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a b s t r a c t

The mass sinking of phytoplankton cells following blooms is an important source of carbon to the ocean's
interior, with some species contributing more to the flux of particulate organic carbon (POC) than others.
During the 2008 North Atlantic Bloom Experiment in the Iceland Basin, we examined plankton
community composition from surface waters and from sediment traps at depths down to 750 m.
Samples collected with neutrally buoyant Lagrangian sediment traps captured a major flux event.
Diatoms comprised Z99% of cell flux into the sediment traps, with vegetative cells and resting spores of
the genus Chaetoceros contributing 50–95% of cell flux. Resting spores of one species, identified as
Chaetoceros aff. diadema, were dominant, comprising 35–92% of cell flux. The flux of resting spores
ranged from 2 to 63 mg C m�2 day�1 and was significantly correlated with POC flux (p¼0.003). Over the
course of 10 days, the flux of resting spores increased by 26 fold, suggesting that the cells sank en masse,
possibly in aggregates. In contrast, vegetative cells of C. aff. diadema sampled from surface waters during
the period preceding the flux event generally comprised o1% of the diatom community and never
exceeded 5.2%. Resting spores of C. aff. diadema were rarely observed in surface waters but their
concentrations increased with depth (to 200 m) below the mixed layer. This increase in resting spore
abundance, coupled with increased dissolved silicic acid concentrations at depth, suggest that the
morphological changes associated with spore formation may have occurred in the mesopelagic zone,
while cells were sinking. The values of variable fluorescence (Fv/Fm) measured on sediment trap material
dominated by resting spores were among the highest values measured in the study area at any depth.
This, in combination with the rapid germination of resting spores in ship-board incubations, suggests
that vegetative cells were not physiologically stressed during spore formation. The degradation-resistant,
heavily silicified resting spore valves explain the high relative contribution of C. aff. diadema resting
spores to total plankton carbon at depth. These data emphasize the ephemeral nature of organic carbon
flux events in the open ocean and highlight how non-dominant species and transient life stages can
contribute more to carbon flux than their more abundant counterparts.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The biological pump, defined as the process by which surface-
generated particulate organic carbon (POC) sinks to depth, has a
strong influence on global carbon cycling (e.g., Ducklow et al.
(2001), Volk and Hoffert (1985)) and atmospheric CO2 concentra-
tions (e.g., Kohfeld et al. (2005), Takahashi et al. (2009)). Overall,
the biological pump transfers 1–3% of oceanic primary production

to the deep sea and sediments (De La Rocha and Passow, 2007;
DeVries et al., 2012). The magnitude of POC that is successfully
transferred from surface layers to the inner reaches of the ocean
depends upon several factors, including the aggregation and
disaggregation of particles and organisms, microbial remineraliza-
tion, and grazing and fecal pellet production by zooplankton
(reviewed in De La Rocha and Passow (2007), Ragueneau et al.
(2006)). The biological pump is controlled, in part, by the taxo-
nomic and mineral composition of sinking organisms (Legendre
and Rivkin, 2002). For example, diatoms and their silica frustules
are thought to contribute to pulses of phytodetritus that in some
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locations can deliver the equivalent of the annual average carbon
flux to the benthos within days to weeks (Beaulieu, 2002).

Diatoms represent one of the most productive groups of
photosynthetic organisms on earth, generating 30–40% of global
marine primary productivity each year (Mann, 1999; Nelson et al.,
1995). The relative dominance of diatoms in many surface phyto-
plankton communities is thought to play an important role in
regulating the magnitude and efficiency of the biological pump
(Buesseler, 1998; Goldman, 1993; Pondaven et al., 2000;
Sarmiento, 2006). Even in oligotrophic regions where diatoms
are not generally abundant, material of diatom origin frequently
dominates POC recovered from depth (Karl et al., 2012; Scharek
et al., 1999). A large part of diatom production is generated during
blooms, i.e., periods of rapid growth and accumulation of cells,
with the most conspicuous of these blooms occurring in temperate
and sub-polar waters during spring (Longhurst, 1998). At the end
of these blooms, diatoms can contribute to the biological pump by
rapidly sinking out of the surface layer, at rates of 100–
150 m day�1 (Billett et al., 1983), and arriving at the seafloor as
relatively intact and sometimes viable cells (Billett et al., 1983;
Cahoon et al., 1994; Smith et al., 1996).

Several mechanisms are believed to contribute to the initiation of
diatom sinking during a bloom's demise, including nutrient limitation
and formation of aggregates (reviewed in Smetacek (1985)). At the
onset of nutrient limitation, diatoms undergo senescence and lose
their ability to maintain neutral buoyancy (e.g., Waite et al. (1997)).
Many bloom-forming diatoms then produce transparent exopolymer
particles (TEP), which increase the probability that colliding cells or
chains will stick together upon contact and form aggregates (Alldredge
and Gotschalk, 1989; Kiørboe and Hansen, 1993; Passow and
Alldredge, 1995). Although several phytoplankton taxa can produce
TEP, it appears that only diatoms are capable of producing the large
quantities of TEP that drive aggregation (Alldredge et al., 1993). High
TEP production and aggregate formation tends to occur particularly
when cells are nutrient limited and under conditions of intermediate
turbulence (Alldredge and Gotschalk, 1989; Alldredge et al., 1993;
Kiørboe and Hansen, 1993). Sinking POC also is susceptible to
substantial bacterial degradation, hence both sinking rate and suscept-
ibility to remineralization can dramatically influence the amount and
quality of organic carbon that reaches mesopelagic waters and below
(reviewed in De La Rocha and Passow (2007)).

Here, we determined the species composition of plankton cells
recovered from both surface waters and neutrally buoyant sediment
traps deployed in the sub-polar North Atlantic during a spring
diatom bloom to examine how species composition and life history
stage influence the magnitude and efficiency of POC flux. The
physiological status of both bulk sediment trap material and indivi-
dual cells was examined to better understand the nature and viability
of sinking cells. We found that diatoms dominated the plankton
community both in the sediment traps and surface waters, but that
the relative abundances of different species varied greatly. Sediment
traps were dominated by heavily-silicified resting spores that germi-
nated rapidly when brought into culture indicating that the POC
transported to depth was labile. Our results allowed us to identify
that a subset of species from the surface phytoplankton community
combined with life cycle stage (i.e., resting spores) significantly
influenced the magnitude and efficiency of POC flux associated with
the North Atlantic spring diatom bloom.

2. Methods

2.1. Sampling overview

All samples were collected during the North Atlantic Bloom
Experiment cruise on the R/V Knorr, 2–20 May 2008, yearday (YD)

123–141. Shipboard samples were collected in the Iceland Basin
(Fig. 1), in conjunction with a passively drifting, mixed-layer
Lagrangian float (Alkire et al., 2012; Briggs et al., 2011;
Mahadevan et al., 2012; Martin et al., 2011).

2.2. PELAGRA sediment traps

Four deployments of neutrally buoyant, Lagrangian sediment
traps (PELAGRA; Lampitt et al., 2008) were made between YD 126
and 137 (Fig. 1, Table 1). The traps collected sinking material at
depths between 140 and 750 m and time periods of 15–72 h, for a
total of 13 independent samples (depth and time). Each PELAGRA
trap had four collection funnels (0.115 m2 each) with attached
collection cups. As described in Martin et al. (2011), traps were
deployed in isopycnal mode and collection cups were pro-
grammed to open 24 h after deployment and to close minutes
before the trap ascended to the surface. Collection times were
deliberately varied to assess optimal deployment periods (Table 3).
For each deployment, both preserved and live trap material was
recovered. Live material was recovered from collection cups filled
with seawater obtained from below 400 m depth. Preserved
material was recovered from collection cups that additionally
had a final concentration of 0.5% NaCl and 2% formaldehyde
buffered with sodium tetraborate (Na2B4O7 �10 H20). After recov-
ery, 1 mL of 40% buffered formaldehyde was added to the contents
of each preserved cup.

2.3. Phytoplankton taxa and carbon content in PELAGRA traps

Species composition and abundance for each PELAGRA deploy-
ment were determined using 1 mL subsamples from the preserved
traps, a Sedgwick Rafter slide and quantitative light microscopy
according to Utermöhl (1958). Species were identified following
Sunesen et al. (2008) and Tomas (1997). Detailed size measurements

Fig. 1. Location of surface water samples (circles) and four PELAGRA floating
sediment trap deployments (crosses). Shading indicates depth intervals in meters.
Map of sampling locations is shown as a shaded box in the inset map of the North
Atlantic.

Table 1

Date, depth and location of PELAGRA sediment trap deployments. Number of traps
deployed on a given date varies; see Table 3.

Date
(2008)

Yearday Deployment Depths (m) Latitude
(1N)

Longitude
(1W)

5 May 126 1 140, 230 60.82 27.17
7 May 128 2 160, 340, 620 61.08 26.65
12 May 133 3 320, 600, 750 61.20 26.12
16 May 137 4 400, 730 61.44 25.88
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of Chaetoceros spp. resting spores for carbon content estimation were
determined from 2mL of preserved trap material from deployment
3. Samples were filtered onto 13 mm, 0.8 μm polycarbonate filters,
rinsed with trace ammonia solution (pH �10) and air dried. A small
portion (0.25 cm2) of the filter was cut from the center, mounted on
an aluminum stub and sputter coated with �2 nm gold. A Leo
1450VP SEM (Zeiss Inc.) with Smart SEM (V5.1) software automati-
cally captured images of consecutive fields of view from a 15�15
grid at a magnification of 2500� , providing 225 images per sample.
The valve diameter, mantle, epivalve and hypovalve heights were
determined for 4100 Chaetoceros spp. resting spores using ImageJ
(〈http://rsbweb.nih.gov.ij/〉) after scale calibration using a 10 μm scale
bar pre-set on each SEM image. Two resting spore shapes were
identified (scalene and oblate spheroids) and their volume was
determined appropriately. Because no specific carbon to volume (C:
Vol) equation exists for the resting spore of the identified species,
carbon content was determined two ways; (1) using the C:Vol
relationship determined for vegetative diatoms in Menden-Deuer
and Lessard (2000), and (2) using the C:Vol relationship calculated
for resting spores of the diatom Chaetoceros curvisetus (Kuwata et al.,
1993). The percentage of POC flux contributed by resting spores was
calculated using total POC flux that was measured from the same
deployments (Martin et al., 2011).

2.4. Viability of cells in PELAGRA traps

Live PELAGRA material was used to determine variable fluor-
escence (Fv/Fm), chlorophyll a fluorescence and resting spore
viability. Fv/Fm, an indicator of maximal quantum efficiency of
Photosystem II (Maxwell and Johnson, 2000), was measured on
live trap material from the third and fourth PELAGRA deploy-
ments. The material was diluted to a chlorophyll a concentration
of o10 mg L�1 with pre-filtered (Whatman GF/F) surface seawater.
Three sub-samples were incubated for Z30 min at approximately
6 1C in dark bottles covered with aluminum foil to prevent light
exposure. Fv/Fm was measured within the dark chamber of a
FASTtracka II fluorometer (Chelsea Instruments Group Ltd.)
mounted and secured in the lab, using FASTpro software (edition
2230-001-HB-A). A single turnover protocol with 30 sequences per
acquisition, each including 100 saturation and 50 relaxation
flashlets, was utilized. The sequence interval was set to 100 ms;
the PMT eht (extra high tension) and LED light source (excitation
peak of 470 nm) were optimized for each sample and varied from
380 to 540 and 60 to 90 V, respectively. Fv/Fm was calculated from
saturation and relaxation phase fits following Kolber et al. (1998).
The first Fv/Fm determination was made on trap material within
several hours of retrieval. Samples were incubated at approxi-
mately 6 1C in the dark and Fv/Fm determined at regular intervals
over the next 7 days (material from the third deployment) or after
48 h (fourth deployment). Differences in Fv/Fm between depths
and deployments were tested using two-tailed t tests with equal
variances, which were determined using F-tests (Zar, 1996). Live
material from the third deployment was examined for chlorophyll
auto-fluorescence with excitation of photosynthetic accessory
pigments, 470–490 nm, using an Axioskop microscope (Zeiss
Inc.) equipped for epifluorescence. Images were recorded with a
SPOT camera (Diagnostic Instruments, Inc.).

To determine if resting spores in live trap material collected
from the third deployment were viable, 3–400 μL aliquots of trap
material from 300, 600 and 750 m were added to 1 mL volumes of
sterile f/20 seawater media (Guillard, 1975) in 48 well plates
immediately after trap recovery. Inoculated plates were incubated
at ambient surface seawater temperature of 9 1C and 50 mmol
photons m�2 s�1 on a 16:8 h L:D cycle. Cultures were checked
microscopically using an Axioskop microscope (Zeiss Inc.) after 14,

41, 65 and 89 h; germination of resting spores was documented at
each time point with a SPOT camera (Diagnostic Instruments, Inc.).

2.5. Surface water sampling

Water samples for phyto- and microzoo-plankton community
composition and size as well as nutrient concentrations were
determined fromwater samples collected once per day, typically at
midday (Fig. 1, Table 2). Variable fluorescence (Fv/Fm) was also
determined on discrete samples taken from 4 depths (5–60 m) at
the stations where phyto- and microzoo-plankton samples were
collected. Later analysis indicated, however, that despite a mini-
mum 30 min dark treatment prior to measurements, the Fv/Fm
determinations made on samples taken in daylight indicated an
influence of previous light exposure. To compare surface and
sediment trap Fv/Fm, we instead used measurements made on
samples taken at 5 m from stations in the study area that were
collected at night. Fv/Fm measurements on surface and sediment
trap samples were made using the same protocol.

Complete hydrographic data are available from the Biological
and Chemical Oceanography Data Management Office for the
NAB 2008 project 〈http://osprey.bcodmo.org/project.cfm?flag=
view&id=102&sortby=project〉. Water samples were collected with
Niskin bottles mounted on a CTD-Rosette from 2 depths (usually
10 and 30 m) that were both within the surface mixed layer (50–
100 m) (Briggs et al., 2011). Taxonomic composition of the domi-
nant species was similar between depths, hence only data from
10 m is presented. On YD 131, samples for microplankton analysis
were taken from 6 depths (5, 30, 80, 120, 200, and 300 m), the only
deep profile taken for such analysis.

2.6. Phyto- and microzoo-plankton

Samples were preserved in 1 L brown glass bottles with
acidified Lugol's solution (approximately 2% final concentration)
for taxonomic determination. The composition of the plankton
community was determined using quantitative light microscopy
according to Utermöhl (1958). Analyses were carried out by
Orbicon A/S (Århus, Denmark). Identification of Chaetoceros vege-
tative cells and spores was based on Jensen and Moestrup (1998)
and Rines and Hargraves (1988). To determine cell biovolumes, the
linear dimensions of cells were measured and biovolume calcu-
lated using the appropriate geometric volume formula. Carbon to
volume relationships for either diatoms or for all other plankton

Table 2

Date, location and start time for CTD profiles from which water samples were
collected for nutrient analyses and cell counts (cast number is the identifier used in
the BCO–DMO database to identify CTD profiles).

Date (2008) Yearday Time Cast no. Latitude (1N) Longitude (1W)

2 May 123 19:28 1 61.16 25.35
4 May 125 17:14 2 60.85 26.64
5 May 126 13:21 8 60.79 27.12
6 May 127 13:34 12 60.91 27.41
7 May 128 15:57 15 61.07 26.66
8 May 129 13:52 21 60.63 25.72
9 May 130 14:23 29 60.63 27.59
10 May 131 11:38 35 61.34 26.57
11 May 132 11:31 43 61.52 25.97
12 May 133 11:25 46 61.44 25.96
13 May 134 14:12 62 61.33 25.98
14 May 135 13:14 73 61.24 26.29
16 May 137 11:26 89 61.58 26.08
18 May 139 12:47 105 61.08 25.40
19 May 140 11:40 118 61.30 25.75
20 May 141 13:19 121 61.49 25.06
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taxa (Menden-Deuer and Lessard, 2000) were used to determine
microplankton carbon content.

2.7. Nutrient analyses

Water samples were collected for nutrient analyses between
YD 123 and 141 (Table 2). Water from 10 m depth was collected
directly from Niskin bottles into acid-cleaned 60 mL polyethylene
bottles, pre-rinsed with three aliquots of sample, and frozen
unfiltered immediately; samples were stored up to 6 months at
�20 1C prior to analysis (Kallin et al., 2011). Samples were
analyzed for silicic acid and nitrate plus nitrite (hereafter referred
to as nitrate) using a Lachat QuickChems 8000 Flow Injection
Analysis System (Smith and Bogren, 2001; Wolters, 2002). Sam-
ples were slowly thawed in the dark at room temperature for 24 h
and vigorously vortexed prior to analysis to avoid silica polymer-
ization (Gordon et al., 1994). A depth profile (10–200 m) was
collected on YD 131 and analyzed as described above.

2.8. Statistical analyses

Linear regression analysis was used to describe the relationship
between resting spore carbon flux and POC flux in SPSS V. 20 (IBM,
Inc). Statistical analyses of diatom community composition were
conducted using Primer 6 (Clarke and Gorley, 2006) and an alpha
of 0.05. Changes in sediment trap community composition were
analyzed by examining the four dominant diatom groups in
sediment traps: C. aff. diadema (vegetative cells and resting spores
combined), all other Chaetoceros spp., Thalassiosira spp., and all
other diatom species. These groups were compared to three levels
of cell flux (o100, 100–400 and 4400 cells 106 m�2 day�1) into
the sediment traps. Samples were standardized, transformed
using a Bray–Curtis similarity matrix and compared using
Analysis of Similarity (ANOSIM). Community composition of
surface samples was compared in the same way except surface
community compositions were split into two levels of bio-
mass (430 mg C m�3 and o30 mg C m�3) and comparisons
were made using class-level taxonomic divisions (e.g., Bacillario-
phyceae, Prasinophyceae). Comparisons of surface community
composition with environmental variables (nitrate, silicic acid,
surface water temperature and salinity) were conducted using
BEST (Biology-Environment and Stepwise) analysis and class-level
taxonomic divisions.

3. Results

3.1. Downward flux of phytoplankton taxa and POC

In contrast to most deep ocean and PELAGRA samples collected
in the past, the majority of the material collected during this study
was present as identifiable cells. Counts from preserved trap
material revealed that diatoms numerically dominated the 13
PELAGRA samples. Other microplankton were present (e.g., for-
aminifera, dinoflagellates, ciliates) but comprised o0.25% of cells
in the traps. The number of sinking diatoms collected by the
PELAGRA cups peaked during the third deployment (retrieved on
YD 136), and decreased thereafter (Fig. 2, Table 3). The most
numerically dominant cells in the sediment trap material for all
deployments were vegetative and resting spores of Chaetoceros

spp., which together comprised an average of 81% of cells. Resting
spores comprised between 35% and 92% of all phytoplankton cells
in the traps, and 449% in 10 of the 13 samples (Table 3). The
largest flux of Chaetoceros resting spores occurred on YD 136,
when cell flux exceeded 400�106 cells m�2 day�1 at all depths.
The number of vegetative cells of Chaetoceros was highly variable

in trap material, ranging from 2% to 40% of cells. Diatoms in the
genus Thalassiosira comprised between 2% and 45% of cells in the
trap, with a higher numerical dominance during the fourth
deployment. All remaining diatom species contributed between
3% and 19% of trapped cells, and included the diatoms Thalassio-

nema spp. and Pseudo-nitzschia spp.
The majority (495%) of Chaetoceros resting spores were

identified as Chaetoceros aff. diadema. Although these resting
spores were morphologically similar to C. diadema, there were
important differences, including a lack of highly branched spines
(Fig. 3). In some cases, resting spores were embedded inside
vegetative cell frustules, which were also similar to C. diadema

except for the foramen, which did not match the taxonomic
descriptions of this species. Resting spores of other Chaetoceros

species whose vegetative cells were abundant in surface waters
(see below) were also observed in the traps, but were uncommon
(o5% of total spores); the spores of these species (C. compressus

and C. laciniosus) have very distinct resting spore morphologies
(Tomas, 1997). Other dominant Chaetoceros species identified from
the surface are not known to form spores (e.g., C. decipiens;

(Tomas, 1997)).
Cell size measurements were used to compute cell carbon

content for C. aff. diadema spores; however, two morphologies
were observed in sediment trap material. One was circular in
cross-section (Fig. 3A) with an average cell diameter of
8.471.5 mm (n¼50), and the other was elliptical in cross-section
(Fig. 3B) with average dimensions of 14.772.4 mm and 3.1+0.3 mm
(n¼50). Aside from these differences, they appeared identical. The
carbon contents of the two morphologies were 145.670.5 and
90.770.4 pg C cell�1, respectively, when the C:Vol relationship of
vegetative diatoms was used (Menden-Deuer and Lessard, 2000).
Carbon content of the resting spores was substantively larger
(102074.4 and 568.673.3 pg C cell�1, respectively) when the C:
Vol relationship determined for C. curvisetus resting spores was
used (Kuwata et al., 1993). Because the two morphologies were
only visible in SEM images and were not recorded independently
in light microscope cell counts, we calculated carbon flux using a
size-averaged estimate for the carbon content per resting spore.
Using the equation for vegetative diatoms, the size-averaged C
content per cell was 11870.3 pg C and the average flux contrib-
uted by resting spores was 2.4–62.7 mg C m�2 day�1 or 9–64% of
the POC flux (Table 3). Using the C:Vol relationship for C. curvisetus
resting spores, the size-averaged C content per cell was
794.373.8 pg C. Using this relationship, POC flux contributed by
resting spores was 16.4–424 mg C m�2 day�1 or 59–431% of the
total measured POC flux.
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The largest percentage of POC flux generated by resting spores
was observed during the third deployment. Across all deploy-
ments, POC flux was tightly correlated with resting spore flux
(p¼0.003, r2¼0.58) and less so with community composition in
the sediment traps (p¼0.047, R¼0.275).

3.2. Viability of cells from PELAGRA traps

Live trap material from the final two deployments was exam-
ined shortly after trap recovery for photosynthetic capacity. The
variance and mean of Fv/Fm measurements of shallow (320 m) vs.
deep (600 and 750 m) samples were not significantly different
(F-test, p¼0.7; t-test, p¼0.9) from the third deployment (Fig. 4A).
The magnitude of Fv/Fm from live trap material was similar to the
highest value recorded for surface waters during the cruise, i.e.,
0.43070.018 (n¼2) on YD 131 for discrete water samples col-
lected at night from 5 m. Fv/Fm in the incubated trap material
decreased similarly for all depths over the following days and
dropped significantly after one week of incubation to
0.37170.006 for the 300 m sample (t-test, po0.001) and to
0.37370.003 for the 750 m sample (t-test, po0.001). From the
fourth deployment, Fv/Fm measurements were 0.33870.074
(300 m) and 0.43170.012 (700 m). There was no significant
difference in the mean or variance of Fv/Fm between depths for
the fourth deployment (F-test, p¼0.21; t-test, p¼0.22). Under
phase contrast microscopy, resting spores were clearly pigmented
(Fig. 3D). Resting spores from the largest flux event (third deploy-
ment) had bright chlorophyll fluorescence under epifluorescence
microscopy (Fig. 4B).

After 14 h of incubation under low irradiance at in situ surface
water temperature, resting spores from all depths began to
germinate by casting off the spiny resting spore valve (Fig. 5A–
C). By 41 h, cells from all depths had cast off the smooth resting
spore valve and undergone one cell division (Fig. 5D). Cell division
continued on days 3 and 4, with formation of 4 and 8 cell chains,
respectively (Fig. 5E and F). Frequently, resting spore valves were
observed lying next to 4 and 8 cell chains, indicating that the
vegetative cell chains originated from a single resting spore. After
the initial 14 h incubation, growth rates of germinated resting
spores were rapid, approximately 1 doubling day�1.

3.3. Diatoms in surface waters

Surface community composition varied significantly as a func-
tion of carbon biomass (p¼0.002, R¼0.59). High levels of carbon
(430 mg C m�3) were associated with diatoms and low levels of
carbon (o30 mg C m�3) with other phytoplankton, including
prymnesiophytes, dinoflagellates and cryptophytes (Fig. 6). At
stations sampled on YD 123–128 and 133, diatoms were particu-
larly abundant and contributed the majority of organic carbon
(56–88%) associated with the phyto- and microzoo-plankton
communities in the upper 10 m of the water column. Total carbon
concentrations of microplankton ranged from 16 to 78 mg C m�3.

The same diatom genera identified as the most abundant in
sediment traps were also observed in surface waters. Pseudo-

nitzschia spp. comprised, on average, 28% of cell abundance in
surface waters, in stark contrast to its average abundance of 2.6%
in sediment traps (Tables 3 and 4). Average abundances of
Thalassionema spp. and Thalassiosira spp. in surface waters (6%,
3% respectively) were more similar to their average abundance in
sediment traps (4%, 11% respectively). Chaetoceros spp. repre-
sented 457% of diatom cells (Table 4) and 36–65% of diatom cell
carbon in surface waters on YD 123–128 and 133. On average,
Chaetoceros spp. represented 31% of cell abundance in surface
waters, in contrast to its abundance in the sediment traps (81%).
Chaetoceros diadema comprised an average of only 1% of diatomT

a
b
le

3

Su
m
m
ar
y
o
f
ce
ll
co

m
p
o
si
ti
o
n
fr
o
m

P
E
LA

G
R
A
fl
o
at
in
g
se
d
im

en
t
tr
ap

s.
D
ep

lo
ym

en
t
n
u
m
b
er

co
rr
es
p
o
n
d
s
to

th
at

u
se
d
in

M
ar
ti
n
et

al
.(
2
01

1
).
C
el
l
fl
u
xe

s
o
f
m
aj
o
r
d
ia
to
m

ta
xa

ar
e
fo
r
ve

ge
ta
ti
ve

ce
ll
s,
u
n
le
ss

o
th
er
w
is
e
n
ot
ed

.C
ar
b
o
n

fl
u
xe

s
o
f
al
l
C
h
a
et
o
ce
ro
s
re
st
in
g
sp

o
re
s
w
er
e
ge

n
er
at
ed

u
si
n
g
th
e
C
:V
o
l
co

n
ve

rs
io
n
o
f
M
en

d
en

-D
eu

er
an

d
Le

ss
ar
d
(2
0
0
0
)
an

d
co

m
p
ar
ed

to
to
ta
l
P
O
C
fl
u
x
fr
o
m

M
ar
ti
n
et

al
.
(2
01

1
).

D
ep

lo
ym

en
t

Tr
ap

re
co

ve
ry

(y
ea

rd
ay

)
D
u
ra
ti
o
n
o
f
tr
ap

co
ll
ec
ti
o
n
(h
)

D
ep

th
(m

)
To

ta
l

d
ia
to
m
s

C
h
a
et
o
ce
ro
s

re
st
in
g
sp

o
re
s

C
h
a
et
o
ce
ro
s

sp
p
.

T
h
a
la
ss
io
si
ra

sp
p
.

T
h
a
la
ss
io
n
em

a

sp
p
.

P
se
u
d
o
-n
it
zs
ch
ia

sp
p
.

O
th
er

d
ia
to
m

sp
p
.

To
ta
l
P
O
C

fl
u
xd

C
h
a
et
o
ce
ro
s
re
st
in
g

sp
o
re

ca
rb
o
n
fl
u
x

R
es
ti
n
g
sp

o
re

ca
rb
o
n
fl
u
x
(%
)

Fl
u
x
as

ce
ll
s
�
10

6
m

�
2
d
ay

�
1

m
g
C
m

�
2
d
ay

�
1

1
12

7
16

14
0

5
3
.2

3
0
.8

12
.0

2
.2

2
.1

3
.4

2
.7

15
.4
7

0
.8

3
.6
7

0
.0
1

2
3
.6

1
12

7
15

2
3
0

5
2
.0

2
0
.5

2
0
.8

2
.1

2
.5

2
.5

3
.6

14
.4
7

0
.7

2
.4
7

0
.0
1

16
.8

2
a

13
2

72
16

0
3
2
.6

2
5
.2

2
.7

1
.6

1
.8

1
.1

0
.2

10
.2
7

0
.3

3
.0
7

0
.0
1

2
9
.2

2
a

13
2

72
16

0
4
3
.0

37
.2

0
.8

1
.3

2
.9

0
.5

0
.3

13
.3
7

0
.7

4
.4
7

0
.0
1

3
3

2
13

2
4
8

3
4
0

8
7
.2

8
0
.0

2
.2

2
.0

1
.6

1
.2

0
.2

3
0
.6
7

1.
7

9
.5
7

0
.0
2

3
0
.9

2
13

2
6
0

6
2
0

2
9
.8

2
6
.2

1
.5

0
.7

0
.9

0
.3

0
.2

27
.2
7

1.
8

3
.1
7

0
.0
1

11
.4

3
13

6
2
4

3
2
0

4
6
9
.1

41
1
.0

3
3
.1

11
.0

11
.0

1
.2

1
.8

76
.2
7

6
.1

4
8
.6
7

0
.1
2

6
3
.7

3
13

6
2
4

6
0
0

7
8
8
.0

47
1
.0

18
8
.0

6
8
.0

2
3
.0

2
0
.0

18
.0

16
4
7

4
.1

5
5
.6
7

0
.1
4

3
3
.9

3
13

6
2
4

7
5
0

9
6
3
.0

5
31

.0
3
3
3
.0

51
.0

13
.0

11
.0

2
4
.0

15
4
7

4
.8

6
2
.7
7

0
.1
6

4
0
.7

4
b

13
9

2
4

4
0
0

19
6
.3

9
6
.3

41
.0

21
.0

10
.0

14
.0

14
.0

12
0
7

5
.8

11
.4
7

0
.0
3

9
.5

4
b

13
9

2
4

7
3
0

2
6
8
.1

11
3
.0

4
6
.2

10
0
.0

5
.3

1
.8

1
.8

9
5
.2
7

4
.6

13
.3
7

0
.0
3

14
.1

4
c

14
0

2
4

4
0
0

15
7
.9

8
3
.3

4
2
.2

17
.0

8
.0

4
.0

3
.4

11
2
7

5
.4

9
.8
7

0
.0
2

8
.8

4
c

14
0

2
4

7
3
0

37
7
.1

13
2
.0

5
9
.7

17
0
.0

5
.7

3
.2

6
.5

7
5
.1
7

3
.7

15
.6
7

0
.0
4

2
0
.8

a
Tw

o
tr
ap

s
d
ep

lo
ye

d
at

sa
m
e
d
ep

th
.

b
Fi
rs
t
2
4
h
co

ll
ec
ti
o
n
.

c
Se

co
n
d
2
4
h
co

ll
ec
ti
o
n
.

d
Fr
o
m

M
ar
ti
n
et

al
.
(2
01

1
).

T.A. Rynearson et al. / Deep-Sea Research I 82 (2013) 60–7164



cell abundance in surface waters and its maximum contribution at
10 m during the cruise was 5.2% of cell abundance. This is in stark
contrast to the average contribution of resting spores of this
species to the sediment traps (63%).

During the time period when Chaetoceros was most abundant
in surface waters (YD 123–128, 133; Table 4), the most numerous
Chaetoceros species identified were C. laciniosus, C. compressus, and
C. decipiens. They represented, on average, 64% of all Chaetoceros
cells. Many Chaetoceros cells in surface waters were small and
lightly silicified and thus it was not possible to identify them from
fixed samples; these unidentified cells comprised, on average, 32%
of Chaetoceros in surface waters.

3.4. Depth distribution of Chaetoceros aff. diadema

Few resting spores of C. aff. diadema were recorded in the
upper 30 m of the water column (maximal number of 4�103 L�1

was observed at 10 m on YD 127). On YD 131, samples were
collected between 5 and 300 m on the only deep taxonomic
profile. No resting spores were recorded at 5 m (Fig. 7A) and at
30 m, they constituted just 0.1 mg C m�3. Between 80 and 300 m,
resting spore carbon concentrations were an order of magnitude
higher (between 1.1 and 2.2 mg C m�3). The absolute amount of
diatom cell carbon decreased with depth from 30 to 300 m
(Fig. 7B); however, the relative contribution of diatom carbon
from C. aff. diadema increased with depth. This species comprised
on average o2% of the diatom carbon biomass at the surface, but
comprised 59% and 82%, respectively, at 200 and 300 m.

3.5. Nutrient concentrations

Inorganic nitrogen concentrations were relatively high, remain-
ing over 8 mM in surface waters throughout the cruise. In contrast,
dissolved silicic acid concentrations were already low at the
beginning of the sampling period (YD 123,o4 mM) and decreased
to o0.3 mM by YD 133 (Fig. 8A). For surface waters, there were no
significant correlations between changes in community composi-
tion and environmental conditions (nitrate, silicic acid, surface
water temperature and salinity; p¼0.49). Nutrients measured
from the deep taxonomic profile on YD 131 increased with depth
(Fig. 8b). The exception was at 30 m where there was a decrease
relative to surface waters in both nitrate and silicic acid.

4. Discussion

In May of 2008, a major particle flux event was observed in the
North Atlantic from optical ‘spikes’ in chlorophyll fluorescence,
backscatter, and beam attenuation from the ship and four Seagli-
ders (Briggs et al., 2011). During the flux event, the amount of POC
recovered from floating sediment traps increased by over an order
of magnitude (Martin et al., 2011). We determined that phyto-
plankton cells were responsible for generating the flux event and
that their abundance in the sediment traps varied by over 30 fold
during the two-week deployment period, highlighting the ephem-
eral nature of downward carbon flux during the North Atlantic
spring bloom. Here, we show that a subset of species from the

Fig. 3. Scanning electron micrograph images of the most abundant Chaetoceros aff. diadema resting spores representing two morphologies: (A) the circular cross-section and
(B) the elliptical cross-section (both from sediment trap recovery on May 15 (YD 136), 600 m). Light micrographs of a C. aff. diadema resting spore: (C) inside a vegetative
valve and (D) free of the vegetative valve (both from sediment trap recovery May 15 (YD 136), 750 m). Scale bars indicate 2 mm (A, B) and 15 mm (C).
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surface phytoplankton community and a transient life cycle stage
that may be highly resistant to degradation (i.e., resting spores)

can dominate vertical flux, influencing the magnitude and effi-
ciency of POC flux associated with the North Atlantic
spring bloom.

4.1. Chaetoceros resting spores dominate plankton flux

and POC in the traps

During the peak POC flux, collected by the third sediment trap
deployment (recovered YD 136), Chaetoceros resting spores repre-
sented 55–88% of all diatom cells (Table 3). Depending on the C:
Vol conversion used, resting spores represented up to 64% or 431%
of the total POC flux. The C:Vol relationship based on vegetative

Fig. 4. Photosynthetic capacity of sediment trap material and resting spores from
the third sediment trap recovery, May 15 (YD 136). (A) Variable fluorescence (Fv/Fm)
of trap material collected from 300, 600 and 750 m and measured between 1 and
7 days after recovery. (B) Chlorophyll a autofluorescence of resting spores collected
from 750 m; excitation at 470–490 nm.

Fig. 5. Germination of resting spores from the third sediment trap recovery on May 15 (YD136). After 14 h incubation, spiny resting spore valves (indicated by arrows) were
cast off in trap material from 300 m (A), 600 m (B) and 750 m (C). By 41 h (D), the smooth resting spore valve (denoted by arrow) had been cast off and one cell division had
occurred; example cell from 600 m. Cell division after 65 h (E, 4-cell chain) and 89 h (F, 8-cell chain) of incubation for trap material from 750 m.
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diatoms (Menden-Deuer and Lessard, 2000) yielded the 64%
estimate and was likely conservative, given that Chaetoceros

resting spores have been found to contain four to ten times more
carbon than vegetative cells (French and Hargraves, 1980; Kuwata
et al., 1993). Resting spores are thought to be more carbon dense
due to the lack of a vacuole and the presence of storage com-
pounds, including lipids and carbohydrates (Anderson, 1975;
Doucette and Fryxell, 1983; Kuwata et al., 1993). Higher carbon
density is reflected in the POC flux estimates (up to 431%) based on
the C:Vol relationship for C. pseudocurvisetus resting spores
(Kuwata et al., 1993). The carbon per cell generated using this

approach clearly led to an unrealistic overestimation of resting
spore contribution to total POC flux, perhaps due to the fact that it
was based on resting spores of a different species (although
the same genus). For example, C. pseudocurvisetus resting spores
had a cell volume that was nearly seven times smaller than the

Table 4

Abundance of diatom cells at 10 m and percentage of cells belonging to each genus included in Table 3. Percent Chaetoceros includes C. aff. diadema.

Year-day Diatom abundance (103 cells L�1) Chaetoceros (%) C. aff. diadema (%) Thalassiosira (%) Thalassionema (%) Pseudo-nitzschia (%)

123 310 75 0.3 0.6 2.9 16
125 460 69 0.8 0.0 8.5 17
126 540 75 2.6 3.4 2.9 17
127 425 57 3.7 1.3 3.4 24
128 1126 71 1.0 0.1 5.3 17
129 276 17 4.7 0 4.2 17
130 164 2 0.6 4.0 0.8 58
131 82 11 1.6 0 6.3 20
132 19 6 5.2 0 10.5 18
133 598 63 0.2 0 13.9 20
134 441 35 0.2 0.9 14.4 42
135 171 2 0 0 4.6 70
137 40 0.5 0 6.4 0 0
139 49 22 0.8 2.7 8.0 53
140 22 0 0 23.6 0 36
141 31 0.3 0 0.0 6.2 27
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C. aff. diadema spores (253 μm3 vs. 1680 μm3), and they may have
thus been more carbon dense. It has been noted that the C:Vol
relationship of individual species can deviate significantly from
each other (Menden-Deuer and Lessard, 2000). Using either
estimate, the sediment trap results clearly showed that resting
spores contributed a significant percentage of the POC flux during
the North Atlantic spring bloom.

Prior to and during the flux of resting spores into sediment
traps, high backscattering signals were observed in the water
column and interpreted as sinking aggregates (Briggs et al., 2011).
Material in the PELAGRA traps was examined microscopically
immediately after recovery and a surprising feature was that no
aggregates were visible, unlike previous PELAGRA deployments
where aggregates were observed (Lampitt et al., 2008; Salter et al.,
2007). We conclude that the flux event was mediated by fragile
aggregates that lost their identity in the sediment trap cup before
recovery. Given that resting spores dominated the carbon biomass,
it is likely that they were present within the sinking aggregates, as
has been observed previously (Alldredge et al., 1995). Aggregate
formation may have been enhanced by transparent exopolymer
particles (TEP), produced by phytoplankton (Passow and
Alldredge, 1995) and identified in large quantities at the peak of
POC flux during this study (Martin et al., 2011). Thus, the peak flux
of resting spores observed here (4500�106 cells m�2 day�1,
Fig. 2) may have been accelerated by aggregation and TEP
production.

The physiological characteristics of resting spores and sediment
trap material were suggestive of rapid POC flux with a high
transfer efficiency. The Fv/Fm values recorded in the sediment trap
material were, for example, similar to those recorded in surface
waters at the beginning of our study and among the highest
recorded at any station or depth in the study as a whole. The Fv/Fm
decreased over the week following retrieval from the sediment
traps (Fig. 4A) indicating a loss of photosynthetic capacity over
time. Thus, the fact that Fv/Fm values recorded in the sediment trap
material were similar from all depths where sediment traps were
deployed suggests that sedimentation was occurring rapidly at this
time collection. Strong in vivo chlorophyll fluorescence of the
resting spores from the traps also indicates that the material was
relatively fresh, and not degraded (Fig. 4B). This physiological
evidence is supported by estimates that the sinking rate of
aggregates was �75 m day�1 (Briggs et al., 2011). Furthermore,
resting spores collected from down to 750 m depth germinated
rapidly after incubation with nutrients and light, showing that
these live spores contained high quality, labile POC (Fig. 5). Indeed,
the measured transfer efficiency of POC to the sediment traps for
this flux event was 30–126% higher than the predicted 19% (Martin
et al., 2011). Transfer efficiencies reported for diatom blooms in
this region of the North Atlantic are amongst the highest mea-
sured in the global ocean (Buesseler and Boyd, 2009), suggesting
that the flux of resting spores described here may not represent an
isolated event.

Importantly, resting spore formation and flux is not restricted
to the North Atlantic. For example, resting spores of the diatom
Eucampia antarctica var. antarctica captured by sediment traps
represented up to 71% of all sinking diatom cells following a
natural iron fertilization event in the Southern Ocean (Salter et al.,
2012). Furthermore, it appeared that the flux of sedimenting
material was also comprised of relatively un-degraded organic
material, suggesting similarly high transfer efficiencies associated
with resting spore flux in the Southern Ocean. This indicates that
important flux events of diatom resting spores may be generated
by multiple genera and in multiple ocean basins. The significant
flux of C generated by resting stages has also been observed in
other taxa, such as dinoflagellates. For example, large fluxes of
dinoflagellate cysts have been observed in coastal regions of the

Pacific (Fujii and Matsuoka, 2006; Pospelova et al., 2010), the
North Sea (Godhe et al., 2001), and the Baltic Sea, where one flux
event contributed about 45% of the maximum POC flux following a
spring bloom (Heiskanen, 1993). Together, these observations have
important implications for the disproportionate contribution of
particular taxa and importantly, different life stages, to the
biological pump.

4.2. Comparison between the surface plankton community

and cells collected in sediment traps

Sampling of surface waters took place during the peak of the
diatom spring bloom (Alkire et al., 2012). The species composition
at the surface was typical of phytoplankton communities during
the spring bloom in this region (Moore et al., 2005; Sieracki et al.,
1993); phytoplankton chlorophyll and carbon concentrations in
surface waters were average for the peak of the North Atlantic
spring bloom (Henson et al., 2009). Phytoplankton concentration
was patchy during the cruise, as observed in ocean color satellite
imagery (cf. Martin et al. (2011)). Chlorophyll a concentrations
measured from the ship and by gliders also exhibited patchiness,
with concentrations varying by more than five-fold on any given
day (e.g., 0.35–2 mg m3) (Mahadevan et al., 2012). Movement of
the ship in and out of patches with elevated chlorophyll was
responsible for the variability in diatom abundance among our
samples. The sampling strategy allowed for random sampling both
inside and outside of patches, and was geographically well
distributed in the study area.

At sinking rates of 75 m day�1 calculated for the flux event
(Briggs et al., 2011), the high number of C. aff. diadema resting
spores recovered on YD 136 at depths of 320–750 m were most
likely present in surface waters as vegetative cells until YD 132.
Although Chaetoceros spp. dominated surface phytoplankton com-
munities, particularly at the beginning of the cruise (YD 123–128),
C. aff. diadema never accounted for more than 5.2% of the diatom
cells in surface waters before YD 132 (Table 4). This species was
observed in all samples throughout the study area until YD 135,
but only at low concentrations both in and out of the patches. We
hypothesize that a rarely-occurring species can disproportionally
contribute to total organic carbon flux, in this case most likely as a
function of its life history strategy of resting spore formation.

The observation that resting spores were in great abundance in
sediment traps on YD 136 at all depths, including the shallowest
trap (320 m), supports the hypothesis that C. aff. diadema was a
rare species at the surface but a disproportionate contributor to
POC flux (Fig. 2). This conclusion gains further support from the
fact that the importance of C. aff. diadema as a percentage of total
diatom carbon increased dramatically with depth (Fig. 7). While C.

diadema occurred together with a number of other Chaetoceros

spp. in surface waters, it was essentially the only Chaetoceros

species found at 300 m. This increasing contribution of C. diadema

carbon at greater depths is likely a consequence of the highly
silicified valves of resting spores which appear to be more
resistant to the degradation experienced by their vegetative
counterparts (Hargraves and French, 1983; Kuwata and
Takahashi, 1990).

An alternative hypothesis is that the spores were derived from
a major bloom of C. aff. diadema that occurred prior to our arrival
on site. This hypothesis would require very slow sinking rates on
the order ofo30 m day�1, which is unlikely given sinking rates of
�75 m day�1 estimated between YD 123 and 136 (Briggs et al.,
2011). Few resting spores were found in shallow traps during the
first and second deployment, an observation that is also counter to
slow sinking of an early C. aff. diadema bloom. Furthermore,
chlorophyll a and particle concentrations measured from the floats
and gliders were very low prior to the start of sampling on YD 123,
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suggesting low phytoplankton abundance (Alkire et al., 2012;
Mahadevan et al., 2012).

4.3. Initiation of spore formation

The appearance of resting spores in the sediment traps over a
very short time period suggests that they formed quickly, con-
sistent with reports that Chaetoceros can form resting spores
within 6–48 h (reviewed in McQuoid and Hobson (1996)). Resting
spore formation is a process that involves wholesale morphologi-
cal (Hargraves, 1979; Ishii et al., 2011) and metabolic changes from
the vegetative life stage (Doucette and Fryxell, 1983; French and
Hargraves, 1980; Kuwata et al., 1993). While our data do not allow
identification of the trigger(s) for spore formation, they do provide
insights into the environmental conditions present before and
during the time when resting spores were identified in the water
column. This is important because diatom resting spores have not
consistently been observed in sinking material (e.g., Billett et al.
(1983), Smith et al. (1996)) but when present, can have a large
impact on C flux (this study; Salter et al., 2012).

In laboratory experiments, diatom resting spore formation has
often been associated with nutrient depletion (French and
Hargraves, 1980; Garrison, 1981; Kuwata et al., 1993; Oku and
Kamatani, 1999; Pitcher, 1986; Sanders and Cibik, 1985). During
the period preceding the appearance of diatom spores in the
sediment traps, surface waters remained nitrate replete but dis-
solved silicic acid concentrations declined from �4 to o1 mM
(Fig. 8A). While silicic acid deficiency may have provided a trigger
for spore formation, resting spores captured in the deepest
sediment traps appeared to be in excellent physiological condi-
tion (Fig. 4). When spores were placed in a nutrient enriched
medium and provided with light, they began to germinate
within 14 h (Fig. 5). Such observations do not reconcile well with
the assumption that spores were formed from nutrient stressed,
vegetative cells.

An argument that challenges silicic acid depletion as a potential
trigger for spore formation is the fact that spores themselves are
heavily silicified. Resting spores of some Chaetoceros species
contain 3–4 times more silicon than vegetative cells and it appears
that they can form resting spores only when sufficient silicic acid
is present (Kuwata et al., 1993; Kuwata and Takahashi, 1990). Thus,
it is difficult to explain the formation of heavily silicified resting
spores under dissolved silicic acid concentrations of o1 mM in
surface waters. This is consistent with our observations of there
being no or only very few spores in surface waters at any time
during the cruise. Instead, concentrations of spores between 80
and 300 m were found to be an order of magnitude higher than
those ever recorded in surface waters (Fig. 7A). Vegetative cells
containing spores were only observed between 80 and 200 m, and
free spores were observed at 300 m. This observation suggests that
the morphological changes associated with spore formation may
have occurred primarily below the euphotic zone at depths where
silicic acid, needed to form resting spore valves, was found at
higher concentrations (Fig. 8B). Alternatively, silicic acid required
for production of heavily-silicified resting spores could potentially
have come from re-mobilization of silica in the frustules; however,
we have no data on frustule density of biogenic silica, either pre or
post spore formation, to disprove this hypothesis. The data
gathered here suggest a generalized scenario whereby the mor-
phological changes associated with spore formation occurred as
cells sank from the surface waters.

4.4. Ecological implications of resting spore flux

The morphological and metabolic changes associated with
resting spore formation may ultimately influence their ability to

survive and form subsequent blooms. Unlike vegetative cells,
whose organic frustule covering can be degraded by bacteria,
making the silica readily soluble (Bidle and Azam, 1999), resting
spores are both inherently more resistant to bacterial degradation
and heavily silicified, thereby enhancing their survival capability.
For example, resting spores of Chaetoceros pseudocurvisetus appear
more resistant to bacterial degradation than vegetative cells
(Kuwata and Takahashi, 1990). Resting spores observed here were
heavily silicified, potentially enhancing their survival capability.
For example, the resting spores of some Chaetoceros species were
able to germinate after passing through the guts of their copepod
predators (Hargraves and French, 1983; Kuwata and Tsuda, 2005).
Furthermore, when resting spores are present, copepods lower
their filtering rates or actively avoid ingesting the spores suggest-
ing that copepods have evolved strategies to actively avoid resting
spore ingestion (Kuwata and Tsuda, 2005). Resting spores sampled
here were able to rapidly resume vegetative growth, dividing at
rates of �1 doubling day�1. Rapid germination and growth is
consistent with laboratory observations of C. diadema resting
spores (Hollibaugh et al., 1981). The high growth rates achieved
immediately following germination may help to explain the
dominance of this spore-forming genus in mid to high latitude
blooms. For example, Chaetoceros spp. have been shown to
dominate spring blooms over multiple years in regions of the
Barents and Norwegian Seas (Degerlund and Eilertsen, 2010) as
well as the waters just east of the Iceland Basin (Bresnan et al.,
2009). Importantly, the germination of Chaetoceros spp. resting
spores has been observed in the field previously, although
primarily in upwelling and coastal regions (Garrison, 1981;
Pitcher, 1990).

In open ocean environments, the ability of resting spores to
reseed surface waters following germination would depend on a
combination of survival time, water depth, winter mixing and
circulation. Resting spores of C. diadema can survive for long time
periods, although the proportion of cells germinating decreases
over time. For example, after approximately 50 days in darkness,
85% of C. diadema resting spores germinated in the laboratory
(Hollibaugh et al., 1981). Maximal survival time has not been
measured, but 10% of C. diadema cells were still able to germinate
after nearly two years in darkness (Hollibaugh et al., 1981). In
addition to extended survival ability, resting spores must also be
resuspended. While that is unlikely in deeper areas of the North
Atlantic, it may be possible in shallower regions, such as coastal
waters where Chaetoceros is a common diatom genus. For exam-
ple, the neutrally buoyant sediment traps used here were recov-
ered within 40 km of the Reykjanes Ridge (Fig. 1), which has
depths of 500–1000 m in this region. Seagliders operating during
this experiment occasionally observed high backscatter measure-
ments below 600 m, indicative of re-suspended sediments and
sediment plumes coming from the ridge (Briggs et al., 2011). Deep
winter mixing in the Iceland Basin to depths of 600 m could bring
re-suspended spores back to the surface (Backhaus et al., 2003).
Re-suspended spores could then be transported by prevailing
currents to the Iceland Basin and beyond (Pollard et al., 2004).
Similar mixing processes in shallow coastal waters off Greenland
and North America could allow resting spores to reseed broad
areas of the North Atlantic.

5. Conclusions

The data presented here show that biological properties
beyond community composition, such as species identity and life
cycle stage, can play important roles in the flux of POC to depth.
On average, 1–3% of POC leaving the surface ends up below the
depth of sequestration, at 1000 m (reviewed in De La Rocha and
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Passow (2007)). The amount of initial POC reaching great depth
may increase significantly due to the formation and flux of highly-
silicified, degradation-resistant diatom resting spores. This is seen
in the increased efficiency of POC flux observed in this field study
by Martin et al. (2011), with up to 43% of the POC at 100 m
transferred to depths of 750 m or greater. Importantly, the species
that formed resting spores and contributed most to POC flux
during this event was relatively rare in surface waters. Based on
sediment cores from the deep ocean, it is clear that resting spores
have regularly reached the sediments in large quantities over
geologic time (Abelmann et al., 2006; Grimm et al., 1997; Suto,
2006). Resting spores have also been captured in large numbers
from deep sediment traps following natural iron enrichment
(Salter et al., 2012). This suggests that the formation and sinking
of resting spores may essentially “magnify” the effect of surface
diatom blooms by transporting proportionally more POC to depth
than from blooms where diatoms are not present or do not form
resting spores.

Challenges remain in terms of understanding the biogeochem-
ical and ecological impacts of resting spore formation. For exam-
ple, the massive open ocean flux event of resting spores that we
captured in this study was ephemeral and the trigger(s) for spore
formation unknown. These characteristics make it a challenge to
effectively observe, quantify and predict flux events generated by
resting spores. A more complete understanding of the impacts of
flux events will benefit from future work to better characterize the
chemical and physiological composition of resting spores and how
they differ from vegetative cells (e.g., Doucette and Fryxell (1983)).
For example, without accurate carbon to volume estimates for
resting spores, we were unable to put narrow bounds on the
carbon contribution of resting spores to the total POC flux:
depending on the carbon-to-biovolume conversion used, our
estimates ranged by over six-fold. This highlights that additional
basic information about diatom life stage could be used to better
understand large-scale events such as the fate of the North
Atlantic spring bloom.

Acknowledgments

This work would not have been possible without the vision and
hard work of C. Lee and E. D'Asaro who designed the North
Atlantic Bloom study and the assistance of our Icelandic colleague
K. Guðmundsson. We thank E. Kallin for nutrient analyses,
I. Cetinić for assistance with figures, the Captain and crew of the
R/V Knorr, and numerous students and colleagues who helped
on the cruises. This work was supported by US NSF OCE0727227
(to TAR); US NSF OCE0628379, OCE0628107 and US NASA
NNX08AL92G (to MJP with subcontracts to MES); Danish Research
Council for Nature and Universe and Danish National Research
Foundation (to KR); UK Natural Environment Research Council (to
AJP and RSL).

References

Abelmann, A., Gersonde, R., Cortese, G., Kuhn, G., Smetacek, V., 2006. Extensive
phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean.
Paleoceanography 21 (1), PA1013.

Alkire, M.B., D'Asaro, E., Lee, C., Perry, M.J., Gray, A., Cetinić, I., Briggs, N., Rehm, E.,
Kallin, E., Kaiser, J., González-Posada, A., 2012. Estimates of net community
production and export using high-resolution, Lagrangian measurements of O2,
NO3

� , and POC through the evolution of a spring diatom bloom in the North
Atlantic. Deep Sea Research Part I 64, 157–174.

Alldredge, A.L., Gotschalk, C., Passow, U., Riebesell, U., 1995. Mass aggregation of
diatom blooms: insights from a mesocosm study. Deep Sea Research Part II 42
(1), 9–27.

Alldredge, A.L., Gotschalk, C.C., 1989. Direct observations of the mass flocculation of
diatom blooms: characteristics, settling velocities and formation of diatom
aggregates. Deep Sea Research Part A 36 (2), 159–171.

Alldredge, A.L., Passow, U., Logan, B.E., 1993. The abundance and significance of a
class of large, transparent organic particles in the ocean. Deep Sea Research Part
I 40 (6), 1131–1140.

Anderson, O.R., 1975. The ultrastructure and cytochemistry of resting cell formation
in Amphora coffaeformis (Bacillariophyceae). Journal of Phycology 11, 272–281.

Backhaus, J.O., Hegseth, E.N., Wehde, H., Irigoien, X., Hatten, K., Logemann, K., 2003.
Convection and primary production in winter. Marine Ecology Progress Series
251, 1–14.

Beaulieu, S.E., 2002. Accumulation and fate of phytodetritus on the sea floor.
Oceanography and Marine Biology 40, 171–232.

Bidle, K.D., Azam, F., 1999. Accelerated dissolution of diatom silica by marine
bacterial assemblages. Nature 397, 508–512.

Billett, D.S.M., Lampitt, R.S., Rice, A.L., Mantoura, R.F.C., 1983. Seasonal sedimenta-
tion of phytoplankton to the deep-sea benthos. Nature 302, 520–522.

Bresnan, E., Hay, S., Hughes, S.L., Fraser, S., Rasmussen, J., Webster, L., Slesser,
G., Dunn, J., Heath, M.R., 2009. Seasonal and interannual variation in the
phytoplankton community in the north east of Scotland. Journal of Sea
Research 61 (1), 17–25.

Briggs, N., Perry, M.J., Cetinić, I., Lee, C., D'Asaro, E., Gray, A., Rehm, E., 2011. High-
resolution observations of aggregate flux during a sub-polar North Atlantic
spring bloom. Deep Sea Research Part I 58, 1031–1039.

Buesseler, K.O., 1998. The decoupling of production and particulate export in the
surface ocean. Global Biogeochemical Cycles 12 (2), 297–310.

Buesseler, K.O., Boyd, P.W., 2009. Shedding light on processes that control particle
export and flux attenuation in the twilight zone of the open ocean. Limnology
and Oceanography 54 (4), 1210–1232.

Cahoon, L.B., Laws, R.A., Thomas, C.J., 1994. Viable diatoms and chlorophylla
in continental slope sediments off Cape Hatteras, North Carolina. Deep Sea
Research Part II: Topical Studies in Oceanography 41 (4-6), 767–782.

Clarke, K.R., Gorley, R.N., 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E,
Plymouth.

De La Rocha, C.L., Passow, U., 2007. Factors influencing the sinking of POC and the
efficiency of the biological carbon pump. Deep Sea Research Part II 54 (5),
639–658.

Degerlund, M., Eilertsen, H.C., 2010. Main species characteristics of phytoplankton
spring blooms in NE Atlantic and Arctic waters (681–801N). Estuaries and
Coasts 33 (2), 242–269.

DeVries, T., Primeau, F., Deutsch, C., 2012. The sequestration efficiency of the
biological pump. Geophysical Research Letters 39 (L13601).

Doucette, G.J., Fryxell, G.A., 1983. Thalassiosira antarctica: vegetative and resting
stage chemical composition of an ice-related marine diatom. Marine Biology 78
(1), 1–6.

Ducklow, H.W., Steinberg, D.K., Buesseler, K.O., 2001. Upper ocean carbon export
and the biological pump. Oceanography 14 (4), 50–58.

French, F.W., Hargraves, P.E., 1980. Physiological characteristics of plankton diatom
resting spores. Marine Biology Letters 1, 185–195.

Fujii, R., Matsuoka, K., 2006. Seasonal change of dinoflagellates cyst flux collected in
a sediment trap in Omura Bay, West Japan. Journal of Plankton Research 28 (2),
131–147.

Garrison, D.L., 1981. Monterey Bay phytoplankton. II. Resting spore cycles in coastal
diatom populations. Journal of Plankton Research 3 (1), 137–156.

Godhe, A., Noren, F., Kuylenstierna, M., Ekberg, C., Karlson, B., 2001. Relationship
between planktonic dinoflagellate abundance, cysts recovered in sediment
traps and environmental factors in the Gullmar Fjord, Sweden. Journal of
Plankton Research 23 (9), 923–938.

Goldman, J.C., 1993. Potential role of large oceanic diatoms in new primary
production. Deep Sea Research Part I 40 (1), 159–168.

Gordon, L.I., Jennings, J.C.J., Ross, A.A., Krest, J.M., 1994. A suggested protocol for
continuous flow automated analysis of seawater nutrients (phosphate, nitrate,
nitrite and silicic acid). The WOCE Hydrographic Program and the Joint Global
Ocean Fluxes Study, WOCE Operations Manual vol. 3: The Observational
Program, Section 3.1: WOCE Hydrographic Program, Part 3.1.3: WHP Operations
and Methods, Woods Hole, Massachusetts, pp. 52.

Grimm, K.A., Lange, C.B., Gill, A.S., 1997. Self-sedimentation of phytoplankton
blooms in the geologic record. Sedimentary Geology 110 (3), 151–161.

Guillard, R.R.L., 1975. Culture of phytoplankton for feeding marine invertebrates. In:
Smith, W.L., Chanley, M.H. (Eds.), Culture of Marine Invertebrate Animals.
Plenum Press, New York, USA, pp. 29–60.

Hargraves, P.E., 1979. Studies on marine plankton diatoms IV. Morphology of
Chaetoceros resting spores. Beiheft zur Nova Hedwigia 64, 99–120.

Hargraves, P.E., French, F.W., 1983. Diatom resting spores: significance and
strategies. In: Fryxell, G. (Ed.), Survival Strategies of the Algae. Cambridge
University Press, New York, pp. 49–68.

Heiskanen, A.S., 1993. Mass encystment and sinking of dinoflagellates during a
spring bloom. Marine Biology 116 (1), 161–167.

Henson, S.A., Dunne, J.P., Sarmiento, J.L., 2009. Decadal variability in North Atlantic
phytoplankton blooms. Journal of Geophysical Research: Oceans 114, C04013
(doi: 04010.01029/02008JC005139).

Hollibaugh, J.T., Seibert, D.L.R., Thomas, W.H., 1981. Observations on the survival
and germination of resting spores of three Chaetoceros (Bacillariophyceae)
species. Journal of Phycology 17 (1), 1–9.

Ishii, K.-I., Iwataki, M., Matsuoka, K., Imai, I., 2011. Proposal of identification criteria
for resting spores of Chaetoceros species (Bacillariophyceae) from a temperate
coastal sea. Phycologia 50 (4), 351–362.

Jensen, K.G., Moestrup, Ø., 1998. The genus Chaetoceros (Bacillariophyceae) in inner
Danish coastal waters. Nordic Journal of Botany 18 (1), 88.

T.A. Rynearson et al. / Deep-Sea Research I 82 (2013) 60–7170

http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref1
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref1
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref1
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref2
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref2
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref2
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref2
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref2
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref2
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref2
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref3
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref3
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref3
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref4
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref4
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref4
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref5
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref5
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref5
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref6
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref6
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref7
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref7
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref7
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref8
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref8
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref9
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref9
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref10
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref10
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref11
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref11
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref11
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref11
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref12
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref12
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref12
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref13
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref13
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref14
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref14
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref14
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref15
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref15
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref15
http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0005
http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0005
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref16
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref16
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref16
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref17
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref17
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref17
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref18
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref18
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref19
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref19
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref19
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref20
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref20
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref21
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref21
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref22
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref22
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref22
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref23
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref23
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref24
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref24
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref24
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref24
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref25
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref25
http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0010
http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0010
http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0010
http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0010
http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0010
http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0010
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref26
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref26
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref27
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref27
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref27
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref28
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref28
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref29
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref29
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref29
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref29
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref30
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref30
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref31
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref31
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref31
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref32
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref32
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref32
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref33
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref33
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref33
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref34
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref34


Kallin, E., Cetinić, I., Sauer, M., Perry, M.J., 2011. The 2008 North Atlantic Bloom
Experiment Calibration Report #6, Laboratory Analysis Report, http://data.
bco-dmo.org/NAB08/Laboratory_analysis_report-NAB08.pdf.

Karl, D.M., Church, M.J., Dore, J.E., Letelier, R.M., Mahaffey, C., 2012. Predictable and
efficient carbon sequestration in the North Pacific Ocean supported by
symbiotic nitrogen fixation. Proceedings of the National Academy of Sciences
109 (6), 1842–1849.

Kiørboe, T., Hansen, J.L.S., 1993. Phytoplankton aggregate formation: observations
of patterns and mechanisms of cell sticking and the significance of exopoly-
meric material. Journal of Plankton Research 15, 993–1018.

Kohfeld, K.E., Quéré, C.L., Harrison, S.P., Anderson, R.F., 2005. Role of marine biology
in glacial–interglacial CO2 cycles. Science 308 (5718), 74–78.

Kolber, Z., Zehr, J., Falkowski, P.G., 1998. Effects of growth irradiance and nitrogen
limitation on photosynthetic energy conversion in photosystem II. Plant
Physiology 88, 923–929.

Kuwata, A., Hama, T., Takahashi, M., 1993. Ecophysiological characterization of two
life forms, resting spores and resting cells, of a marine planktonic diatom,
Chaetoceros pseudocurvisetus, formed under nutrient depletion. Marine Ecology
Progress Series 102, 245–255.

Kuwata, A., Takahashi, M., 1990. Life-form population responses of a marine
planktonic diatom, Chaetoceros pseudocurvisetus, to oligotrophication in region-
ally upwelled water. Marine Biology 107 (3), 503–512.

Kuwata, A., Tsuda, A., 2005. Selection and viability after ingestion of vegetative
cells, resting spores and resting cells of the marine diatom, Chaetoceros

pseudocurvisetus, by two copepods. Journal of Experimental Marine Biology
and Ecology 322 (2), 143–151.

Lampitt, R.S., Boorman, B., Brown, L., Lucas, M., Salter, I., Sanders, R., Saw, K.,
Seeyave, S., Thomalla, S.J., Turnewitsch, R., 2008. Particle export from the
euphotic zone: Estimates using a novel drifting sediment trap, 234Th and new
production. Deep Sea Research Part 1 55 (11), 1484–1502.

Legendre, L., Rivkin, R.B., 2002. Fluxes of carbon in the upper ocean: regulation by
food-web control nodes. Marine Ecology Progress Series 242, 95–109.

Longhurst, A., 1998. Ecological Geography of the Sea. Academic Press, San Diego.
Mahadevan, A., D'Asaro, E., Lee, C., Perry, M.J., 2012. Eddy-driven stratification

initiates North Atlantic spring phytoplankton blooms. Science 337 (6090),
54–58.

Mann, D.G., 1999. The species concept in diatoms. Phycologia 38 (6), 437–495.
Martin, P., Lampitt, R.S., Perry, M.J., Sanders, R., Lee, C., D'Asaro, E., 2011. Export and

mesopelagic particle flux during a North Atlantic spring diatom bloom. Deep
Sea Research Part I 58 (4), 338–349.

Maxwell, K., Johnson, G., 2000. Chorophyll fluorescence—a practical guide. Journal
of Experimental Botany 51, 659–668.

McQuoid, M.R., Hobson, L.A., 1996. Diatom resting stages. Journal of Phycology 32
(6), 889–902.

Menden-Deuer, S., Lessard, E.J., 2000. Carbon to volume relationships for dino-
flagellates, diatoms, and other protist plankton. Limnology and Oceanography
45 (3), 569–579.

Moore, C.M., Lucas, M.I., Sanders, R., Davidson, R., 2005. Basin-scale variability of
phytoplankton bio-optical characteristics in relation to bloom state and com-
munity structure in the Northeast Atlantic. Deep Sea Research Part I 52 (3),
401–419.

Nelson, D.M., Tréguer, P., Brzezinski, M.A., Leynaert, A., Quéguiner, B., 1995.
Production and dissolution of biogenic silica in the ocean: revised global
estimates, comparison with regional data and relationship to biogenic sedi-
mentation. Global Biogeochemical Cycles 9 (3), 359–372.

Oku, O., Kamatani, A., 1999. Resting spore formation and biochemical composition
of the marine planktonic diatom Chaetoceros pseudocurvisetus in culture:
ecological significance of decreased nucleotide content and activation of the
xanthophyll cycle by resting spore formation. Marine Biology 135 (3), 425–436.

Passow, U., Alldredge, A.L., 1995. Aggregation of a diatom bloom in a mesocosm:
the role of transparent exopolymer particles (TEP). Deep Sea Research Part II 42
(1), 99–109.

Pitcher, G.C., 1986. Sedimentary flux and the formation of resting spores of selected
Chaetoceros species at two sites in the southern Benguela System. South African
Journal of Marine Science 4, 231–244.

Pitcher, G.C., 1990. Phytoplankton seed populations of the Cape Peninsula upwel-
ling plume with particular reference to resting spores of Chaetoceros (Bacillar-
iophyceae) and their role in seeding upwelling waters. Estuarine, Coastal and
Shelf Science 31 (3), 283–301.

Pollard, R.T., Read, J.F., Holliday, N.P., Leach, H., 2004. Water masses and circulation
pathways through the Iceland Basin during Vivaldi 1996. Journal of Geophysical
Research: Oceans 109 (C4), C04004.

Pondaven, P., Ragueneau, O., Treguer, P., Hauvespre, A., Dezileau, L., Reyss, J.L., 2000.
Resolving the ‘opal paradox’ in the Southern Ocean. Nature 405, 168–172.

Pospelova, V., Esenkulova, S., Johannessen, S.C., O'Brien, M.C., Macdonald, R.W.,
2010. Organic-walled dinoflagellate cyst production, composition and flux from
1996 to 1998 in the central Strait of Georgia (BC, Canada): a sediment trap
study. Marine Micropaleontology 75 (1-4), 17–37.

Ragueneau, O., Schultes, S., Bidle, K., Claquin, P., Moriceau, B., 2006. Si and C
interactions in the world ocean: importance of ecological processes and
implications for the role of diatoms in the biological pump. Global Biogeo-
chemical Cycles 20 (4), GB4S02.

Rines, J.E.B., Hargraves, P.E., 1988. The Chaetoceros Ehrenberg (Bacillariophyceae)
Flora of Narragansett Bay, Rhode Island, USA. Cramer, Berlin/Stuttgart.

Salter, I., Kemp, A.E.S., Moore, C.M., Lampitt, R.S., Wolff, G.A., Holtvoeth, J., 2012.
Diatom resting spore ecology drives enhanced carbon export from a naturally
iron-fertilized bloom in the Southern Ocean. Global Biogeochemical Cycles 26
(1), GB1014.

Salter, I., Lampitt, R.S., Sanders, R., Poulton, A., Kemp, A.E.S., Boorman, B., Saw, K.,
Pearce, R., 2007. Estimating carbon, silica and diatom export from a naturally
fertilised phytoplankton bloom in the Southern Ocean using PELAGRA: a novel
drifting sediment trap. Deep Sea Research Part II 54 (18–20), 2233–2259.

Sanders, J.G., Cibik, S.J., 1985. Reduction of growth rate and resting spore formation
in a marine diatom exposed to low levels of cadmium. Marine Environmental
Research 16, 165–180.

Sarmiento, J.L., Gruber, N. Ocean Biogeochemical Dynamics. Princeton University
Press, Princeton, NJ.

Scharek, R., Tupas, L.M., Karl, D.M., 1999. Diatom fluxes to the deep sea in the
oligotrophic North Pacific gyre at Station ALOHA. Marine Ecology Progress
Series 182, 55–67.

Sieracki, M.E., Verity, P.G., Stoecker, D.K., 1993. Plankton community response to
sequential silicate and nitrate depletion during the 1989 North Atlantic spring
bloom. Deep Sea Research Part II 40 (1-2), 213–225.

Smetacek, V., 1985. Role of sinking in diatom life-history cycles: ecological,
evolutionary, and geological significance. Marine Biology 84 (3), 239–251.

Smith, C.R., Hoover, D.J., Doan, S.E., Pope, R.H., Demaster, D.J., Dobbs, F.C., Altabet,
M.A., 1996. Phytodetritus at the abyssal seafloor across 101 of latitude in the
central equatorial Pacific. Deep Sea Research Part II 43 (4-6), 1309–1338.

Smith, P., Bogren, K., 2001. Determination of nitrate and/or nitrite in brackish or
seawater by flow injection analysis colorimeter: QuickChem Method 31-107-
04-1-E, Saline Methods of Analysis. Lachat Instruments, Loveland, CO p. 12.

Sunesen, I., Hernandez-Becerril, D.U., Sar, E.A., 2008. Marine diatoms from Buenos
Aires coastal waters (Argentina). V. Species of the genus Chaetoceros. Revista de
Biología Marina y Oceanografía 43 (2), 303–326.

Suto, I., 2006. The explosive diversification of the diatom genus Chaetoceros across
the Eocene/Oligocene and Oligocene/Miocene boundaries in the Norwegian
Sea. Marine Micropaleontology 58 (4), 259–269.

Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D.
W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D.C.E.,
Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y.,
Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T.S., Tilbrook,
B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C.S., Delille, B., Bates, N.R., de
Baar, H.J.W., 2009. Climatological mean and decadal change in surface ocean
pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II
56 (8–10), 554–577.

Tomas, C.R., 1997. Identifying Marine Phytoplankton. Academic Press, New York.
Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-

Methodik. Mitteilungen—Internationale Vereinigung Für Theoretische und
Angewandte Limnologie 9, 1–38.

Volk, T., Hoffert, M.I., 1985. Ocean carbon pumps: analysis of relative strengths and
efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist, E.T.,
Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Varia-
tions Archean to Present. AGU, Washington, DC, pp. 99–110.

Waite, A., Fisher, A., Thompson, P.A., Harrison, P.J., 1997. Sinking rate versus cell
volume relationships illuminate sinking rate control mechanisms in marine
diatoms. Marine Ecology Progress Series 157, 97–108.

Wolters, M., 2002. Determination of silicate in brackish or seawater by flow
injection analysis: QuickChemMethod 31-114-27-1-D, Methods Manual. Lachat
Instruments, Loveland, CO p. 12.

Zar, J.H., 1996. Biostatistical Analysis. Prentice Hall, Inc., Englewood Cliffs, New
Jersey.

T.A. Rynearson et al. / Deep-Sea Research I 82 (2013) 60–71 71

http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0015
http://data.bco-dmo.org/NAB08/Laboratory_analysis_report-NAB08.pdf
http://data.bco-dmo.org/NAB08/Laboratory_analysis_report-NAB08.pdf
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref35
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref35
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref35
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref35
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref36
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref36
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref36
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref37
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref37
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref37
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref38
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref38
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref38
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref39
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref39
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref39
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref39
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref40
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref40
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref40
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref41
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref41
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref41
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref41
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref42
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref42
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref42
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref42
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref42
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref42
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref43
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref43
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref44
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref45
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref45
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref45
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref46
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref47
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref47
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref47
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref48
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref48
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref49
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref49
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref50
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref50
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref50
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref51
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref51
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref51
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref51
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref52
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref52
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref52
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref52
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref53
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref53
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref53
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref53
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref54
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref54
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref54
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref55
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref55
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref55
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref56
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref56
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref56
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref56
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref57
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref57
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref57
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref58
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref58
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref59
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref59
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref59
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref59
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref60
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref60
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref60
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref60
http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0020
http://refhub.elsevier.com/S0967-0637(13)00147-7/othref0020
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref61
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref61
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref61
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref61
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref62
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref62
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref62
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref62
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref63
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref63
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref63
http://refhub.elsevier.com/S0967-0637(13)00147-7/othbib9001
http://refhub.elsevier.com/S0967-0637(13)00147-7/othbib9001
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref65
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref65
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref65
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref66
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref66
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref66
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref67
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref67
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref68
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref68
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref68
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref69
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref69
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref69
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref70
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref70
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref70
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref71
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref71
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref71
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref72
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref72
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref72
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref72
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref72
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref72
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref72
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref72
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref72
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref72
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref73
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref74
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref74
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref74
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref75
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref75
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref75
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref75
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref75
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref75
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref76
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref76
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref76
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref77
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref77
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref77
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref78
http://refhub.elsevier.com/S0967-0637(13)00147-7/sbref78

	Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters – Outcome of a Scientific Community-Wide Study
	Creative Commons License
	Citation/Publisher Attribution
	Authors

	Major contribution of diatom resting spores to vertical flux �in the sub-polar North Atlantic
	Introduction
	Methods
	Sampling overview
	PELAGRA sediment traps
	Phytoplankton taxa and carbon content in PELAGRA traps
	Viability of cells in PELAGRA traps
	Surface water sampling
	Phyto- and microzoo-plankton
	Nutrient analyses
	Statistical analyses

	Results
	Downward flux of phytoplankton taxa and POC
	Viability of cells from PELAGRA traps
	Diatoms in surface waters
	Depth distribution of Chaetoceros aff. diadema
	Nutrient concentrations

	Discussion
	Chaetoceros resting spores dominate plankton flux and POC in the traps
	Comparison between the surface plankton community and cells collected in sediment traps
	Initiation of spore formation
	Ecological implications of resting spore flux

	Conclusions
	Acknowledgments
	References


