
����������
�������

Citation: Kasheverov, I.;

Kudryavtsev, D.; Shelukhina, I.;

Nikolaev, G.; Utkin, Y.; Tsetlin, V.

Marine Origin Ligands of Nicotinic

Receptors: Low Molecular

Compounds, Peptides and Proteins

for Fundamental Research and

Practical Applications. Biomolecules

2022, 12, 189. https://doi.org/

10.3390/biom12020189

Academic Editor: Diaa Youssef

Received: 17 December 2021

Accepted: 19 January 2022

Published: 23 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Marine Origin Ligands of Nicotinic Receptors: Low Molecular
Compounds, Peptides and Proteins for Fundamental Research
and Practical Applications
Igor Kasheverov 1, Denis Kudryavtsev 1 , Irina Shelukhina 1 , Georgy Nikolaev 2, Yuri Utkin 1

and Victor Tsetlin 1,*

1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences,
117997 Moscow, Russia; iekash@ibch.ru (I.K.); kudryavtsev@ibch.ru (D.K.); ner-neri@yandex.ru (I.S.);
utkin@ibch.ru (Y.U.)

2 Department of Biology, Moscow State University, 119234 Moscow, Russia; humanoid5@yandex.ru
* Correspondence: vits@ibch.ru

Abstract: The purpose of our review is to briefly show what different compounds of marine origin,
from low molecular weight ones to peptides and proteins, offer for understanding the structure and
mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to
combat the diseases where nAChRs may be involved. The importance of the mentioned classes
of ligands has changed with time; a protein from the marine snake venom was the first excellent
tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7
receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin
isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle
from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such
information is crucial for fundamental studies on the nAChR revealing the properties of their
orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar
data are provided by low-molecular weight compounds of marine origin, but here the main purpose is
drug design. In our review we tried to show what has been obtained in the last decade when the listed
classes of compounds were used in the nAChR research, applying computer modeling, synthetic
analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the
nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed
ligand-binding domains.

Keywords: nicotinic acetylcholine receptors; ligands; marine alkaloids; conopeptides; snake neuro-
toxins; acetylcholine-binding proteins; extracellular domains

1. Introduction

Nicotinic acetylcholine receptors (nAChRs) were the first receptors/ion channels
characterized in structural and functional detail, and the important role of low-molecular
weight ligands (nicotine, acetylcholine) is reflected in the receptor name, while protein
neurotoxins from snake venoms (as α-neurotoxins) played a crucial role in the first nAChR
isolation. At present, the most important role in distinguishing the various nAChR sub-
types of muscle-type, neuronal and non-neuronal (for example, on the immune cells), is
played by α-conotoxins, neurotoxic peptides from the Conus marine snails. Contrary to
nicotine and α-bungarotoxin, these peptides are of marine origin and at present play the
most important role due to the high selectivity of naturally-occurring peptides and of
their synthetic analogues in respect to distinct subtypes of neuronal nAChRs. A crucial
role in the earlier characterization of the muscle-type receptor was played by protein α-
neurotoxins from sea snakes (e.g., [1]); however, later, an overwhelming application was
found for α-bungarotoxin, a long-chain α-neurotoxin from the many-banded krait Bungarus
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multicinctus, and especially its radioactive and fluorescent derivatives (see [2–4]). However,
we will briefly consider new data on sea snake proteins homologous to α-bungarotoxin.
There are several excellent recent reviews [5–7] relevant to the title of our article. We will
mostly focus on the studies published in the last 10 years, including our work done in
collaboration with various laboratories, employing different approaches for elucidating the
ligand-receptor interactions.

The first cryo-EM structure of the muscle-type nAChR Torpedo marmorata was pub-
lished by N. Unwin in 2005 [8], while high resolution structures of α-bungarotoxin com-
plexes with this receptor and with neuronal α7 nAChR appeared only recently [9,10]. The
previous X-ray structures of diverse compounds acting on the nAChR were solved for
their complexes with the acetylcholine binding protein (AChBP), an excellent model of the
ligand-binding extracellular domains of not only all types of nAChRs, but of all Cys-loop
ligand-binding receptors (including the GABAA receptors, glycine, 5HT3-serotonin and
some other receptors). The first structure of the α-conotoxin complex with AChBP was
established over 15 years ago [11]. A recent X-ray analysis of α-conotoxin LvIA analogue
bound to AChBP was combined with computer modeling, alanine scanning of LvIA, analy-
sis of binding of these analogs to α3β2 and α3β4 nAChRs, and mutations of the β2 subunit;
as a result, some residues of this subunit responsible for the selectivity of α-conotoxin LvIA
to α3β2 nAChR were identified [12].

Computer modeling of binding to AChBP is widely used to assess possible interactions
of diverse low-molecular compounds, including those of marine origin, with various
nAChR subtypes; then, for the most promising of them, such an activity is checked by
experimental analysis of the interactions with AChBP, Torpedo californica and human α7
nAChR (see, for example, [13]). Thus, in this review we will try to show what a combination
of different approaches (proteomic and transcriptomic studies of venoms, synthesis of
naturally-occurring low molecular weight compounds and their analogues, synthesis of
conotoxins, computer modeling, X-ray and electron microscopy analyses of the respective
complexes with nAChRs or their models) reveals about the nAChR subtype selectivity and
potential novel approaches for new drugs.

2. Marine Low Molecular Weight Compounds Targeting nAChRs
2.1. Biosafety Threat of Shellfish Poisoning with Nicotinergic Ligands

Harmful algae blooms are the source of various toxins produced mainly by dinoflagel-
lates. The most dangerous human poisonings can occur as a result of toxin accumulation
in marine organisms (mainly shellfish) directly consumed by humans. To get the whole
picture on shellfish poisonings and similar events, please address the recent reviews by
Anderson et al. [14] and Zingone et al. [15]. Marine algal toxins produce several toxic effects,
including diarrhetic and various neurotoxic effects, with some effects being potentially at-
tributed to nAChR antagonism by cyclic imine toxins from dinoflagellates: gymnodimines,
spirolides, pinnatoxins, and some others (see Review by Molgo et al. [16]).

Biosafety-oriented studies in recent years demonstrated a variation of methods for
the detection of the cyclic imines. The methods described in these papers include col-
orimetric [17] or chemiluminescent [18] assays based on competition with biotinylated
α-bungarotoxin binding to Torpedo muscle-type nAChR immobilized on the microtiter
plates. A similar technique based on flow-cytometry fluorimetric measurements of the
Torpedo muscle-type nAChR, and Lymnaea stagnalis AChBP, immobilized on carboxylated
microspheres, have also been suggested [19].

Macrocyclic imines (Figure 1) act potently as nAChR antagonists with picomolar affin-
ity blocking muscle and some neuronal subtypes of the receptor in vitro (see Table 1) [20,21].
These molecules were thought to act at the orthosteric site of the receptor, since they pre-
vented acetylcholine and other agonists binding and nAChR activation [22]. More recent
research revealed that gymnodimine A and 13-desmethyl spirolide C (Figure 1) activate
calcium flow through nAChRs [23]. Structures of macrocyclic imines are very complex and
the chemical synthesis of such molecules is a challenging task hindering further research of
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spiroimine pharmacophores. However, Duroure et al. published their synthetic approach
ten years ago [24].
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Figure 1. Diversity of low-molecular weight nicotinic acetylcholine receptor (nAChR) ligands of
marine origin and some of their synthetic analogs. Nitrogen atoms are indicated in blue, oxygen in
red, sulfur atoms in yellow and bromine in brown.

Surugatoxins (Figure 1) were first found in the mollusks Babylonia japonica [25] and
were shown to act at ganglionic nAChRs (Table 1) [26]. However, their exact affinities
toward individual nAChR subtypes remain to be described in studies involving nAChRs
assembled from clones of distinct subunits. Synthesis of a surugatoxin aglicone form has
been described relatively recently [27], creating an opportunity to further toxin pharma-
cophore investigation.

An alkaloid from an ascidian species called lepadin B (Figure 1, Table 1) is an example
of a nAChR ligand of marine origin which blocks, in submicromolar concentrations, neu-
ronal hetero- and homopentameric receptor subtypes [28]. Total synthesis utilizing a new
strategy of several lepadins, including lepadin B, was described in a recent paper [29].
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Table 1. Affinity and potency data on marine low molecular weight nicotinic acetylcholine receptor
(nAChR) ligands.

Low-Molecular
Weight Compound Target (nAChRs)

IC50 ± SEM,
or (CI95%

1) (nM)
Functional

Studies

IC50 ± SEM (nM)
Binding Studies

Ki ± SEM (nM)
Binding Studies Ref.

gymnodimine A

α4β2 (human) 0.5 ± 0.1 b - 70 ± 19

[30]

α4β2 (rat) - - 68 ± 18
α4β4 (human) 8 ± 5 b - 36 ± 8

α6β3β4α5 (human) - - 1.0 ± 0.3
α7 (human) 2.0 ± 0.1 b - 1.0 ± 0.1
α3*(human) 1.0 ± 0.1 b - 30 ± 17
α3*(rat) 63 ± 2 b - 8 ± 3

(α1)2β1γδ (human) 357 ± 121 b - 440 ± 215

(α1)2β1γδ (mouse) - 1.38 ± 0.19 -

[21]
α7-5HT3 (chick) - 0.33 ± 0.08 -

α3β2 - 6.25 ± 1.10 -
α4β2 - 15.50 ± 0.19 -

surugatoxin α3*(rat superior cervical
ganglia) 58 - - [26]

13-desmethyl-
spirolide

C

α4β2 (human) 0.7 ± 0.1 b - 96 ± 34

[30]

α4β2 (rat) - - 120 ± 15
α4β4 (human) 22 ± 4 b - 43 ± 5

α6β3β4α5 (human) - - 2.0 ± 0.2
α7(human) 0.4 ± 0.1 b - 0.7 ± 0.2
α3*(human) 3.0 ± 0.5 b - 47 ± 16
α3*(rat) 40 ± 1 b - 24 ± 11

(α1)2β1γδ (human) 11 ± 3 b - 31 ± 6

20-methyl spirolide G

(α1)2β1γδ (Torpedo) 0.36 (0.29−0.45) a - 0.028 ± 0.005

[20]
α7(human) 0.48 (0.09–2.50) a - -

α7-5HT3 (chick) 2.1 (1.4−3.1) a - 0.11 ± 0.08
α4β2 (human) - - 3.60 ± 0.07
α3β2 (human) - - 0.040 ± 0.001

lepadin B α4β2 (mouse) 900 (700−1200) a - -
[28]

α7 (mouse) 700 (500−900) a - -

cembranoids (α1)2β1γδ (Torpedo) - - 435 ± 157 [31]

nereistoxin

α4β2 (chiken) 40,000 - -

[32]
α7 (chiken) 33,000 - -

ALS/β2
(Drosophila/chiken) 15,000 - -

SAD/β2
(Drosophila/chiken) 13,000 - -

varacin

(α1)2β1εδ (mouse) 8700 ± 400 a - -

[13]
(α1)2β1γδ (Torpedo) - 10,000 ± 1000 -

α7 (human) - 19,000 ± 1000 -
L. stagnalis AChBP - - 790 ± 100

makaluvamine G
(α1)2β1εδ (mouse) 3300 ± 300 a - -

[13](α1)2β1γδ (Torpedo) - 2800 ± 300 -
1 CI95%—95% confidence interval, SEM—standard error of measurement; a measured from electrophysiology ex-
periments, b measured from calcium imaging assay; Ref.—reference; α3* means nAChRs of different composition
containing the α3 subunit.

2.2. Cembranoids from Marine Coelentera

Corals and marine jellyfish serve as a source of bioactive diterpenoids called cem-
branoids (Figure 1), which act on the nicotinic and some other Cys-loop receptors [33].
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Cembranoid research has recently gained attraction mainly as a possible anticancer treat-
ment [34]. It is now accepted that cembranoids can bind to nAChRs as ligands with a broad
spectrum of activities: closed channel blockers, positive modulators and open-channel neg-
ative modulators (Table 1); the exact mode of their action is regulated by the concentration
of the ligand [35]. On GABAA receptors, which share some ligand-binding properties inter-
actions with nAChRs [36], cembranoid eupalmerin shows positive allosteric modulation at
the neurosteroid binding site [37]. Complex eupalmerin action on nAChRs could explain
cell cycle arrest and apoptosis via the mitochondrial pathway in human glioma cell lines
U87-MG and U373-MG [34], because it was previously shown that mitochondrial outer
membrane possesses specific calcium-permeant nAChR subtypes [38]. Alternatively, c-Jun
N-terminal kinase increased phosphorylation can arise from the nAChR modulation of the
cell membrane through kinase cascades [39]. Moreover, the same mechanisms involving
kinase cascades provide neuroprotection in neuroinflammatory conditions via interaction
with α7 nAChR [39].

2.3. Nereistoxin from Marine Worm and Its Derivatives Used as Insecticides

Although nAChR ligands from marine sources could comprise a severe threat to
humans, some of them are extensively used in agriculture as pesticides. Among others,
nereistoxin (Figure 1) from marine annelids acts as a non-competitive nAChR antagonist
at hybrid receptors consisting of insect and vertebrate nAChR subunits (Table 1) [32]. Its
derivatives cartap (Figure 1), thiocyclam, thiasultap and bensultap act either as pro-drugs
yielding nAChR-antagonising molecules or via direct action as nAChR non-competitive an-
tagonists at the phencyclidine binding site [40] (for further information see the review [41]).
Cartap has been shown to influence embryonic development, disrupting mainly skeletal
organs development [42]. Case studies of human poisoning show that direct effects of
nereistoxin on humans include rhabdomyolysis [43] and kidney failure [44]. Nereistoxin
could reside in treated plant material such as tea leaves and pose a potential threat to
consumer health [45]. Recent years have seen a rise of articles dedicated to methods of
nereistoxin (along with cartap and other derivatives) detection and de-activation. Antidotes
against nereistoxin derivatives poisoning include classical British anti-lewisite and sodium
dimercaptopropane sulfonate [43]. Moreover, new chelators called “nanoreceptors” have
been proposed recently to oppose the toxicity of nereistoxin [46].

Proposed methods for detection of nereistoxin and its derivatives include gas chro-
matography with electron-capture detector [47] and chromatomass-spectrometry [45,48,49].
Several methods of nereistoxin detection utilize the notable structural peculiarity of its
molecule disulfide bond and its ability to react with gold. Specifically, quantum dots/gold
nanoparticles fluorescent assay [50,51], electrochemical sensing based on transfer promo-
tion effect on gold electrodes [52,53], and gold nanoparticles colorimetric assay [54] or
DNA-switches [55] are selective nereistoxin (and its analogs) techniques, enabling fast
and sensitive detection in the environment. It is interesting to note that varacin, a marine
phenylethylamine derivative with an unusual sulfur-containing ring (Figure 1), has shown
nAChR antagonistic properties at medium micromolar concentrations (Table 1) in one of
our previous works [13]. Varacin was far more active against Lymnaea stagnalis AChBP,
showing Ki 790 nM, suggesting that it or its analogs might be useful as pesticides.

2.4. Anabaseine, Its Derivatives and Other Marine Alkaloids with Clinical Perspective

Anabaseine (3,4,5,6-tetrahydro-2,3′-bipyridine) (see Figure 1) is the first isolated and
identified toxic alkaloid produced by the carnivorous marine worms Nemertines [56].
These worms possess a variety of alkaloid, peptide or proteinaceous toxins that serve as
chemical defenses against potential predators. Anabaseine is chemically similar to the
tobacco alkaloid, anabasine, but possesses an imine double bond in the otherwise saturated
piperidine ring and is classified as a non-selective nicotinic agonist, since it stimulates a
broad spectrum of nAChRs [57]. Among three major forms of anabaseine (cyclic iminium,
cyclic imine and the monocationic open-chain ammonium-ketone) co-existing in almost
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equal concentrations at physiological pH, the cyclic iminium is the form that avidly binds
and activates vertebrate nAChRs [58].

The majority of substituted anabaseines display selective agonistic effects on the α7
nAChRs [57]. The 3-arylidene-anabaseines are of particular potential therapeutic interest
because they have been shown to possess neuroprotective, as well as cognition enhancing,
properties. Among them, 3-(2,4-dimethoxybenzylidene)-anabaseine (DMXBA) is the best
studied, whose pharmaceutical code name GTS-21 (see Figure 1) refers to its origination
as the 21st compound generated in a joint project by Gainesville (University of Florida)
and Tokushima (Taiho Pharmaceuticals) scientists. GTS-21 is a lipophilic compound that
readily passes across the gastrointestinal wall and the blood–brain barrier, and reaches peak
concentrations in the blood and brain within a very short time [57]. GTS-21 was the first
nicotinic agonist reported to stimulate α7 AChRs selectively (partial agonist), but it weakly
antagonized α4β2 and other heteromeric nAChRs [59]. Tthe crystal structure of Aplysia
californica AChBP bound with GTS-21 showed that the protein loop C is in the intermediate
position, i.e., not utterly close to the orthosteric ligand-binding site, which is seen for full
agonists [60]. Such conformational changes in the receptor structure may explain the mixed
pharmacological profile of GTS-21 activity towards nAChRs.

GTS-21 was the first α7 agonist to enter clinical tests for possible treatment of cogni-
tion problems in schizophrenia, Parkinsonism and Alzheimer’s disease (AD) [57,59,61–67].
Clinical trials (phase II) of GTS-21 have been completed for such pathologies as schizophre-
nia [63], AD [67], tobacco use disorder and attention-deficit hyperactivity disorder (Clini-
calTrials.gov identifiers: NCT00100165, NCT00414622, NCT02432066 and NCT00419445,
respectively), but GTS-21 has not entered phase III clinical trials yet [65]. Future efforts may
be directed to find out the most effective medicine formulation for GTS-21 and to study its
pharmacokinetic limitations for effective improvement of cognition and for treatment of
affective symptoms in schizophrenia [68,69].

In recent years, it has been shown that besides affecting cognitive functions, GTS 21
(and its active metabolite) effectively suppresses inflammation, demonstrating positive
effects in a number of pathological conditions, such as acute ischemic stroke [70], sep-
sis [71,72], burns [73], acute lung injury [74], chronic obstructive pulmonary disease [75],
airway inflammation [76] and atherosclerosis [77]. In clinical trials, the anti-inflammatory
effects of GTS-21 were investigated in healthy human volunteers during experimental
endotoxemia [78]. Although higher GTS-21 plasma concentrations significantly correlated
with lower cytokine levels, the highest dose tested to be safe in humans did not result
in significant differences in inflammatory mediators between the GTS-21- and placebo-
treated groups.

As the basic mechanism of the observed positive pharmacological properties of GTS-21,
most researchers describe the activation of the cholinergic anti-inflammatory pathway (and
similar mechanisms) through α7 nAChR stimulation in immune cells [71,73–75,77–79]. The
molecular mechanisms by which GTS-21 exerts its anti-inflammatory actions in immune
cells have been attributed to the blocking effects of the important pro-inflammatory tran-
scription factor NF-kB, nuclear factor kappa-light chain-enhancer of B cells [80], activation
of the JAK/STAT pathway [81], or increased levels of intracellular cAMP [74]. However,
many details of α7 nAChR involvement in GTS-21 effects on inflammatory pathways
remain unidentified, such as the role of the receptor conductive/non-conductive states [82],
some anti-inflammatory effects of this partial agonist independent of α7 nAChRs [83], and
induction of pro-inflammatory IL-6 release by non-immune cells [84].

Besides pro-cognitive and anti-inflammatory effects, GTS-21 also displays neuroprotec-
tive [85], antinociceptive [86], antiproliferative [87], immunomodulatory [88] and metabolic
homeostasis-regulatory properties [79]. The advantage of GTS-21 treatment was reported
for a wide spectrum of pathological conditions, providing a basis for future development
of α7 nAChR-gated therapy with anabaseine derivatives.

A structurally-different set of anabaseine derivatives was constructed; its 3-pyridinyl
moiety was replaced with a 3-mono- or 3,5-disubstituted benzene ring as a means to gain
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selectivity for the α3β4 nAChR subtype [89]. The synthesized compounds activated the
α3β4 nAChR with high affinity, while eliciting a negligible response at the α7 subtype and
no effect at the α4β2 subtype. 5′-Phenylanabaseine, acting as a conditionally silent agonist,
comprises another class of anabaseine derivatives worth mentioning [90], as they might act
as an alternative pathway to the α7 nAChR-targeting drug-design.

It is also worth mentioning that some other marine alkaloids acting on nAChRs are
now introduced not only as a valuable tool for fundamental research, but also as potential
drugs. In our work, we have demonstrated that makaluvamine G from the marine sponge
Zyzzia fuliginosa (Figure 1) binds both to orthosteric and allosteric sites of the muscle-
type nAChR (Table 1) [91], thus being a perspective molecule for the design of allosteric
drugs targeting these receptors, especially for treating slow-channel congenital myasthenic
syndromes [92].

As shown above, nAChR agonists from marine sources could have a tremendous
effect on the drug design field. A few novel marine nAChR agonists have been discovered
in recent years, including 6-bromohypaphorine from the nudibranch mollusk Hemissena
crassicornis, targeting α7 nAChR [93] and molleamines [94]. The latter have recently been
shown to be partial agonists at α3- and α6-containing nAChRs expressed in dorsal root
ganglions [94]. Moreover, signs of antinociceptive activity and the lack of acute toxicity
make molleamines promising hits for drug design.

3. Marine Origin Peptides Targeting nAChRs
3.1. A Start of the “Conotoxin Era”

Since the discovery of nAChRs, for a long time they have been studied exclusively
with the use of low-molecular compounds (nicotine, carbamoylcholine, etc.) and protein
α-neurotoxins from snake venoms (α-bungarotoxin, α-cobratoxin, etc.), while the latter
played a decisive role in the isolation of purified preparations of muscle-type nAChR and
the identification of the first neuronal subtype of the receptor in the brain. However, in
1981, the first three peptide blockers of neuromuscular transmission, called conotoxins
GI, GIA, and GII [95], were isolated from the venom of the marine predatory mollusk
Conus geographus, which acted through the muscle-type nAChR [96]. This event marked
the beginning of a whole “conotoxin” era in the study of nicotinic receptors.

In general, the venoms of Conus mollusks turned out to be an invaluable source of
biologically active compounds, mainly of a peptide nature, named conopeptides, which
act on a wide variety of targets (see the functional activity of various conopeptides in
early reviews, for example, [97]). They are classified in the gene superfamilies (A, B, C,
D, etc.) by the similarity between the signal sequences of the precursors. Conopeptides
rich with disulfides (from two) conotoxins are also subdivided into structural families
by the pattern of cysteine residues in the mature peptide (I, II, III, IV, etc.). Finally, an
additional classification in the pharmacological families occurs by the molecular targets
and physiological activity (α, γ, δ, ε, etc.) (for a more complete classification, see the early
reviews, for example [7,98].

The conopeptides from several such families act on various subtypes of nAChR, the
most famous and studied of which are the α-conotoxins having cysteine framework I
with two disulfide bonds (C1–C3 and C2–C4) (Figure 2). During the followinng 25 years
after the discovery of the first α-conotoxins, nAChR-targeting peptides with the different
cysteine patterns were identified in the venoms of various Conus species—αA-, αS-, αD-,
αL-, αS-, and ψ-conotoxins (Figures 2 and 3). The last decade has supplemented this
list with two new families: αB [99] and αO-conotoxins [100] (see Figure 2); however,
these families are represented by one or only a few peptides, which, as a rule, have not
received further scientific development. As an exception, we can mention the discovery of
a new αS-conotoxin, GVIIIB, which was a highly selective inhibitor of α9α10 nAChR [101],
αM-conotoxin MIIIJ, which, like ψ-conotoxins, belongs to the M-superfamily and also
blocks muscle nAChR [102], αO-conotoxin GeXIVA [100], with good prospects for medical
use (see below) and several αD-conotoxins. Of the two isolated dimeric αD-conotoxins,



Biomolecules 2022, 12, 189 8 of 29

GeXXA [103] (Figure 3) and PiXXA [104], the first was shown to be a non-selective blocker
of both neuronal and muscle receptor subtypes, while for the second, inhibitory activity
was revealed only towards human α7 nAChR (IC50 6.2 µM). Another αD-conotoxin Lt28.1,
with a cysteine pattern (-C-C-C-CC-C-C-C-C-C-) unusual for this family, was cloned from
Conus litteratus, expressed in a yeast system, and showed low affinity (IC50 3.0 µM) only
towards α9α10 nAChR [105].
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It should be noted that, in the last decade, genomic and transcriptomic approaches
have led to the identification of a large number of new potential peptides from the men-
tioned families in the venoms of dozens Conus species, but not all of them have been
synthesized and studied for their biological activity and therefore remain outside the scope
of this review. Genome-derived peptides also leave open the question of post-translational
modifications and especially of “natural” folding due to the formation of disulfide bonds.
For this reason, in structural and functional studies of such compounds, all possible isomers
are often synthesized. In particular, for α- and αO-conotoxins, a large number of studies
provide results obtained using not only the “classical” globular form of conotoxins (C1–C3

and C2–C4), but also the ribbon (C1–C4 and C2–C3) and beads (C1–C2 and C3–C4) ones.
However, these works, in general, also remained outside the scope of this review.
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Isolated from Conus venoms or revealed by genetic methods and then synthesized,
several dozen α-conotoxins are additionally subdivided into groups according to the
number of amino acid residues in their first and second loops (between Cys2-Cys3 and
Cys3-Cys4, respectively). Five such groups are traditionally known (3/4, 3/5, 4/4, 4/6,
4/7), and spatial structures of a large number of their representatives were established
by NMR or X-ray analysis (Figure 3). The first representative of the new 5/5-group, α-
conotoxin AusIA, was isolated from the venom of C. australis, but its globular and ribbon
forms showed low affinity (IC50 ≥ 10 µM) only to α7 nAChR [107]. In addition, a new
conotoxin Pl168 with a cysteine pattern characteristic of α-conotoxins was discovered
recently, but with unusual 4/8-spacing, for which, however, no nAChR subtype has been
identified as a target [108].

It should be noted that, over the past decade, the blocking of distinct nAChRs as
a second target has been revealed for conopeptides belonging to other families and su-
perfamilies. Here, we can mention the detected interaction of the µ-conopeptide CnIIIC
(Figure 3), a powerful blocker of several types of potential-dependent sodium channels,
also with α3β2, α7 and α4β2 nAChR subtypes [109]. Another example is the inhibition of
muscle and α7 nAChRs by two conorfamides As1a and As2a, in addition to their expected
interaction with distinct subtypes of ASICs [110]. Besides, the conotoxin TxVC (KPCCSI-
HDNSCCGL*), isolated from the C. textile venom and related by its structural parameters
to the T-superfamily of conopeptides, did not show a noticeable interaction with sodium,
potassium and calcium channels, but inhibited α4β2 and α3β2 nAChRs with IC50 343.4
and 1047.2 nM, respectively [111].

The rapid development of the “conotoxin” direction over the past four decades has
pushed the search for new peptide tools for studying nAChRs from other marine sources
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into the background. Up to the present day, no effective cholinergic ligand of a peptide
nature has been isolated from marine sources other than Conus venoms.

3.2. Discovery of New Conotoxins Targeting nAChRs

Despite the large number of α-conotoxins that have already been discovered and
studied (see, for examples, early reviews [6,112,113]), the search and characterization of
new representatives of this conopeptide family is currently actively continuing, both by
methods of direct isolation from venoms and detection in the genome with subsequent
peptide synthesis. This partly results from the fact that this family of conopeptides is
represented in each Conus species venom and replenishment is due to the study of new
species of mollusks, as well as to the identification of minor α-conotoxins in previously
studied ones. For the latter, the application of genomic approaches plays a crucial role.

One of the main aspects of the relevance of the search and characterization of new
α-conotoxins remains the diversity of their action on different nAChR subtypes compared
to protein ligands and a noticeably higher selectivity to them as compared to low-molecular
weight compounds. This still makes α-conotoxins an exceptional tool for fundamental
studies of different nicotinic receptor subtypes, and also opens up new prospects for
practical use either as appropriate markers or drugs selectively blocking a specific target
involved in a respective disease.

Over the past decade, a number of new α-conotoxins have been identified, which
are summarized in Table 2. Most of them are representatives of the 4/7-group of α-
conotoxins. Alpha-peptide, RegII and LsIA isolated from C. tinianus, C. regius and C. limpusi
venoms, respectively, showed non-selective interaction with several neuronal nAChR sub-
types [114–116]. The same ability was revealed for synthetic Mr1.7 [117], derived from the
C. marmoreus venom duct cDNA library [118] (Table 2). Highly selective among the discov-
ered α4/7-conotoxins were TxIB towards the α6/α3β2β3 receptor subtype [119], LvIA and
Lt1.3 towards the α3β2 nAChR [120,121], and LvIF and Bt1.8 with high nanomolar affinity
for α3β2 and α6/α3β2β3 subtypes [122,123], while α-conotoxins Lo1a and BnIA acted on
the α7 nAChR (although with micromolar affinity) [124,125] (Table 2). The latter, isolated
from the C. bandanus venom, has the same sequence as α-conotoxin Mr1.1, previously
identified from the cDNA library of C. marmoreus [126]. Interestingly, the ribbon isomer
of α-conotoxin Lt1.3 loses its high affinity for α3β2 nAChR, but gains inhibitory activity
towards the GABAB receptor [121]. For most of the mentioned α-conotoxins (RegII, LsIA,
Mr1.7, LvIA, Lt1.3, Bt1.8), the key amino acid residues were revealed that determine their
selectivity to the respective nAChR targets (Table 2).

Surprisingly, among the newly discovered α4/7-conotoxins, one compound exhibited
agonistic properties towards nicotinic acetylcholine receptors. α-Conotoxin MrIC (Table 2)
became the first complete agonist of a peptide nature of human α7 nAChR in SH-SY5Y
cells in the presence of this receptor subtype silent agonist PNU120596 [127,128].

Table 2. New conotoxins published last decade. The italicized names and sequences mean that
these peptides were identified by cDNA libraries. The asterisk means the amidated C—terminus,
Y—sulfatated tyrosine, O—hydroxyproline, Z—pyroglutamate.

Name Species Year Sequence
Targets

Refs.
nAChR Subtype Affinity

(nM)
Key Ligand

Determinants *

α-Conotoxins

α-peptide C. tinianus 2011 GGCCSHPACQNNPDYC * α3β2; α4β2; α7 nd nd [114]

Vc1.2
C. victoriae
(embryos) 2011 GCCSNPACMVNNPQIC *

α3β2; 75; N5, A7, N11, N12;
[129]α7; 637; nd;

α9α10 ~1000 nd

RegIIA C. regius 2012 GCCSHPACNVNNPHIC *
α3β2; 33; H14;

[115,130]α3β4; 97; N9, H14;
α7 103 N9, N11, N12, H14
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Table 2. Cont.

Name Species Year Sequence
Targets

Refs.
nAChR Subtype Affinity

(nM)
Key Ligand

Determinants *

Mr1.7 C.
marmoreus 2012 PECCTHPACHVSHPELC *

α3β2; 53.1; H13;
[117,118]α9α10; 185.7; E2, S12, H13;

α6/α3β2β3 284.2 nd

TxIB C. textile 2013 GCCSDPPCRNKHPDLC * α6/α3β2β3 28.4 nd [119]

LsIA C. limpusi 2013 SGCCSNPACRVNNPNIC *
α3β2; 10; S1;

[116,131]α7; 10; R10, N12;
α3α5β2 31 nd

EIIA C. ermineus 2013 ZTOGCCWNPACVKNRC * α1β1γδ 0.46 and 105 nd [132]

EIIB C. ermineus 2017 ZTOGCCWHPACGKNRC * α1β1γδ 2.2 nd [133]

MrIC C.
marmoreus 2014 PECCTHPACHVSNPELC * α7 1900 nd [127,128]

TxID C. textile 2013 GCCSHPVCSAMSPIC *
α3β4; 3.6–12.5; G1, H5, P6, V7, M11,

P13;
[134,135]

α6/α3β4 33.9–94.1 G1, H5, P6, V7, S9,
M11, P13

Lo1a C.
longurionis 2014 EGCCSNPACRTNHPEVCD * α7 3240 nd [124]

BnIA C. bandanus 2014 CCSHPACSVNNPDIC * α7 ~1000 nd [125]

AusIA C. australis 2014 SCCARNPACRHNHPCV * α7 10,000–
47,000 R5, P7, R10 [107,136]

LvIA C. lividus 2014 GCCSHPACNVDHPEIC *

α3β2; 8.7–15.6; G1, H5, P6, N9, H12,
P13, I15;

[12,120]α3β4; 148–283; H5, P6, N9, D11, H12;
α6/α3β2β3; 108; nd;
α6/α3β4 121 nd

ViIA C. virgo 2015 RDCCSNPPCAHNNPDC * α3β2 845.5 H11 [137]

PIC C.
purpurascens 2017 SGCCKHPACGKNRC α1β1ε/γδ; α3β2 nd nd [138]

CIA C. catus 2018 NGRCCHPACGKHFSC α1β1γδ; α3β2 5.7;
2060 nd [139]

CIB C. catus 2018 GCCSNPVCHLEHSNLC α3β2; α7 128.9; 1510 nd [139]

Lt1.3 C. litteratus 2018 GCCSHPACSGNNPYFC * α3β2 44.8 N11, N12, P13, F15 [121]

VnIB C.ventricosus 2019 GGCCSHPVCYTKNPNCG * α6β4; α3β4;
α6/α3β4

12;
320;

5.3–18
nd [140]

MilIA C.milneed-
wardsi 2019 DMCCHPACMNHFNC α1β1ε/γδ 11,000–

13,000 M9, N10, H11 [141]

GIB C.
geographus 2021 ECCNPACGRHYSCKG * α1β1εδ; α9α10 116;

1113 nd [142]

G1.5 C.
geographus 2021 GCCSHPACSGNNPEYCRQ* α3β2; α3β4; α7;

α9α10

35.7;
1928; 1935;

569
nd [142]

CIC C. catus 2021 ASGADTCCSNPACQVQHSDLC α3β2; α6/α3β2β3 3510;
1030 nd [143]

LvIF C. lividus 2021 GCCSHPACAGNNQDIC * α3β2; α6/α3β2β3 9.0;
14.4 nd [122]

Bt1.8 C. betulinus 2021 GCCSNPACILNNPNQC * α6/α3β2β3; α3β2 2.1;
9.4

I9, N11, N12;
I9, L10, N11, N12,

N14, Q15
[123]

αL-Conotoxins

lt14a C. litteratus 2006 MCPPLCKPSCTNC * neuronal nAChRs nd nd [144,145]

Pu14a C. pulicarius 2010 DCPPHPVPGMHKCVCLKTC α1β1γδ; α6α3β2 <1000;
~1000 nd [146]

αO-Conotoxins

GeXIVA C. generalis 2015 TCRSSGRYCRSPYDRRRRY
CRRITDACV * α9α10 4.61 nd [100]

GeXXVIIA C. generalis 2017 ALMSTGTNYRLLKTCRGSGR
YCRSPYDCRRRYCRRISDACV α9α10; α1β1εδ 16.2;

774

C-terminal part
(27–41);

N-terminal part
(1–26)

[147]

* Amino acid residues were recognized as key determinants if, when they were removed or replaced, the affinity
for the corresponding target decreased by more than five times; nd—not determined.
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Several novel α-conotoxins from other groups have also been discovered and investi-
gated in recent years. Thus, in the venom of C. ermineus, two new 4/4-conotoxins, EIIA and
EIIB, containing an increased number of post-translational modifications, were identified
by mass spectrometry, and were shown to be highly selective blockers of the muscle-type
nAChR from Torpedo [132,133]. Noteworthy, EIIA conotoxin distinguished two binding
sites on this receptor (Table 2). An interesting role of post-translational modifications in
α-conotoxins was revealed with the new α4/7-conotoxin, TxIC [148]. The natural toxin
(ROQCCSHOACNVDHPγIC*) found in the venom of C. textile showed an almost complete
absence of inhibitory activity towards different nAChR subtypes (IC50 > 50 µM), and its
analogue, without appropriate modifications (RPQCCSHPACNVDHPEIC*), micromolar
affinity (IC50 2.1–5.4 µM) towards neuronal α3ß4, α3ß2, and α3α5β2 receptors. Another
two novel α4/4-peptides were isolated from the venom of C. purpurascens: α-conotoxin
PIC and its [P7O]-modified form. They blocked rat muscle receptors and human neuronal
α3β2 nAChR with moderate affinity (IC50~1 µM) [138] (Table 2).

A few novel conotoxins from the 4/6-group have also been characterized recently.
Thus, α-conotoxin ViIA, identified in the cDNA library of the C. virgo venom duct, showed
moderate affinity (IC50 845.5 nM) only to α3β2 nAChR [137]. Another α-conotoxin, TxID,
from the same group (see Figure 3), revealed high selectivity toα3β4 receptor (IC50 12.5 nM),
a rare selectivity as compared to other α-conotoxins [135]. For both conotoxins, the key
amino acid residues determining their affinity toward respective nAChR subtypes were
identified (Table 2). α-Conotoxin VnIB was also found in the genomic DNA, synthesized,
and showed a highly selective affinity for α6β4-containing nAChRs (IC50 5.3–12 nM de-
pending on the human/rat species selectivity [140] (see Table 2).

α-Conotoxin MilIA, a new representative of the 3/5 group, comprising most of the
peptides that inhibit muscle nAChRs, was recently isolated from the venom of C. milneed-
wardsi [141]. Surprisingly, the natural toxin showed very low affinity for both subtypes of
the muscle receptor (IC50 11–13 µM), unlike some of its synthetic analogues with mutation
at 9, 10 and 11 positions (Table 2). Another “classic” muscle nAChR-acting α-conotoxin,
CIA, was identified in the transcriptome of the C. catus venom duct, and then synthesized
together with α4/7-conotoxins CIB [139] and CIC [143]. In addition to the nanomolar
affinity towards the muscle receptor subtype, CIA unexpectedly showed a micromolar
affinity for α3β2 nAChR, while the main target for CIB was the α3β2 nAChR receptor [139]
(Table 2). The structural feature of the α4/7-conotoxin CIC was the presence of an elon-
gated N-terminus, but it did not affect the main activity of this peptide towards α3β2 and
α6/α3β2β3 nAChRs [143].

A number of new peptides, α3/5-conotoxin GIB, similar in structure to the first
discovered conotoxins GI and GIA [95], classic α4/7-conotoxin G1.5, and a peptide G1.9
(ECCKDPSCWVKVKDFQCPGASPPN) with an unusual cysteine 4/8-spacing [142], were
identified in the venom of C. geographus by proteomic and transcriptomic analyses. Their
synthetic analogues (in globular and ribbon isoforms) showed the expected affinity of GIB
towards the human muscle α1β1εδ receptor, and for G1.5 towards a number of neuronal
receptor subtypes with the best affinity for α3β2 (IC50 35.7 nM) (Table 2). The unusual
4/8-peptide G1.9, as well as the previously discovered similar conopeptide Pl168 [108], did
not show the ability to interact with any of the tested nAChR subtypes.

The studies on the expression of venom mRNA in embryos of C. victoriae, which led
to the identification of two new sequences, Vc1.2 and Vc1.3 [129], which are close to the
structure of the well-studied α-conotoxin Vc1.1, were unexpected. Interestingly, Vc1.2 has
a different selectivity profile, having lost the affinity towards the α9α10 nAChR subtype
(Table 2), while for Vc1.3 there was no noticeable ability to interact with neuronal nAChR
subtypes. The new selectivity of Vc1.2 is determined precisely by those amino acid residues
in the first and second loops of the molecule that are different from Vc1.1 (Table 2).

The history of the first conotoxin from the L-superfamily acting on nAChR αL-
conotoxin lt14a, initially identified in the cDNA library of the C. litteratus venomous
duct in 2006 [144], is unusual. For its synthetic form, an analgesic effect was detected in the
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“hot plate” test in mice, and inhibition of neuronal nAChRs in PC12 cells was shown. Since
that time, several studies have been carried out on the analgesic capabilities of this peptide
and its NMR structure has been obtained [145] (see Figure 3), but the distinct neuronal
nAChR subtypes on which it acts and the affinity for them have not yet been identified
(Table 2). A little later, DNA cloning identified another conopeptide with the same cysteine
pattern Pu14a, which blocked some subtypes of nAChR with low affinity [146] (Table 2),
and for which the NMR structure was also obtained [149].

Special mention should be made of the discovery, synthesis and structure-functional
studies of the first representative of the O1-superfamily of conopeptides, effectively inter-
acting with the nAChR, namely, αO-conotoxin GeXIVA from C. generalis [100]. It interacted
with α9α10 nAChR with nanomolar affinity, while the affinity for the other receptor sub-
types was at least two orders of magnitude lower. Interestingly, this selectivity and high
affinity were shown by all three synthesized possible isomers of GeXIVA (IC50 22.7, 7.0,
and 4.6 nM for globular, ribbon and beads, respectively) (Table 2); the ribbon and beads
isoforms showed higher affinity to the target, as well as much sharper 1D-NMR spectra.
The study of the interaction mechanism of GeXIVA has shown its possible binding to the
allosteric site on α9α10 nAChR, although in micromolar concentrations this peptide can
also interact with the receptor orthosteric sites, displacing α-bungarotoxin at the α9 subunit
extracellular domain, as well as at the A. californica AChBP [150].

Another representative of the O-superfamily, namely GeXXVIIA, was isolated from
the venom of the same mollusk [147]. This naturally occurring compound turned out to
be a disulfide-bound homodimer. Refolding of the synthesized linear peptide resulted in
four different monomeric isomers of this conotoxin, which inhibited various neuronal and
muscle nAChRs, with the highest affinity towards α9α10 and α1β1εδ subtypes. The linear
form of the monomer also demonstrated a high inhibitory activity against the same two
subtypes (IC50 16.2 and 774 nM, respectively). Interestingly, the affinity to the first subtype
is determined mainly by the N-terminal part of the molecule, and to the second one by the
C-terminal part (Table 2).

3.3. Studies on Molecular Bases of nAChR Subtypes Selectivity with Conotoxins

The new conotoxins listed in the Table 2, as well as previously discovered ones, have
been often used in the past decade in fundamental studies on the nAChRs. Those studies
have concerned a variety of aspects of the functioning of nicotinic receptors. Here we will
focus on one such direction, the elucidation of the molecular basis of selectivity of different
nAChR subtypes with the aid of conopeptides. One of the approaches was to obtain a series
of analogues of a selected conotoxin and of mutant forms of the respective receptor and
to evaluate the changes in the affinity of their interaction. It makes it possible to establish
point contacts between the amino acid residues of the ligand and the target, and build
computer models of the receptor–ligand complexes.

In particular, in continuation of the work [151], which revealed key residues in α-
conotoxin RgIA responsible for its affinity to α9α10 and α7 nAChR subtypes (Asp5, Pro6,
Arg7, Arg9), a large series of analogues with substitutions for various residues at positions
7, 9–11, 13 was obtained [152]. As a result, the fundamental role of Arg7 was confirmed.
In addition, the importance of the chain length, but not of the charge in position 9, was
revealed. Finally, a set of analogs mutated at positions 10, 11 and 13, with increased affinity
for both the human and rat receptors, was obtained.

“Reversed” mutagenesis from the receptor side first revealed an amino acid residue in
the α9 subunit (T56) responsible for a high affinity for the rat α9α10 receptor, more than
300 times higher than the affinity for the human one [153]; then, it was convincingly proved
that the interaction of α-conotoxin RgIA occurs at the α10(+)/α9(−) interface, rather than
at α9(+)/α10(−) [154]. A similar conclusion was made also for α-conotoxin Vc1.1, based
on computer modeling, and tested on a mutant receptor and two designed and synthesized
analogues of conotoxin [155]. In addition, the use of computer modeling, supported by two
cycles of minimal side chain replacement in conotoxin Vc1.1 [156], led to the assumption of
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the probable interaction of S4, Y10 and D11 conotoxin residues with D166/D169, N107 and
R81/N154 of α9 subunit, respectively, as well as to the design of two analogues of Vc1.1,
[S4Dab, N9A]Vc1.1 and [S4Dab, N9W]Vc1.1, with an affinity for α9α10 nAChR more than
20 times higher than that of a natural peptide. In general, the use of various computer
approaches has recently become more common and allows the design of new analogs of
conotoxins with specified properties. An example is the application of the ToxDock docking
algorithm for the successful design of α-conotoxin GID analogs with reduced affinity for
its second target [157]. Another example is the use of free perturbation energy calculations
to perform an amino acid mutation scanning of α-conotoxin LvIA and predict mutations
resulting in the increase of its selectivity towards α3β2 nAChR [158].

Such mutagenesis studies, usually supported by computer modeling, have revealed
key amino acid residues on the part of the conopeptides, and in some cases also on
the part of the targets, responsible, in particular, for differences in the interaction of α-
conotoxin PeIA with α6/α3β2β3 and α3β2 nAChRs [159]. Mutagenesis of the receptor α6
subunit made it possible to identify amino acid residues responsible for the selectivity of α-
conotoxin BuIA towards α6/α4β2β3 nAChR [160]. Similarly, mutagenesis of the α3 and β2
subunits, combined with computer modeling, allowed a mechanism of antagonistic action
of this conotoxin on the human α3β2 receptor to be proposed [161]. Alanine-scanning was
performed for α-conotoxin AuIB, which revealed the residues determining its selective
affinity for the α3β4 nAChR, and the computer simulation suggested their partners in
the β4 subunit, which was confirmed by site-directed mutagenesis [162]. Mutagenesis in
the β2 subunit revealed three residues (T59, V111, F119) that maximally affect the affinity
(both increase and decrease) of α-conotoxin LvIA towards the α3β2 receptor [163]. Alanine-
scanning mutagenesis has also been carried out recently for some “muscle” α-conotoxins,
which identified the residues determining their selectivity to the α1β1εδ nAChR [164,165].
Similarly, the residues important for selective targeting of the α3β4 and α3β2 receptors
were identified as a result of alanine-scanning mutagenesis of α-conotoxin RegIIA [130].

Similar studies have also made it possible to prepare potent and selective analogues, for
example, for the α6/α3β2β3 nAChR, based on α-conotoxin PeIA (IC50 0.223 nM) [166] or
for human α3β2 receptor based on α-conotoxin RegIIA (IC50 13.7–27.1 nM) [167]. Another
example is an [S9A]TxID analog which effectively distinguished the α3β4 from α6/α3β4
nAChRs (IC50 3.9 vs. 178.1 nM) [134]. Computer analysis became the basis for the synthesis
of a large series of analogues of α-conotoxin PeIA; as a result, the species (rat/human)
specific ligand-binding motifs in relation to α6β4 receptors were revealed, and analogues
with significantly higher affinity for the rat nAChR were purposefully designed [168].

In general, elucidation of the molecular basis of the species selectivity of some α-
conotoxins towards the distinct nAChR subtypes (mainly in a human/rat pair) has become
one of the most important areas of recent research. Thus, the use of α-conotoxin RegIIA and
its analog [N11A,N12A]RegIIA revealed that the reason for the almost 70-fold difference
in the affinities to human and rat α3-containing receptors is a single amino acid residue
in the 198 position of the α3 subunit (Glu—human, Pro—rat) [169]. Another analogue of
this peptide, [H5D]RegIIA, as well as [K11A]TxIB, demonstrated two orders of magnitude
higher affinity for rat α7 nAChR than for the human one, which was caused by two residues
at the positions 183 and 185 of this receptor subunit [170]. Interestingly, the same set of
amino acid residues of the α7 subunit supplemented with residue 140 (sequence alignment
from [170]) was found to be responsible for the same specie selectivity for another designed
conopeptide [Q1G,∆R14]LvIB [171].

Crystallographic studies of the water-soluble spatial homologues of ligand-binding
receptor domains AChBPs and recombinant extracellular domains of individual subunits
and of their complexes with various ligands, including conopeptides, provided significant
progress in the structural studies of nAChRs and, first of all, of the fine organization
of their ligand-binding sites. Starting with the first structure of the complex of AChBP
from A. californica with an analog of α-conotoxin PnIA [11], more than a dozen similar
crystal structures have been obtained to date (some of them with α-conotoxins from



Biomolecules 2022, 12, 189 15 of 29

different groups are represented in Figure 4). Over the past decade, among other things,
the structures of A. californica AChBP with α-conotoxin GIC have been published, which
made it possible to identify determinants responsible for its exclusive selectivity to α3β2
nAChR [172]. The structure of AChBP with α-conotoxin LvIA revealed the mechanism
of its selectivity towards different nAChR subtypes [173]. Similarly, X-ray structure of
the same protein with α-conotoxin PeIA showed molecular determinants for its species
selectivity (human/rat) towards α6β4 nAChR [174], and with analogues [N9A]LvIA and
[D11A]LvIA, the first of which distinguished the rat α3β2 and α3β4 receptors with the
affinities differing more than three orders of magnitude, made it possible to reveal the key
amino acid residues in the β2-subunit responsible for this difference [12].
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Several structures of conotoxin complexes with AChBP from L. stagnalis have also
been obtained. In particular, the structure of the complex of this protein with α-conotoxin
LsIA resulted in identification of the minimum pharmacophore regulating the α3β4 an-
tagonism [131]. Crystallization with L. stagnalis AChBP of the two isoforms (globular and
ribbon) of the unusual α5/5-conotoxin AusIA, equipotential to the α7 nAChR in combina-
tion with the substitutions in the peptide, made it possible to explain this pharmacological
feature due to the presence of the fifth amino acid residue in the first loop of this conotoxin,
and also to determine the key residues responsible for the α7 selectivity (Table 2) [136].

The crystal structure of the first marine origin peptide (α-conotoxin RgIA) in a complex
with the extracellular domain of the nAChR subunit was recently established [175]. Despite
the fact that it was only a monomer of the extracellular domain of the α9 subunit of the
human receptor, computer simulations on full-size human α9α10 nAChR suggested a
favorable binding of RgIA at α9/α9 or α10/α9, rather than at the α9/α10 interface, in
accordance with previous mutational and functional data.

Interestingly, all the obtained structures of complexes with conopeptides were charac-
terized by a similar arrangement of conotoxins in the orthosteric binding site (under the C
loop) (Figure 4). However, each conotoxin revealed its own characteristic set of contacts
(sometimes overlapping) with amino acid residues of the AChBPs or subunit domain (for a
detailed comparison of these pair determinants see, for example, reviews [176,177]). It is
worth noting that no structure has yet been obtained with the location of the peptide ligand
outside the orthosteric binding site, although sufficient data has already been collected in
the literature on the possible binding of some conotoxins on allosteric sites of nAChRs, for
example, for α-conotoxin MrIC at the α7 receptor [178], or αO-conotoxin GeXIVA at the
α9α10 nAChR [100].

In recent years, there has been a breakthrough in the use of cryo-electron microscopy
for nAChRs, which allowed resolution of the structures of the muscle-type receptor from the
Torpedo ray electric organ [8], the neuronal human α4β2 nAChR in complex with nicotine
and antibody fragments specific for the β2-subunit [179], the α3β4 receptor also in complex
with agonists but already in a lipid environment [180], as well as α7 nAChR in three
different states (apo, agonist-bound and agonist/PNU-120596 bound) [181]. It is important
that over the past two years, cryo-electron microscopy structures of nicotinic receptors have
also been obtained in complex with the polypeptide antagonist α-bungarotoxin from the
banded krait venom, namely the muscle-type receptor from the Torpedo electric organ [9]
and the neuronal human α7 nAChR [10] (for more detailed high resolution structural
studies of full-size nicotinic receptors, see, for example, the review [182]). Probably, the
respective structures with peptide ligands should be expected in the near future.

3.4. Medical Perspectives for Conotpeptides Targeting nAChRs

The possibility of effective practical use of marine origin peptides was clearly demon-
strated by the development of Prialt® (Ziconotide), which is a synthetic analogue of ω-
conotoxin MVIIA blocking N-type voltage-gated calcium channels, successfully used to
relieve pain in cancer patients (see, for example, reviews [183–185]). However, we have
to state that no drugs based on the conotoxins targeting nAChRs have yet been devel-
oped. Nevertheless, the basis for the search for such compounds with prospects for clinical
use are numerous studies carried out in vitro and in vivo, in which the analgesic and
anticancer properties of quite a large set of conotoxins were demonstrated. A detailed
description of all conopeptides studied in this aspect would require a separate review
(the list of conopeptides under different stages of preclinical trials can be found in the
reviews [7,186,187]); therefore, here we will briefly mention only the main compounds that
are currently considered as a possible basis for developing successful drugs.

The design of analgesics based on the nAChR-targeting conopeptides has the longest
history and is primarily associated with α-conotoxins Vc1.1 and RgIA. Since their discovery,
the analgesic effects of these peptides have been shown in a number of tests in vivo on
rodents, which were initially related only to their highly effective inhibition of α9α10
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nAChR. Soon, however, it was found that the affinity of both peptides to the same human
receptor subtype is significantly lower [153,155], but this problem has been solved over the
past decade by designing a number of analogues (including those containing non-canonical
amino acid residues, see the special section of the review [188]) with nanomolar and even
sub-nanomolar affinity towards the human α9α10 receptor [189–191].

However, a second target of α-conotoxins Vc1.1 and RgIA GABAB receptors was
identified (as well as for some other α-conotoxins [192]) and a different, more complex,
mechanism of analgesic action was proposed through potent inhibition of N-type calcium
channels via GABAB receptor activation. The role of cholinergic and GABAB-ergic systems
in the analgesic action of these conopeptides is still being discussed and is reflected in
numerous experimental studies and reviews (see, for example, [184,193,194]). Perhaps the
analgesic mechanism is even more complex, since the first data on the modulation of G
protein-coupled inwardly rectifying potassium (GIRK) channels by these conotoxins via
the activation of GABAB receptors have appeared [195]. Meanwhile, over the past decade,
new data have appeared on analgesic activity in various animal pain models for other
conopeptides, in particular, for all three isomers of αO-conotoxin GeXIVA [100,196,197],
αL-conotoxin lt14a [198,199], α-conotoxins AuIB, MII [200], BuIA and its analogues [201],
and LvIA [202].

In the last decade, studies have also been published evaluating the possibility of using
some conotoxins as anticancer agents. At the moment, such prospects are due only to
experiments in vitro demonstrating the ability to suppress the growth of various cancer
cells with a number of compounds: αO-conotoxin GeXIVA [203], α-conotoxins MII, PnIA,
ArIB, RgIA [204], AuIB [205], and TxID [206]. This gives some hope for the development in
the near future of effective drugs based on conopeptides for the treatment of cancer.

4. Marine Protein Ligands of nAChR—Still an Open Field for Research
4.1. Three-Finger α-Neurotoxins

Protein ligands of marine origin targeting nAChRs are represented mostly by α-
neurotoxins from the venoms of sea snakes. Sea snake toxins were among the first ones
purified from snake venoms and sequenced [207]. Erabutoxin b from the venom of the sea
snake Laticauda semifasciata was the first toxin shown to bind at the cholinergic receptor
site [208], and the first three-finger toxin for which 3D structure was established by X-ray
analysis [209,210]. Accordingly, these toxins played an important role in early research
on the α-neurotoxins, but their role has diminished over time. The studies of sea snake
neurotoxins are summarized in the review [211]. Recently, the 3D structures of Laticauda
semifasciata erabutoxin a complexes with α7 and muscle type nAChR were studied by
molecular modeling [212]. For this purpose, erabutoxin a was docked to a homology
model of the α7 nAChR extracellular domain and to the αγ and αδ interfaces of the
muscle type Torpedo nAChR ((α1)2βγδ) structure [9] using Rosetta protein–protein docking
protocol [212]. It was found that the toxin interacted with the binding sites of α7 and muscle-
type nAChR through D31, F32, and R33 amino acid residues. All these interactions were
shown earlier to be important for erabutoxin a binding to the muscle-type nAChR [213].

All snake venom α-neurotoxins inhibiting nAChRs are divided into two structural
types, so called short-chain and long-chain ones [214]. Short-chain α-neurotoxins consist
of 60–62 amino acid residues with the spatial structure stabilized by four intramolecular
disulfide bridges; they inhibit the muscle type nAChRs with high selectivity, and so far, are
the most selective protein ligands of the muscle type nAChRs. Long-chain α-neurotoxins
comprise 66–75 amino acid residues, with the scaffold stabilized by five disulfide bridges,
and these toxins additionally block α7 nAChRs and α9α10 nAChRs. Despite this non-
selectivity, long-chain α-bungarotoxin is often used as a marker of the muscle-type and α7
nAChR subtypes.
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4.2. Proteomic and Transcriptomic Analyses of Sea Snake Venoms

The development of new analytical methods greatly changed the field of venom in-
vestigations during the last decade and the studies of sea snake venoms being carried out
mainly by proteomic approach. Thus, identification of new toxins by this strategy is based
on the previous knowledge of the structure and function of the related proteins; therefore,
it is difficult to expect the discovery of completely new toxins using this method. About a
dozen works employing proteomic and transcriptomic methods for characterization of the
sea snake venoms were published during last decade. The venoms of the spine-bellied sea
snake Hydrophis curtus and the annulated sea snake Hydrophis cyanocinctus aroused the great-
est interest. Both venom proteomes [215–220] and venom gland transcriptomes [219–221]
were characterized for these species of different geographical origin. The main finding of
all these works is that the α-neurotoxins of both short-chain and long-chain types represent
the most abundant toxin family in these snakes. The content of α-neurotoxins varied
from 26 to 88% depending on the origin of snakes. The studies of other species including
the pelagic yellow-bellied sea snake Pelamis platura [222], the olive sea snake Aipysurus
laevis [223], the beaked sea snake Hydrophis schistosus [217], the yellow-lipped sea krait
Laticauda colubrina [224], and the yellow-bellied sea snake Hydrophis platurus [215] showed
similar results; α-neurotoxins were the main constituents of the venoms.

The original approach was used to study venom proteins of Lapemis hardwickii (syn-
onym to Hydrophis curtus) [225]. By using a cDNA T7 phage display library constructed
from venom gland mRNA, several new toxins belonging to different families were found.
Four new short-chain α-neurotoxins (SNT-1, 2, 3, 4) were identified, cloned and expressed
in Escherichia coli. The analgesic activity of purified toxins was studied using the acetic
acid-induced writhing test. All toxins manifested analgesic activity at a dose equal to
1/4 LD50, with SNT-4 being the least toxic to mice and showing the highest analgesic
activity. The molecular modeling performed by the authors showed that the toxins bind the
muscle type nAChR; however, no explanation has been proposed for the possible molecular
mechanism of analgesic activity.

4.3. Non-Snake Proteins of Marine Origin Acting on nAChRs

Just a few proteins affecting nAChRs were identified in other marine organisms. Thus,
a tentacle venom extract from a scyphozoan jellyfish Aurelia aurita produced neurotoxic
effects in ghost crabs Ocypode quadrata [226]. After separation of extract by reversed-phase
HPLC, several fractions were obtained; two of them showed neurotoxic effects and were
analyzed further. One fraction, comprising mainly the protein with a molecular mass of
about 90 kDa, in electrophysiological experiments potently inhibited ion currents induced
by acetylcholine in the fetal and adult muscle type nAChRs. The nAChR inhibition was
concentration-dependent and completely reversible, the IC50 values being different for fetal
(1.77 µg/µL) and adult (2.28 µg/µL) receptors. This fraction showed no phospholipase
A2 activity.

It was shown earlier that venom of the lionfish Pterois volitans contains acetylcholine
and a toxin that affects neuromuscular transmission [227]. In the recent study, the effects of
P. volitans venom on the nAChRs and dopaminergic neurons were characterized [228]. It
was found that the venom inhibited the response induced by acetylcholine in the human
α3β2 nAChR by about 50%, but produced no effect on the response of the human α7
receptor. After the venom separation by reversed-phase HPLC, two main fractions were
obtained. Only one less polar fraction inhibited the response of neuronal α3β2 nAChR by
57%, and this inhibition was reversible. Electrophoretic analysis showed that the active
fraction produced three intense bands of ∼39.2, 15.7 and14 kDa, the 15.7 kDa band being
more intense.

Peptide neurotoxins from marine snails of the Conoidea superfamily were described in
the above section. The Conoidea superfamily comprises many genera and the overwhelm-
ing majority of neurotoxins were isolated from the snails from the family Conidae. the
study of the Turridae family as a source for nAChR ligands was initiated only relatively
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recently [229,230]. Along this line, the venom duct extract from the East Pacific species
Polystira nobilis was separated by reversed-phase HPLC and the biological activity of six se-
lected fractions was analyzed by electrophysiological measurements on human α7 AChRs
expressed in Xenopus laevis oocytes [231]. One of the studied fractions inhibited the re-
sponse induced by acetylcholine by 62%. Further purification resulted in the peptide which,
at 5.6 µM, strongly and irreversibly inhibited the α7 and α3β2 nAChRs, by 55 and 91%,
respectively. According to mass spectrometry data, this toxin possessed a molecular mass
of 12,358.80 Da. It demonstrated fairly high affinity for α3β2 nAChRs with an IC50 value
of 566.2 nM. Sequencing by automated Edman degradation resulted in a partial sequence
without cysteines: WFRSFKSYYGHHGSVYRPNEPNFRSFAS. This sequence demonstrated
similarity, although with low identity, to some turripeptides, containing no cysteines, the
sequences of which were deduced from corresponding DNA sequences.

Thus, the number of new nAChR protein ligands discovered over the last decade is
quite limited and this leaves ample room for further research.

5. Conclusions

Our review shows that the compounds of marine origin in the last decade were in
fact extensively used in the studies focusing on the nicotinic acetylcholine receptors. It
appears that the most important role is being played by α-conotoxins, peptides from the
Conus marine snails. It concerns their application in fundamental studies for distinguishing
numerous subtypes of the nAChRs in the brain and immune system to get detailed infor-
mation about their binding sites, identify receptor residues implicated in species selectivity
to a particular conotoxin, and thus open new possibilities for drug design. Indeed, there
are data that conotoxins have some perspectives as anti-inflammatory and analgesic com-
pounds. The concern of new proteins from marine sources is that they were not widely
used in the nAChR research in the last decade. Low molecular weight compounds isolated
from marine sources and their numerous synthetic analogs are, as earlier, considered as
potential drugs; extensive continued investigation is still required, but the hopes are still
on the future.
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acetylcholine receptor. J. Neurosci. Res. 2008, 86, 93–107. [CrossRef]

36. Kudryavtsev, D.S.; Shelukhina, I.V.; Son, L.V.; Ojomoko, L.O.; Kryukova, E.V.; Lyukmanova, E.N.; Zhmak, M.N.; Dolgikh, D.A.;
Ivanov, I.A.; Kasheverov, I.E.; et al. Neurotoxins from snake venoms and α-Conotoxin ImI inhibit functionally active Ionotropic
γ-aminobutyric acid (GABA) receptors. J. Biol. Chem. 2015, 290, 22747–22758. [CrossRef]

37. Li, P.; Reichert, D.E.; Rodríguez, A.D.; Manion, B.D.; Evers, A.S.; Eterović, V.A.; Steinbach, J.H.; Akk, G. Mechanisms of
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