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ABSTRACT 

 

 

Marine viruses are the most numerous biological entities in the ocean, with an estimated 

abundance of 4 x 10
30

.  They merit study not only because of their sheer abundance, but also 

because of the role they play in the Earth’s biogeochemical cycles.  Viral lysis of bacteria 

redirects the flow of nutrients among marine microbes, which ultimately affects the efficiency of 

the biological pump.  Viral diversity is important because most viruses are host-specific.  In 

preying on a certain type of bacteria, viruses affect the diversity and structure of the bacterial 

community, leading to changes in carbon and nutrient flows.  In turn, such variations can alter 

the amount of carbon dioxide in the Earth’s atmosphere.  However, studying viral diversity 

presents challenges.  Morphological similarities among many types of viruses make it preferable 

to use genetic methods of investigation, but the absence of a single gene common to all families 

of viruses hampers the identification of viruses in environmental samples.  Nonetheless, some 

genes are shared within phage families, and those shared (“signature”) genes can be used as 

markers to identify members of a family.  In addition, community profiling methods can 

fingerprint the diversity of a viral community.  

Most previous studies of marine viral communities consist of a single glimpse—a 

representation of the community at a single time and place, or at a few depths sampled at one 

time.  While the resources required to collect marine samples often make broader or repeated 

sampling impracticable, without studies conducted over greater time and spatial ranges, our 

knowledge of marine viral dynamics will remain limited.  To gain strides in understanding 
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spatial and temporal variability in marine viral diversity, this dissertation focused on a detailed 

examination of viral diversity at a single site in the Sargasso Sea.  Time and depth intervals for 

sampling were kept as uniform as possible in order to strengthen the conclusions to be drawn 

from the research. 

The Sargasso Sea is a seasonally oligotrophic portion of the North Atlantic Ocean, 

characterized by deep convective winter mixing and summer stratification of the water column.  

A tremendous amount of oceanographic research has been conducted in the Sargasso Sea 

because it is home to the Bermuda Atlantic Time-series Study (BATS), one of the world’s 

longest-running ocean time series studies.  Because of the core monthly measurements made at 

the BATS site and the vast amount of ancillary research that uses BATS as a platform, the site is 

an excellent place to study viral diversity.  Using a variety of techniques, this research aimed to 

expand our knowledge of viral dynamics by analyzing the viral community of the Sargasso Sea 

over a several-year period, through different seasons, and at different depths. 

The first chapter developed phoH as a new signature gene for assessing marine viral 

diversity.  The phoH gene is disproportionately present in fully-sequenced marine phage, as 

opposed to phage isolated from non-marine environments, and is widespread in the marine 

environment.  Diversity of the phoH gene was high, and most of the sequences recovered 

belonged to phylogenetic groups that did not contain any cultured representatives, indicating that 

cultured phage isolates do not adequately represent the diversity found in marine environments.  

Composition of the phoH communities at each sampled location and depth was distinguishable 

according to phylogenetic clustering, although most phoH clusters were recovered from multiple 

sites.  These factors demonstrate that phoH will be useful for studying marine phage diversity 

worldwide. 
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Chapter 2 analyzed the viral diversity of a depth profile at BATS by amplifying and deep 

sequencing the phoH gene.  This comprehensive study of the gene’s diversity over three different 

years, several seasons, and a range of depths from the surface to 1000 m revealed that the viruses 

at BATS contain a large pool of phoH sequences, but that most of those sequences are rare.  The 

phoH sequences were dominated by just a few operational taxonomic units (OTUs).  Rarefaction 

analysis showed that the sequencing was sufficient to capture the diversity of the gene at BATS, 

and in fact no new phylogenetic clusters were identified that were not seen in the small amount 

of Sanger sequencing performed for the initial phoH study in Chapter 1.  Some of the more 

abundant phoH OTUs recurred every season and every year, in varying degrees, although similar 

depths and seasons clustered together.  Overall, the phoH gene revealed depth-based, seasonal, 

and interannual differences in the diversity of the viral community at BATS. 

Chapter 3 continued the extensive examination of viral diversity at BATS by using 

several signature genes and a fingerprinting technique to assess changes between winter and 

summer viral communities over two depths in three different years.  This chapter investigated 

whether the annually recurring subsurface peak in viral abundance corresponded to recurring 

changes in composition of the viral community in the vicinity of the peak.  Clustering analysis 

was used to determine which samples were most similar.  The results demonstrated that the viral 

communities at the surface and at 100 m depth were more similar to each other in winter 

(March), regardless of the year, than they were in summer (September), when the water column 

is stratified as opposed to well-mixed.  These findings may stem from physical factors such as 

UV irradiation of viral particles during stratification, as well as seasonal and depth-related 

differences in host communities associated with the depth of the mixed layer. 
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This dissertation provides substantial advances to the field of microbial ecology.  First, 

the development of phoH as a signature gene is an important addition to the limited set of tools 

available for studying marine viral diversity.  This research also constitutes the first deep 

sequencing of a signature gene for marine viruses, providing a guide for the depth of sequencing 

needed to capture the diversity of a marine viral community and a benchmark for the level of 

viral diversity to expect in an oligotrophic marine system.  Finally, the dissertation expands our 

knowledge of the viral community at BATS by examining the community based on four different 

measures of composition, rather than abundance.  The research presented here also suggests 

several avenues of future investigation, including redesigning the phoH primers to expand their 

scope, sampling the viral community at BATS at the precise depth of the peak in abundance, 

working to identify the hosts of aquatic gokushoviruses, and culturing and sequencing additional 

marine viruses in order to improve the reflection of natural environmental communities in 

genomic databases. 
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INTRODUCTION 

 

 

Abundance of marine viruses 

 

Marine viruses merit study not only because of their sheer abundance, but also because of 

the role they play in the Earth’s biogeochemical cycles.  While bacteria are the most numerous 

living organisms on the planet—it is estimated that bacteria in the ocean number 1.2 x 10
29

 

(Whitman et al., 1998)—viral abundance can exceed the number of bacteria by an order of 

magnitude.  The virus-to-bacteria ratio in the oceans varies, but usually within a fairly narrow 

range, and often depends on habitat and season (Breitbart, 2012).  While values ranging from 

less than 0.1 to greater than 50 have been reported (encompassing coastal, open ocean, and 

estuarine areas), the general range for open ocean surface waters is between 2 and 25 (Bratbak et 

al., 1994; Fuhrman, 1999; Wommack and Colwell, 2000; Suttle, 2007).  Through a decade of 

viral and bacterial counts in the Sargasso Sea, one of the main study sites in this dissertation, the 

virus-to-bacteria ratio was maintained within a narrow range of 3-20 in the vast majority of the 

measurements in the upper 300 meters of the water column (Parsons et al., 2012).  Based on 

extrapolation from bacterial abundances, the total number of marine viruses—the oceans’ most 

abundant biological entities—is estimated at 4 x 10
30

 (Fuhrman, 1999; Suttle, 2005). 

 

Importance of marine viruses 

 

 Given their vast numbers, it should not be surprising that marine viruses play a 

significant role in carbon and nutrient cycling.  Most of the carbon and nutrients in the ocean are 

in the dissolved phase, and this pool of dissolved organic matter (DOM) is taken up by bacteria 
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(Pomeroy, 1974).  When bacteria are grazed upon by protists, the DOM moves up the food web 

to organisms at higher trophic levels (Azam et al., 1983).  However, viruses divert that flow, in a 

process known as the viral shunt (Wilhelm and Suttle, 1999).  When viruses infect and then lyse 

bacteria, not only are new viral particles released, but carbon is also released, and returns to the 

pool of DOM.  Other organic cellular compounds such as proteins and nucleic acids are also 

emitted into the dissolved phase, where bacteria can incorporate their nitrogen and phosphorus.  

In this way, viruses redirect the flow of nutrients among marine microbes (Bratbak et al., 1994; 

Wilhelm and Suttle, 1999).  If viral predation represented only a small fraction of bacterial 

mortality, then the effect of viral lysis on carbon and nutrient cycling would be correspondingly 

small.  There is always some degree of uncertainty in estimates of mortality caused by viruses, 

because each method of determining such mortality requires some assumptions to be made 

(Suttle, 2005).  However, there is evidence that as much as half of bacterial mortality is caused 

by viruses (Fuhrman and Noble, 1995), although the percentage of the bacterial community 

killed by viruses rather than grazers can vary depending on season, location, and habitat 

(Fuhrman, 1999).  

Because viruses are responsible for a substantial proportion of bacterial mortality, the 

viral shunt has significant effects on oceanic biogeochemistry as well as atmospheric chemistry.  

When bacteria are grazed upon by protists, which in turn are eaten by zooplankton, the carbon 

and nutrients that make up the bacteria enter the food web of larger marine organisms (Fenchel, 

1988).  However, when viruses lyse cells, cellular contents are returned to the pool of DOM, 

resulting in a greater amount of carbon respiration occurring in the surface ocean, which 

contributes additional carbon dioxide to the atmosphere (Suttle, 2005).  Thus by converting 

carbon to the dissolved phase, viral lysis can affect the efficiency of the biological pump, 
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depending on the rate at which carbon is supplied relative to the rate of supply of nutrients 

needed for the growth of primary producers (Suttle, 2007). 

 

Significance of viral diversity 

 

It is essential to understand not only what viruses are doing in the ocean, but also which 

viruses are present.  Viral diversity is important because most viruses are host-specific:  while 

some cyanophage can infect two genera of cyanobacteria (Sullivan et al., 2003), most viruses 

have a more limited host range, infecting just one species, one subspecies, or a few related 

species (Bratbak et al., 1994; Fuhrman, 1999; Suttle, 2007; Holmfeldt et al., 2013).  Thus as 

bacterial populations change, so do virus populations (and vice versa).  Under the kill-the-winner 

model of viral dynamics (Thingstad and Lignell, 1997), viruses control the populations of the 

most active (or would-be active) hosts.  When a particular host population proliferates, viruses 

capable of infecting that host will increase in abundance.  As those viruses prey upon the 

susceptible host, the population of the host declines.  When a new host emerges (resistant to the 

viruses that killed the first host) to fill the now-vacant niche left by the originally dominant host, 

the first virus population will decline.  As viruses evolve to infect the newly dominant host and 

increase in abundance, the progression continues (Thingstad and Lignell, 1997; Winter et al., 

2010).  In preying on a certain type of bacteria, viruses affect the diversity and structure of the 

bacterial community.  Changes in the bacterial community can lead to changes in carbon and 

nutrient flows, resulting in changes in the net heterotrophy of the ocean (Fandino et al., 2001).  

In turn, such variations can alter the amount of carbon dioxide in the Earth’s atmosphere 

(Raymond et al., 2000).  Evidence has shown that the viral community can control the 

composition of the bacterial community (Mühling et al., 2005).  But most experiments designed 

to determine the degree to which viruses affect bacterial community composition show variable 
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results, likely due to results being obscured by manipulation or containment effects (Schwalbach 

et al., 2004; Winter et al., 2004; Hewson et al., 2006; Bouvier and Del Giorgio, 2007).     

Marine viral diversity is significant and influential; unfortunately, it is a difficult subject 

to study.  Viruses can be counted through nucleic acid staining and flow cytometry (Marie et al., 

1999) or epifluorescence microscopy (Noble and Fuhrman, 1998), but individual viruses cannot 

be distinguished beyond subgroups based on levels of fluorescence and light scattering (Suttle, 

2007).  Small viruses such as RNA viruses and single-stranded DNA viruses usually escape 

detection as well due to their small genome size (Suttle, 2007).  Transmission electron 

microscopy reveals the morphology of individual viruses, but since different viruses can have 

similar morphology, this technique cannot definitively identify a viral species (Proctor, 1997).  

For these reasons, genetic methods of characterizing viral diversity are preferable.  Identification 

of viruses in environmental samples is hampered by the absence of a gene common to all viruses 

(Rohwer and Edwards, 2002); however, some genes are shared within phage families, and those 

shared (“signature”) genes can be used as markers to identify members of a family (Suttle, 

2005).  A variety of signature genes can capture subsets of viral diversity, such as the DNA 

polymerase gene for podophage (Huang et al., 2010), capsid genes for myophage (Jameson et al., 

2011; Chow and Fuhrman, 2012) and single-stranded DNA phage (Hopkins et al., 2014), psbA 

for viruses of photosynthetic bacteria (Chenard and Suttle, 2008), and phoH, which was 

developed as part of this dissertation and can capture viruses in multiple families that infect both 

heterotrophic and autotrophic hosts (Chapter 1; Goldsmith et al. (2011)).  Amplified signature 

genes can either be sequenced directly or the diversity of specific signature gene amplicons can 

be profiled using techniques such as terminal restriction fragment length polymorphism (T-

RFLP) (Jiang et al., 2003; Wang and Chen, 2004; Needham et al., 2013) or denaturing gel 
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gradient electrophoresis (DGGE) (Short and Suttle, 1999; Mühling et al., 2005).  Additionally, 

techniques for fingerprinting the viral community diversity based on specific sequences or 

genome sizes exist, using randomly-amplified polymorphic DNA (RAPD) PCR (Comeau et al., 

2004; Winget and Wommack, 2008) or pulsed field gel electrophoresis (PFGE) (Wommack et 

al., 1999; Steward et al., 2000; Larsen et al., 2001; Hewson et al., 2006), respectively. 

Most previous studies of marine viral communities consist of a single glimpse—a 

representation of the community at a single time and place, or at a few depths sampled at one 

time (Breitbart, 2012).  While the resources required to collect marine samples often make 

broader or repeated sampling impracticable, without studies conducted over greater time and 

spatial ranges, our knowledge of marine viral dynamics will remain limited.  For example, 

viruses in surface waters are not necessarily representative of deeper viral communities (Zhong 

et al., 2002; Parsons et al., 2012).  Temporal variations can also be substantial; when Bergh et al. 

(1989) first reported the abundance of marine viruses to be far greater than originally thought, 

they also found that viral counts in the Barents Sea in the productive part of the year exceeded 

winter abundance by nearly three orders of magnitude.  Abundance is not the only facet of the 

viral community that can change with time.  Viral assemblages sampled in one season may well 

differ from assemblages collected at a different time of year.  For that reason, sampling over 

multiple years is critical in order to elucidate annually recurring trends.  Thus in order to 

understand viral ecology and viral interactions with hosts, the first step is to understand how viral 

communities change.  Because we know that marine bacterial communities are dynamic rather 

than static (Giovannoni and Vergin, 2012), analysis of viral dynamics may lead to understanding 

how each influences the other. 
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Seasonal studies of viral dynamics 

 

Numerous studies have investigated temporal variations in marine viral community 

composition throughout the world, using a variety of techniques.  For example, Winget and 

Wommack (2008) used randomly-amplified polymorphic DNA (RAPD) PCR to assess the 

diversity of the Chesapeake Bay viral community on a seasonal scale.  Differences in RAPD 

PCR banding patterns from samples drawn from the same station six months apart demonstrated 

that the composition of the viral community had changed.  This study confirmed the results of an 

earlier study in the Chesapeake Bay, in which pulsed field gel electrophoresis (PFGE) was used 

to assess viral community structure.  Wommack et al. (1999) sampled six stations in the Bay four 

times over a year, and reported variation over time in the frequency distribution of the viral 

genome sizes. 

 A similar result was observed for the viral community in coastal California water.  Eight 

samples drawn between May and October 1997 exhibited different PFGE banding patterns over 

the six-month sampling period (Steward et al., 2000).  The number of discrete bands (indicating 

viral genome sizes) was at its highest in May, and was at its lowest in October.  Others have 

similarly reported that viral richness varies by season.  Sandaa and Larsen (2006) used PFGE to 

examine seasonal changes in viral diversity off the coast of Norway.  They reported the least 

number of average PFGE bands in August, while the highest average number of bands was found 

in June.  Moreover, the composition of the viral community varied depending on the season.  

Clasen et al. (2013) monitored the diversity and composition of cyanomyophage communities in 

coastal Southern California for 15 months.  They isolated cyanophage from monthly surface 

water samples and amplified two signature genes, g20 and psbA.  Seasonal variation based on 

those genes was evident:  in winter and fall, the cyanomyophage community was dominated by a 
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single OTU of each gene, while in summer, the community appeared to be in flux and the 

dominant OTU often changed. 

 Other techniques have also been used to assess seasonal changes in phage diversity.  

Denaturing gel gradient electrophoresis (DGGE) analysis of the g20 signature gene revealed 

seasonal variation in phage diversity in the Gulf of Aqaba (Mühling et al., 2005).  The greatest 

number of DGGE types appeared in May, while the lowest numbers appeared in July and 

October.  Using the same gene, other researchers found seasonal variations in the abundance and 

diversity of phage isolates from coastal Rhode Island waters (Marston and Sallee, 2003).  In 

summer months, they found a greater number of different genotypes than they found during 

winter months.  However, they did not see specific genotypes appear only in summer and 

disappear in winter, or vice versa.  Seasonal variations may not appear if the time frame of the 

study is too short.  A study of viral diversity in coastal Denmark over three months found that 

despite large changes in viral abundance, the viral community structure (as shown by PFGE) was 

relatively stable (Riemann and Middelboe, 2002).  Similarly, Fuhrman et al. (2002) reported that 

PFGE fingerprints of the viral community in Southern California waters showed temporal 

stability between August and October 2000.   

A study in the Eastern Mediterranean Sea compared viral communities sampled during 

mixing season and again while the water column was stratified (Magiopoulos and Pitta, 2012).  

Viral abundance varied with the season, as did the contribution to the total viral community of 

three individual groups of viruses, designated by the strength of their fluorescence signal.  

Another study in the Mediterranean Sea sampled a site nine times over the course of one year.  

Using flow cytometry, Winter et al. (2009) measured viral abundance, and also distinguished 
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among three viral types based on fluorescence.  They reported seasonal changes in viral 

abundance, and in composition of the viral communities (according to the three types). 

Variations in the composition of marine viral communities also appear on shorter time 

scales.  A TRFLP analysis of the g23 gene amplified from viral DNA extracted from samples 

collected near an island off the coast of Southern California revealed 153 myoviral OTUs over 

the course of a 78-day time series (Needham et al., 2013).  Examination of the relative 

abundance of each OTU showed that while most of the OTUs appeared in less than 25% of the 

45 samples collected during the time series, more than 80% of the viral community consisted of 

OTUs that appeared in at least 90% of the samples.  Some OTUs with the highest average 

abundance exhibited a wide range of relative abundances during the course of the experiment.  

For example, one OTU comprising approximately 25% of the total myoviral community on the 

first day of the study made up less than 5% of the community at the end of the experiment.  

Overall, the myoviral community was fairly stable on a scale of weeks to months, while the scale 

of days to weeks showed greater variation in community composition (Needham et al., 2013). 

 

Interannual studies of viral dynamics 

 

In order to determine whether any observed seasonal patterns recur, a small number of 

studies have begun to examine changes in viral community composition on an interannual scale.  

Jiang et al. (2003) found by RFLP analysis that phage isolates from the coast of southern 

California in August 1999 were similar to phage infecting the same hosts one year later.  Hewson 

et al. (2006) used PFGE to examine changes in viral diversity in the Gulf of Mexico from 2001 

to 2003.  Richness of the viral community varied from 3 to 20 phylotypes over the three years.  

However, because of a change in the method of sample preparation, the authors could not rule 



9 

 

out the possibility that the difference resulted from the change in protocol rather than reflecting a 

real change in viral diversity.   

Using the genome of EhV-86, a virus of coccolithophore E. huxleyi, Allen et al. (2007) 

employed a microarray to analyze the diversity of 14 strains of coccolithovirus isolates.  The 

findings revealed temporal clustering:  virus strains isolated from the English Channel in 1999 

grouped separately from the strains isolated in the same location in 2001.  In a hypersaline 

system, Emerson et al. (2012) observed that viral assemblages were relatively stable on a time-

scale of days, but more dynamic over a period of nearly three years.  However, the number of 

viral populations remained relatively stable over that period (Emerson et al., 2013). 

Chen et al. (2009) sampled the cyanopodophage community of the Chesapeake Bay 

during winter and summer for two years and discovered repeating seasonal differences:  winter 

phage communities sampled in different years grouped more closely with each other than with 

summer phage communities from the same year.  Jamindar et al. (2012) also observed seasonal 

changes in g23 revealed by PFGE of samples from the Chesapeake Bay and Delaware Bay.  

Cyanomyophage communities in paddy field soil change over time too, as demonstrated by a 

study analyzing the g20 gene from samples collected over a three-year span (Wang et al., 2011).  

Further north, cyanophage from the surface waters of Narragansett Bay also exhibited seasonal 

patterns of community structure.  Marston et al. (2013) sampled every month for six years, then 

isolated cyanophage from the samples and amplified a myoviral DNA polymerase gene (g43) 

from the isolates.  Similarity analysis of 31 of those isolates showed clustering according to 

season; composition of the cyanomyophage community was more similar to the composition of 

samples from the same season of any year than a different season of the same year. 
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Sampling every month for three years enabled Chow and Fuhrman (2012) to see that T4-

like myophage communities at the site of the San Pedro Ocean Time-series displayed seasonally 

recurring patterns of diversity.  Some OTUs (revealed by T-RFLP conducted on g23 amplicons) 

peaked in spring or summer, while others peaked in fall or winter.  Communities 3-7 months 

apart were negatively correlated, while communities from adjacent months were highly 

correlated, as were communities from the same month one year apart.  For two years, Pagarete et 

al. (2013) took monthly samples from the water at 5 m depth in Raunefjorden, Norway.  Like 

Chow and Fuhrman, these investigators studied changes in the myoviral community using T-

RFLP analysis of the g23 gene.  The sampling resolution and length of the study enabled them to 

distinguish three different viral communities depending on season:  summer, fall, and 

winter/spring each harbored distinct communities (Pagarete et al., 2013). 

 

Depth studies 

 

In a long-term study of the upper 300 m of the water column at the site of the Bermuda 

Atlantic Time-series Study (BATS) in the Sargasso Sea, Parsons et al. (2012) demonstrated that 

both time and depth are important for understanding the dynamics of a marine viral community.  

The results of ten years of monthly sampling revealed annually recurring seasonal patterns, in 

which viral abundance peaked every summer between 60-100 m depth.  However, this study did 

not analyze the composition of the viral community over depth and time, which is a limitation 

that this dissertation overcomes.   

Several previous studies have examined viral community composition and dynamics over 

a depth profile, with variable results.  In a range of locations, viral community composition 

varied with depth, and in some cases was related to stability of the water column.  A study by 

Wilson et al. (1999) investigated viral diversity along a meridional Atlantic Ocean transect from 
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the Falkland Islands to the United Kingdom.  This study used DGGE to examine the structure of 

the cyanophage population in two depth profiles.  At one station, where the water column was 

well mixed, samples drawn from six depths in the upper 100 m revealed that the cyanophage 

population structure was similar throughout the water column.  In the other depth profile, the 

water column was stratified, and the structure of the cyanophage population was variable 

throughout the profile (Wilson et al., 1999).  Zhong et al. (2002) amplified and analyzed g20 

sequences and discovered that phage population structure was different in Sargasso Sea surface 

waters than at the depth of the deep chlorophyll maximum (DCM).  This was also true in the 

Gulf of Mexico, where myophage at the surface were distinguishable from myophage at the 

DCM.  In British Columbia, DGGE analysis of g20 amplicons showed that different 

cyanomyophage communities resided at different depths in the Straits of Georgia (Frederickson 

et al., 2003).  Differences of only a few meters in depth resulted in shifts in community 

composition.  While some cyanomyophage appeared throughout the water column, others were 

found at only a few depths.  In the Eastern Mediterranean Sea, Magiopoulos and Pitta (2012) 

sampled a variety of depths encompassing the epi-, meso-, and bathypelagic layers, and 

characterized three groups of viruses according to fluorescence level (high, medium, and low).  

Viral community composition varied by depth, and during stratification of the water column, 

viral abundance increased at all depths.  Winter et al. (2009) also explored depth-related 

differences in viral community composition in the Mediterranean Sea.  High-fluorescence 

viruses preferentially occupied the surface waters versus deeper waters, but low- and medium-

fluorescence viruses showed no preference.  The epipelagic layer had significantly higher viral 

abundance than either the meso- or bathypelagic layers. 
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Other studies show mixed results.  In their study of Pacific near-coastal waters, Jiang et 

al. (2003) observed some differences in marine viral communities with depth.  Viral abundance 

decreased in the top 200 m, while from 200 m to the bottom (890 m), there were relatively little 

changes in abundance.  Bands identified by PFGE were slightly larger at deeper depths.  

However, similar phage were isolated from both the surface and the bottom of the water column, 

suggesting that the distribution of viruses did not vary with stratification of the water column 

(Jiang et al., 2003).  Another study of viral diversity in the waters of Southern California used 

PFGE and found few differences in viral diversity throughout the top 45 m (Fuhrman et al., 

2002).  In Danish coastal waters, a depth profile revealed that the structure of the viral 

community showed no significant changes with depth (Riemann and Middelboe, 2002).  An 

assessment of viral diversity in the Chesapeake Bay used RAPD PCR to analyze samples drawn 

from both the top and the bottom of the water column (1 m below the surface and 2 m above the 

sediment-water interface) (Winget and Wommack, 2008).  Comparison of the banding patterns 

reflecting the diversity of the viral communities at the surface and the bottom revealed highly 

similar viral communities.  

The above studies were conducted at myriad sites and over a variety of depths and time 

intervals.  These differences prevent direct comparisons of the results and limit our ability to 

draw general conclusions from the investigations.  To gain strides in understanding spatial and 

temporal variability in marine viral diversity, this dissertation focused on a detailed examination 

of viral diversity at a single site, the BATS site (described below).  Time and depth intervals for 

sampling were kept as uniform as possible in order to strengthen the conclusions to be drawn 

from the research. 
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Study site:  Site of the Bermuda Atlantic Time-series Study 

 

The primary sampling site for this project is the BATS site in the northwestern Sargasso 

Sea.  BATS was launched in 1988 as part of the United States Joint Global Ocean Flux Study 

(JGOFS) (Michaels and Knap, 1996).  The goal of BATS is to study seasonal and interannual 

variations in the biogeochemistry of this region (Michaels and Knap, 1996).  The BATS 

program, along with the Hawaii Ocean Time-series program (HOT), also established by JGOFS 

in 1988, are designed to study the flux of carbon between the ocean and the atmosphere (Karl 

and Lukas, 1996).  Time-series studies in the Sargasso Sea actually began well before the 

initiation of the BATS program.  Beginning in 1954, biweekly measurements of temperature, 

salinity, and oxygen have been collected at Hydrostation S, which is 26 km southeast of 

Bermuda.  Since then, other data began to be collected as well, including measurements of 

nutrients, chlorophyll, primary productivity, particle fluxes, and atmospheric chemistry 

(Michaels and Knap, 1996). 

The BATS site is approximately 85 km southeast of Bermuda.  Sampling occurs at least 

once a month, with additional cruises added during blooms.  For the first few years after BATS 

was established, measurements were taken near a drifting sediment trap array, which was 

deployed at a set location but often drifted between 25 and 75 km from the deployment site.  

Beginning in July 1994, the location of trap deployment was moved, and casts from which core 

measurements are taken are now drawn within a few kilometers of the deployment site (Michaels 

and Knap, 1996).  Among the many core measurements taken at BATS are salinity, 

macronutrients, fluorescence, oxygen, alkalinity, total CO2, dissolved and particulate organic 

carbon and nitrogen, dissolved organic phosphorus, chlorophyll a, bacterial counts, bacterial 

production, primary production, and particle fluxes (Michaels and Knap, 1996).  Some variables 
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are measured only in the upper 100-200 m, while other measurements are taken along a depth 

profile down to 4200 m (Steinberg et al., 2001; Lomas et al., 2013). 

In addition to the core monthly measurements, a vast amount of ancillary research has 

been conducted that takes advantage of the time-series infrastructure at BATS and Hydrostation 

S.  In particular, research at BATS contributes to a better understanding of biogeochemical 

cycles and the biological pump, leading to improved modeling of oceanic processes and 

knowledge of how the ocean responds to climate change (Ducklow et al., 2009).  Toward this 

end, studies of bacterial dynamics, nitrogen and phosphate cycling, phytoplankton community 

structure, optics and remote sensing, and zooplankton dynamics have occurred at BATS and 

Hydrostation S (Michaels and Knap, 1996; Steinberg et al., 2001; Lomas et al., 2013).  There is 

now a wealth of biogeochemical data concerning the northwestern Sargasso Sea.   

Bound by the Gulf Stream to the west and northwest, and the North Atlantic Equatorial 

Current to the south, the Sargasso Sea is also known as the North Atlantic Subtropical Gyre 

(Michaels and Knap, 1996; Steinberg et al., 2001).  The BATS site is a seasonally oligotrophic 

ecosystem, which is a transitional area between the more eutrophic region to the north and the 

more oligotrophic subtropical convergence zone to the south.  The area is characterized by 

mesoscale eddies (discussed further below) and a net direction of flow to the southwest.  The 

BATS site experiences significant seasonal changes, and exhibits a seasonal pattern of 

stratification.  Every winter, convective mixing occurs when surface water becomes denser than 

the water below it (Siegel et al., 1999; Steinberg et al., 2001).  This results in deepening of the 

mixed layer (Siegel et al., 1999), which reaches its maximum in February at a depth of 160 m to 

350 m (Michaels et al., 1994; Michaels and Knap, 1996; Lomas et al., 2013).  Convection is thus 

the mechanism by which nutrients enter the mixed layer in winter (Siegel et al., 1999).  The deep 
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mixed layer, now nutrient-rich, leads to a phytoplankton bloom, which is manifested by peaks in 

pigments, primary production, particle flux, and total biomass (Michaels et al., 1994).  Pulses of 

high production, coincident with deep mixing, occur over a period of approximately three 

months.  A transition to a shallow mixed layer then follows, persisting through summer and fall 

(Michaels et al., 1994).  Eddies—rotating packets of water—are another important physical 

feature of the Sargasso Sea (Doney, 1996; Sweeney and McGillicuddy, 2003).  Through a 

process called eddy pumping, eddies move nutrient-rich water upward toward the photic zone, 

where the nutrients can be used for primary production (Siegel et al., 1999).  This is the primary 

mechanism for supplying nutrients to the photic zone in summer.  As the fall progresses and 

temperatures cool, the mixed layer deepens, beginning the cycle again (Sweeney and 

McGillicuddy, 2003). 

Nutrient upwelling such as that caused by eddies at BATS leads to biological changes in 

the water column (Sweeney and McGillicuddy, 2003).  These changes can include greater 

productivity (Sweeney and McGillicuddy, 2003) and increased particle flux (Buesseler et al., 

2008).  Changes in productivity have been quantified; one study noted that bacterial production 

increased by a factor of three as a cyclonic eddy passed through BATS (Ewart et al., 2008).  New 

production—primary production associated with nitrogen input—is principally sustained at 

BATS by nitrogen introduced through winter mixing and mesoscale eddies (Lipschultz et al., 

2002).  Bacterial respiration levels also vary with eddy activity at BATS; the regions between 

cyclonic and anticyclonic eddies are associated with decreased respiration (Mourino-Carballido, 

2009).  

The microbial community at BATS has been extensively studied.  The dominant 

heterotrophic bacteria at BATS are alphaproteobacteria belonging to the SAR11 group (Morris et 
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al., 2002).  SAR11 cells account for 31-41% of total cell counts in the photic zone in the 

Sargasso Sea, and in one sample drawn from 40 m depth at BATS, constituted as much as 51% 

of the total bacteria (Morris et al., 2002).  The ubiquity of SAR11 in the photic zone is consistent 

with their status as photoheterotrophs; they grow by assimilating dissolved organic carbon, and 

their metabolic energy is derived from a light-driven proton pump encoded by proteorhodopsin 

genes (Giovannoni et al., 2005).  A three-year study of the abundance of SAR11 in the upper 300 

m at BATS revealed that its population density varies with its location in the water column 

(abundance is greater in the euphotic zone than in the upper mesopelagic zone) (Carlson et al., 

2009).  Recently, pyrosequencing has enabled greater resolution of the SAR11 clade, and now 

nine distinct ecotypes have been identified at BATS; partitioning the water column enables them 

to diversify (Vergin et al., 2013).  The dominant photosynthetic organisms in the oligotrophic 

ocean are members of the genus Prochlorococcus (Zinser et al., 2006).  Synechococcus, another 

key cyanobacterial genus, is larger in size than Prochlorococcus, and less abundant by a factor of 

ten in oligotrophic waters (DuRand et al., 2001b; Treusch et al., 2009).   

Not surprisingly, the microbial community at BATS undergoes seasonal changes, and the 

structure of the community is associated with position in the water column.  Analysis of changes 

in the microbial community over more than a decade using terminal restriction fragment length 

polymorphism has revealed that the most important factors in determining composition of the 

community are deep winter mixing at BATS, warming of the surface layer, and summer 

stratification (Treusch et al., 2009).  Microbial species richness is greater in the mesopelagic 

zone, possibly because the euphotic zone is dominated by cyanobacteria and proteobacteria such 

as SAR11.  Over an annual cycle, four distinct microbial communities develop in the upper 300 

m at BATS.  The spring phytoplankton bloom produces one such community.  When the bloom 
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ebbs, three separate communities develop at different levels of the water column:  one in the 

upper euphotic zone, one at the deep chlorophyll maximum, and one in the upper pelagic zone.  

Different microbial clades dominate in each community, but SAR11 appears in all of them 

(Treusch et al., 2009).  SAR11 abundance changes as the mixing of the water column changes; 

abundance decreases when the mixed layer deepens in winter, and increases in the spring as the 

mixed layer begins to shoal again (Carlson et al., 2009). 

Not all clades of bacteria respond similarly to the deep winter mixing at BATS.  T-RFLP 

analysis of rRNA genes at the surface and 200 m depth was used to identify the clades of 

bacteria that exhibited the greatest increases in abundance.  SAR11, SAR116 (another clade of 

alphaproteobacteria), and SAR86 (gammaproteobacteria) showed the greatest increases at the 

surface following deep winter mixing, while at 200 m, the bacterial groups whose abundance 

increased the most were SAR11, OCS116 (alphaproteobacteria), and a group of marine 

Actinobacteria (Morris et al., 2005).  Seasonal changes are also observed in the phytoplankton 

community at BATS.  The abundance of Prochlorococcus is greatest when the water column is 

stratified and nutrient-poor (Zinser et al., 2006).  The maximum Prochlorococcus concentration 

occurs in the summer and fall, and appears at approximately 60-80 m depth (DuRand et al., 

2001b).  The concentration of Prochlorococcus remains high down to almost 200 m.  In contrast, 

Synechococcus concentration reaches its maximum in spring.  When Synechococcus 

concentration is at its maximum, Prochlorococcus is at its lowest abundance, and vice versa 

(DuRand et al., 2001a). 

 

Viruses at BATS 

 

Because of their critical role as predators of bacteria, viruses merit significant study at the 

BATS site.  A decade-long study of viral abundance revealed that a subsurface peak in viral 
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abundance recurs every summer at BATS between 60-100 m during maximum stratification of 

the water column (Parsons et al., 2012).  Total bacterial counts of over 1200 samples drawn at 

the same time as viral abundance samples show that despite the varying viral counts, the virus-

to-bacteria ratio at BATS stays within a narrow range, from 3 to 20, in 96% of the 

measurements.  Counts of specific bacterial species indicate that neither Synechococcus 

abundance nor SAR11 abundance correlates with viral abundance; however, Prochlorococcus 

abundance coincides with viral abundance in time and depth, suggesting that a large portion of 

the viruses at this site are cyanophage (Parsons et al., 2012).  

The seasonally recurring subsurface peak in viral abundance prompts several questions 

which this research aims to answer.  Does the viral community in the vicinity of that subsurface 

peak resemble the viral community of surrounding depths, or is there a distinct composition in 

the peak?  Also, seasonal differences may arise between viral communities at BATS as the depth 

of the mixed layer changes throughout the year.  The surface viral community in particular 

warrants examination because it is part of the shallow mixed layer in summer.  If there are 

differences between the surface viral community and peak-abundance viral community during 

summer stratification of the water column, do those differences persist in winter, when the water 

column is well-mixed?  Or do differences diminish in winter, when both the surface viral 

community and the viruses at the depth of the summer abundance peak are contained within the 

mixed layer?  

Using a variety of approaches and techniques, this research aims to expand our 

knowledge of viral dynamics by analyzing the viral community of the Sargasso Sea over a 

several-year period, through different seasons, and at different depth scales.  The first chapter 

addresses whether a newly-developed signature gene (phoH) can distinguish among marine viral 
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communities at different depths at BATS, as well as among different locations worldwide.  The 

second chapter presents an analysis of the viral diversity of a depth profile at BATS over several 

years by amplifying and deep sequencing the phoH gene.  Finally, in the third chapter, several 

signature genes and a fingerprinting technique are used to assess changes in the viral community 

at BATS between seasons and between depths.  Methods for each experiment, as well as an 

introduction to the topic in greater depth, are contained within each chapter. 
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CHAPTER 1 

 

Development of phoH as a novel signature gene for assessing marine phage diversity 

 

 

Note to Reader:  This paper has been previously published.  The citation is Goldsmith, D.B., 

Crosti, G., Dwivedi, B., McDaniel, L.D., Varsani, A., Suttle, C.A. et al. (2011) Development of 

phoH as a novel signature gene for assessing marine phage diversity. Applied and environmental 

microbiology 77: 7730-7739.  The full text of the paper appears in Appendix B.  
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CHAPTER 2 

 

Deep sequencing of the viral phoH gene reveals seasonal variations, depth-specific composition, 

and persistent dominance of the same phage phoH genes in the Sargasso Sea 

 

 

Summary 

 

Deep sequencing of the viral phoH gene, a host-derived auxiliary metabolic gene, was 

used to track viral diversity at the Bermuda Atlantic Time-series Study site throughout the water 

column in two seasons from three years.  PhoH sequences reveal depth-related, seasonal, and 

interannual differences in the viral communities.  The viral phoH gene in the Sargasso Sea is 

quite diverse, with over 3600 operational taxonomic units (OTUs; 97% sequence identity) 

identified.  Despite high richness, most phoH sequences belong to a few large, common OTUs 

while the majority of the OTUs are small and rare.  Viral diversity exhibits clear seasonal 

patterns, with winter phoH viral communities more similar to each other than to the summer 

phoH viral communities, and vice versa.  While many OTUs make fleeting appearances at just a 

few times or depths, a small number of OTUs dominate the community throughout the seasons, 

depths, and years, in seeming contradiction to kill-the-winner dynamics and the Bank model.  

This apparent inconsistency is reconciled by the newly proposed “Royal Family” model, in 

which two microbial compartments—abundant and rare—coexist in the ocean.  Fluctuations on 

the level of interacting viral-host pairs occur rapidly within each compartment, but exchange 

between the two categories rarely occurs.  
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Introduction 

 

Viruses are the most abundant organisms on the planet (Breitbart, 2012), an order of 

magnitude more abundant than bacteria (Fuhrman, 1999).  Most ocean viruses prey upon 

bacteria (Fuhrman, 1999), and as a result, play a critical role in all ecosystems.  When these 

viruses (bacteriophage, or phage) lyse bacterial cells, carbon is converted to its dissolved form, 

slowing the export of carbon to the deep ocean (Suttle, 2005).  Marine viruses thus ultimately 

influence biogeochemical cycling and can affect the rate of atmospheric warming (Wilhelm and 

Suttle, 1999; Danovaro et al., 2011). Besides being abundant and fundamental contributors to the 

Earth’s biogeochemical cycle, marine viruses are also extremely diverse, and in fact constitute 

the largest reservoir of genetic diversity on the planet (Rohwer, 2003; Cesar Ignacio-Espinoza et 

al., 2013).  Moreover, viruses can change the genetic makeup of bacteria through horizontal gene 

transfer (Lindell et al., 2004; Monier et al., 2009; Hurwitz and Sullivan, 2013).  For all of these 

reasons, understanding the diversity of marine viruses has been a research focus for more than 20 

years, since Bergh et al. (1989) observed that the abundance of marine viruses was far greater 

than previously thought. 

Studying viral diversity is challenging because the lack of a single gene common to all 

viruses precludes PCR-based surveys of total viral diversity (cf. 16S rDNA for bacteria) (Rohwer 

and Edwards, 2002).  However, a variety of signature genes exist that can be used to capture 

subsets of viral diversity, such as the DNA polymerase for podophage (Huang et al., 2010), 

capsid genes for myophage (Jameson et al., 2011; Chow and Fuhrman, 2012), psbA for viruses 

of photosynthetic bacteria (Chenard and Suttle, 2008), and more recently introduced, phoH, 

which can capture viruses in multiple families that infect both heterotrophic and autotrophic 
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hosts (Goldsmith et al., 2011).  PhoH has been successfully used to study the diversity of marine 

viruses from a variety of geographic locations (Goldsmith et al., 2011).  

The diversity of marine viral communities has been examined through numerous 

snapshots—analyses at a single time and place, or a depth profile studied at a single time.  

However, analysis of a surface viral community is unlikely to be representative of the viruses 

throughout the water column and viral communities sampled in one season are likely to differ in 

composition from viruses at the same site but in a different season.  Moreover, multiyear 

experiments are needed to determine whether seasonal patterns repeat over time.  Our 

understanding of marine viral ecology and viral interactions with their hosts can be improved 

significantly by exploring viral diversity on a variety of temporal and spatial scales.  Insight into 

marine viral dynamics recently expanded when ten years of monthly sampling at the Bermuda 

Atlantic Time-series Study (BATS) site in the northwestern Sargasso Sea revealed annually 

recurring seasonal patterns of viral abundance (Parsons et al., 2012).  Examination of the upper 

300 m of the water column showed that viral abundance peaked every summer between 60-100 

m depth concurrent with stratification of the water column. This subsurface peak in viral 

abundance was highly correlated with a localized increase in the concentrations of 

Prochlorococcus, the dominant photosynthetic organism at this site. Convective overturn each 

winter deepened the mixed layer and abolished the subsurface peak in viral abundance, leading 

to fairly stable viral concentrations in the upper water column (Parsons et al., 2012).  

Knowledge of the dynamics of viral abundance at the BATS site makes it the ideal 

location to conduct a thorough analysis of dynamics in viral diversity. In this study, we 

performed deep 454 pyrosequencing of the phoH gene from the viral community in two different 

seasons (September = summer; March = winter) in multiple years over a depth profile from the 
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surface to 1000 m.  To our knowledge this is the first examination of viral diversity using deep 

sequencing of a signature gene.  Both seasonal and depth-related patterns of phoH diversity 

emerge.  In addition, this study reveals that while the viral phoH community at BATS is 

extremely rich, only a few operational taxonomic units (OTUs) dominate many depths and times.  

The remainder of the viral community comprises OTUs that appear infrequently and have few 

members.  While these results seem to contradict the kill-the-winner theory and the Bank model, 

which predict a cycling of dominant taxa, we propose a new model to resolve the apparent 

inconsistency. 

 

Results 

 

Deep 454 pyrosequencing of the phoH gene from 85 depth/time samples from the BATS 

site yielded a total of 313,312 sequences containing the forward primer.  The number of 

sequences per sample ranged from 288 to 12,791, with a median of 3,028 sequences recovered 

per sample.  Based on operational taxonomic units (OTUs) defined by sequence identity greater 

than or equal to 97%, the total dataset consisted of 3,619 OTUs.  Although the shape of the 

rarefaction curves differs for each of the 85 samples (Fig. 2.1a), the rarefaction curves for all the 

samples have approached an asymptote (Fig. 2.1b), indicating that this level of sequencing 

sufficiently captured the diversity of the viral phoH gene at BATS.   

Calculation of two diversity metrics (Chao1 and the inverse Simpson’s index) did not 

reveal clear trends in viral phoH diversity over depth or time.  The Chao1 richness estimator 

predicts the minimum richness of a community (Chao, 1984) and values for this dataset ranged 

from 89 to 1164 phoH OTUs per sample.  In September 2008, the richest phoH communities 

were at the 300 m, 140 m, and 180 m depths, in that order (Fig. 2.2). However, in September of 

2010 and 2011, the richest phoH communities were in the top 100 m of the water column. In 



25 

 

September 2010, the surface community had the highest richness, followed by 80 m, 20 m, and 

60 m. In September 2011, the phoH communities at 60 m and 100 m were the richest according 

to Chao1.  In March 2010, the richest community was at 20 m depth, followed by 160 m and 250 

m.  One year later, in March 2011, the 180 m community had the highest richness, followed by 

the 700 m and surface communities. 

Another diversity metric, the inverse Simpson’s index, incorporates not only richness but 

also a measure of evenness (Simpson, 1949); it is influenced by the abundance of the most 

common species (Magurran, 2004).  The inverse Simpson’s index thus potentially provides 

greater insight and is more robust than diversity measures based solely on richness (Magurran, 

2004).  The inverse Simpson’s index ranges from a minimum of 1 (where only one OTU is 

present) to a maximum of the total number of OTUs (3619 in this study) (Ricklefs and Lovette, 

1999).  According to the inverse Simpson’s index, the surface sample from September 2008 was 

the most diverse, with a diversity measure of 19.8, while the 700 m sample from September 2011 

was the least diverse, with an inverse Simpson’s index of 2.5 (Fig. 2.3).  The median value of the 

inverse Simpson’s index for all 85 samples was 6.3. 

A hierarchical cluster analysis performed after constructing a Bray-Curtis dissimilarity 

matrix revealed that similar depths and seasons cluster together (Fig. 2.4).  For example, 14 of 

the 15 samples from September at depths shallower than 100 m fall into just two clusters, with 

no other samples contained in those clusters.  In addition, 12 of the 16 samples collected in 

September 2010 and September 2011, from depths between 120 m and 500 m, form a well-

supported cluster, with only two other samples contained in the cluster (March 2010 300 m and 

September 2008 180 m). Winter samples appear to cluster not only by season and depth, but also 

by year.  The nine March 2010 samples from 0 m to 160 m are all in the same well-supported 
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cluster, joined by only one other sample (September 2010, 40 m).  Twelve samples from March 

2011 form a well-supported cluster, including all depths from 40 m to 400 m.  Regardless of 

season or year, deep water samples cluster together.  Seven of the nine samples drawn from 

depths greater than or equal to 800 m form a well-supported cluster, which further divides into 

two subclusters according to season. 

Over time, the phoH communities are more different between depths than they are within 

depths, according to a permutational MANOVA (F = 3.095, p = 0.0001).  Pairwise comparisons 

reveal that many of the largest differences are between 1000 m and other depths, especially 

depths shallower than 500 m (F values range from 4.7 to 14.3; p-values range from 0.015 to 

0.03) (Table 2.1).  Among the other depths investigated, 0 m is significantly different from every 

depth below 80 m (F values range from 3.13 to 5.79; p-values range from 0.008 to 0.04).  The 

largest pairwise difference in phoH communities is between the 400 m community and the 1000 

m community (F = 14.3; p = 0.019).  The depths with the fewest significant differences with 

other depths are 180 m (significantly different only from the 0 m community, F = 3.62, p = 

0.037) and the 500 m community (significantly different only from the 0 m community (F = 

4.06, p = 0.04) and the 40 m community (F = 3.77, p = 0.04)).  Combining all depths and years, 

the season of sampling also influences the phoH viral community structure.  The differences 

between the March and September phoH communities are greater than the differences within 

communities in the same month (F = 2.781, p = 0.011). 

 Of the 3,619 OTUs recovered in this study, the vast majority of the OTUs were rare 

(~96% of these OTUs contain <0.01% of the total number of sequences).  Only 18 OTUs contain 

at least 1% of the total number of sequences (Fig. 2.5a).  Fifty-one OTUs have at least 0.1% of 

the sequences, and 150 OTUs contain at least 0.01% of the sequences.  Distribution of the 
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sequences among the OTUs is highly skewed, in that together, the two largest OTUs (OTUs 1 

and 2) contain more than one third of the sequences.  The five largest OTUs (OTUs 1 through 5) 

contain 52.4% of the sequences, and more than 82% of the sequences are contained in the top 18 

OTUs.  

Analysis of the five largest OTUs provides significant insight into compositional changes 

of the phoH community at BATS with season, depth, and year.  Although the five largest OTUs 

together contain more than half of the total number of sequences, the degree to which those 

OTUs contribute to the community of each individual sample varies considerably (Fig. 2.5b).  

Sequences from these five OTUs comprise up to 77.1% of a sample (March 2011, 160 m) or as 

little as 0.2% of a sample (September 2011, 1000 m).  Although OTU 1 contains the largest 

proportion of sequences overall, this OTU is virtually absent from each of the three September 

surface communities.  OTU 1 starts to appear in September below the surface, but sequences 

from OTU 1 do not reach 20% of the community until 100 m (2010), 120 m (2008), or 140 m 

depth (2011).  In March, however, OTU 1 is a more consistent component of the phoH 

community throughout the depth profile; OTU 1 comprises 14% to 32% of the March 2010 

community at all sampled depths, and 21% to 30% of the March 2011 community from the 

surface to 700 m. 

Similarly, OTU 2 is a consistent presence in March 2011, from the surface to 500 m, and 

in March 2010, from the surface to 250 m (except for 60 m).  However, OTU 2 constitutes less 

than 2% of each of the three September surface communities.  OTU 2 becomes a larger portion 

of the September phoH communities starting with 20 m in September 2008 and 40 m in 

September 2010.  In September 2011, OTU 2 has a sporadic and varied presence among the 

sampled depths.  No sequences belong to OTU 2 from the communities sampled at 140 m, 600 
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m, 900 m, and 1000 m.  At the other depths in September 2011, the contribution of OTU 2 

sequences ranges from 0.01% at 100 m to 24% at 400 m. 

OTU 3 has a strong presence in the upper 80 m during September 2010 and September 

2011, as well as the upper 160 m of March 2010.  OTU 3 appears in smaller percentages during 

September 2008 and March 2011.  Sequences from OTU 3 are not found below 250 m, with a 

few exceptions where they constitute less than 1% of the phoH communities (300 m in March 

and September 2011, 400 m in September 2010 and March 2011, 500 m in September 2011).  

OTUs 4 and 5 constitute a smaller percentage of the phoH community at BATS; however, OTU 

4 makes an especially large contribution to the 400 m community in March 2010 (27.5%) and 

the 700 m community in September 2011 (61.6%).  The 61.6% contribution of OTU4 to the 

September 2011 700 m community is the single largest contribution by any OTU to any sampled 

date and depth.  

 For the ease of data visualization, further analyses consider 94 OTUs:  the 51 OTUs that 

contain at least 0.1% of the total number of sequences, and an additional 43 OTUs that contain at 

least 1% of the sequences from any individual sample.  Figure 2.6 demonstrates the percent of 

sequences in the top 94 OTUs from each of the samples from 2010 and 2011.  Few OTUs 

constitute a substantial portion of any individual sample.  Only one OTU (OTU 4, discussed 

above) constitutes more than 50% of the sequences recovered from a single sample.  Six OTUs 

constitute more than 40% of an individual sample.  As the threshold decreases, more OTUs are 

included:  8 OTUs constitute at least 30% of a sample; 13 OTUs constitute at least 20%; and 24 

constitute at least 10%.  However, even at 5%, only 42 OTUs out of 3,619 meet the threshold.  

Thus only 1.1% of the OTUs constitute at least 5% of any sample, and the vast majority of the 

OTUs are rare.  Figure 2.6 also demonstrates the seasonal nature of some OTUs.  Some OTUs 
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appear only in phoH communities sampled in March, while other OTUs appear only in 

September samples. 

Figure 2.7 displays a phylogenetic tree of the phoH gene containing representatives from 

each of the top 94 OTUs, as well as the phoH gene from several fully-sequenced “reference” 

viral genomes.  The heat map next to the tree displays the percentage that each OTU (rows) 

comprises in each sample (columns).  The groups identified in the phylogenetic tree are the same 

groups identified in a previous study of marine viral phoH diversity (Goldsmith et al., 2011).  

Despite the greatly increased sequencing depth in the present study, no new phylogenetic groups 

were identified among those top 94 OTUs as comprising more than 0.1% of the total sequences 

or more than 1% of the sequences from any individual sample.  The five largest OTUs (Fig. 2.5) 

belong to three phylogenetic groups:  OTUs 1 and 4 are in Group 1; OTUs 2 and 5 are in Group 

3; and OTU 3 is in Group 2.  

Based on the phylogenetic groups to which each of the top 94 OTUs belongs (Fig. 2.7), 

Figure 2.8 displays the phylogenetic group composition of each sample.  Group 1 (containing 

OTUs 1 and 4) is a dominating presence throughout the dataset, constituting at least 40% of 68 

of the 85 samples, and at least 30% of 78 of the samples.  Group 3 (containing OTUs 2 and 5) 

has a strong presence at all depths in March 2011, but is more varied in its abundance throughout 

the depth profile in March 2010.  In September 2008, Group 3 comprises a smaller portion of the 

three September surface communities than it does of the March surface communities.  In 

September 2011 in particular, Group 3 forms less than 15% of every sample from the surface 

through 140 m, with the exception of the 60 m community (20.7%).   

Overall, Groups 4 and 5 comprise a smaller part of the sampled phoH communities, and 

play a more important role at depth than in the upper water column.  In only 3 out of 85 samples 
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did Group 4 comprise at least 1% of the phoH community.  All three of those samples were from 

September 2011, at depths of 700 m, 800 m, and 900 m.  Group 5 is more prevalent than Group 

4, but even so, only five samples contain Group 5 as at least 15% of the community.  The 

maximum contribution Group 5 makes to a sample is in September 2008, 900 m, where it 

constitutes 31% of the phoH community. 

 

Discussion 

 

Numerous studies have examined changes in viral community composition over short 

time scales, with contradicting results regarding stability of the viral community over time. A 

study of viral diversity in coastal Denmark over three months found that despite large changes in 

viral abundance, the viral community structure as shown by pulsed field gel electrophoresis 

(PFGE) was relatively stable (Riemann and Middelboe, 2002).  Similarly, PFGE fingerprints of 

the viral community in Southern California waters showed temporal stability between August 

and October 2000 (Fuhrman et al., 2002).  In contrast, another study revealed significant changes 

in viral community composition over a period of 78 days.  Terminal restriction fragment length 

polymorphism (T-RFLP) analysis of the g23 gene amplified from viral communities collected 

near an island off the coast of Southern California revealed 153 myophage OTUs over the course 

of a 78-day time series (Needham et al., 2013).  One OTU comprising approximately 25% of the 

total myophage community on the first day of the study made up less than 5% of the community 

at the end of the experiment.  However, the restricted length of these viral diversity studies may 

not capture seasonal distinctions.  Moreover, the low-resolution techniques used in these studies 

may underestimate viral diversity (for example, phage genomes of the same size may co-migrate 

on a gel, but represent different phage types). 
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The present study demonstrates clear seasonal patterns in viral diversity; a permutational 

MANOVA and a dendrogram based on a Bray-Curtis dissimilarity matrix shows that the winter 

phoH viral communities are more similar to each other than they are to the summer phoH viral 

communities, and vice versa (Fig. 2.4).  These data are consistent with numerous previous 

studies that have demonstrated seasonal variation in marine viral communities. Notably, seasonal 

differences have been observed using vastly different methods (including signature gene 

amplification and sequencing, PFGE, randomly amplified polymorphic DNA (RAPD) PCR, 

denaturing gradient gel electrophoresis (DGGE)).  In the Eastern Mediterranean Sea, viral 

community composition (according to fluorescence intensity detected by flow cytometry) varied 

depending on whether the water column was stratified or well-mixed (Magiopoulos and Pitta, 

2012), and monthly changes in viral community composition over the course of one year at this 

site have also been documented with that method (Winter et al., 2009).  Viral community 

structure in the Chesapeake Bay also undergoes seasonal changes, as evidenced by RAPD PCR 

(Winget and Wommack, 2008) and PFGE (Wommack et al., 1999; Jamindar et al., 2012).  PFGE 

has also revealed changes in viral genome banding patterns in coastal California waters over a 

six-month period (Steward et al., 2000) and in waters off the coast of Norway over an eight-

month period (Sandaa and Larsen, 2006), and seasonal variation of phage diversity has been 

observed in the Gulf of Aqaba through DGGE (Mühling et al., 2005).  Another coastal California 

study, based on more than a year of monthly analyses of two signature genes in cyanomyophage 

(g20 and psbA), showed clear distinctions between the summer viral community and the 

winter/fall viral community (Clasen et al., 2013).  In coastal Rhode Island waters, analysis of 

myophage isolates through the g20 signature gene revealed seasonal variations of abundance and 

diversity (Marston and Sallee, 2003).   
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Most of these studies have been limited to seasonal analyses within a single year, so the 

repeatability of these patterns cannot be addressed.  Multiyear time-series studies, such as the 

data presented here, are especially valuable for addressing this issue. The cyanopodophage 

community of the Chesapeake Bay, analyzed via the DNA polymerase gene during winter and 

summer for two years, exhibited repeating seasonal differences, and winter phage communities 

sampled in different years grouped more closely with each other than with summer phage 

communities from the same year (Chen et al., 2009).  For cyanophage isolated from Narragansett 

Bay, similarity analysis based on the g43 DNA polymerase gene showed clustering according to 

season:  composition of the cyanomyophage community was more similar to the composition of 

samples from the same season of any year than a different season of the same year (Marston et 

al., 2013).  Viral communities at the site of the San Pedro Ocean Time-series (SPOT) also 

displayed seasonally recurring patterns of diversity (Chow and Fuhrman, 2012).  Communities 3-

7 months apart were negatively correlated, while communities from adjacent months were highly 

correlated, as were communities from the same month one year apart (Chow and Fuhrman, 

2012).  Using the same type of analysis (TRFLP analysis of the g23 gene), Pagarete et al. (2013) 

studied changes in the myophage community sampled monthly for two years from water in 

Raunefjorden, Norway and observed three distinct viral communities depending on the season:  

summer, fall, and winter/spring. 

The present study found that only a few OTUs contained most of the sequences (the 18 

largest OTUs combined contain more than 82% of the sequences), while most of the OTUs 

contained a small fraction of the sequences (3,469 OTUs each contained less than 0.01% of the 

sequences).  Thus most of the sequences are in a few (large) OTUs that were found in a high 

proportion of sampling dates/depths (i.e. common OTUs).  The remaining OTUs (the bulk of the 
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OTUs) were small and rare.  These results are in concordance with the findings of Needham et 

al. in their 78-day time series conducted in coastal California waters, during which they collected 

45 samples.  Examination of the relative abundance of each OTU showed that while most of the 

OTUs appeared in less than 25% of the samples, more than 80% of the viral community 

consisted of OTUs that appeared in at least 90% of the samples (Needham et al., 2013).  A 

culture-based study by Marston et al. obtained similar results for cyanophage isolates from 

several locations.  One set of isolates, collected at 41 time periods from Narragansett Bay, 

contained 108 OTUs.  However, the 12 most abundant OTUs represented 63.5% of the isolates.  

Another set of 2,406 isolates, collected at numerous locations throughout southern New England, 

constituted 162 OTUs, but the five most abundant OTUs represented 58% of the isolates 

(Marston et al., 2013).  Pagarete et al. had similar findings in their recent Raunefjorden study, in 

which they identified 160 OTUs in the 28 samples they collected monthly over two years.  The 

most commonly observed OTUs had higher average and maximum contributions to the viral 

community (based on the g23 gene), while the OTUs that appeared less frequently in the samples 

tended to represent fewer sequences from the viral community (Pagarete et al., 2013).  Chow and 

Fuhrman produced concordant findings using T-RFLP analysis of the g23 gene to study three 

years of monthly samples.  The most common OTUs (those that appeared in at least 30 out of 34 

months) made up a higher proportion of the viral community than did the least common OTUs, 

with a positive relationship between number of times an OTU appeared and its contribution to 

the viral community at SPOT (Chow and Fuhrman, 2012). 

Both the present study and Parsons et al. (2012) underscore the importance of 

investigating both time and depth in order to understand the dynamics of a marine viral 

community.  In this study, the OTU composition of the upper 250 to 500 m is fairly consistent in 
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March when the water column at BATS is well-mixed (Fig. 2.5b), while the September samples, 

drawn during summer stratification at BATS, reflect a much more variable composition of the 

phoH community in the upper 200 m.   

Part of the September variability in OTU composition is due to the presence of OTUs 

belonging to phylogenetic Group 2 (Fig. 2.8).  Group 2 is particularly interesting because its 

presence is strong but limited to the upper water column.  Almost all of the phoH sequences from 

fully-sequenced cyanophage (phage that infect cyanobacteria) genomes fall into Group 2 (Fig. 

2.7).  The fact that Group 2 phoH genes are concentrated in the photic zone and absent from 

deeper depths supports the idea that this group is dominated by cyanophage phoH genes.  The 20 

m sample from September 2010 is especially noteworthy, because more than 93% of the 

community is part of the phylogenetic Group 2 (Fig. 2.8).  Moreover, based on the top 94 OTUs, 

none of that community comes from Groups 3, 4, or 5.  The communities surrounding the 20 m 

community in September 2010 are also heavily comprised of Group 2, as are upper water column 

communities in September 2011 (especially the 0 m and 40 m communities).  In winter, though, 

when the water column is well-mixed, Group 2 exhibits interannual variation.  In March 2010, 

Group 2 forms between 11% and 36% of each sample from 0 m to 160 m.  However, in March 

2011, Group 2 is virtually absent from the 20-depth profile:  it constitutes less than 5% of the 

surface sample, less than 3% of four other depths, and less than 1% of all the remaining depths. 

Assuming that Group 2 does in fact represent cyanophage, these data are consistent with 

a study by Wilson et al. (1999) that used DGGE to examine the structure of the cyanophage 

community in two depth profiles along an Atlantic Ocean transect from the Falkland Islands to 

the United Kingdom.  At one station, where the water column was well mixed, samples drawn 

from six depths in the upper 100 m revealed that the cyanophage population structure was 
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similar throughout the water column.  In the other depth profile, the water column was stratified, 

and the structure of the cyanophage population was variable throughout the profile.   

Other studies of viral community composition changes with depth show mixed results, 

possibly due to the different methods used, different geographical region, or the unknown degree 

of stratification in the water column at the time of sampling.  For example, a depth profile in 

Danish coastal waters revealed through PFGE that the structure of the viral community showed 

no significant changes with depth (Riemann and Middelboe, 2002).  In contrast, DGGE analysis 

of g20 amplicons showed that different cyanomyophage communities resided at different depths 

in the Straits of Georgia (British Columbia) (Frederickson et al., 2003).  Differences of only a 

few meters in depth resulted in shifts in community composition, and while some 

cyanomyophage appeared throughout the water column, others were found at only a few depths. 

A RAPD PCR study of viral diversity in the Chesapeake Bay included samples drawn 

from both the top and the bottom of the water column (1 m below the surface and 2 m above the 

sediment-water interface) (Winget and Wommack, 2008).  Comparison of the amplicon banding 

patterns of the viral communities at the surface and the bottom revealed highly similar viral 

communities.  However, Zhong et al. amplified and analyzed g20 sequences and discovered that 

in early summer, phage population structure was different in Sargasso Sea surface waters than at 

the depth of the deep chlorophyll maximum (DCM).  This was also true in the Gulf of Mexico, 

where myophage at the surface were distinguishable from myophage at the DCM (Zhong et al., 

2002). 

Persistence of some OTUs and transience of other OTUs are recurring themes in studies 

of viral diversity, and the present study is no exception.  At SPOT, certain OTUs showed 

repeating seasonal patterns, but the patterns varied among OTUs:  some OTUs persisted 
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throughout the year at moderate levels, while others had peak abundances in a particular season 

(Chow and Fuhrman, 2012).  In a hypersaline lake in Australia, over nearly three years, much of 

the viral community was dynamic, while at least one assembled viral genome and two other viral 

genome fragments appeared in 91 to 100% of the samples (Emerson et al., 2012).  In Lake 

Ontario, qPCR was used to track the abundance of three algal virus genes for 13 months (Short 

and Short, 2009).  Two of the genes appeared in nearly every sample, with seasonal variations in 

abundance, while the other gene appeared in only a few samples but at higher abundance than 

the other two genes.  This study posited that some aquatic viruses persist throughout the year, 

while others are transient.  Rozon and Short expanded upon the results of that study by using 

qPCR to monitor the abundance of 10 viral genes at three stations in an embayment of Lake 

Ontario from May to October.  The genes (from algal viruses and freshwater cyanophage) 

exhibited several different patterns of abundance.  Some OTUs appeared at all locations and all 

time points at fairly constant abundances; some taxa appeared at all locations but only 

sporadically; and other taxa showed patchy distribution (Rozon and Short, 2013).  Similarly, in 

the present study, we find that some OTU persist throughout the seasons, depths, and years, 

while many other OTUs make fleeting appearances at just one or a few times or depths.  

The high dominance of a few viral OTUs, complemented by a large number of rare 

viruses, is contradictory to community models predicted from metagenomic data which typically 

predict that even the most abundant viral genotype accounts for <10% of the total community 

(Angly et al., 2006).  This may be because phoH genes are present in only a subset of viruses, or 

because only a single gene is being examined (as opposed to metagenomic assemblies).  In 

addition, persistence of the largest phoH OTUs throughout the present study despite changes in 

seasons, depths, and years initially seems to contradict the expectations of kill-the-winner 
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dynamics and the Bank model.  The Bank model predicts that viral taxa will cycle in and out of 

dominance between an “active” fraction and a “bank” fraction (Breitbart and Rohwer, 2005).  A 

potential result of the kill-the-winner hypothesis is that when a particular host becomes active, a 

virus that can infect that host will increase in abundance (Winter et al., 2010).  Infection of the 

dominant host by the virus causes the susceptible host population to decline, followed by a 

decline in the virus population.  As the originally dominant host population declines, a new host 

emerges to fill the now-vacant niche, and this host will be resistant to the virus that infected the 

first host.  Subsequently a new virus emerges that is able to infect the newly-dominant host, and 

the cycling continues (Thingstad and Lignell, 1997).   

The question is, what do the “new” hosts and viruses in this progression look like?  One 

possibility, the “Equal Opportunity Model,” is that all hosts (and their respective viruses) have an 

equal opportunity to step in and replace the empty niche, moving from the bank fraction to the 

active fraction.  Another possibility, which we dub the “Royal Family Model,” is that these 

active bacteria are active because they are optimized to that specific niche, and therefore the 

“new” host is much more likely to be a variant of a previously active host—perhaps an adapted 

strain that has acquired resistance to its active viral predator.  The “new” virus may have adapted 

to overcome this resistance.  This evolutionary arms race (Comeau and Krisch, 2005; Stern and 

Sorek, 2011) has been demonstrated in chemostat experiments (Mizoguchi et al., 2003; 

Middelboe et al., 2009; Marston et al., 2012) and proposed to occur in natural marine systems  

(Bidle and Vardi, 2011; Marston et al., 2012). 

In the Equal Opportunity Model, where microbes move between the bank and active 

fractions, it would be highly unlikely that the same host and virus sequences would be abundant 

at two different times, at least on a broadly measured scale.  Indeed, this was predicted in 
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modeling experiments by Heinz Hoffman et al. (2007).  In the present study, the Equal 

Opportunity Model would predict that completely different phoH sequences should be dominant 

at different time points, since the odds of two randomly chosen viruses from the bank containing 

identical phoH genes are extraordinarily small.  The results therefore contradict this model, since 

only a few phoH OTUs were abundant and common throughout the time and depth series.  In 

addition, the vast majority of the OTUs were rare throughout the samples, as opposed to seeing 

movement of OTUs from the rare to active fractions. 

In contrast, in the Royal Family Model, the hosts and viruses that dominate over time are 

likely to be closely related variants.  For example, in evolving to overcome the resistance 

developed by the previously-dominant host, it is unlikely that the phoH gene will be distinct 

enough from the phoH gene of the previous virus to fall into a different OTU.  Although the 

function of phoH in viruses is unknown, in E. coli the gene’s protein product is an ATPase 

(Koonin and Rudd, 1996; Makino et al., 1998; Hsieh and Wanner, 2010; Sullivan et al., 2010b).  

Thus the part of the viral genome that needs to evolve in order to overcome host resistance is 

unlikely to occur within the phoH part of the genome.  The present data support this model, 

where, with respect to the phoH gene, the newly-dominant virus may closely resemble the 

formerly-dominant virus, leading to a relatively steady population of the same phoH OTU.  It is 

more likely that changes will evolve in viral genes whose products are implicated in host 

specificity or attachment, such as genes encoding a tail fiber protein.  Indeed, these genes are 

found to be highly diverse in sequenced viral genomes (Letarov et al., 2005; Comeau et al., 

2007; Sullivan et al., 2010a), and it would be challenging to design degenerate PCR primers 

capable of capturing their diversity for use as a signature gene (Dwivedi et al., 2012).   
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The Royal Family Model presents a mechanism for resolving the seeming contradiction 

to the kill-the-winner predictions and Bank model presented by the phoH deep sequencing data.  

Moreover, this model is supported by the findings of Rodriguez-Brito et al. (2010), who studied 

virus and host dynamics in four aquatic environments.  Their data demonstrated that persistence 

of broad viral and host taxa occurred simultaneously with kill-the-winner-type fluctuations at the 

level of host strains and viral genotypes.  Complementing these results with the in situ viral 

phoH diversity data generated in the present study supports the idea that the oceans contain two 

general microbial categories:  an abundant component containing a small number of dominant, 

niche-optimized bacterial types and their viruses, and a rare component containing a large 

number of rare bacterial and viral types.  While rapid fluctuations on the level of virus-host 

interacting pairs (bacterial strains and viral genotypes) are predicted within each compartment as 

a result of an evolutionary arms race, these data suggest that exchange between the rare and 

dominant compartments rarely occurs. 

 

Experimental procedures 

 

Sample collection and DNA extraction.  Samples were collected from throughout a 

depth profile on September 2-3, 2008, March 9 and September 5, 2010, and March 28 and 

September 17, 2011.  All samples were collected in the vicinity of the Bermuda Atlantic Time-

series Study (BATS) site (31º40′ N, 64º10′ W) from 0, 20, 40, 60, 80, 100, 120, 140, 160, 180 

(2008 and 2011 only), 200, 250 (2010 and 2011 only), 300, and 400 m depth.  In 2008 and 2011, 

samples were also collected from 500, 600, 700, 800, 900, and 1000 m.  Metadata associated 

with these sampling dates and depths are available at the BATS website (bats.bios.edu).  Whole 

seawater samples (100 mL) were filtered through a 0.22 µm Sterivex filter (Millipore, Billerica, 

MA) and then onto a 0.02 µm Anotop filter (Whatman, Piscataway, NJ).  Anotop filters were 
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stored at -80ºC until DNA was extracted with a MasterPure complete DNA and RNA 

purification kit (Epicentre Biotechnologies, Madison, WI) following the protocol of Culley and 

Steward (2007).  Briefly, filters were defrosted, and all liquid was purged from the filter by 

pushing air through with a sterile syringe.  A flame-sealed pipette tip was used to temporarily 

seal the filter outlet, and a mixture of 400 µL of 2X T&C lysis buffer (from the MasterPure kit) 

and 50 µg proteinase K was forced onto the filter.  The filter was then incubated for 10 min in 

the air at 65ºC before the lysate was expelled into a microcentrifuge tube and immediately placed 

on ice.  Then 150 µL of MPC protein precipitation reagent (from the MasterPure kit) was added 

to the lysate and vortexed vigorously for 10 s.  The debris was pelleted by centrifugation at 

10,000 xg for 10 min.  Isopropanol was added to the recovered supernatant, and the tube was 

inverted 30 to 40 times.  The DNA was then pelleted by centrifugation at 20,000 xg at 4ºC for 10 

min and washed twice with 75% ethanol.  Extracted DNA was resuspended in sterile water and 

stored at -20ºC. 

Amplification of the phoH gene.  The extracted DNA was amplified in triplicate 

reactions using the strand displacement method of the Illustra GenomiPhi V2 DNA amplification 

kit (GE Healthcare, Piscataway, NJ) according to the manufacturer’s instructions and then 

pooled.  Next a first-stage PCR was conducted for amplification of the phoH gene, using viral 

phoH primers vPhoHf (5′-TGCRGGWACAGGTAARACAT-3′) and vPhoHr (5′-

TCRCCRCAGAAAAYMATTTT-3′) (Goldsmith et al., 2011).  Four replicates of the PCR 

reaction were conducted for each sample, and the products were pooled after a reconditioning 

PCR and cleaning (see below).  The 50-µL reaction mixture contained 1 U Apex Taq DNA 

polymerase (Genesee Scientific, San Diego, CA), 1X Apex Taq reaction buffer, 1.5mM Apex 

MgCl2, a 0.5 µM concentration of each primer, 0.2 mM deoxynucleoside triphosphates, 0.08% 
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bovine serum albumin, and 1 µL of template DNA (pooled Genomiphi product).  The reaction 

conditions were:  (i) 5 min of initial denaturation at 95ºC; (ii) 35 cycles of 1 min of denaturation 

(95ºC), 1 min of annealing (53ºC), and 1 min of extension (72ºC); and (iii) 10 min of final 

extension at 72ºC. 

Next, each PCR product underwent a reconditioning step as recommended by Berry et al. 

(Berry et al., 2011), in order to minimize variation that can accompany different barcoded 

primers.  The reaction mixture was the same as in the first-stage PCR, except that 10-bp barcodes 

were attached to the viral phoH primers (see Table 2.2).  The template DNA consisted of 1 µL of 

product from the first-stage PCR reaction and the same reaction conditions were used, except 

that only 10 amplification cycles were run.  After the reconditioning PCR, the four replicates for 

each sample were individually cleaned with a DNA Clean & Concentrator-25 kit (Zymo 

Research Corp., Irvine, CA) following the manufacturer’s instructions and resuspended in 45 µL 

of sterile water.  The four replicates for each sample were pooled for quantification and 

downstream processing. 

DNA quantification and sequencing.  The amount of DNA recovered for each sample 

was quantified using a real-time PCR measurement of fluorescence as suggested by Blotta et al. 

(2005), with Quant-iT PicoGreen as the detector (Life Technologies, Grand Island, NY).  Each 

sample was run in duplicate, with the real-time PCR machine set to obtain a fluorescence reading 

during each of three 75-second cycles.  The six fluorescence readings were averaged to obtain a 

mean fluorescence reading for each sample.  After quantitation based on a standard curve, equal 

amounts of each sample (~1600 ng) were placed into one of four pools for sequencing. 

Sequencing of the phoH amplicon was performed on the 454 GS FLX Titanium platform by 

Beckman Coulter Genomics (Danvers, MA).  Before sequencing, Beckman ligated sequencing 
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adaptors to each of the four pools, multiplexing them onto half of a picotiter plate.  After 

sequencing, the four pools were de-multiplexed before the sequences were returned for analysis.  

The FASTA, .qual, and .sff files for each sample have been submitted to GenBank’s Sequence 

Read Archive as accession SRP039081.  The BioProject Accession Number is PRJNA239691, 

and individual sample accession numbers are SAMN02670781 to SAMN02670865. 

Sequence analysis.  After the barcodes were removed, the sequences were searched for 

the forward primer, and the downstream analyses proceeded with those sequences containing the 

forward primer.   The sequences have been deposited in METAVIR (http://metavir-meb.univ-

bpclermont.fr) under the project name “Viral phoH at BATS – Goldsmith et al. 2014”, virome 

name “All phoH sequences, forward primer.”  The sequences were analyzed using mothur 

(Schloss et al., 2009).  After mothur was used to align the sequences, trim them to include only 

the aligned space, filter out columns of the alignment that do not contain data, pre-cluster the 

sequences to merge sequences that are with two base pairs of a more abundant sequence, and 

remove chimeras, the number of sequences remaining was 313,312.  Using mothur, the 

sequences were grouped into operational taxonomic units (OTUs) defined by sequence identity 

of 97% or greater.  Rarefaction curve data, Chao1 richness estimates, and inverse Simpson 

diversity estimates were also calculated using mothur, and plotted in R (R Development Core 

Team, 2013).  In particular, the heatmap reflecting the inverse Simpson diversity estimates was 

plotted using the gplots (Warnes et al., 2009) and RColorBrewer (Neuwirth) packages in R.  The 

heatmap reflecting the Chao1 richness estimates was plotting with the fossil package (Vavrek, 

2011).  Hierarchical clustering was performed from a Bray-Curtis dissimilarity matrix using the 

picante package (Kembel et al., 2010).  In order to bootstrap the dendrogram, Jaccard stability 
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means were computed using the fpc package (Hennig, 2013).  The dot plot (Fig. 2.6) was 

constructed with the lattice package (Sarkar, 2008). 

PhoH sequences representative of each of 94 OTUs were selected for the phylogenetic 

tree:  the 51 OTUs that contain at least 0.1% of the total number of sequences, and an additional 

43 OTUs that contain at least 1% of the sequences from any individual sample.  These 94 

representative sequences have been deposited in GenBank’s Sequence Read Archive under 

accession SRP039081.  The representative sequences are also in METAVIR (http://metavir-

meb.univ-bpclermont.fr) under the public project name “Viral phoH at BATS – Goldsmith et al. 

2014”, virome name “phoH OTU representatives.”  Next, the HAXAT program (Lysholm, 2012) 

was applied to the sequences (against a custom-built database of viral phoH sequences) in order 

to correct homopolymer sequence errors (using default parameters, except that both strands were 

queried and a minimum score of 200 was used).  PhoH sequences from several fully-sequenced 

phage genomes were added, and then an amino acid alignment was built from the sequences 

using MUSCLE (Edgar, 2004) (with default parameters) as implemented by TranslatorX 

(Abascal et al., 2010).  The alignment was then back-translated into nucleotides, and FastTree 

(Price et al., 2010) was used to build an approximate maximum likelihood phylogenetic tree, 

with the Jukes-Cantor model of nucleotide evolution and the CAT approximation of a single rate 

of evolution across all sites.  In R, the tree was prepared for aligning with the heatmap using the 

ape (Paradis et al., 2004) and phangorn (Schliep, 2011) packages.  The heatmap was constructed 

and aligned with the tree (Fig. 2.7) using the gplots (Warnes et al., 2009), RColorBrewer 

(Neuwirth, 2011), and colorRamps (Keitt, 2012) packages.  Permutational MANOVA analyses 

were conducted in PAST, version 3.01 (Hammer et al., 2001). 

 

 



44 

 

Acknowledgements 

 

Many thanks to Federico Abascal, Damitu Beyene, Craig Carlson, Bhakti Dwivedi, 

Karoline Faust, Julia Gustavsen, Christian Hennig, David Jones, Kazutaka Katoh, Fredrik 

Lysholm, Vincent Ranwez, Peter Salamon, Pat Schloss, and Palle Villesen for bioinformatic, 

coding, and other assistance, and to the crew of the R/V Atlantic Explorer for logistical support.  

This research was funded by a grant from the National Science Foundation to MB (Microbial 

Interactions and Processes MCB-0701984).  DBG was supported by a Presidential Doctoral 

Fellowship from the University of South Florida and the Von Rosenstiel Endowed Fellowship. 

 



45 

 

 

 

Tables and figures 

 

Fig. 2.1:  Rarefaction curves for phoH sequences from all 85 depths/times; OTUs 

are defined by sequence identity of 97% or greater.  (a) Plotting with different 

scales on x- and y-axes demonstrates some separation of the curves.  Curve with 

greatest slope is September 2008, 0 m, while curve with least slope is March 

2011, 1000 m.  (b) Plotting in relation to the 1:1 line demonstrates flattening of all 

rarefaction curves. 
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Fig. 2.2:  Heatmap displaying Chao1 minimum richness estimate for all dates and 

depths except March 2010, 20 m.  A black bar indicates absence of sample for that 

date/depth, except that March 2010, 20 m is represented by a black bar because its 

Chao1 minimum richness estimate (1164) obscured differences in the estimates for 

the other dates and depths. 

Fig. 2.3:  Heatmap displaying inverse Simpson index diversity estimate for all 

dates and depths.  A black bar indicates absence of sample for that date/depth. 
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Fig. 2.4:  Dendrogram illustrating hierarchical 

clustering of all 85 depths/times.  Samples are 

clustered using a Bray-Curtis dissimilarity matrix for 

all 3,619 OTUs.  Nodes marked with a filled circle 

have a Jaccard stability mean greater than 75; nodes 

marked with an open circle have a Jaccard stability 

mean from 60 to 75 (Hennig 2007; Hennig 2008).  

Unmarked nodes have a Jaccard stability below 60. 
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Fig. 2.5:  OTU composition of total sequences and individual samples.  (a) Percent 

of total sequences belonging to the 18 OTUs that contain at least 1% of the total 

sequences (n = 313,312).  (b) Percent of each sample belonging to OTUs 1 

through 5.  An empty spot indicates absence of sample for that date/depth. 
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Fig. 2.6:  Percent of sample sequences falling in an OTU versus OTU.  The dots represent 

samples and are color-coded to indicate month and depth.  Samples from March 2010, 

September 2010, March 2011, and September 2011 are displayed in this plot; the September 

2008 samples are not included.  The plot considers the 83 OTUs that contain ≥1% of the 

sequences from at least one sample from 2010 or 2011.  No dots are displayed in OTU 

columns for samples in which less than 1% of the sample’s sequences belong to that OTU.  
OTUs are arranged along the x-axis in descending order of largest contribution to any single 

sample. 
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Fig. 2.7:  Prevalence of phylogenetically clustered OTUs in each sample, indicated as 

percent of each sample's sequences that come from each of the 94 top OTUs.  Reference 

phoH sequences from fully-sequenced phage genomes (and one eukaryotic virus) are 

indicated with dark blue in the vertical color bar along the left side of the heatmap, between 

the heatmap and tree.  The phylogenetic Groups 1-5 indicated in the tree are the same 

groups designated in Goldsmith et al. (2011). 
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Fig. 2.8:  Percent of each sample belonging to phylogenetic Groups 1 through 

5.  An empty spot indicates absence of sample for that date/depth. 
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Table 2.2:  Barcodes used to tag phoH amplicons. 

 

Barcode Name Barcode Sequence

MID 01 ACGAGTGCGT

MID 02 ACGCTCGACA

MID 03 AGACGCACTC

MID 04 AGCACTGTAG

MID 05 ATCAGACACG

MID 06 ATATCGCGAG

MID 07 CGTGTCTCTA

MID 08 CTCGCGTGTC

MID 13 CATAGTAGTG

MID 14 CGAGAGATAC

MID 15 ATACGACGTA

MID 16 TCACGTACTA

MID 17 CGTCTAGTAC

MID 18 TCTACGTAGC

MID 19 TGTACTACTC

MID 20 ACGACTACAG

MID 21 CGTAGACTAG

MID 22 TACGAGTATG

MID 23 TACTCTCGTG

MID 24 TAGAGACGAG

MID 25 TCGTCGCTCG

MID 26 ACATACGCGT

MID 27 ACGCGAGTAT

Table 2.2:  Barcodes used to tag phoH  amplicons
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CHAPTER 3 

 

Depth and seasonal variation in viral diversity in the northwestern Sargasso Sea 

 

 

Summary 

 

The Sargasso Sea is an excellent place to study viral diversity because it is home to the 

Bermuda Atlantic Time-series Study (BATS), one of the world’s longest-running ocean time 

series studies.  Knowledge of viral dynamics at BATS expanded greatly when a long-term study 

that counted viral abundance at 12-13 depths every month for ten years revealed an annually 

recurring subsurface peak in viral abundance between 60-100 m every summer (Parsons et al., 

2012).  The present study was designed to determine whether in summer (September), when the 

mixed layer is shallow, the surface viral community differs from the viral assemblage occupying 

the depth of the abundance peak, which lies below the mixed layer.  This study also examined 

the composition of the viral communities at those two depths in winter (March), when the water 

column is well-mixed, and hypothesized that in winter, the viral communities at the surface and 

100 m depth would resemble each other, while during summer stratification, differences in the 

viruses occupying the two depths would emerge.  Four techniques were employed to examine 

composition of the viral community.  Statistical analysis of signature gene sequences (each 

targeting a different family or subset of phage) and RAPD gel banding patterns were used to 

determine degree of similarity among the viral communities.  The results of this study supported 

the hypotheses.  All analyses showed that in winter, the surface and 100 m viral communities 

almost always clustered together, while this did not occur in summer.  Morever, interannual 
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comparisons revealed that summer surface viral communities often clustered with same 

assemblages from other years, but did not resemble the winter assemblages, and usually grouped 

separately from most of the other viral communities.  Possible explanations for these findings 

include the greater effect of ultraviolet radiation on viruses residing in the surface during 

summer, as well as differences in bacterial communities between the surface and 100 m while 

the water column is stratified. 

 

Introduction 

 

The Sargasso Sea is a seasonally oligotrophic portion of the Northern Atlantic Ocean.  

The Sargasso Sea is the site of the Bermuda Atlantic Time-series Study (BATS), one of the 

world’s longest-running oceanographic time series.  The primary seasonal characteristics of the 

BATS site are the annual deep winter convective mixing, followed by strong summer thermal 

stratification (Steinberg et al., 2001).  Specifically, in winter, convective mixing leads to 

deepening of the mixed layer down to a maximum of 150 m to more than 300 m and results in 

nutrient enrichment of the surface layer (Michaels et al., 1994; Michaels and Knap, 1996; Lomas 

et al., 2013).  As summer approaches, high pressure systems and thermal stratification decrease 

the amount of mixing because they prevent fronts from passing and result in lower wind stress.  

These factors lead to stratification of the water column, resulting in a warm mixed layer that can 

be as shallow as 10-20 m.  As fall progresses, temperatures cool, winds increase, the mixed layer 

deepens, and the cycle begins again (Steinberg et al., 2001). 

Core monthly measurements at the BATS site include salinity, dissolved oxygen, total 

CO2, chlorophyll a, alkalinity, and nutrient measurements such as nitrate, nitrite, phosphate, 

silicate, dissolved organic carbon and nitrogen, and particulate organic carbon and nitrogen 

(Steinberg et al., 2001).  Bacteria are counted, and the rates of primary production, particle flux, 
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and bacterial production are measured (data available from the BATS web site, 

www.bios.edu/research/projects/bats).  Moreover, because of the foundation in place for 

obtaining monthly measurements, a wealth of ancillary research covering a wide range of topics 

stems from the BATS site.  One such project explored dynamics in viral abundance at BATS in 

great detail.  In a 10-year study, Parsons et al. (2012) counted viral abundance every month at 

11-12 depths from the surface to 300 m.  They discovered that a subsurface maximum in viral 

abundance recurs every year in late summer, at approximately 80 m to 100 m depth.  The 

Parsons study combined investigation of viral abundance with an examination of the abundance 

of several bacterial lineages in order to determine whether viral dynamics were correlated with 

the dynamics of bacteria at the BATS site.  While viral dynamics did not correlate with total 

bacterial counts, viral abundance was negatively correlated with the abundance of SAR11, the 

dominant heterotrophic bacterial lineage, and positively correlated with Prochlorococcus 

populations, the most abundant cyanobacteria at BATS. 

The Parsons et al. (2012) study raises numerous questions.  Given the striking difference 

in viral abundance at BATS between winter (March) and summer (September) at the depth of the 

subsurface peak, does the composition of the viral community also vary seasonally and with 

depth?  In winter, when viral abundance is fairly constant throughout the upper 100 m, do the 

surface and 100 m viral communities resemble each other?  Both of those communities are 

within the mixed layer in winter, as the depth of the mixed layer descends to well below 100 m.  

However, during summer stratification of the water column the subsurface peak of viral 

abundance is below the mixed layer.  In summer, then, when the surface communities and the 

100 m viral communities vary greatly in abundance, are they composed of different viruses, or 
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are they comprised of the same types of viruses, just concentrated more heavily at the subsurface 

peak? 

This study was designed to address these questions.  Based on the abundance and 

dynamics data demonstrated by Parsons et al. (Parsons et al., 2012), we hypothesized that the 

composition of the viral communities at the surface and 100 m at BATS would vary seasonally 

and display annually recurring patterns.  In winter (March), when the mixed layer is deeper, we 

hypothesized that the surface viral community would resemble the 100 m viral community more 

closely than in summer.  In summer (September), when the mixed layer is shallower, we 

expected to see greater differences between the two viral communities.  In order to test these 

hypotheses, this study investigated the composition of the viral community at BATS over a 

multiyear period.  Several different methods were utilized to determine viral community 

composition:  randomly amplified polymorphic DNA (RAPD) PCR was used for viral 

community profiling, and amplification and sequencing of three different signature genes were 

used to compare specific subsets of the viral community.  Both depths (surface and 100 m) were 

examined in both seasons (winter and summer) in three different years.  By combining RAPD 

PCR with the analysis of several signature genes, we were able to obtain a broad picture of the 

spatial and temporal variability in viral diversity at this well-studied marine site. 

 

Methods 

 

Sample collection and processing.  Samples were collected from the surface and 100 m 

depth in the Sargasso Sea in March and September in 2008, 2010, and 2011 (see Table 3.1 for 

sampling dates and viral counts).  All samples were collected in the vicinity of the BATS site 

(31º40′ N, 64º10′ W).  Approximately 200 liters for each sample (see Table 3.1; volumes ranged 

from 90 L to 383 L, median volume 245 L) were concentrated by tangential flow filtration with 
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100-kDa filters (GE Healthcare, Piscataway, NJ) to a volume of approximately 50 mL.  The viral 

concentrates were filtered through 0.22-µm Sterivex filters to remove bacteria and stored at 4°C 

until further processing.  Viruses were further concentrated and purified from the Sargasso Sea 

concentrates by polyethylene glycol precipitation followed by cesium chloride density-dependent 

centrifugation (Thurber et al., 2009).  Solid polyethylene glycol 8000 (PEG 8000) was added to 

the concentrates at a final concentration of 10% (wt/vol), and the concentrates were stored at 4°C 

overnight.  The concentrates were then centrifuged for 40 min at 11,000 xg and 4°C to pellet the 

viruses.  The pelleted viruses were resuspended in 0.02-µm-filtered seawater and further purified 

through ultracentrifugation in a cesium chloride density gradient with layers of 1.2 g/mL, 1.5 

g/mL, and 1.7 g/mL (22,000 rpm on a Beckman SW40 Ti rotor for 3 h at 4°C).  The viral 

fractions from the September 2008 samples were further concentrated with a Microcon 

centrifugal filter device (Millipore, Billerica, MA).  Viral DNA was extracted from all samples 

using the formamide method as described by Sambrook et al. (1989). 

Amplification of signature genes.  For signature gene analysis, the extracted DNA was 

amplified using the strand displacement method of the Illustra GenomiPhi V2 DNA 

amplification kit (GE Healthcare, Piscataway, NJ) according to the manufacturer’s instructions.   

The phoH gene was amplified by PCR using viral phoH primers vPhoHf (5′-

TGCRGGWACAGGTAARACAT-3′) and vPhoHr (5′-TCRCCRCAGAAAAYMATTTT-3′) 

(Goldsmith et al., 2011).  The 50-µL reaction mixture contained 1 U Apex Taq DNA polymerase 

(Genesee Scientific, San Diego, CA), 1X Apex reaction buffer, 1.5 mM Apex MgCl2, 0.5 µM 

concentration of each primer, 0.2 mM deoxynucleoside triphosphates (dNTPs), 0.08% bovine 

serum albumin, and 1 µL of template DNA (Genomiphi product).  The reaction conditions were:  
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(i) 5 min of initial denaturation at 95ºC; (ii) 35 cycles of 1 min of denaturation (95ºC), 1 min of 

annealing (53ºC), and 1 min of extension (72ºC); and (iii) 10 min of final extension at 72ºC. 

The g23 gene was amplified using primers T4superF (5′-

GAYHTIKSIGGIGTICARCCIATG-3′) and T4superR (5′-GCIYKIARRTCYTGIGCIARYTC-

3′) (designed by Andre Comeau; published in Chow and Fuhrman (2012)).  The 50-µL PCR 

mixture contained 1 U Apex Taq DNA polymerase, 1X Apex reaction buffer, 1.5 mM Apex 

MgCl2, 1.0 µM concentration of each primer, 0.2 mM dNTPs, and 1 µL of template DNA 

(Genomiphi product).  The reaction conditions were:  (i) 5 min of initial denaturation at 94ºC; (ii) 

35 cycles of 1 min of denaturation (94ºC), 1 min of annealing (58ºC), and 1 min of extension 

(72ºC); and (iii) 10 min of final extension at 72ºC. 

The ssDNA virus major capsid gene was amplified by Max Hopkins using primers MCPf 

(5′-CCYKGKYYNCARAAAGG-3′) and MCPr (5′-AHCKYTCYTGRTADCC-3′) (Hopkins et 

al., 2014).  The 50-µL PCR mixture contained 1 U Apex Taq DNA polymerase, 1X Apex Taq 

reaction buffer, 0.5 µM of each primer, 0.2 mM dNTPs and 1 µL of template DNA (Genomiphi 

product).  The touchdown PCR conditions were (i) 3 min of initial denaturation at 94ºC; (ii) 32 

cycles of 60 s of denaturation (95ºC), 45 s of annealing (47ºC with a 0.11ºC decrease/cycle), and 

90 s of extension (72ºC); and (iii) 10 min of final extension at 72ºC. 

Cloning and sequencing of signature genes.  PCR products were cleaned using the MO 

BIO UltraClean PCR Clean-Up Kit (MO BIO Laboratories, Inc., Carlsbad, CA) following the 

manufacturer’s instructions.  After tailing with Sigma-Aldrich REDTaq DNA polymerase 

(Sigma-Aldrich, St. Louis, MO), PCR products were cloned into vectors using the TOPO TA 

cloning kit for sequencing (Invitrogen, Carlsbad, CA) and were then used to transform 
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competent cells.  The cells were then screened, and the inserts in positive transformants were 

sequenced with the M13F primer by Beckman Genomics (Danvers, MA). 

 Data analysis for signature genes.  Vector and low-quality sequences were trimmed 

with Sequencher 4.7 (Gene Codes, Ann Arbor, MI).  The sequences were dereplicated into 

operational taxonomic units (OTUs) using FastGroup II at a level of 98% sequence identity with 

gaps (Yu et al., 2006).  FastGroup representative sequences and reference sequences were 

aligned at the amino acid level with Muscle (Edgar, 2004) using the default parameters as 

implemented by TranslatorX (Abascal et al., 2010).  The alignments were cleaned with Gblocks 

(as implemented by TranslatorX) using the options for a less stringent selection (Castresana, 

2000; Talavera and Castresana, 2007).  Back-translated nucleotide alignments were used to build 

maximum-likelihood phylogenetic trees with FastTree version 2.1 (Price et al., 2010).  Branch 

supports in FastTree were calculated using the Shimodaira-Hasegawa-like approximate 

likelihood ratio test on 1000 resamplings.  Branches with support below 50 were collapsed using 

TreeCollapseCL 4 (Hodcroft, 2013).  Hierarchical clustering was performed in R (R 

Development Core Team, 2013) from a Bray-Curtis dissimilarity matrix based on OTU 

abundance data using the picante package (Kembel et al., 2010).  In order to bootstrap the 

dendrograms, Jaccard stability means were computed using the fpc package (Hennig, 2007, 

2008, 2013).  The Jaccard similarity value, which represents the stability of the cluster, is 

averaged for every bootstrapping of the clustering (1000 times), resulting in a Jaccard stability 

mean for each cluster.  Clusters with Jaccard stability means of 75 and greater can be considered 

valid, stable clusters.  Clusters supported by Jaccard stability means between 60 and 75 indicate 

patterns in the data (Hennig, 2007, 2008, 2013). 
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 RAPD PCR amplification and data analysis.  Randomly-amplified polymorphic DNA 

(RAPD) PCR was conducted on the extracted DNA using primer SP2 (5′-CGCAACAGGG-3′).  

This primer was designed by Shawn Polson by identifying the most common decamers in a viral 

metagenome from the Sargasso Sea (Srinivasiah et al., 2013).  Each 50-µL reaction contained 2 

U of Apex Taq DNA polymerase (Genesee Scientific, San Diego, CA), 1X Apex Taq reaction 

buffer, 1.5 mM Apex MgCl2, 4 µM of primer, 0.2 mM dNTPs, and 1 µL of template DNA.  

Reaction conditions for the RAPD PCR were:  (i) 10 min of initial denaturation at 94ºC; (ii) 35 

cycles of 3 min of annealing at 35ºC, 1 min of extension at 72ºC, and 30 s of denaturation at 

94ºC; (iii) 3 min of annealing at 35ºC; and (iv) 10 min of final extension at 72ºC.  PCR products 

were cleaned using the MO BIO UltraClean PCR Clean-Up Kit (MO BIO Laboratories, Inc., 

Carlsbad, CA) following the manufacturer’s instructions.  The RAPD PCR viral community 

fingerprints were visualized on the Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, 

Germany) following the manufacturer’s instructions.  Bioanalyzer results were analyzed using 

GelCompar II, version 6.5 (Applied Maths, Austin, TX), which was also used to build a 

similarity matrix and clustering dendrogram. 

 

Discussion of methods 

 

The signature genes chosen for this study each target a different subset of marine phage.  

The g23 gene is structural, encoding the major capsid protein for T4-like myophage (Filée et al., 

2005; Comeau and Krisch, 2008), and the primers used in this study were designed by André 

Comeau in order to capture a broader group of myophage than the primers previously used for 

g23 (Filée et al., 2005; Chow and Fuhrman, 2012).  In contrast, the phoH gene is found in more 

than one morphological type of phage.  While the function of phoH in phage is unknown, it is 

similar to a gene in the Pho regulon of E. coli that is upregulated during phosphate stress 
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(Wanner, 1996; Sullivan et al., 2010a).  The phoH gene is present in myoviruses, podoviruses, 

and siphoviruses and occurs in viruses that infect heterotrophs as well as viruses whose hosts are 

autotrophic (Goldsmith et al., 2011).  In addition, this gene is more prevalent among marine 

phage than in the genomes of phage isolated from other environments.  While both g23 and 

phoH target double-stranded DNA (dsDNA) viruses, the third signature gene used in this study 

targets the major capsid protein (MCP) gene of single-stranded DNA (ssDNA) phage belonging 

to the Gokushovirinae subfamily (family Microviridae) (Hopkins et al., 2014), which were 

recently shown to be abundant in the Sargasso Sea (Angly et al., 2006; Tucker et al., 2011).  The 

combined analysis of these three signature genes, each of which targets a different type of phage, 

provides a broader picture of the viral community than analysis of any single signature gene can 

offer.  Statistical analysis of each signature gene sequence allows us to determine the degree to 

which viral communities from different depths, seasons, or years are similar.  For each signature 

gene, after assigning the sequences to OTUs based on 98% sequence identity, the abundance of 

each OTU in each sample was calculated.  The abundance matrices were then used to calculate 

the Bray-Curtis dissimilarity for each of the samples.  Hierarchical clustering based on the 

dissimilarity was computed for each gene and displayed in a dendrogram (see Figs. 3.1-3.3). 

Analysis of signature genes provides insight into the diversity of a viral community based 

on an individual gene present in a specific subset of the viral community.  Analyzing several 

signature genes, each representing a different group of viruses, yields a more complete reflection 

of the overall viral community composition.  To further bolster the analysis of viral diversity, 

this study also incorporated an analysis of the community through RAPD PCR.  In contrast to the 

signature genes, RAPD PCR provides a view of the whole viral community by using a random 

decamer primer rather than primers designed to capture a specific gene.  Thus while signature 
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genes illuminate a subset of the viral community, the gel banding pattern of RAPD PCR products 

can be viewed as a fingerprint of the viral community at the time of sampling (Winter and 

Weinbauer, 2010).  In order to visualize the community profile for each sample and compare 

those profiles, a similarity matrix was produced by comparing the gels resulting from the 

Bioanalyzer runs for the RAPD PCR products for each date and depth.  The samples were then 

clustered using the unweighted pair group method with arithmetic mean (Fig. 3.4).  

 

Results and discussion 

 

In winter, the surface and 100 m viral communities at BATS resemble each other.  

Hierarchical clustering based on the Bray-Curtis dissimilarity for all three sets of signature gene 

sequences (g23 (Fig. 3.1), phoH (Fig. 3.2), ssDNA MCP (Fig. 3.3)) revealed that in both 2008 

and 2011, the March viral communities from the surface and 100 m of a given year clustered 

together.  For g23 and phoH, March 2010 was an exception; the winter surface and 100 m 

communities did not cluster together for that year.  In addition, for phoH and g23, the March 

samples (both depths) from 2008 and 2011, as well as one of the March 2010 samples, clustered 

together.  The March 100 m phoH community from 2010 was an exception; in the dendrogram it 

appears in a strongly-supported split, separate from the large cluster that contains all of the other 

winter samples.  The March surface g23 community from 2010 also appears in a strongly-

supported split, separate from the large cluster containing all of the other winter samples.  No 

PCR products could be obtained for the ssDNA MCP for the March 2010 0 m community, so we 

are unable to assess its ssDNA community structure; however, the inability to obtain PCR 

amplification suggests that this community is distinct from the other recovered communities.  

The RAPD viral community fingerprints from all three years supported the hypothesis that the 

surface and 100 m samples would be similar in the well-mixed water column in March:  within 
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each year, the March 0 m and March 100 m samples were most similar to each other.  Overall, 

the data suggest that the March communities (0 m and 100 m) from a given year generally 

cluster more closely with each other than with any other date or depth. 

In contrast to the winter viral assemblages, the surface and 100 m summer viral 

communities at BATS have distinctly different compositions within a given year.  The summer 

surface populations from the three years often cluster with each other, but separately from 100 m 

summer communities and the winter communities.  For example, in the g23 analysis (Fig. 3.1) 

and the RAPD analysis (Fig. 3.4), all three summer surface samples group together, apart from 

nearly all of the other samples.  In the phoH and ssDNA MCP communities, two of the summer 

surface samples are in the same cluster (2008 and 2010 for phoH; 2010 and 2011 for ssDNA 

MCP), while the third sample splits strongly from all other samples.  However, the 100 m 

summer virus populations behave differently, grouping more closely with the winter viruses than 

the surface summer viruses do.  For all three signature genes, two of the summer 100 m samples 

group together, and then form a larger cluster with the third summer 100 m samples and all of 

the winter samples (Figs. 3.1-3.3).  According to the RAPD analysis, the summer 100 m samples 

group most closely with the winter samples from the same year for two out of the three years 

(2008 and 2011), while the 2010 summer 100 m sample is separate from all other samples (Fig. 

3.4).  All methods of analysis therefore support the hypothesis that in summer, the BATS viral 

communities from the surface and from 100 m are distinct from each other.  

The results of this study indicate that it is often the summer surface samples that are the 

most different from the other communities.  While the summer surface samples from the three 

years are sometimes related to each other, they generally group separately from both sets of 

winter samples (surface and 100 m) and the 100 m summer samples.  A potential reason for 
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differences between the surface viral communities in summer and all other viral communities is 

the greater influence of ultraviolet light at the surface during that season.  Ultraviolet radiation 

degrades viral particles (Wommack et al., 1996; Weinbauer and Suttle, 1999; Araújo and 

Godinho, 2009), and would thereby create greater differences between the summer viral 

communities than between the winter communities.  Another explanation for the September 0 m 

viral communities’ difference from the other viral assemblages may stem from the changes in the 

stability of the water column in the summer at BATS.  As the mixed layer begins to shoal after 

the winter deep mixing, the bacterial community residing near the surface begins to change 

(Morris et al., 2005; Carlson et al., 2009; Treusch et al., 2009).  Under this model, as the surface 

bacterial community changes, so would its associated viral community.   

To understand why the summer viral assemblages are different between the surface and 

100 m depth, future studies should examine the summer bacterial community composition in the 

upper water column.  Maximum Prochlorococcus concentrations (on the order of 10
5
 cells/mL) 

occur near 60-80 m depth in summer and fall, and high concentrations persist to nearly 200 m 

(DuRand et al., 2001a).  Viruses that prey upon Prochlorococcus likely assemble in the vicinity 

of the host peak.  If a significant portion of the phage community consists of phage that infect 

Prochlorococcus, the differential in Prochlorococcus abundance between the surface and 100 m 

would account for some of the difference between the surface and 100 m viral assemblages, 

since surface Prochlorococcus concentrations are lower than they are at 100 m at that time of 

year (DuRand et al., 2001a; Malmstrom et al., 2010; Parsons et al., 2012).  Research has shown 

that cyanomyophage, whose hosts include Prochlorococcus, are an important component of the 

viral community in the Sargasso Sea; they have been found to constitute up to 25% of the viral 

community at the surface during a June transect (Matteson et al., 2013).  Moreover, based on the 
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phylogenetic trees for g23 and phoH (Figs. 3.5 and 3.6), we can reasonably infer that 

cyanophage are a component of our sampled viral communities, because the sequences from our 

sampled communities cluster in the groups with fully-sequenced cyanophage. 

In contrast to Prochlorococcus, for which phage infection has been well-studied, and 

numerous phage genomes have been sequenced, much less is known about phage infecting other 

members of the BATS microbial community.  The most abundant heterotrophic bacteria at 

BATS belong to the SAR11 clade (Morris et al., 2002), for which no phage were known until 

2013.  In fact, previous studies had even suggested that SAR11 may be resistant to phage 

infection (Suttle, 2007).  In 2013, “pelagiphage” were cultured on SAR11 and their genomes 

were sequenced (Zhao et al., 2013).  BLAST searches of oceanic viromes (including the 

Sargasso Sea) with these phage genome sequences suggest that pelagiphage comprise a large 

proportion of oceanic viral communities.  All four of the cultured pelagiphage are double-

stranded DNA phage, and only one of them (HTVC008M) contains one of the signature genes 

used in this study (phoH), so it is possible that pelagiphage were not covered in the analyses of 

this study.  Thus additional tools are needed for investigating the phage of the dominant 

heterotrophs at this site.  However, there is likely a high diversity of uncultured pelagiphage at 

this site, so some of the sequences generated in this study may in fact represent yet undescribed 

phage infecting SAR11 or other dominant heterotrophs.  Even less well-described than the 

pelagiphage are marine ssDNA phage, for which no cultured representatives exist.  Although 

these phage were first identified at BATS and have recently been shown to be widespread in the 

oceans (Angly et al., 2006; Tucker et al., 2011; Labonté and Suttle, 2013), the hosts for these 

phage remain unknown, preventing study of their interactions with hosts (Hopkins et al., 2014).  

In addition, examining the joint dynamics of phage and specific bacterial lineages at BATS 
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would benefit from better representation of environmental phage genomes in sequence databases.  

The sequencing and phylogenetic analyses performed in this study illustrate the gap that remains 

between cultured phage genomes and phage in the environment.  The phylogenetic trees for each 

of the signature genes (Figs. 3.5-3.7) reveal that most of the environmental phage fall in clusters 

without any cultured or sequenced representatives.  Therefore the phage that are sequenced so far 

are insufficient for accurately characterizing environmental phage communities.  Substantial 

additional sequencing is required before we will have a database of phage genomes that better 

describe natural populations of viruses. 

While the dynamics of specific host bacterial lineages is one factor influencing patterns 

in viral diversity, the data presented here suggest that the physical mixing of the water column in 

winter, and stratification in summer, contribute to the structure and differences in phage 

communities.  The three signature genes encompassing varied groups of phage, as well as the 

RAPD fingerprinting analysis, all support the hypothesis that the winter viral communities are 

closely related to each other, while the summer communities are divergent.  Not all genes, or the 

phage which encode them, should necessarily behave in the same way.  Some genes may 

preferentially be found in phage closer to the surface (such as phage-encoded photosynthesis 

genes), and thus would not be expected to follow the winter pattern of being distributed equally 

at the surface and at 100 m depth.  Nonetheless, the analyses of each of the three genes studied 

here, along with the insight provided by a random decamer primer known to occur frequently at 

this site, all point to seasonal variation in viral community composition, supporting the 

robustness of this pattern.  This is striking considering that for all three signature genes, the 

dendrograms show that the dissimilarity among the samples is relatively high, ranging from 

approximately 55% to nearly 100% (see Figs. 3.1-3.3).  Moreover, the results suggest that 
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physical forces causing water column stratification in summer and mixing in winter are the 

dominant forces in controlling the distribution of viral communities at the BATS site. 

 

 

Constraints of present study 

 

Because this study’s goal was to obtain an overview of the viral communities over two 

depths, two seasons, and several years, we sequenced broadly rather than deeply.  Therefore, the 

data presented in this study should be viewed as a representation of the dominant members of the 

viral community, as opposed to an exhaustive analysis.  Note that the dendrograms were built 

from abundance data, rather than presence/absence of OTUs.  This method was chosen because 

of the small amount of sequencing performed, because rare communities’ members would be 

“absent” at this level of coverage.   While the samples might have exhibited greater similarity 

had we sequenced more deeply, most of the groupings of the samples are quite strong as 

measured by the Jaccard stability means, with nearly all falling within ranges that merit 

confidence in the patterns exhibited by the data.  

Signature gene analysis and RAPD PCR capture a portion of the viral community, but 

cannot portray the diversity of the entire community.  With RAPD PCR, only viral genomes that 

contain the decamer sequence used as the primer will be amplified.  In that sense, RAPD analysis 

is similar to signature gene analysis, in that not all phage in the community will contain the 

sequence of interest.  However, phage genomes containing the RAPD primer should be 

distributed more widely across phage genomes than phage bearing the signature genes, which 

tend to be shared by a specific family or phage type (although phoH is an exception).  

Sequencing the entire community through metagenomics is one possible avenue for overcoming 

these limitations (Angly et al., 2006). 
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The depth of 100 m was chosen for sampling in order to approximate as closely as 

possible the depth of the subsurface peak in viral abundance.  From 2002 through 2006, the peak 

in abundance extended to 100 m.  Sampling for this project began in March 2008, and the 

remaining sampling continued at 100 m for consistency.  This depth was also chosen in order 

ensure sampling in summer below the mixed layer.  Interannual variation in the depth of the viral 

abundance peak could explain variation in the clustering of the September 100 m viral 

communities.  The clustering patterns of the September 100 m viral communities might be more 

similar from year to year if the center of the peak range had been examined.  This can be 

accomplished by determining viral abundance while on board during the cruise, and then 

sampling from the depth revealed to have the highest abundance. 

 

Conclusion 

 

Four techniques employed to examine composition of the viral community at BATS over 

three years, two seasons, and two depths per season supported the hypotheses that winter viral 

communities at the surface and 100 m depth resemble each other, while the compositions of 

summer viral communities at those depths diverge.  All analyses demonstrated that in winter, the 

surface and 100 m viral communities frequently clustered together.  During summer stratification 

of the water column, however, the surface and 100 m viral communities were distinct.  Between 

years, winter viral communities were generally similar, forming large groups containing nearly 

all of the winter samples.  The summer communities behaved differently:  interannual 

comparison of summer surface viral communities revealed that they often clustered with the 

summer surface communities of other years.  However, the surface summer viral communities 

did not resemble the winter assemblages, and usually grouped separately from most of the other 

viral communities.  In contrast, the summer 100 m viral communities, collected from the vicinity 
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of the subsurface peak in viral abundance, occasionally grouped with other summer 100 m 

communities, and tended to resemble the winter communities more closely than the summer 

surface communities did.  Physical factors such as UV irradiation of viral particles, as well as 

seasonal and depth-related differences in host communities related to the depth of the mixed 

layer may explain these findings.  Future work should sample precisely at the peak depth by 

determining the depth of maximum viral abundance at the time of sampling, and should track the 

joint dynamics of viruses and hosts in order to better resolve the factors connected with the 

recurring seasonal patterns in viral community composition revealed here.  
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Tables and figures 

 

 

Year Month Date Depth 

Volume of 

water 

concen-

trated 

Number of 

sequences 

obtained 

(g23) 

Number of 

sequences 

obtained 

(phoH) 

Number of 

sequences 

obtained 

(ssDNA 

MCP)* 

Viral conc in 

whole water 

(viruses/mL) 

2008 March 24 0 m 144 L 43 40 82 4.00 x 10E6 

2008 March 24 100 m 125 L 45 38 74 3.67 x 10E6 

2008 September 2-3 0 m 245 L 40 44 38 2.64 x 10E6 

2008 September 2-3 100 m 245 L 46 42 95 2.86 x 10E6 

2010 March 8 0 m 383 L 50 37 0 2.75 x 10E6 

2010 March 8 100 m 288 L 34 34 27 2.51 x 10E6 

2010 September 5 0 m 245 L 43 48 91 5.25 x 10E6 

2010 September 7 100 m 90 L 36 48 90 4.25 x 10E6 

2011 March 27 0 m 180 L 40 48 69 4.58 x 10E6 

2011 March 27 100 m 180 L 43 47 85 4.61 x 10E6 

2011 September 13 0 m 280 L 44 48 96 2.46 x 10E6 

2011 September 13 100 m 280 L 45 46 96 5.74 x 10E6 

 

*The ssDNA MCP PCR products were cloned and screened by Max Hopkins. 

Table 3.1:  Sample collection data including viral counts and number of sequences 

obtained from each sample. 
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Fig. 3.1:  Dendrogram illustrating hierarchical clustering of Sargasso Sea samples based on 

g23 OTUs (98% sequence identity).  Clustering is calculated from Bray-Curtis dissimilarity 

of the samples.  Branch supports are shown where support is greater than 50 and represent 

Jaccard stability means.  Jaccard stability means > 75 represent valid, stable clusters.  

Jaccard stability means from 60 to 75 indicate the presence of patterns in the data. 

Fig. 3.2:  Dendrogram illustrating hierarchical clustering of Sargasso Sea samples based on 

phoH OTUs (98% sequence identity).  Clustering is calculated from Bray-Curtis dissimilarity 

of the samples.  Branch supports are shown where support is greater than 50 and represent 

Jaccard stability means.  Jaccard stability means > 75 represent valid, stable clusters.  Jaccard 

stability means from 60 to 75 indicate the presence of patterns in the data. 
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Fig. 3.3:  Dendrogram illustrating hierarchical clustering of Sargasso Sea samples based on 

ssDNA MCP OTUs (98% sequence identity).  Clustering is calculated from Bray-Curtis 

dissimilarity of the samples.  Branch supports are shown where support is greater than 50 and 

represent Jaccard stability means.  Jaccard stability means > 75 represent valid, stable 

clusters.  Jaccard stability means from 60 to 75 indicate the presence of patterns in the data. 

Fig. 3.4:  Dendrogram illustrating hierarchical clustering of 

Sargasso Sea samples based on gel photos of RAPD PCR 

products.  
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Fig. 3.5:  Phylogenetic tree showing the relationship among g23 sequences from 

environmental viruses sampled in the Sargasso Sea (indicated by colored shapes) and g23 

sequences from cultured phages and other environmental samples (indicated by names).  

The scale bar represents substitutions per site. 
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Fig. 3.6:  Phylogenetic tree showing the relationship among phoH sequences from 

environmental viruses sampled in the Sargasso Sea (indicated by colored shapes), phoH 

sequences from cultured phages and viruses (indicated by names), and placeholder sequences 

from the Sargasso Sea (indicated by names beginning with “Ph_”).  The scale bar represents 

substitutions per site. 
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Fig. 3.7:  Phylogenetic tree showing the relationship among ssDNA MCP sequences 

from environmental viruses sampled in the Sargasso Sea (indicated by colored shapes) 

and ssDNA MCP sequences from fully sequenced phage (indicated by names).  The 

scale bar represents substitutions per site. 
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CONCLUSION 

 

The research described here provides a significant advance in our understanding of the 

spatial and temporal variability in the diversity of marine viruses.  Chapter 1 developed phoH as 

a new signature gene for assessing marine viral diversity.  The phoH gene is disproportionately 

present in fully-sequenced marine phage, as opposed to phage isolated from non-marine 

environments.  Moreover, the gene is widespread in the marine environment; phoH was 

recovered from every viral community collected (from every depth and time point) in the 

Sargasso Sea, as well as from all six locations in other parts of the world.  Diversity of the gene 

was high, and most of the sequences recovered belonged to phylogenetic groups that did not 

contain any cultured representatives, indicating that cultured phage isolates do not adequately 

represent the diversity found in marine environments.  Composition of the phoH communities at 

each sampled location and depth were distinguishable according to phylogenetic clustering, 

although most phoH clusters were recovered from multiple sites.  These factors demonstrate that 

phoH will be useful for studying marine phage diversity worldwide. 

 Chapters 2 and 3 performed extensive examination of viral diversity at the site of the 

Bermuda Atlantic Time-series Study (BATS) over depth and time using the newly developed 

phoH marker as well as other techniques.  Chapter 2 described the use of phoH to conduct a 

comprehensive study of the gene’s diversity in the marine viral community at BATS over three 

different years, several seasons, and a range of depths from the surface to 1000 m.  Deep 

sequencing performed using next-generation pyrosequencing revealed that the viruses at BATS 

contain a large pool of phoH sequences, but that most of those sequences are rare.  The phoH 
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sequences were dominated by just a few operational taxonomic units (OTUs).  Only 1% of the 

>3600 OTUs recovered comprised at least 5% of any sample.  Rarefaction analysis showed that 

the sequencing was sufficient to capture the diversity of the gene at BATS, and in fact no new 

phylogenetic clusters were identified that were not seen in the small amount of Sanger 

sequencing performed for the initial phoH study in Chapter 1.  Some of the more abundant OTUs 

recurred every season and every year, in varying degrees, although similar depths and seasons 

clustered together.  Overall, the phoH gene revealed depth-based, seasonal, and interannual 

differences in the diversity of the viral community at BATS. 

 Chapter 3 used several methods to study changes in diversity of the viral community at 

BATS between winter and summer over two depths in three different years.  A ten-year study 

previously revealed that in late summer, a subsurface peak in viral abundance recurs annually, 

and this chapter investigated whether that peak in abundance corresponded to recurring changes 

in composition of the viral community in the vicinity of the peak.  Three different signature 

genes were examined, each targeting a different subset of marine viruses, and a community 

fingerprinting method was used to complement the signature gene analyses.  Clustering analysis 

was then used to determine which samples were most similar.  Together these techniques 

demonstrated that the viral communities at the surface and at 100 m depth were more similar to 

each other in winter (March), regardless of the year, than they were in summer (September), 

when the water column is stratified as opposed to well-mixed.  In summer, the surface viral 

communities clustered together, while the 100 m viral community was less predictable and often 

seemed more similar to the March communities.  These findings may stem from physical factors 

such as UV irradiation of viral particles, as well as seasonal and depth-related differences in host 

communities associated with the depth of the mixed layer. 



79 

 

Overall, this dissertation provides substantial advances to the field of microbial ecology.  

First, the development of phoH as a signature gene is an important addition to the limited set of 

tools available for studying marine viral diversity.  Unlike other signature genes, phoH 

encompasses several morphological types of phage, and is found in phage that infect both 

autotrophic and heterotrophic bacteria.  It is also widely distributed geographically and over 

depth profiles.  Thus phoH has the potential to enable study of a broader range of viruses than 

other signature genes.  The publication describing this work (Goldsmith et al., 2011) has already 

been cited 13 times as of April 2014.  In addition, phoH has now been incorporated into the 

publicly available Metavir tool (Roux et al., 2011), to allow others to incorporate phoH as a 

signature gene in analyses of their metagenomic data. 

This research also constitutes the first deep sequencing of a signature gene for marine 

viruses.  This study revealed the great diversity of the marine viral community at BATS, over a 

multi-year time series and depth profile, and also showed that sequencing at such a deep level 

may not be necessary in order to fully capture the diversity of a the community at this site.  

These findings will guide other researchers as they determine how best to deploy their resources 

in studying marine viral diversity, and will also provide a benchmark for what level of viral 

diversity to expect in an oligotrophic marine system.   

 Finally, this study expands our knowledge of the viral community at BATS by examining 

the community based on four different measures of composition, rather than abundance.  

Studying composition provides a more detailed picture of the viral community, as it gives the 

first hints as to which viruses are present.  Composition of the viral community is critical 

because of viruses’ role in structuring bacterial communities; seasonal and depth-related changes 

in viruses correspondingly affect the bacteria on which they prey, and thus can cause potentially 
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large changes in carbon and nutrient flow.  These biogeochemical effects can ultimately have 

global consequences, such as altering the amount of carbon dioxide in Earth’s atmosphere. 

 Not surprisingly, this research raises numerous questions, and suggests several paths for 

future examination.  Although we know that the phoH gene occurs preferentially in marine 

phage, we do not know why, or what function this host-derived auxiliary metabolic gene serves 

in phage.  The gene may represent an adaptation for viruses in oligotrophic environments, where 

phosphate is limited.  In addition, although the viral phoH primers used in this research were 

designed from phage including the phage of a heterotrophic bacterium, few of the environmental 

sequences obtained in this research occurred in phylogenetic clusters with the phoH sequences 

from fully-sequenced heterotrophic phage.  A redesign of the phoH primers to expand their 

scope and capture more of the marine viral community would provide greater insight into the 

prevalence and diversity of the gene in heterotrophic phage. 

Further assessment of the seasonal differences in the viral communities at BATS, and of 

the significance of the annually recurring subsurface peak in viral abundance, could benefit from 

an attempt to sample the viral community at the precise depth of the peak in abundance.  This 

would be possible if the viral communities are counted on board during the cruise, followed by 

sample collection from the depth revealed to have the highest abundance.  In addition, the 16S 

ribosomal DNA of host bacterial communities from the same samples could be sequenced to 

determine correlations between the dominant host and viral types. 

Another challenge for future work, stemming from the abundance of SAR11 at BATS, is 

to study the ecology of the viruses that infect this dominant clade.  Now that four phage infecting 

SAR11 have recently been isolated and sequenced (Kang et al., 2013; Zhao et al., 2013), 

research into the lifestyle of these phages should expand.  For single-stranded DNA phage, 
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however, even more remains to be done.  Identifying the hosts of the aquatic gokushoviruses 

(whose major capsid gene was investigated in this research) would enable us to learn more about 

the ecology of the viruses, and could potentially lead to culture-based experiments.  Methods 

such as size fractionation of host communities, followed by PCR with the gokushovirus primers, 

single-cell sorting, and 16S rDNA PCR to establish bacterial identity, could prove promising. 

 Lastly, prospective research should continue to work toward culturing and sequencing 

marine viruses.  The phylogenetic analyses conducted here demonstrate that many of the viruses 

sampled for this research belong to novel clusters, and that their sequences exhibit little 

similarity to the genomes of fully-sequenced viruses.  The present state of the genomic databases 

contributes to the difficulties of studying viral diversity; however, as culturing and sequencing of 

environmental viruses proceed, our insights into the diversity of the most abundant biological 

entities on the planet will accordingly expand. 
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