North

Atlantic Drift Province and could have been influenced by the warm surface currents going northward due to the Atlantic Meridional Overturning Circulation;

sample 2 (station 85_MES) is the only mesopelagic sample from the Southern Ocean and could have been influenced by the upwelling of ancient deep ocean

water (which is also congruent with the similarity observed between deep water bacterial communities of polar and lower latitude) (Ghiglione et al., 2012); sample

3 (station72_MES) fell outside the 97.5% confidence intervals of all the ecological zones; sample 4 (station102_MES) was located in El Niño-Southern Oscillation

region and could have been influenced by the upwellings and downwellings in this area. Additionally, samples 1, 3, and 4were among the Shannon’sH outliers (E).

Viral communities still partitioned into five ecological zones after subsampling the reads as shown by the PCoA (B) and hierarchical clustering (D) plots. (E) Boxplot

analysis of viralmacrodiversity across GOV 2.0 ecological zones. Outliers that fell below the first quantile or above the fourth quantile (function geom_boxplot of

ggplot) of each ecological zone were removed before examining the predictors of viral macrodiversity (Figure 4C). Outliers: 32_SUR, 155_SUR, 56_MES,

70_MES, 72_MES, 102_MES, MSP131, and MSP144.



Figure S4. Schematic Showing the Interplay of Increased Microdiversity and Competitive Exclusion, Related to Figure 4

Viral populations with more microdiversity usually have larger niche sizes and therefore can outcompete viral populations with smaller overlapping niche sizes.

This process of competitive exclusion may not be visible in each community as seen across the three communities. Thus, the average of communities such as

across ecological zones can better show this relationship.



Figure S5. Stacked Barplots Showing the Number of Multi-Zonal, Regional, and Local Viral Populations Found within the Species Pool of

Each Station, Related to Figure 6

Ecological zone outliers (see Figure S3) are excluded.



Figure S6. ARC-H Drives the Divergence from the Latitudinal Diversity Gradient andMicrobial 16S OTUs Biodiversity Deviate from the Depth

Diversity Gradient and Positively Correlates with Viral Microdiversity in the Mesopelagic, Related to Figure 7

(A) Loess smooth plots showing the latitudinal distributions of macro- and micro- population diversity with ARC-H and ARC-L regions. The line represents the

loess best fit, while the lighter band corresponds to the 95% confidence window of the fit. (B) Loess smooth plots showing 16S OTUs (Logares et al., 2014)

macrodiversity distributions down the depth gradient. The line represents the loess best fit, while the lighter band corresponds to the 95% confidence window of

the fit. (C) Boxplots showingmedian and quartiles of surface, deep chlorophyll maximum (DCM), andmesopelagic 16SOTU data taken from Logares et al. (2014).

All pairwise comparisons shown were statistically significant (p < 0.05) using two-tailed Mann-Whitney U-tests. (D) Scatterplot showing the positive correlation

(Pearson’s correlation r = 0.51; p-value = 0.036) and linear regression (r2 = 0.26) between Tara Oceans mesopelagic samples shared between the 16S OTU

samples in Logares et al. (2014) and our viral samples in GOV 2.0.



Figure S7. Library Preparation and Experimental Conditions Comparisons, Related to Figures 1 and 4

(A & B) Boxplots showing median and quartiles of the number of assembled viral genomes per total reads sequenced and the average genome lengths in TO and

TOPC preparations of Taramesopelagic stations 68, 78, 111, and 137, respectively. All pairwise comparisons shown were not statistically significant using two-

tailed Mann-Whitney U-tests. (C) Depth (as an ecological variable) predicts the ecological zone of the deep ocean (mesopelagic or bathypelagic) better than

experimental variation between Tara and Malaspina expeditions, with a higher r2 (left), lower BIC (middle), and lower p-value (right). The first two metrics were

calculated from a univariate regression analysis (using depth alone or experimental variation alone as a predictor of the ecological zone), while the thirdmetric was

calculated from a multivariate multiple regression analysis that uses both depth and experimental variation as predictors. (D) Hierarchical clustering of a Bray-

Curtis dissimilarity matrix calculated from GOV 2.0 viromes to which four additional viromes (black bars) have been added to control for the impact of experi-

mental variation between the Tara Oceans and Tara Oceans Polar Circle expeditions. The four viromes prepared using the Tara Oceans Polar Circle protocols

clustered with their respective original samples, which were prepared using the Tara Oceans protocols indicating that experimental variation was far less than

ecological variation.
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