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ABSTRACT

Trends in marine wind speed and significant wave height are investigated using the global reanalysis ERA-

Interim over the period 1979–2012, based on monthly-mean and monthly-maximum data. Besides the tra-

ditional reanalysis, the authors include trends obtained at different forecast range, available up to 10 days

ahead. Any model biases that are corrected differently over time are likely to introduce spurious trends of

variable magnitude. However, at increased forecast range the model tends to relax, being less affected by

assimilation. Still, there is a trade-off between removing the impact of data assimilation at longer forecast

range and getting a lower level of uncertainty in the predictions at shorter forecast range. Because of the sheer

amount of assimilations made in ERA-Interim, directly and indirectly affecting the data, it is difficult, if not

impossible, to distinguish effects imposed by all updates. Here, special emphasis is put on the introduction of

wave altimeter data in August 1991, the only type of data directly affecting the wave field. From this, it is

shown that areas of higher model bias introduce quite different trends depending on forecast range, most

apparent in the North Atlantic and eastern tropical Pacific. Results are compared with 23 in situ measure-

ments,Envisat altimeter winds, and two stand-alone ECMWFoperational wavemodel (EC-WAM) runs with

and without wave altimeter assimilation. Here, the 48-h forecast is suggested to be a better candidate for trend

estimates of wave height, mainly due to the step change imposed by altimeter observations. Even though wind

speed seems less affected by undesirable step changes, the authors believe that the 24–48-h forecast more

effectively filters out any unwanted effects.

1. Introduction

Long-term observation records of marine wind and

sea state are scarce in comparison with the time series

found over land routinely collected since the nineteenth

century in certain populated regions of Earth (Hurrell

1995). The need for long, reliable time series of marine

near-surface winds U10 and significant wave heightHs is

increasing as climate projections require a baseline cli-

matology against which to be compared, and even more

so if dynamical models of the sea state are to be included

in future coupled climate scenarios (Cavaleri et al. 2012;

Dobrynin et al. 2012; Sterl et al. 2012; Hemer et al. 2013;

Khon et al. 2014). There are also more immediate needs

for reliable time series of past wind and wave climate,

such as estimates of return values in areas without ob-

servational records (Caires and Sterl 2005; Aarnes et al.

2012; Breivik et al. 2013, 2014) or decadal trends in wind

andwave parameters. A number of recent regional studies

on wave climate variability and trends from hindcasts and

reanalyses are presented in Appendini et al. (2014)

(Gulf of Mexico); Reguero et al. (2013) and Izaguirre

et al. (2013) (Central and South America); Bromirski

et al. (2013) (North Pacific); Dodet et al. (2010),

Bertin et al. (2013), Wang and Swail (2001), and Wang

et al. (2012) (North Atlantic); and Wang and Swail

(2002) and Semedo et al. (2011) (Northern Hemi-

sphere). Most of these studies are to some extent di-

rectly or indirectly affected by data assimilation.

Therefore, trend estimates from altimeter wave heights

are an attractive alternative; see, for example, Hemer

et al. (2010) (Southern Hemisphere) and Young et al.

(2011, 2012) (global). These studies, however, rely

highly on intercalibration between satellite missions.
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Global marine wind and wave reanalyses can be pow-

erful proxies for observational records, provided that

they do indeed prove reliable in data-scarce regions and

periods. With the advent of long marine Earth-observing

satellite missions (European Remote Sensing Satellites

ERS-1 and ERS-2, starting in 1991), the quality and cov-

erage of marine U10 and Hs observations rose dramati-

cally. Since such observations are usually assimilated into

global reanalyses the question of the quality of a reanalysis

before and after the satellite era should be addressed.

Numerical weather prediction models are confined by

several characteristics, the inherent physics, resolution,

and numerics. Parameters such as U10 and Hs will vary

accordingly. If the modeled wind and wave climate

corresponds to the observed climate, assimilation be-

comes a mere way to keep the model on the right track.

Should the model however have an inherent bias rela-

tive to the observed climate, data assimilation will force

themodel away from its own climate, only to revert back

as the model is integrated forward in time (forecast) less

constrained by assimilation. In thisway, amodelmay end

up with different statistics at the time of analysis (here-

after ANA) and at increased forecast range (FCR). Not

surprisingly, ANA will correlate better with the real cli-

mate, the reasonwhy reanalyses are particularly attractive

for studying past climate. However, as the number and

quality of assimilations vary with time, it is reasonable to

assume ANA to reflect these changes. Any discrepancies

found between the model output at ANA and increased

FCR may potentially identify any model biases, or

equivalently effects of assimilation. In the end, if we are

not correcting model bias at ANA, the trend should be

similar at ANA and increased FCR, assuming model drift

is insignificant.

ERA-Interim (hereafter ERA-I) is a reanalysis de-

veloped by the European Centre for Medium-Range

Weather Forecasts (ECMWF) under the European

Reanalysis Project (ERA), coupling atmosphere and

surface waves, covering the period from 1979 to the

present day (see Dee et al. 2011). Besides the traditional

reanalysis, ERA-I also performs 10-day forecasts from

reanalyzed fields twice a day. Since 1979, the number of

observations assimilated has increased substantially.

Between 1989 and 2010, there was a tenfold increase,

from 106 to 107day21, with the biggest addition coming

from spaceborne instruments. The only wave data

products used in ERA-I are the significant wave height

observations from radar altimeters on board the satel-

lites ERS-1, ERS-2, Environmental Satellite (Envisat),

Jason-1, and Jason-2 available for different periods, but

with almost sustained existence sinceAugust 1991. Even

though the atmospheric model and the wave model are

coupled, the wave data analysis is done independently

from the atmospheric assimilation. The wave model

assimilation scheme, first developed by Lionello et al.

(1992), is based on the optimum interpolation (OI)

technique. This simple scheme provides an update to the

significant wave height field at ANA that is produced by

the coupled system following its four-dimensional vari-

ational assimilation of all sort of atmospheric data. This

update is then translated into an update of the model

spectra used for the subsequent model integration.

Ideally, a data assimilation scheme should only correct

for random error in the model; otherwise, the model

biases would quickly reappear once the model is in-

tegrated beyond ANA. This is even more prominent in

a forced system such as the wave model with an OI

scheme such as that employed in ERA-I.

Since altimeter wave height data originate from several

instruments with different characteristics and processing

procedures, there is a need for intercalibration to har-

monize them. For ERA-I, this was donewith respect to in

situ observations (J. Bidlot 2015, unpublished manu-

script). Considering the fact that the wave-height climate

characteristics from in situ observations are not the same

as ERA-I model, first, ERA-I wave heights exhibit sys-

tematic biases with respect to in situ data (J. Bidlot 2015,

unpublished manuscript) and, consequently, biases with

respect to the intercalibrated altimeter data (Abdalla

et al. 2011). These biases are partially corrected at ANA

with the introduction of intercalibrated altimeter data.

However, before August 1991 or during periods when

altimeter data are temporarily not available, the ERA-I

wave heights return to their biased state.

In this study we investigate trends inHs andU10 based

on ERA-I and how they are affected by nonstationary

assimilation over the period 1979–2012. The aim is to

detect any spurious trends and possibly propose an al-

ternative to ANA (i.e., an FCR offering trends more

representative of the real climate). Special attention is

being made on the era with and without altimeter wave

height assimilation. We compare ERA-I with observa-

tional records from buoys and satellites, taking care to

distinguish between independent datasets and datasets

that have been assimilated in the reanalysis. A similar

study based on atmospheric temperature from ERA-I

may be found in Simmons et al. (2014).

The paper is organized as follows. Section 2 introduces

the data [i.e., ERA-I, two stand-alone ECMWF opera-

tional wave model (EC-WAM) runs with and without

altimeter wave height assimilation] and observations, in

situ and altimetry. Section 3 presents themethodology for

trend estimation and the RHtestsV4 (Wang and Feng

2013) software package, a homogenization tool used herein

to correct for step changes inherent in the in situ obser-

vations. Section 4 presents global trends inHs andU10 and
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comparisons between the different datasets. Section 5

discusses the results and relates the findings with similar

studies. Finally, section 6 offers some conclusions.

2. Data

a. ERA-Interim

ERA-I presents a third-generation reanalysis at the

ECMWF and possess a number of improvements from

its predecessors ERA-15 (Gibson et al. 1997) and ERA-

40 (Uppala et al. 2005); see Dee et al. (2011) for more

information. The ongoing project was originally meant

to improve the data-rich period of the 1990s and 2000s

following the appearance of Earth-observing satellites

such as ERS-1. In 2011 the reanalysis was extended

backwards from January 1989 to January 1979.

ERA-I is run with the same setup as the Integrated

Forecasting System (IFS) release cycle Cy31r2, used

operationally at ECMWF during the period December

2006 through June 2007. The horizontal resolution of the

atmospheric model is approximately 79 km (T255 spec-

tral truncation) on a reduced Gaussian grid. The cou-

pled wave component (Janssen 2004) is somewhat

coarser at approximately 110 km. The wave model is run

with shallow water physics where appropriate and dis-

cretized using 24 directions and 30 frequencies.

Prior to 2002, most of the observations assimilated in

ERA-I are similar to those used in ERA-40 with some

improvements [see section 4.1 of Dee et al. (2011) for

details]. In the context of this study, the most notable

changes were additional and recalibrated scatterometer

surface wind speeds, reprocessed wave data fromERS-1

and ERS-2 calibrated against buoy data and improved

satellite radiance data. After 2002, ERA-I uses obser-

vations from the ECMWF’s operational archive. ERA-I

assimilates altimeterHs data (see Table 1) and buoyU10

data, while in situ Hs and altimeter U10 are not used in

the reanalysis and can serve to independently evaluate

the merits of the reanalyses.

ERA-I is run twicedaily, at 0000and1200UTC,butoffers

6-hourly data at ANA, a blend of analysis and 6-hourly

reforecasts. Beyond the 12-h FCR, reforecasts are only

available at 0000 and 1200 UTC. To be consistent, we have

calculated monthly means and monthly maxima at ANA

and increased FCR based on 0000 and 1200 UTC only.

b. EC-WAM run with and without altimeter wave

height assimilation

In the following we compare two stand-alone EC-

WAM runs with and without wave altimeter assimila-

tion (hereafter denoted as WAM-AS and WAM-NAS,

respectively), that are otherwise identical. Both runs are

forced with archived ERA-I winds equivalent to UANA
10

and span the period 1992–2011 (20 yr). While ERA-I

uses a 30-min time step and evolving wind fields, the

wind fields forcing the stand-alone runs are sampled

every 6 h and kept constant over the same period. Un-

like ERA-I, which is run with two-way interaction, the

wave model is run in a separate operation with no

feedback from the wave model to the atmospheric

model. In addition, the stand-alone runs are based on

a later WAM cycle (Cy36r1). Since ERA-I (Cy31r2)

there have been three updates to the IFS WAM code

(see http://www.ecmwf.int/en/forecasts/documentation-

and-support/changes-ecmwf-model). In Cy33r1 (June

2008) the shallow water physics were improved by

modifying the nonlinear source term (Snl) and a new

advection scheme was implemented, reducing the gar-

den sprinkler effect (GSE). In Cy35r3 (September 2009)

the wave damping was intensified by including a weak

negative term in the wind input source term (Sin),

mainly affecting the longer wave components–reducing

swell. In Cy36r1 (January 2010) the wave model reso-

lution was increased from 0.368 to 0.258 . However, for

this particular experiment the resolution was set at 0.368,

going from ;110 to ;40 km. Further, the bathymetry

was refined from ETOPO5 (http://www.ngdc.noaa.gov/

mgg/global/etopo5.html) to ETOPO2 (http://www.ngdc.

noaa.gov/mgg/fliers/01mgg04.html), which better rep-

resents areas of partial blocking. The number of spectral

frequencies (30) and directions (24) are unchanged. The

WAM-AS was run with slightly improved bias correc-

tions of the altimeter data (i.e., ERA-I used to have

a nonoptimal bias correction up until the end of January

2010). Figure 1 presents the mean discrepancy in Hs

between ERA-I and WAM-AS over the period 1992–

2011, which illustrates the main features mentioned

TABLE 1. Altimeter Hs assimilated in ERA-I.

ERS-1 1 Aug 1991–3 Jun 1996

ERS-2 3 May 1995–21 Jul 2003

Envisat 21 Jul 2003–April 2012

Jason-1 20 Oct 2003–3 Jul 2013

Jason-2 1 Feb 2010–present

FIG. 1. Mean discrepancy in Hs between ERA-I (ANA) and

WAM-AS over the period 1992–2011.
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above. ERA-I is in general higher in the tropics because

of less swell damping and higher in the lee of poorly

resolved islands and shoals. The GSE is particularly

evident east-northeast of Hawaii.

c. Observations: In situ and Envisat

In an attempt to validate trends we use a selection of

23 in situ observations,Hs andU10.We emphasize theHs

data as they are not assimilated, but we also include U10

for comparison. The hourly data are averaged over62 h

and centered around synoptic times (Bidlot et al. 2002).

Only collocated data with ERA-I are used to calculate

monthly means.

For the period November 2002–October 2010, a total

of nine years, we have binned Envisat altimeter winds

into 28 3 28 latitude–longitude bins and collocated the

‘‘super observations’’ withUANA
10 in time and space. The

super observations represent altimeter data averaged

along track corresponding to the model resolution. Like

in situ Hs, altimeter U10 are not assimilated and there-

fore independent of ERA-I.

3. Method

a. Trend

As the probability density function (PDF) of Hs and

U10 do not conform to aGaussian shape, trend estimates

should not be based on a simple regression. In the fol-

lowing, the magnitude of the trend is determined by

(Sen 1968; Yue et al. 2002)

Trend5median

�

xj 2 xl

j2 l

�

" l, j , (1)

where x represents the data at time j and l. This offers

a robust estimate of any monotonic trend.

In the following, we apply the seasonal Kendall test,

a nonparametric test of randomness (H0) against trend

(H1), an extension of the Mann–Kendall test (Mann

1945; Kendall 1948) especially adapted to seasonal data

with serial dependence (Dietz and Killeen 1981; Hirsch

and Slack 1984). Let Xi 5 (xi1, xi2, . . . , xini) represent

the monthly data of U10 and Hs, where ni is the total

number of entries from month i5 1, 2, . . . , 12 (only one

entry per year), then the seasonal Kendall statistics for

month i is expressed by

S
i
5 �

n
i
21

k51
�
n
i

j5k11

sgn(x
ij
2 x

ik
) . (2)

In case of missing data at time j or k, sgn(xij 2 xik) is set

to zero. From Mann (1945), Kendall (1948), and Hirsch

et al. (1982) we define S0 5�
12
i51Si, having a mean and

variance given by

E[S0]5 �
12

i51

E[Si]5 0 and (3)

var[S0]5 �
12

i51

var[Si]1 �
12

i51
�
12

l51

cov(Si, Sl) for i 6¼ l ,

(4)

where var[Si]5 nig(nig2 1)(2nig1 5)/18 and nig represents

the number of nonmissing data per month (nig 5 ni for

complete series). According to Hirsch et al. (1982), cov

(Si, Sl) 5 0 when Si and Sl are independent random

variables. However, this fails to hold for monthly lag-1

serial correlation as low as 0.2 (Hirsch and Slack 1984).

In the following we use an estimate of the covariance

term defined by Dietz and Killeen (1981), which is well

documented in Hirsch and Slack (1984). A two-sided

test for trend is based on the standard normal variate

Z defined by

Z5

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

S02 1

(var[S0])1/2
, if S0. 0

0, if S05 0

S01 1

(var[S0])1/2
, if S0, 0

, (5)

where H0 is accepted when jZj , 1.96, using a signifi-

cance level of a 5 0.05.

As stated in Hirsch and Slack (1984) the covariance

term defined byDietz and Killeen (1981) should be used

with some caution, such as for small sample sizes less

than 10 yr and in situations where data are, in fact, in-

dependent (e.g., in cases of many missing data). In the

following analysis we omit the covariance term when

found appropriate. This will be stated in the text.

b. RHtestsV4—Homogenization

The RHtestsV4 is a software package developed to

detect and adjust for sudden step changes, or shifts, in-

herent in time series for reasons other than climatic

changes. Here, we use the tool to homogenize monthly

in situ observations that have been altered because of,

for example, hardware and software updates. Even

though the RHtestsV4 is capable of detecting shifts by

analyzing the observed time series (referred to as base

series) solely by itself (Wang 2008a,b), Wang and Feng

(2013) highly recommend the use of a homogeneous and

well-correlated reference series for a more reliable re-

sult, especially when used in an automatic manner. In

the following, we use collocated ERA-I data. Shifts are
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detected based on the penalized maximal t (PMT) test

(Wang et al. 2007; Wang 2008a), using the base-minus-

reference series, which is assumed to have zero-trend

and Gaussian errors.

Once any shifts have been established the different

segments of the base series are adjusted according to the

quantile-matching (QM) procedure presented in Wang

et al. (2010, their section 5) and Vincent et al. (2012). In

short, the empirical distributions of all detrended seg-

ments are matched. The software has shown promise in

Gemmrich et al. (2011) and Vincent et al. (2012).

It should be noted that, even though possible, we have

not run the RHtestsV4 with metadata describing buoy

updates, which may have increased the performance of

the RHtestsV4.

4. Results

We start off by investigating the mean difference in

monthly-mean Hs and U10 between ANA–24-h forecast

(ANA–FC24) and 24–48-h forecast (FC24–FC48) over

the periods 1979–91 and 1992–2012, that is, before and

after introducing wave height altimeter assimilation in

ERA-I (see Fig. 2). The red color scale in Fig. 2 shows

where Hs and U10 are decreasing with increased FCR,

while the blue color scale shows the opposite. The dis-

crepancies are mainly due to assimilation effects and

reflect model bias. For instance, in Fig. 2b, HANA
s is

relatively higher in the storm track of the northeastern

Atlantic as the model has been corrected for a negative

bias related to insufficient wave growth in the area.

According to Hanley et al. (2010), the annual mean

wave age is lower in the North Atlantic storm track as

opposed to the North Pacific, related to a stronger mean

intensity in the extratropical cyclones (Bengtsson et al.

2006) and a corresponding stronger wind climate (Sterl

and Caires 2005). Further, waves are more fetch limited

in theNorthAtlantic because of amore varied coastline,

particularly near the southern tip of Greenland and in

the lee of Iceland. Fetch will also vary with season re-

sulting from ice extent. It is striking that the biggest

difference betweenHANA
s andHFC24

s seems to follow the

mean ice edge of the winter season. In contrast, waves

generated in the storm tracks of the Southern Hemi-

sphere are far less fetch limited by land. And, since the

mean wind direction is westerly, with a slight northerly

component (see Hanley et al. 2010, their Fig. 4), ice

extent is probably not affecting themeanwave growth in

the same sense.

In the eastern tropical Pacific, an area more or less

completely dominated by swell (Semedo et al. 2011), the

assimilation effect is reversed. The model overestimates

the presence of swell, so HANA
s is corrected down and

therefore relatively lower than HFC24
s . In the following,

our prime concern is how the model bias is dealt with

over time. Comparing Figs. 2a and 2b, the latter period is

clearly more influenced by assimilation. The corre-

sponding plots made with U10, Figs. 2c and 2d, do not

show the same geographical differences between the

two periods. However, there seems to be amore uniform

strengthening of UANA
10 in the latter period. For FC24–

FC48 (Figs. 2e–h), the differences between the two pe-

riods are far less pronounced, indicating that the model

is relaxing toward its own climate, neglecting bias cor-

rections made at ANA.

To further illustrate the effect of assimilation, we plot

the discrepancies in monthly-mean Hs and U10 in-

tegrated over the Southern Hemisphere (SH; .208S),

the tropics (208S–208N), and the Northern Hemisphere

(NH;.208N) betweenANA–FC24 and FC24–FC48, see

Figs. 3a–c and 3g–i. All ice-covered areas have been

removed from theHs andU10 data. During the 1980s the

discrepancy betweenANA–FC24 (in red) is fairly stable

for both parameters, with an exception found in the NH

where UANA
10 is steadily increasing relative to UFC24

10 . In

August 1991 there is an abrupt jump in HANA
s in all re-

gions caused by the sudden introduction of altimeter

observations. The effect is most pronounced north of

208N, but clearly visible south of 208S. In the tropics the

effect is negative and slightly less distinct. After August

1991 there is a steady relative increase in HANA
s outside

the tropics up until approximately 2006. This seems re-

lated to a similar behavior in UANA
10 globally. Given the

fact that wave conditions in the tropics are highly

influenced by waves (swell) generated in the SH and

NH, it is somewhat surprising to find a relative decrease

in HANA
s in the tropics, especially since the ‘‘local’’

UANA
10 also is increasing. In the last part of the period

HANA
s and UANA

10 are decreasing. Overall, the largest

fluctuations in ANA–FC24 are found in U10 in the

tropics, reflecting the poorer predictability in the area.

Notice that the FC24–FC48 comparison (Figs. 3g–i in

green) shows less fluctuation compared to ANA–FC24.

This is as expected as the model is gradually becoming

less influenced by assimilation with FCR. It should be

added that UANA
10 also shows evidence of minor step

changes. In 2000, when QuikSCAT was first introduced,

there is a clear drop inUANA
10 south of 208S (see Fig. 3g).

In Figs. 3d–f and 3j–l we present corresponding linear

trends in Hs and U10 as obtained at different FCR.

Again, trends are based on spatial averages over each

region per month and only data from ice-free areas have

been used. Globally, all trends are positive and signifi-

cant (not shown). The strongest trends are obtained at

ANA and decreasing with FCR. Trends in Hs are rela-

tively stronger compared to U10. South of 208S trends
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behavemuch in the samemanner. However, the trend in

Hs is stronger and the trend in U10 is weaker compared

to the global estimate. With the exception of UFC24
10 ,

UFC48
10 and UFC72

10 trends are significant. In the tropics all

trends are positive and significant. This is the only area

where the trend in HANA
s is weakest, or more correctly,

most shifted toward a negative trend, which is clearly

related to the effect of altimeter wave heights seen in

Fig. 2b. North of 208Nonly the trend inHANA
s is found to

be statistically significant, contradicting the nonexisting

trends found at increasing FCR.

In Fig. 4, we have made the same comparison as in

Fig. 3 based on the mean area-integrated monthly-

maximum Hs and U10. For Hs, the biggest difference is

found in the tropics where wave altimeter assimilation

has an opposite effect, illustrated by the sudden relative

increase in HANA
s . There is also a more prominent step

change in HANA
s south of 208S around the time Envisat

and Jason-1 became operational (i.e., the second half of

2003). Again, the discrepancy in FC24–FC48 (Fig. 4 in

green) is more stationary compared to ANA–FC24. As

with the monthly mean, UANA
10 is generally increasing

FIG. 2. Mean difference in Hs and U10 between (a)–(d) ANA–FC24 and (e)–(h) FC24–FC48 for the periods (left) before (1979–91) and

(right) after (1992–2012) introducing wave altimeter assimilation in ERA-I.
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relative to UFC24
10 with time. In the tropics the discrep-

ancies between ANA–FC24 and FC24–FC48 are both

mainly positive, suggesting that the model needs more

time in terms of FCR to relax to the model climate.

Overall, the trends in mean monthly-maximum Hs and

U10 are behaving quite similar to what seen in the

monthly-mean data. Again, the effect of wave altimeter

assimilation is found largest in HANA
s north of 208N,

causing a clearly contradicting trend compared to

corresponding estimates obtained at increased FCR.

Globally (not shown), trends are positive and for the

most part statistically significant, especially in Hs. This

increase is primarily a result of the positive trends seen

in the tropics and south of 208S.

Figure 5 presents maps of trends in HANA
s and UANA

10 ,

before and after wave altimeter data were first in-

troduced, and over the full period. Between 1979 and

1991 there are primarily three areas showing significant

FIG. 3. (a)–(c) Discrepancy in monthly-meanHs betweenANA–FC24 and FC24–FC48, and (d)–(f) corresponding trend estimates from

ANA, FC24, FC48, and FC72. Trends are presented in the legends andmarked by an asterisk when statistically significant (a5 0.05). The

y axis have been scaled to span 6% and 10% of the mean HANA
s , respectively. (g)–(l) Corresponding results for U10.
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and positive trends in both HANA
s and UANA

10 , near the

Drake Passage off the southern tip of South America, in

the South China Sea and in the northeastern Atlantic.

Otherwise, significant trends are rare and scattered

more randomly. For the latter period, the picture is

more organized with a clear decrease in HANA
s in the

northern central Pacific, weakly increasing in the central

and southern Pacific (nonsignificant), increasing in the

Gulf of Mexico and off the east coast of the United

States. The most striking trend is found in UANA
10 in the

central Pacific, an area highly correlated with El Niño–

Southern Oscillation (ENSO). Since this area is domi-

nated by relatively weak trade winds, the same signal is

not equally apparent in HANA
s . When putting the two

periods together, the strong increasing UANA
10 trend in

the central Pacific is damped because of a weaker or

negative trend in the first period. However,HANA
s shows

a larger area of positive significant trends than obtained

by any of the two standalone periods. Even though the

last period is almost twice the length of the first period

FIG. 4. As in Fig. 3, but for mean monthly-maximum Hs and U10.
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and therefore heavier weighted, the trends over the full

period seem unrealistic, and must be seen in connection

with the change imposed by the wave altimeter assimi-

lation. For instance, we mentioned the northeastern

Atlantic, where a larger area of positive and significant

trends is obtained over the full period, as opposed to the

two subperiods. This is directly related to the findings

made in Figs. 2b and 3c but is not revealed by studying

Fig. 5e alone.

In Figs. 6a and 6b we do the same comparison based

on FC48. Trends are somewhat weaker and significant

over a smaller area. The positive trends found in HANA
s

in the northeastern Atlantic are now negative and

nonsignificant. Similarly, the significant negative trends

found in HANA
s in the eastern equatorial Pacific are

shifted toward a positive trend, but still slightly nega-

tive north of the equator. The monthly maxima (see

Figs. 6c,d) show similarities with the results obtained

with the mean conditions, but are geographically more

confined.

a. ERA-I versus in situ observations

In an attempt to validate the trends obtained with

ERA-I at different FCR, we have used a selection of in

situ buoy data situated along the Eastern Seaboard and

the west coast of the United States and in the north-

eastern Atlantic. The time span and coverage are variable

between locations. Trends are therefore not intercompar-

able. Only available data overlapping ERA-I have been

used. Months with less than 50% coverage are censored.

This threshold is somewhat arbitrary and will probably

influence trends over the actual periods. However, here

we do not focus on the trends per se, only the difference

between modeled and observed trends, making this

choice acceptable. All modeled data are consecutively in-

terpolated to the positions of the buoys. Because some of

the buoys have been subject to movement over time, only

collocated data lying within 60.258 latitude/longitude of

the median position have been used. In this way only data

originating from the same climate are retained. Sincemost

FIG. 5. (left) Trends inHANA
s presented in percentage relative to the meanHANA

s over the periods (a) 1979–91, (c) 1992–2012, and (e) and

1979–2012. (right) As in (left), but for UANA
10 .

15 JANUARY 2015 AARNES ET AL . 827



of the buoys are regularly removed, serviced, recali-

brated, and returned to service, step changes exist in the

original time series (Gemmrich et al. 2011; Wan et al.

2010). We have applied the RHtestsV4 (presented

above), a homogeneity tool, in an effort to compensate

for these changes. We use HFC24
s as a reference series.

An example of the software output is presented in Fig. 7,

illustrated withHs data from the position of buoy 46036.

At the top, the original observations (BASE) and col-

located HFC24
s data (REF) are plotted together with

corresponding trends. In the middle, the base-minus-

reference series is plotted in blue, which constitute the

basic data for detecting nonclimatic steps. Detected

mean shifts are presented by the black line, while the

QM fit is shown in red. Notice that the QM fit has sea-

sonal variations, ultimately correcting the BASE series

differently according to season. In the bottom plot, the

original observations are shown together with the cor-

rected observations according to the QM fit, with cor-

responding trends.

The result of the trend comparison is illustrated in

Fig. 8. The top plot presents the data coverage per sta-

tion and the trends obtained with the original observa-

tions, the corrected observations and ERA-I. Eight out

of 23 locations do not contain data overlapping for

August 1991. Results are therefore unaffected by the

step change imposed by the altimeter data in ERA-I.

Notice that there are a number of locations where the

observed trend based on the original data clearly de-

viates from ERA-I. Be aware that these deviations are

perceived as large because the trends themselves are

weak. However, ‘‘outliers’’ are effectively adjusted with

the RHtestsV4. In the middle row we have color coded

the FCR producing the minimum and maximum abso-

lute error in trend relative to the original observations.

Seven out of 23 observed trends are statistically signifi-

cant. From these, HANA
s validates best at only one lo-

cation (44008). In fact, in 14 out of the 23 (;60%) cases

HANA
s offers the poorest representation of the trend

relative to the original observations. In 10 out of 23 cases

the best estimate of the trend is obtained with HFC48
s .

When performing the same comparison based on the

corrected observations, shown in the bottom of Fig. 8,

the result is similar:HANA
s performs worst at 12 out of 23

locations, more than 50%. In seven cases HFC48
s per-

forms best, while HFC24
s performs best at nine locations.

Despite the fact that in situ U10 buoy observations

indeed are assimilated in ERA-I we have conducted the

same analysis with U10 (see Fig. 9) as this may support

some of the results obtained withHs. Expectedly,U
ANA
10

is performing better then HANA
s relative to the corre-

sponding original observed trends, showing the least

discrepancy at 12 out of 23 locations. However, with the

adjusted observations, the result is different. Now, only

one location offers a significant trend, compared to 13

from the original observations; UANA
10 is performing

worst at 14 locations, while UFC24
10 and UFC48

10 combined

perform best at 18 locations.

The choice of using the FC24 as a reference series in

the RHtestsV4 is based on the fact that it correlates well

FIG. 6. Trends in (a) monthly-mean and (c) monthly-maximumHFC48
s presented in percentage relative to the corresponding mean value

over the period 1979–2012. (b),(d) As in (a),(c), but for UFC48
10 .

828 JOURNAL OF CL IMATE VOLUME 28



with observation without being directly affected by as-

similation, unlike ANA. However, we do acknowledge

the fact that trends obtained with the adjusted obser-

vations tend to approach the trends inherent in the ref-

erence series. This is confirmed when producing similar

maps to those presented in Figs. 8 and 9 using ANA and

FC48 as reference series. This will affect the analysis.

Because of the number of missing data, all significant

trends presented in Figs. 8 and 9 are based on Eq. (4)

setting the covariance term to zero. When running the

same test with the covariance estimate proposed by

Dietz and Killeen (1981), none of the trends is found to

be statistically significant, either for U10 or Hs.

b. EC-WAM run with and without altimeter wave

height assimilation, 1992–2011

Because the wave height altimeter assimilation in

ERA-I comprises measurements from a number of

satellite missions, transitions between missions may

create spurious trends if calibration is inadequate. By

investigating the discrepancy in monthly-mean Hs be-

tween the two stand-alone WAM runs any step changes

due to wave altimeter assimilation may be detected.

Ideally, the discrepancy between the two runs should be

stationary. As described above, the WAM cycle used in

the two stand-alone runs (cycle Cy36r1) is not identical

to the WAM cycle used in ERA-I (cycle Cy31r2) and

they are therefore not strictly comparable. However,

any changes in trends between the stand-alone runs,

should shed light on issues also inherent in ERA-I. In

Fig. 10 (left) we have plotted the monthly discrepancy in

mean global Hs as obtained with the two runs. The dif-

ferent satellite periods are color coded: ERS-1 (pink),

ERS-2 (purple), Envisat (green), Jason-1 (yellow), and

Jason-2 (cyan).Most apparent, there is a substantial bias

between the two runs. The altimeter assimilation is

adding approximately 20 cm to the mean global Hs

(;8%). Because of the substantial model bias, periods

with reduced altimeter assimilations are fairly easy to

identify, as they represent periods of more coherent

model results, here illustrated by local minima (spikes).

Over the 20-yr period there are four months where the

discrepancy between the two runs goes below 0.1m:

April 1992, March 1999, February 2001, and July 2003.

In fact, in February 2001 no altimeter data are assimi-

lated and the two model runs are essentially the same,

illustrated by the nonexisting discrepancy. This clearly

indicates how Hs is affected by the changing number of

altimeter assimilations. Similarly, between May 1995

and June 1996 both ERS-1 and ERS-2 were in orbit,

offering more altimeter data, more effectively correct-

ing model bias and increasing the discrepancy between

the two runs. Somewhat surprisingly, from the time

Jason-2 was operating (i.e., February 2010), there were

three satellites providing altimeter Hs; still, the dis-

crepancy between the two runs was reduced, having an

opposite effect to that indicated above. Also notice that

there is a clear reduction in the standard deviation be-

tween the two datasets from this point on. Overall, the

discrepancy between the two stand-alone WAM runs

seems to be affected by the transition from one satellite

to the next, but with variable effect. This is confirmed by

the same plot made with the mean global max Hs (not

FIG. 7. Adjusted trend estimates ofHs from buoy 46036 based on

the homogenization software RHtestsV4. (top) Collocated

monthly-meanHs from in situ (BASE) in black andERA-I at FC24

(REF) in red with corresponding trends. (middle) Discrepancy

between BASE and REF, accompanied by the detected mean

shifts and the QM fit. The QM-adjusted BASE series uses the last

segment as a reference level. In this particular case, the BASE

series is adjusted slightly down until about 1994 and lifted over the

period 1994–2010. (bottom) The BASE series together with the

QM-adjusted BASE series. Original and adjusted trends are pre-

sented in the legends.
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shown), which shows the same features. More impor-

tantly, the total number of altimeter assimilations needs

to be steady, and may potentially affect the data ho-

mogeneity far more. Based on the mean globalHs there

is no clear trend in the discrepancy between WAM-AS

and WAM-NAS; however, when inspecting the corre-

sponding spatial trend, there are clear differences, see

Fig. 10 (right). Cyan and blue indicate areas where

WAM-AS is decreasing relative to WAM-NAS (i.e.,

areas where assimilation has a negative contribution on

trends). This is most prominent in the eastern central

Pacific, especially near the Galápagos Islands, and

south-southeast of South Africa. In the North Atlantic

the impact of altimeter assimilation is significant and

positive.

In Fig. 11 we present the trend inHs as obtained from

the two stand-aloneWAM runs together withHANA
s and

HFC240
s , spanning the same period. The main features of

the stand-alone runs (a) and (b) are similar. Going into

detail, the WAM-NAS shows a stronger positive trend

in the eastern Pacific, particularly in the tropical and

southern part, and a slightly more negative trend in the

northeastern Atlantic. These differences are directly

connected to the findings made in Fig. 10 (right). When

comparing the trend in Hs of the stand-alone runs with

the trend in U10 in Fig. 5d, which is spanning approxi-

mately the same period (i.e., 1992–2012), it is worth

noting that WAM-NAS comes closer in resembling the

U10 trend. Because of the significant discrepancy be-

tween the two stand-alone runs, see Fig. 10 (left), it is

FIG. 8. Comparison of trend estimates from monthly-mean Hs from collocated observations and ERA-I at 23 locations. (top) Data

coverage per location (red line indicates when wave altimeter data was first introduced in ERA-I) and trend estimates based on the

original observations (light gray), corrected observations (dark gray) and for ERA-I at ANA (cyan), FC24 (dark green), FC48 (yellow),

and FC72 (red). Significant observed trends aremarked by a black dot and are based onEq. (4) omitting the covariance term. (middle) The

FCR (color coded as at top) showing the (left) minimum and (right) maximum absolute error in trend compared to observations. Black

dots mark where the observed trend is statistically significant. (bottom) The FCR (color coded as at top) showing the minimum and

maximum absolute error in trend compared to adjusted observation. Black dots mark where the observed (adjusted) trend is statistically

significant.
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plausible that WAM-AS is closer to saturation initially,

while WAM-NAS, which is biased low (;0.2m), is be-

having more like the U10 trend, with more room for

wave growth asU10 increases over time. However, there

is no arguing the fact that certain transition periods

introduce nonclimatic steps, which probably is the main

reason why WAM-AS and WAM-NAS show different

trends in certain areas.

The comparison between WAM-AS and HANA
s [i.e.,

Figs. 11a,c] shows a closer resemblance, as would be

FIG. 9. As in Fig. 8, but for U10.

FIG. 10. (left) Monthly discrepancy in mean global Hs between the two stand-alone EC-WAM runs with and without wave altimeter

assimilation. Satellite missions are color coded: ERS-1 (pink), ERS-2 (purple), Envisat (green), Jason-1 (yellow), and Jason-2 (cyan).

(right) Trend in monthly discrepancies between WAM-AS and WAM-NAS presented in percentage relative to WAM-AS.
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expected. Even though the wind forcing is not strictly

identical, any nuances are equally likely a result of dif-

ferent model physics, as this may affect the wave field

differently depending on wave conditions. Nevertheless,

changes in wave altimeter assimilation are probably the

biggest contributor. By investigating the trend in dis-

crepancy betweenHANA
s andWAM-AS (not shown), we

find thatHANA
s is increasing in themajority of the SH. In

areas where the trend is significant, HANA
s increases by

approximately 0.05–0.1 yr21 relative to WAM-AS. Still,

this is not enough to impose drastically different trends

in Hs.

In Fig. 11d, we present the trend inHFC240
s . The 10-day

(240 hr) ERA-I forecast (FC240) should be more or less

unaffected by assimilation, and in that sense comparable

with WAM-NAS; however, HFC240
s is forced by 10-day

prognostic wind fields and does not allow a direct com-

parison with the three other plots. Nevertheless, most of

the features found at ANA are recognizable in HFC240
s ,

but less pronounced.

c. Envisat altimeter winds: November 2002–October

2010

In a similar fashion, we want to validate trends in U10

from ERA-I against corresponding estimates based on

data unaffected by assimilation. For the period No-

vember 2002–October 2010, a total of nine years, we

have binned reprocessed Envisat altimeter winds into

28 3 28 latitude–longitude bins and collocated the super

observations with UANA
10 in time and space. The super

observations represent altimeter data averaged along

track corresponding to the model resolution (Dragani

et al. 2015). This represents a consistent dataset and uses

the same wind speed algorithm as in Abdalla (2012). In

Figs. 12a and 12b we present trends obtained from the

two datasets. Notice that the color scale spans a wider

range than applied for U10 in Fig. 5, from 23.5% to

3.5%yr21 versus from21.75% to 1.75%yr21, indicating

that the shorter period inherent much stronger trends.

The two plots compare remarkably well, with trends in

excess of 3%yr21 in the western equatorial Pacific, an

increase of almost 30% in nine years. This area is highly

correlated with the Southern Oscillation index (SOI),

that is, the normalized pressure difference between

Tahiti, French Polynesia, andDarwin, Australia (Boisséson

et al. 2014; Stopa et al. 2013). Over the period in question

the SOI was fluctuating, but mainly increasing, going

from a situation with low pressure differences and weak

trade winds (El Niño type) to a situation with increased

pressure difference and stronger than normal trade

winds (La Niña type). Further, we find a decrease in the

northwest Pacific, but this area shows a more scattered

significant result. In the South Pacific, toward Cape

Horn, trends are positive, statistically significant and

highly comparable.

The temporal coverage of Envisat is limited by the

polar-orbiting period of approximately 100min and re-

peat cycle of 35 days. The collocated ERA-I data will

FIG. 11. (top) Trends in Hs obtained with two stand-alone WAM runs (a) with and (b) without wave altimeter assimilation over the

period 1992–2011 presented in percentage relative to the respective mean Hs. (bottom) Corresponding estimates for (c) HANA
s and

(d) HFC240
s .
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only constitute a fraction of the full dataset. To illustrate

any loss of signal/trend due to subsampling, we present

the trend in UANA
10 based on all available data over the

same period. Comparing trends obtained with ERA-I

from the full and collocated dataset, the main features

are retained (see Figs. 12a,c). Going into detail, the full

dataset seem to be shifted slightly toward negative

trends (blues and cyan). However, when comparing

areas of significant trend, the result is quite comparable,

which supports the use of coherent wave altimeter data

for trend analysis.

As before, it is of interest to investigate how much

trend is retained at FC240 (see Fig. 12d). Even though

the main features are clearly intact, it seems the trend in

general is shifted in a negative direction.

5. Discussion

In the preceding analysis we have investigated trends

in Hs and marine U10 obtained with ERA-I at different

FCR. The study was motivated by the following ques-

tions. First, does the sudden introduction of wave al-

timeter assimilation in August 1991 introduce a step

change in the Hs statistics in ERA-I, and therefore im-

pose spurious trends? Second, does the different satel-

lite updates within the era of altimeter assimilation also

affectHs trends? Third, is theU10 statistics changing as a

result of nonstationary assimilation? Fourth, if spurious

trends are present at ANA, are better trend estimates

obtained at increased FCR? If so, which one performs

best?

Wave altimeter assimilation will have the biggest

impact in areas of increased model bias. Its effect is

largely positive in forecasting, but for reanalysis, sudden

corrections will affect trends. In this study, we detect the

largest model bias inHs in the northeastern Atlantic, an

effect of too weak wave growth off Newfoundland,

south of Cape Farewell, and south of Iceland, areas with

intense cyclone activity (Bengtsson et al. 2006; Ulbrich

et al. 2009; Hodges et al. 2011) and often fetch limited

conditions. The bias extends northeast with the mean

wave direction and seems to follow the winter ice extent

to the north. The same area shows the largest discrep-

ancy in Hs trend at ANA and increased FCR. Even

though the trend in HANA
s is statistically significant, it is

clearly spurious. The trend is also reinforced by steady

increasing winds over the period (see Fig. 3i) but not to

the extent that the trend in U10 is drastically different at

ANA and increased FCR (see Fig. 3l). For the Southern

Hemisphere (.208S) the effect of altimeter wave height

assimilation is similar, but less pronounced. No areas

stand out like the northeastern Atlantic, even though

the area in general is biased slightly low (see Fig. 2b). In

the tropics the positive trend in the mean integrated

HANA
s is counteracted by the altimeter wave height be-

cause of a positive bias in the wave model. Unlike the

NH/SH, the trend in HANA
s is weaker than correspond-

ing estimates obtained at increased FCR. This is mainly

FIG. 12. (top) Trends inU10 obtainedwith collocated data from (a)UANA
10 and (b)Envisat over the periodNovember 2002–October 2010

presented in percentage relative to the respective mean U10. (bottom) Similar estimates based on (c) UANA
10 and (d) UFC240

10 using all

available data over the same period. The significance test is based on Eq. (4) omitting the covariance term because of the limited period.
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seen in the eastern tropical Pacific and central Atlantic,

areas dominated by swell, which is overestimated

by ERA-I. Trends in the integrated mean monthly-

maximum Hs and U10 are comparable with those based

on monthly-mean conditions. The biggest difference is

found in the tropics, where the wave model clearly

possess a negative bias for the highest wave conditions,

which is corrected for after August 1991 (see Fig. 4b).

Again, the most striking result is found in the north-

eastern Atlantic where HANA
s is indicating a clear in-

crease in the extreme events, while all the corresponding

estimates at increased FCR are negative (see Fig. 4f).

TheHs and U10 trend estimates obtained with ERA-I

are validated against the corresponding estimates from

in situ data. The comparison is challenging in several

ways: most time series are fairly short; they span dif-

ferent periods and have missing data; they contain in-

trinsic nonclimatic step changes and the buoys are

located in areas of rather weak trends, often non-

significant. In addition, the U10 data have been assimi-

lated into ERA-I and are therefore not independent.

Even though most of these issues are undesirable, they

do not contaminate the data. Step changes imposed

by buoy updates, on the other hand, are a direct source

of error that needs to be addressed and accounted for

when estimating trends. This being said, an accurate

homogenization of in situ data is a complicated task and

a study in itself. Here, we use the RHtestsV4 package,

a homogenization tool that has showed promise in

similar studies in the recent past (Gemmrich et al. 2011;

Wan et al. 2010; Vincent et al. 2012). To optimize the

performance of the tool, it is encouraged that the user

incorporate dates of expected nonclimatic steps (meta-

data). As this is often difficult to acquire, and in this

study too comprehensive, the tool may be run with

a highly correlated reference series, providing a base-

minus-reference series used to detect steps. This has one

important implication. Any step changes inherent in the

reference series will falsely detect steps in the base

series. In other words, HANA
s does not make a good

reference candidate. So, in the following we use FC24

for wind and waves as a reference, as these data are well

correlated with the in situ measurements and less af-

fected by assimilation. To test the robustness of the re-

sult, we have applied the same homogenization routine

using FC48 and FC72 as the reference. By studying

similar plots to Fig. 7, we find that the results are

sometimes comparable, but occasionally very different

from those obtained with FC24 as reference. This has

mainly two explanations: the correlation between the

base and reference series deteriorates with FCR and

creates a noisier base-minus-reference series, making it

harder to detect steps; more importantly, most trends

are very weak and often nonsignificant. Only small

changes are required to change the resulting trends. In fact,

comparing trends that are statistically nonsignificant is in

itself not prudent. These factors reduce the confidence

in the trend estimates obtained with the adjusted in situ

data, and the comparison. When we still choose to per-

form the analysis, it is because in situ observations

constitute very important data in wave model validation

and are therefore a logical place to start.

Trends obtained with the uncorrectedHs observations

are comparable with Gemmrich et al. (2011) (Fig. 1b),

but are generally weaker, which probably is an effect of

the different time periods used and different data pro-

cessing (e.g., using monthly versus daily mean data). As

in Gemmrich et al. (2011), we find that ourHs trends are

weakened when homogenized with the RHtestsV4. The

main findings of Fig. 8 are as follows: out of 23 locations,

theHANA
s trends show maximum absolute error at more

than 50% of the locations, both when compared to the

original observations and the adjusted observations.

Note thatHFC48
s performs best in approximately 45% of

the cases relative to the uncorrected observations, while

HFC24
s and HFC48

s combined show least absolute error at

approximately 70% of the locations when compared to

the adjusted observations. The UANA
10 trends perform

best relative to the uncorrected observations inmore the

50% of the cases. This is expected because the datasets

are dependent through assimilation. When compared to

the corrected observations, UFC24
10 and UFC48

10 combined

outperform the rest at approximately 80% of the loca-

tions, while UANA
10 performs worst in more than 60% of

the cases. There are no definite conclusions to be drawn

from these results, for this the dataset is too small and

uncertain. However, one might summarize as follows:

trends in HFC24
s and HFC48

s validate better than HANA
s .

Similar results are obtained with U10 when compared to

observations corrected for nonclimatic step changes.

The UANA
10 trends compares best with the original ob-

servations simply because they are dependent through

assimilation.

We have investigated the impact of satellite updates

onHs trends by analyzing two stand-alone runs, with and

without wave altimeter assimilation. As these runs differ

from ERA-I in several ways, we are not setting out to

explain the minor differences seen inHs trends between

ERA-I and the corresponding WAM-AS. We simply

acknowledge that the two runs produce very similar

trends, and therefore conclude that any issues detected

by comparing the two stand-alone runs probably also

apply to ERA-IHs, or at least have similar implications.

From the preceding analysis we find that discontinuities

in Hs (in means and maxima) often are related to al-

timeter updates or altimeter availability. Since the wave
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model is biased low (;0.2m), the lack of altimeter data

may potentially influence the data homogeneity quite

severely, further affecting trends. This is for instance

emphatically demonstrated by ERA-I where altimeter

data are suddenly introduced in August 1991.

We find no single event affecting theUANA
10 trends the

same way as experienced withHANA
s in the northeastern

Atlantic. Nevertheless, there are strong indications that

step changes of variable magnitude, also exist in theU10

data, but they are generally smaller. One example is

seen in the beginning of 2000 when QuikSCAT was first

introduced in ERA-I, which clearly had an impact in the

SH. Because of the sparsely distributed conventional

wind observation in the SH, the model is more influ-

enced by satellite data here. When comparing trends in

U10 from Envisat with collocated ERA-I data over the

period November 2002–October 2010, the correspon-

dence is impressive. This underpins that UANA
10 are less

affected by nonstationary assimilation, at least over this

period.

In this study, in the context of trends, we portray

nonstationary assimilation as a source of error. But is it

all bad? Trends inHs and U10 obtained with ERA-I will

be affected by assimilation on all FCR, but with a di-

minishing effect. Going to FC240 (i.e., the 10-day fore-

cast), assimilation should have an insignificant effect on

trends. In Figs. 11d and 12d, we have plotted trends

obtained with FC240 forHs and U10, respectively. From

this, it is our general impression that FC240 offers

weaker trends compared to ANA, or shifted slightly

toward the negative. This result is supported by the

findings made in Figs. 3 and 4, where UANA
10 shows

a more positive trend compared to trends at increased

FCR. Even though trends obtained at FC240 clearly

preserves the spatial features found at ANA well, there

seems to be a trade-off between removing the positive

impact of data assimilation at longer FCR and getting

lower level of uncertainty in the predictions at shorter

FCR.

In Stopa and Cheung (2014, their Fig. 15) the trend in

monthly discrepancy betweenHANA
s and altimeter wave

height from Geosat, TOPEX/Poseidon, and Geosat

Follow-On (GFO) is presented, which reflects the error

trend inHANA
s . Despite the slightly different period, the

error trend in themonthly 50th percentile (1985–2008) is

remarkably similar to the HANA
s trend (1979–2012)

presented here (see Fig. 5e). Even though the error

trends were found to be mainly nonsignificant, they still

suggest that trends obtainedwithHANA
s are enhanced by

inhomogeneities, and that trends obtained with HFC48
s

offer a better estimate, as they are generally damped.

When doing the same comparison based on the error

trend in UANA
10 , we cannot draw the same conclusion.

We have also compared trends in U10 andHs with the

results presented in Young et al. (2011) over corre-

sponding periods (not shown). For mean U10 (compa-

rable with Fig. 5d), we find the results very similar in the

tropical Pacific. However, we find a stronger negative

trend in the North Pacific and North Atlantic, more in

favor of the NCEP–NCAR estimates presented in the

supporting online material (SOM) of Young et al.

(2011). For the SH, our estimates are far more moderate

and less significant. In general, the ERA-IU10 trends are

statistically significant for a smaller fraction of the global

marine surface. For Hs (comparable with Fig. 6c), both

studies find negative trends in the North Pacific and

northeastern Atlantic. The biggest deviation is found in

tropical areas where our estimates are more positive and

significant. In terms of extreme conditions, the two

studies are not strictly comparable (e.g., monthly max-

ima herein versus 99th percentile). Even so, it should be

noted that our study does not underpin an increase in

extremeHs and U10 on higher latitudes (.208N/S). This

result might be influenced by the fact that ERA-I un-

derestimates the upper percentiles (Stopa and Cheung

2014).

6. Concluding remarks

In this study we illustrate how the implementation of

wave altimeter assimilation in August 1991 imposes

a step change in the ERA-I wave statistics, affecting

trends.We find that areas with highermodel bias like the

northeastern Atlantic and the eastern tropical Pacific

are especially affected.

From two stand-alone wave model runs with and

without wave altimeter assimilation (over the period

1992–2011) we show that different satellite updates, the

number of operating satellites and the availability of

wave altimeter data affect wave statistics and trends.

Still, these effects are minor in most areas, compared to

the sudden introduction of altimeter wave heights in

August 1991.

For wind speed, no major step changes are detected.

We do however find that the wind speed from analysis is

increasing relative to the wind speed at increased fore-

cast range up until about 2005. We cannot conclude

whether this is an effect of assimilation alone, a real

trend, or a combination of the two. Based on the fact

that changes in wind speed at the time of analysis can be

associated with assimilation updates, as seen with

QuikSCAT in the SouthernHemisphere in 2000, we find

it highly likely that trends in wind speed also are affected

by assimilation.

Trends in wind speed and wave height seem to be

damped or slightly shifted toward the negative using
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data at increased forecast range. Still, we find that the

10-day forecast is capable of representing the main

spatial features of the trend found at analysis. Here, we

recommend using FC48 for trend analysis, as we do not

want to completely remove the positive impact of as-

similation. In swell-dominated areas (e.g., the eastern

equatorial Pacific), one might even go to FC72 or more,

as these areas in many cases are affected by assimilation

more than three days ahead.

Based on ERA-I at the 48-h forecast range we find the

following annual trends over the period 1979–2012; no

trend or a slightly negative trend in mean wind and wave

conditions in the northern parts of the Pacific and At-

lantic Oceans, and positive trends in mean conditions in

the tropical ocean areas, especially in wind speed in the

western part of the equatorial Pacific by.0.5%yr21, an

approximately 20% increase over the 34 years. In the

Southern Hemisphere, the South Pacific stands out as

the area with markedly increasing trends. In terms of

maximum conditions, trends behave fairly similar to its

mean counterpart. In general, trends in wind speed are

more geographically confined, while trends in wave

height aremore spread out. Given the ability of waves to

propagate over vast distances, this comes as no surprise.

Overall, we find that global trends in wave height are

stronger than corresponding wind estimates based on

integrated mean and maximum conditions.
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