
This paper is included in the Proceedings of the

2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the

2019 USENIX Annual Technical Conference

is sponsored by USENIX.

MArk: Exploiting Cloud Services for Cost-Effective,
SLO-Aware Machine Learning Inference Serving

Chengliang Zhang, Minchen Yu, and Wei Wang, Hong Kong University of Science

and Technology; Feng Yan, University of Nevada, Reno

https://www.usenix.org/conference/atc19/presentation/zhang-chengliang

MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware

Machine Learning Inference Serving

Chengliang Zhang Minchen Yu Wei Wang
HKUST

{czhangbn, myuaj, weiwa}@cse.ust.hk

Feng Yan
University of Nevada, Reno

fyan@unr.edu

Abstract

The advances of Machine Learning (ML) have sparked a
growing demand of ML-as-a-Service: developers train ML
models and publish them in the cloud as online services to
provide low-latency inference at scale. The key challenge of
ML model serving is to meet the response-time Service-Level
Objectives (SLOs) of inference workloads while minimizing
the serving cost. In this paper, we tackle the dual challenge of
SLO compliance and cost effectiveness with MArk (Model
Ark), a general-purpose inference serving system built in
Amazon Web Services (AWS). MArk employs three design
choices tailor-made for inference workload. First, MArk dy-
namically batches requests and opportunistically serves them
using expensive hardware accelerators (e.g., GPU) for im-
proved performance-cost ratio. Second, instead of relying on
feedback control scaling or over-provisioning to serve dy-
namic workload, which can be too slow or too expensive for
inference serving, MArk employs predictive autoscaling to
hide the provisioning latency at low cost. Third, given the
stateless nature of inference serving, MArk exploits the flex-
ible, yet costly serverless instances to cover the occasional
load spikes that are hard to predict. We evaluated the per-
formance of MArk using several state-of-the-art ML models
trained in popular frameworks including TensorFlow, MXNet,
and Keras. Compared with the premier industrial ML serving
platform SageMaker, MArk reduces the serving cost up to
7.8× while achieving even better latency performance.

1 Introduction

Driven by the sustained advances of Machine Learning (ML),
the past few years have seen a surging demand of ML-as-
a-Service (MLaaS). A typical workflow of MLaaS covers
the two phases of ML in the cloud: training and inference.
In the training phase, developers build ML models from the
training dataset using an array of ML frameworks. Efficient
training in cloud environments has been well explored in the
recent work [43, 56, 75]. In the inference phase, the trained
models are published as online services in data center or cloud
and can be queried by end users with new input. The service

makes prediction decisions (inference) for a given input using
the trained model [30] (e.g., recognizing human faces in a
given photo), and returns the inference results to the querier.

Unlike training which runs offline and may take hours to
days to complete, inference must be performed in real-time

on dynamic queries with stringent latency requirements (e.g.,
tens to hundreds of milliseconds per query). These require-
ments are often specified as the response-time Service-Level

Objectives (SLOs) [41], such as at least 98% of inference
queries must be served in 200 ms. Failing to comply with the
SLOs results in compromised quality of service or even finan-
cial loss, e.g., end users will not be charged for queries not
responded in time. Therefore, an ML model serving system
should strive to meet the target SLOs while minimizing the
cost of provisioning the serving instances in the cloud.

However, achieving these two objectives can be challeng-
ing. Cloud providers like Amazon [11], Google [37], and
Microsoft [52] offer a rich selection of service provisioning
options, ranging from VMs and containers to the emerging
serverless functions. For each provisioning option, there is a
large configuration space (e.g., CPU, memory, and hardware
accelerators) coupled with diverse pricing models offering
tradeoffs between service guarantees and cost savings (e.g.,
on-demand and spot instances [17]). A key challenge of pro-
visioning model serving in the cloud is: how should a serving
system choose from a bewildering array of cloud services to
provide low-latency, cost-effective inference at scale?

Unfortunately, there is no general guideline given by
the cloud providers, nor has it been studied in the prior
work [10, 25, 42, 45, 58, 59, 63, 70] which mainly targets
at general workload. To bridge this gap, we perform exten-
sive measurement studies of inference serving in AWS [11]
and Google Cloud [37] by means of VMs (IaaS), containers
(CaaS), and serverless functions (FaaS). We briefly summa-
rize three key findings as follows.

First, our measurements suggest that among the three op-
tions, IaaS offers the best performance-cost ratio for inference
serving, but it incurs long instance provisioning latency and
is hence unable to quickly adapt to the changing workload.
CaaS suffers from a similar problem as IaaS (though less

USENIX Association 2019 USENIX Annual Technical Conference 1049

severe) with worse performance-cost ratio. Compared to IaaS
and CaaS, FaaS scales much faster but is the most expensive.

Second, inference serving can gain significant benefits from
batching when performed using costly hardware accelerators
(e.g., GPU and TPU). Nevertheless, the benefits are not always
guaranteed but critically depend on the batch size control
knobs and their interactions with query arrivals: when there is
not enough load, serving inference queries using GPUs is not
economically justified. Therefore, a serving system should
judiciously determine when to scale up from CPU to GPU
instances and how to perform batching over GPUs.

Third, ML inference usually performs stateless compu-
tations. This opens up an opportunity of using serverless
functions as a handover service when the system is provi-
sioning new instances for scaling up/out. Also, many ML
models, especially deep learning, have deterministic infer-

ence time [41, 74]—they take fixed-size input vectors and
have input-independent control flows. This also brings an
opportunity for better resource planing and latency control.

Motivated by these observations, in this paper, we propose
MArk (Model Ark), a low-latency, cost-effective inference
serving system in the public cloud. MArk takes use of the
unique characteristics of ML model serving while also ad-
dressing the distinctive challenges posed by it. In particular,
MArk allows developers to specify the target SLOs through
common APIs. To attain high performance-cost ratio, it uses
IaaS as the primary means of provisioning while employing
FaaS to quickly fill the service gap when the system is un-
dergoing horizontal/vertical scaling. MArk uses predictive

scaling to hide the instance provisioning latency in IaaS. Un-
predicted load spikes are covered by serverless functions to
reduce over-provisioning. Based on the predicted workload,
MArk opportunistically uses costly GPU instances to serve
batched queries for improved performance-cost ratio. To fur-
ther bring down the cost, MArk also supports the use of the
discounted, yet interruptible instances (e.g., spot instances)
with an interruption-tolerant mechanism that uses transient
servers to handle instance interruptions at low cost.

We have prototyped MArk as a general-purpose serving
platform in AWS [11] with pluggable backend model servers
supporting a range of ML frameworks such as Tensorflow
Serving [55], MXNet Model Server [24], and customized
Keras [29] server with Theano [26] backend. We have evalu-
ated MArk on AWS using several state-of-the-art ML mod-
els for image recognition, language modeling, and machine
translation: Inception-V3 [67], NASNet [76], LSTM-ptb [51],
and OpenNMT [47]. The results show that MArk yields up
to 7.8× cost reduction while achieving comparable or even
better latency compared to the state-of-the-practice solution
SageMaker [13], and also comply with the predefined SLO
requirements. MArk is open-sourced for public access.1

1https://github.com/marcoszh/MArk-Project

2 Background and Related Work

In this section, we survey related work on model serving sys-
tems and autoscaling techniques. We also provide background
information on cloud services and their pricing models.

2.1 Machine Learning Model Serving

A wide array of ML inference serving systems have been
proposed to facilitate model deployment [7, 8, 24, 30, 55, 72].
These systems place the trained models in containers and han-
dle model inference requests through REST APIs. For exam-
ple, systems like Clipper [30], Rafiki [72], and MXNet Model
Server [24] host each model in a separate Docker [4] con-
tainer to ensure process isolation; TensorFlow Serving [55]
deploy models as servables, which are executed as black box
containers and can also be used for version management. In
order to provide low-latency inference, these systems employ
a number of model-agnostic optimizations such as batching,
buffering, and caching [30]. The recently proposed white box

model serving [49] enables model-specific optimizations with
fine-grained resource sharing and parameter re-use.

However, existing inference serving systems mainly focus
on streamlining model deployment in server machines, with-
out addressing the scalability and cost minimization issues for
model serving on the public cloud. Microsoft’s Swayam [41]
is among a few inference serving systems that focus on in-
frastructure scalability and resource efficiency. Yet, Swayam
is a proprietary system for model deployment in Microsoft’s
private MLaaS clusters, where the cloud provisioning options
(e.g., IaaS, CaaS, FaaS) and their pricing models are not rele-
vant. Amazon’s SageMaker [13] offers scalable model serving
over EC2 [1] instances. However, it only supports IaaS provi-
sioning and requires manual specification of the provisioning
instances. SageMaker is also agnostic to the response-time
SLOs and serves inference queries in a best-effort manner. In
contrast, MArk meets SLOs at low cost by choosing from a
complex selection of provisioning services in AWS [11].

2.2 Autoscaling Dynamic Workload in Cloud

There is a large body of work on autoscaling dynamic work-
load for general web services hosted in the cloud. We refer
to [59] for an extensive survey of this topic and compare some
related work with MArk in Table 1. In general, there are two
scaling approaches used to serve dynamic workload.

Feedback control scaling. This approach monitors hosted
applications and reactively adjusts resource provisioning
based on the monitored metrics (e.g., utilization, throughput,
and latency). Feedback control scaling is adopted in many
industrial serving platforms to autoscale dynamic workload,
e.g., SageMaker in AWS [12, 13] and Kubernetes in Google
Cloud [38, 39]. These systems perform scaling following
some customized rules such as “adding 2 instances if CPU

1050 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/marcoszh/MArk-Project

Table 1: A comparison of MArk and existing work on autoscaling dynamic workload in the cloud.

Autoscaler Scaling approach Means of Provisioning SLO-aware Heterogeneous

instances

Interruptible

instances

Hardware

accelerators

MBRP [33] Feedback control Private cluster X X × ×
Ali-Eldin et al. [9] Predictive IaaS × × × ×
Barrett et al. [25] Predictive IaaS × × × ×
Urgaonkar et al. [70] Predictive IaaS X × × ×
Han et al. [42] Predictive IaaS X × × ×
Qu et al. [58] Feedback control IaaS × X X ×
SpotCheck [63] – IaaS × X X ×
He et al. [45] – IaaS × X X ×

Swayam [41] Predictive Private cluster X × – ×
SageMaker [13] Feedback control IaaS × × × X

MArk Predictive IaaS and FaaS X X X X

utilization reaches 70%,” or tracking a target such as “main-
taining 100 queries per minute per instance” [15].

Feedback control scaling makes no prediction about the
future and is easy to implement. However, owing to its reac-
tive nature, it incurs long instance provisioning delay when
used to serve changing workload [59]. Over-provisioning is
therefore needed in case of load spikes. For example, Sage-
Maker recommends to start with 100% over-provisioning and
adjust thereafter [16]. As ML model serving is often compute-
intensive and requires costly CPU/GPU instances, solely rely-
ing on over-provisioning is economically not viable.

Predictive scaling. This approach makes predictions about
the future workload, based on which it proactively autoscales
the serving instances to reduce over-provisioning. Predictive
scaling has been widely employed to serve general work-
load (e.g., web services and VM demands) using a number
of time-series based prediction algorithms, such as linear
regression [27], autoregressive models [34, 61], and neural
networks [19, 53, 57, 65]. Predictive scaling is often com-
plemented with feedback control scaling, where the two ap-
proaches operate at different time scales [42,70]. For example,
predictive scaling can be used for resource planning at the
time scale of hours or days, while reactive provisioning op-
erates in minutes to respond to flash crowds or unexpected
deviations from long-term behaviors [70].

However, due to the mismatch of target workload, existing
predictive autoscalers do not work well for ML model serving.
As summarized in Table 1, they only consider provisioning
over homogeneous instances in IaaS [9, 25, 42, 70]. They
also do not support hardware accelerators (e.g., GPUs) and
cheaper, yet interruptible instances (e.g., spot servers), hence
missing opportunities of cutting provisioning cost. In addition,
many predictive autoscalers are unaware of the response-time
SLOs and only provide best-effort services [9, 25].

2.3 Cloud Provisioning Services

Compared with private clusters, model serving in public
clouds is more complex. Leading cloud platforms such as
AWS [11], Google Cloud [37], and Microsoft Azure [52] of-

fer a variety of provisioning services that can be used for
model serving. We briefly review these services, with a main
focus on AWS.

Infrastructure-as-a-Service (IaaS). With IaaS, cloud cus-
tomers run virtual instances (VMs) of various configurations
in terms of vCPUs, memory, storage, network, and accelera-
tors (e.g., GPU, TPU, and FPGA). Customers can then con-
figure and deploy ML model serving softwares [24,30,68] on
running instances to serve model inference requests.

IaaS cloud provides flexible pricing options to allow cus-
tomers to choose between service guarantees and cost savings.
Taking Amazon EC2 [1] as an example, customers can run in-
stances on-demand and pay for compute capacity by per hour
or per second depending on the instance types. Alternatively,
customers can run spot instances at steep discounts compared
to the on-demand price, under the condition that a running
spot instance can be interrupted indefinitely [17]. EC2 also
allows customers to reserve an instance in a long term by mak-
ing an upfront payment [21]. During the reservation period,
the instance usage is subject to a heavy discount compared to
the on-demand price. All three IaaS pricing options are also
available in Google Cloud [37].

Container-as-a-Service (CaaS). With CaaS, customers en-
capsulate services and implementations in containers (e.g.,
Docker images [4]), and run containers with specified resource
configurations in the cloud, e.g., Amazon ECS [2] and Google
Kubernetes Engine [6]. Compared with IaaS, CaaS simplifies
software configurations and deployment without the complex-
ity of maintaining the server infrastructure. In Amazon ECS,
users pay for the container capacity by per second, where the
pricing is based on requested vCPU cores and memory.

Function-as-a-Service (FaaS). With FaaS, customers run
applications as serverless functions in the cloud without pro-
visioning or managing servers, e.g., AWS Lambda [3] and
Google Cloud Functions [5]. In Lambda, customers can only
specify the memory allocation for an instance, and pay for the
total number of requests and the duration of compute time [3].
FaaS is particularly suitable for stateless computations and

USENIX Association 2019 USENIX Annual Technical Conference 1051

Table 2: Cost ($) and average latency (t) of serving 1 million
requests of three ML models in AWS. We choose c5.large
EC2 instance (2 vCPUs and 4GB memory) as it is the most
cost-effective. Each ECS container is allocated the same vC-
PUs and memory as c5.large; each Lambda instance has
3GB memory to achieve comparable latency with c5.large.

ML Model
EC2 ECS Lambda

$ t (ms) $ t (ms) $ t (ms)
Inception-v3 5.0 210 9.17 217 19.0 380
Inception-ResNet 9.3 398 16.4 411 39.3 785
OpenNMT-ende 51.5 2180 96.3 2280 155 3100

has recently been used to provision ML model serving [69].
Given a complex selection of provisioning options in the

public cloud, which one should be used for ML model serv-
ing? We answer this question in the next section.

3 Characterizing Model Serving in the Cloud

In this section, we characterize ML serving performance with
IaaS, CaaS, and FaaS as well as their configuration space. Our
characterizations are mainly based on AWS [11] (§3.1-3.4), a
leading cloud platform offering the most diversified service
options. We validate the major results in Google Cloud [37]
where possible (§3.5).

3.1 What service to use: IaaS, CaaS, or FaaS?

We choose three representative ML models, Inception-v3 [67],
Inception-ResNet [66], and OpenNMT-ende [47], for common
prediction tasks such as image classification and machine
translation, and evaluate their peak inference performance
with TensorFlow Serving [55]. Table 2 summarizes the cost
and average latency of serving 1 million requests using AWS
EC2 (IaaS), ECS (CaaS), and Lambda (FaaS), respectively.2

IaaS vs. CaaS. In EC2 [1], customers can choose among
predefined instance types with fixed vCPU and memory allo-
cation. In Table 2, we choose the cheapest compute-optimized
instance c5.large as the reference, since it is proven to be
the most cost-effective one in §3.3. AWS’s container service
ECS [2], on the other hand, lets users choose the number of
vCPUs they want. We allocate each container with 2 vCPUs
to match the capacity of c5.large, and with the minimum
memory allowed. Compared with c5.large, the ECS con-
tainer has similar serving latency but is more expensive.

FaaS. As for the serverless computing service Lambda [3],
the pricing is per-request based, and the cost per request de-
pends on the resource allocation and runtime of the request.
Customers specify memory allocation in Lambda, and CPU
resource is allocated proportionally to memory [14]. For a
fair comparison, we compare the Lambda cost of serving the
same amount of requests c5.large can serve in an hour, with

2Costs of instances are all based on AWS us-east-1 region.

the maximum memory allocated for best performance. The
cost is significantly higher, and the latency is longer, too.

Scalability. EC2 has long provisioning overhead (e.g., sev-
eral minutes), because additional time is needed to load and
set up large ML model serving atop standard overhead, as
Microsoft suggests with their production traces [41]. The
overhead makes it challenging to accommodate demand surge
without high margin of over-provisioning. The high launch-
ing overhead also penalizes frequent provisioning and de-
provisioning, since customers are billed during the instance
launching period as well. Similar to EC2, ECS also needs
dozens of seconds of provisioning overhead. Lambda, on the
contrary, is able to spawn thousands of new ML inference
instances in less than a few seconds, and once an instance is
ready, it can continuously serve requests without incurring
additional overhead [48]. The cold start overhead of Lambda
can be amortized by warming up [48]. Compared with EC2
and Lambda, ECS shows no obvious advantage.

Summary. A natural question is that can we exploit the cost-
effectiveness of IaaS service while also taking advantage of
the high scalability of FaaS? Conventional cloud provisioning
schemes have to over-provision because of the weak scala-
bility of IaaS or CaaS. Now that ML serving is eligible for
the highly scalable FaaS, we can reduce over-provisioning by
combining IaaS and FaaS. IaaS is used as the primary serving
option, while FaaS can provide transient service while new
IaaS instances are launching. Moreover, FaaS can potentially
handle the short lasting demand surges (short spikes), so that
the overhead of frequent provisioning and deprovisioning can
be eliminated. Although FaaS is costly, we believe the cost
reduction from less over-provisioning can justify its price.

With IaaS as the primary serving option, we shall determine
how to choose from a bewildering array of instance families
and sizes, which we answer in the following subsections.

3.2 IaaS: Can we use burstable instances?

IaaS providers typically categorize instances into families.
Within a family, instances share the similar physical hard-
ware but may have various sizes in terms of vCPUs, memory,
and network bandwidth. For CPU instances, EC2 offers four
main instance families: the general-purpose m-family, the
compute-optimized c-family, the burstable t-family, and
the memory-optimized r-family.

Among all instance types, burstable instances (t-family)
have the lowest hourly rate, but they are aggressively multi-
plexed on overbooked servers [71, 73]. Burstable instances
provide a baseline level (10% in AWS) of CPU performance
with the ability to burst when required by the workload, yet
with limited timespan according to a throttle policy (a new t2

instance can sustain 100% utilization for 30 minutes) [22,23].
We profiled t2 instances’ performance for ML serving and

show the results in Table 3. We see that the latency drops lin-
early with the CPU allocation but adding more memory does

1052 2019 USENIX Annual Technical Conference USENIX Association

Table 3: The average latency (t) and cost ($) of serving 1
million model inferences with bursted t2 instances.

AWS t2 Instance Size micro small medium large

Inception-v3
t (ms) 268.6 268.3 140.37 142.5
$ 0.87 1.71 1.81 3.75

Inception-ResNet
t (ms) 603.0 593.2 311.8 309.8
$ 1.94 3.79 4.01 7.96

OpenNMT-ende
t (s) 4.30 4.19 2.20 2.14
$ 13.85 24.83 28.36 56.71

large xlarge 2xlarge4xlarge
0

1

2

3

c
o
s
t:

 b
a
r

M1 M2 M3

0.2

0.4

0.6

0.8

1.0

la
te

n
c
y
:

li
n
e

(a) c5 instances

large xlarge 2xlarge4xlarge
0

1

2

3

4

c
o
s
t:

 b
a
r

M1 M2 M3

0.25

0.50

0.75

1.00

1.25

la
te

n
c
y
:

li
n
e

(b) m5 instances

Figure 1: The latency (lines) and cost (bars) of serving 1
million model inference requests with c5 and m5 instances.
M1, M2, and M3 respectively denote Inception-v3, Inception-
ResNet, and OpenNMT-ende. The values are normalized by
that of c5.large (182.5ms with $4.3 for M1; 389ms with
$9.4 for M2; 2.18s with $51.5 for M3).

not benefit inference performance. Although it seems that t2
instances are of low cost with viable latency for ML serving,
these results are obtained in the bursted mode and do not sus-
tain a long time. This fatal disadvantage means that burstable
instances are not for compute-intensive services [50].

Summary. Burstable instances are plausible for transient
ML serving usage, but not as the main long-running resources.

3.3 IaaS: Big instances or small instances?

We further investigate CPU instance families compute-
optimized c-family and general-purpose m-family, where
we focus on the latest generation c5 and m5. We exclude
memory-optimized instances (r-family) from consideration,
as our measurements on t2 instances indicate that 4GB of
memory already does not bound the inference performance.
In EC2, the configurations (vCPUs and memory) and prices
of m5 and c5 instances are proportional to their sizes, so it
is important to see how scaling up to larger instances would
affect the ML serving performance.

Figs. 1a and 1b depict the measured latency (lines) and
cost (bars) of serving 1 million inference requests of three
ML models using c5 and m5 instances of different sizes. In
general, c5 instances are cheaper and have lower latency than
m5 instances because of more advanced CPU models, even
though the latter have higher memory than the former. Our
results also suggest that, for CPU instances of the same fam-
ily, smaller instances are more cost-effective, as the serving

throughput grows sub-linearly with the instance size. At the
same time, by scaling from a smaller instance to a bigger one,
the latency drops sub-linearly as well.

Summary. To sum up, smaller instances with advanced CPU
models (c5.large in AWS) are preferable as they achieve
higher performance-cost ratio. Moreover, owing to the finer
provisioning granularity, using smaller instances to serve dy-
namic workload improves the resource utilization. Note that
the cost analysis presented here is based in on-demand market.
Once we switch to the spot market, the cost-effectiveness is
variable w.r.t. the change of spot price.

3.4 IaaS: How does GPU compare with CPU?

Many high-end IaaS instances are equipped with hardware ac-
celerators, such as GPU and TPU (exclusive in Google Cloud),
that can be used to speed up ML training and inference. The
questions are: how would those hardware accelerators im-
prove the latency of ML serving, and if such performance
benefit can justify their high cost? In this subsection, we fo-
cus on GPU instances, as GPU is the most accessible and
popular general-purpose ML accelerator. We will extend our
study to TPUs in Google Cloud in §3.5.

A GPU instance is more expensive than a CPU instance, but
it can achieve up to 40× speedup due to its massive parallel
nature according to NVIDIA [54]. In order to unleash the full
power of its computing capability, it is essential to batch multi-
ple inference requests and serve them in one go [68]. Batching
benefits the performance in two ways. First, it amortizes the
overhead of operations such as RPC calls and inter-device
memory copy. Second, it can take advantage of batch opera-
tion optimization from both software and hardware [30, 62].

To disclose the intriguing performance difference between
CPU instances and GPU instances as well as batching, we
compare the inference performance of three ML models on
c5 CPU instances and GPU instances p2.xlarge. We choose
p2.xlarge as it is the smallest GPU instance in AWS (the
next size available is p2.8xlarge which has 8 GPUs and is
too expensive). Fig. 2 shows the cost and latency of serving
1 million inference requests with various batch sizes (# of
requests served in one batch) on c5 and p2.xlarge instances.
For smaller CPU instances such as c5.large and c5.xlarge,
the serving cost (bars) and latency improvement (lines) over
batching is marginal (latency growing proportionally as the
batch size), while bigger CPU instance (c5.4xlarge) dis-
plays certain improvement when batch size increases within
a small range. GPU instances, on the other hand, benefit sig-
nificantly from batching: the larger the batch, the lower the
cost per request. This phenomenon suggests that batching can
significantly improve the cost-effectiveness of larger CPU
instances and GPU instances.

Summary. With an appropriate batch size, GPU instances
can achieve lower per-request cost and shorter inference la-
tency than CPU instances. However, batch size cannot be in-

USENIX Association 2019 USENIX Annual Technical Conference 1053

1 2 4 8 16 32

batch size

0.0

0.5

1.0

c
o
s
t:

 b
a
r

M1 M2 M3

0

10

20

30

la
te

n
c
y
:

li
n
e

(a) c5.large

1 2 4 8 16 32

batch size

0.0

0.5

1.0

c
o
s
t:

 b
a
r

M1 M2 M3

0

10

20

30

la
te

n
c
y
:

li
n
e

(b) c5.xlarge

1 2 4 8 16 32

batch size

0.0

0.5

1.0

c
o
s
t:

 b
a
r

M1 M2 M3

0

10

20

30

la
te

n
c
y
:

li
n
e

(c) c5.4xlarge

1 2 4 8 16 32

batch size

0.0

0.5

1.0

c
o
s
t:

 b
a
r

M1 M2 M3

0

10

20

30

la
te

n
c
y
:

li
n
e

(d) p2.xlarge

Figure 2: The cost and batch latency of 1 million model infer-
ence with batching of various sizes. M1, M2, M3 represents
inception-v3, inception-resnet, and OpenNMT-ende. The cost
and batch latency are normalized by the values when batch
size is set to 1.

creased arbitrarily: increasing batch size leads to both longer
queuing latency and batch inference latency [30]. We will
further discuss the batching configuration in §4 and formulate
the problem in a latency-aware context.

3.5 Characterization in Google Cloud

So far, all our profiling experiments are based on AWS. To val-
idate whether our main observations also apply to ML serving
in the other cloud platforms, we extend our characterization
to Google Cloud [37] which offers similar service and pric-
ing options as AWS, along with the Tensor Processing Unit
(TPU), the state-of-the-art ML ASIC.

IaaS remains the best option. We first compare the cost
and latency performance of ML serving using Google’s IaaS,
CaaS, and FaaS with the same workloads as in §3.1. All the
experiments were run in us-central1 region. Among the
three provisioning options, IaaS remains the best with the low-
est cost and shortest latency. For instance, the average latency
and total cost of serving 1 million Inception-v3 requests on an
customized IaaS instance with 1 vCPU and 2GB memory are
317ms and $3.70, respectively. In comparison, it takes 319ms
and $4.17 using the cheapest CaaS instance n1-standard-1
(1 vCPU and 3.75GB memory), and 527ms and $17.4 using
Google Cloud Functions (FaaS) with 2GB memory.
Small instances win on performance-cost ratio. We then
compare the cost and latency performance of CPU instances
of various sizes within the same family. We made the sim-
ilar observations as in AWS (§3.3): smaller instances offer
higher performance-cost ratio than the bigger ones, though
the latter leads to shorter latency. In particular, when serv-

1 2 4 8 16 32

batch size

0

5

10

15

c
o
s
t

($
):

 b
a
r

CPU GPU TPU

0

10

20

30

la
te

n
c
y
:

li
n
e

(a) Inception-v3

1 2 4 8 16 32

batch size

0

2

4

6

8

10

c
o
s
t

($
):

 b
a
r

CPU GPU TPU

0

10

20

30

la
te

n
c
y
:

li
n
e

(b) ResNet50

Figure 3: The cost and batch latency of serving 1 million in-
ference requests with various batch sizes. The batch latencies
are normalized by the latency when there is no batching.

ing 1 million Inception-v3 requests with n1-standard-1,
n1-standard-2, and n1-standard-4, the cost (average la-
tency) ends up with $4.16 (319ms), $7.82 (296ms), and
$11.98 (227ms), respectively.

CPU, GPU, or TPU? Finally, we compare the cost and la-
tency performance of using CPU, GPU, and TPU instances for
ML serving with various batch sizes. We chose two popular
image classification models, Inception-v3 and ResNet50 [44].
The results are shown in Fig. 3, where we used a customized
CPU instance with 1 vCPU and 2 GB memory (CPU), the
same instance with a K80 GPU attached to it (GPU), and a
Cloud TPU-v2 instance (TPU). We observe the similar trend
of cost and latency w.r.t. batch size for CPU and GPU in-
stances as in AWS (§3.4). As for TPU, we find that its high
price tag does not justify the performance benefit. In fact,
TPU is a massively parallel accelerator optimized for training
throughput rather than inference latency. Note that in Fig. 3,
the batch size for TPU is calculated per core. As TPUv2 has 8
cores, the device batch size is actually 8 times the value. The
design of TPU calls for large batch sizes to fully exploit its
computing capacity [40]. However, the stringent latency re-
quirement of real-time inference cannot wait for large batches
to accumulate, leading to extremely low hardware utilization.
In summary, TPUs are not suitable for real-time ML serving.

3.6 Characterization Summary

We summarize our key findings as follows: (1) IaaS achieves
the best cost and latency performance for ML model serv-
ing, and combining it with FaaS can potentially reduce over-
provisioning while remaining scalable to spiky workloads. (2)
Burstable instances are viable to cover transient ML serving
demand. (3) In on-demand CPU market, smaller instances
have higher performance-cost ratio than the bigger ones, even
though the latter provides shorter latency. (4) Only with ap-
propriate batching can the use of GPU instances be justifiable
to achieve lower cost and shorter latency than CPU instances.

1054 2019 USENIX Annual Technical Conference USENIX Association

response

request

load metric

request

queue

request

Batch
Manager

Load
Balancer

Proactive
Controller

EC2

P
er-instance
B

ouncer

request

response

Lambda

function
instances

provision

health
check warm up

MArk Cloud Services

SLO
Monitor add ins

data flow
control flow

on-demand
instances

spot
instances

burstable
instances

BE

BE

BE

!

"

#

$

%

&

Figure 4: An overview of the MArk model serving system.

4 MArk

In this section, we present MArk (Model Ark), a scalable
system that provides cost-effective, SLO-aware ML inference
serving in AWS. While MArk is built in AWS, nothing pre-
vents our design from being extended to the other cloud plat-
forms with similar service offerings, such as Google Cloud.

4.1 Overview

Following our observations in §3, MArk uses EC2 as the pri-
mary means of provisioning ML serving. It also uses Lambda
to quickly cover the service gap when there is a need to scale
out/up. Fig. 4 illustrates the overall architecture of MArk. In
particular, requests from clients are deposited to a request
queue, and are grouped into batches by the Batch Manager

(details in §4.3). MArk periodically measures the workload
metrics, such as the request arrival rate, and sends them to
a Proactive Controller which makes predictions and plans
instances in advance to reduce over-provisioning (§2.2). The
controller then sends the launching and destroying requests
to EC2 instances, on which custom service backends such as
Tensorflow Serving [55] are hosted. The controller also moni-
tors the health status of all running instances. With predictive
scaling, further actions are needed to handle prediction errors
and unexpected load surges. On each running EC2 instance,
there is a Bouncer monitoring serving metrics and performing
request admission control. If an incoming request cannot be
served within a specified time RTmax, it will be handled by
Lambda instances immediately. In addition, MArk employs
an SLO Monitor that keeps track of and maintains the SLO
compliance with the method described in §4.4.

SLO requirements. Following Swayam [41], we set two
SLO requirements for MArk. (1) Response Time Threshold:
A request is deemed fulfilled only if its response time is below
RTmax. (2) Service Level: The service is considered satisfac-
tory only if at least SLmin percent of requests are fulfilled.

4.2 Workload Prediction

MArk employs predictive scaling to reduce over-provisioning.
To expose the long-term cost trade-off between different in-
stances and resource provisioning, we need to estimate the
maximum request rate in the near future, which requires
multi-step workload prediction. Existing works employ many

well-established resource estimation methods, such as linear
regression [27], autoregressive models [34, 61], and neural
networks [19, 53, 57, 65]. As the accuracy of prediction de-
pends on the underlying workload, there is no such a universal
method that works perfectly in all cases. Therefore, MArk
exposes an API through which users can implement their
own workload prediction methods that best fit their applica-
tions. The challenge is how to gracefully handle unavoidable
prediction errors and unexpected load surges.

We have implemented a vanilla version of long short-term
memory (LSTM) network [36] for multi-step workload pre-
diction, as it is reported to give the state-of-the-art perfor-
mance [64]. In our implementation, the prediction unit (time
interval) is Pu, and the prediction window is Pw, meaning
MArk updates the predicted load for the next PwPu interval
every Pu time units. During each unit, MArk keeps sampling
the arrival rate in consecutive short sample windows of Ps. It
keeps track of the maximum arrival rate of the unit, and gets
the maximum arrival rate array for the next Pw units. In our
evaluations, we set the [Pu,Pw,Ps] to [1min,60,5s]. Prediction
unit is set to 1 minute, as EC2 charges at least 1 minute for
new instances. Prediction window is set to 60 steps, since 1
hour of future trend is good enough to expose the long term
trade-offs. The sample size is set to 5 seconds, since the arrival
rate can be treated as stable in short time slots [74]. MArk
is designed to work for all ML serving workloads, so users
can fine-tune this prediction algorithm or replace it with their
own implementations for better prediction results.

4.3 Instance Provisioning and Batching

With workload prediction, we need to determine what and
how many instances should be used to serve the requests.
In general, this problem can be formulated as a compilation
of queueing system [74], where instances of each type are
modeled as an M/D/c queue with deterministic processing
time and the predicted request arrival rate. However, as shown
in [74], this problem has no closed-form solution even without
considering request batching and instance pricing. Given this
hardness result, we turn to a heuristic solution: instead of
jointly considering batching and instance provisioning, we
solve the two problems separately using heuristics.

Batching. Inspired by the adaptive batching in [30], we in-
troduce two hyperparameters to control the batching behavior
of an instance type: Wbatch which is the maximum waiting

USENIX Association 2019 USENIX Annual Technical Conference 1055

time window for request batching, and Nbatch which is the
maximum batch size. The Batch Manager fetches requests
from the queue, and submits the batched requests if either
of the two limits is reached (Fig. 4). We tune the two hy-
perparameters to meet the following two requirements: (1)
No SLO requirements can be violated, meaning the waiting
time window and the processing time of the batch together
should be capped by response time threshold RT max; (2) the
throughput with batching enabled must be greater than that of
no batching. That is, the waiting time window and the batch
processing time together should be less than the time needed
to process all those requests sequentially without batching.

In practice, hyperparameter tuning requires light profiling
for the target instance. We first profile the optimal processing
rate of the target instance without batching, denoted by µ∗nb.
We then gradually increase the batch size from 1 until at least
one of the following constraints no longer holds, where b is
the batch size, and Tb is the time needed to process a batch:

Wbatch +Tb ≤ RT max,

Wbatch +Tb ≤
b

µ∗nb

.

Now that we have the optimal batch size Nbatch← b and
the maximum processing rate µ∗ under this configuration,
together with their corresponding Wbatch, we can simply treat
the target instance as a black box with processing rate µ∗.

Instance provisioning. We now solve the instance provi-
sioning problem using an online heuristic algorithm that con-
siders both long-term cost-effectiveness and the launch over-
head, while at the same time attaining high utilization of
running instances.

We first introduce the notations. Suppose there are n types
of instances that can be used for serving. At a given time t0,
let R = {r1,r2, · · · ,rn} be the set of running instances and
F = (F1, · · · ,Fm) the predicted maximum request arrival rate
for the next m steps, where Ft is the predicted maximum
rate in step t. For each instance type i, let Ci be the instance
capacity, measured by the maximum throughput of a given
model (requests per hour). Let Pi be its unit price, and Oi its
launch overhead, i.e., cost due to the instance provisioning
latency. Finally, let I be the set of available instance types.
Given R, F , I and the target SLO, our problem is to determine
what instances to launch and which instances to destroy at t0,
so as to minimize the cost while meeting the target SLO.

The challenge of finding the optimal solution in the long
run is how to deal with the running instances at t0. They may
not be the most cost-effective in the next m steps, yet keeping
using them avoids additional launch overhead. We propose a
greedy solution in Algorithm 1. Our intuition is to greedily
find the most cost-effective instance from time period t0 to tm
considering both the pay-as-you-go fee and launch overhead.
The running instances at t0 can be treated as special ones
without launch overhead.

Algorithm 1 Greedy Algorithm

procedure SCHEDULE(F,R, I,SLO)
S← S∪R ⊲ Running instances are treated as special ones

with zero launch overhead
for all instance i in S do

if instance i cannot meet SLO requirement then

S = S\{i} ⊲ Remove i from S

if S = /0 then

Report error ⊲ No candidate instance can meet SLO

instance_plan← /0 ⊲ initialize provisioning plan
FILL(F,S, instance_plan)
Launch instances in instance_plan but not in R

Destroy instances in R but not in instance_plan

procedure FILL(F,S, instance_plan)
Csum← total capacity of all instance i in instance_plan

for t = 1 to m do

Λt = Ft −Csum ⊲ Unfulfilled requests predicted at step t

if Λτ ≤ 0 then ⊲ Planned capacity is enough at step τ

return
Find the largest e such that there are unfulfilled requests from

steps τ to e, i.e., Λt ≤ 0 for all τ≤ t ≤ e

min_cost← ∞ ⊲ Greedily search the instance with the lowest
per-request cost to cover unfilled requests from τ to e

for all instance type i ∈ S do

cost← (Oi +(e− τ)Pi)/N, where N is the number of un-
fulfilled requests that will be served by an instance i in [τ,e]

if cost < min_cost then

min_cost← cost

j← i

instance_plan← instance_plan∪{ j}
FILL(F,S, instance_plan)

In our algorithm, assuming most instances can get ready
in τ time units after launching, we use the predicted load at
t0 + τ as the provisioning target, as it is safe to make instance
provisioning decisions τ time units in advance. The values of
τ can be easily adjusted based on the actual scenario. In our
setup, τ is set to 5 minutes, and the scheduling time unit is set
to 1 minute. In this case, the scheduling decisions are made
every minute, targeting the load in 5 minutes. The launching
requests should be sent right away once the instance_plan is
ready, while destroying requests should be sent after a prede-
fined cool-down period to ensure better service quality [59].

It is worth mentioning that Algorithm 1 trivially meets the
SLO requirement by ensuring that the latency performance of
each selected instance comply to the target SLO individually.

4.4 SLO tracking

The heuristic in Algorithm 1 plans instance capacity based
on predictions. Yet not all demand surges are predictable,
and such surges would result in SLO violations if solely re-
lying on proactive provisioning [59]. To further improve the
SLO compliance, MArk actively monitors request latency,

1056 2019 USENIX Annual Technical Conference USENIX Association

and reactively scales the cluster as soon as SLO violations
are detected. MArk constantly checks if the last M requests
satisfy the SLO requirements, if not, L instances of type T

will be launched (c5.large by default). All those parameters
can be tuned for specific models and SLO requirements.

4.5 Spot Instance and Lambda Cold Start

Use of spot instances. Note that Algorithm 1 does not differ-
entiate between on-demand and spot instances, which allows
MArk to exploit the price discount of spot instances. However,
the adoption of spot instances poses the challenge of instance
interruptions. Although the interruption of a spot instance will
be notified 2 minutes in advance, such a grace period may
not be long enough for a substitute spot instance to get ready.
The question is how can we handle the outstanding requests
in the presence of instance interruptions? Lambda seems to
be a choice, but it would take a toll on the latency and cost.

Our answer to this challenge is the burstable instance. As
shown in §3.2, burstable instances are cheap instances which
can sustain full utilization for about 30 minutes. The low cost
and high peak performance make them a perfect fit for tran-
sient backups in case of short-term interruptions. Moreover,
burstable instances can be resumed from stopped state in less
than 2 minutes thanks to their small sizes. Therefore, when
we use spot instances with MArk, we reserve a few stopped
burstable instances as cold standbys. Once MArk receives
interruption notices, it resumes the corresponding amount of
burstable instances to handle the transient requests until the
regular spot instances capacity is back to normal, after which
those burstable instances are stopped.

Lambda cold start. Another potential challenge MArk
faces is the cold starts in Lambda [71]. Every time a new
Lambda instance is launched, it needs to load the ML model,
framework library and code in memory, which results in a
much longer inference delay. Nevertheless, cold starts only oc-
cur when the request rate exceeds the concurrency, measured
by the number of currently available lambda instances [32,73].
Existing benchmarking shows that a Lambda instance is re-
cycled after it stays inactive for 45 to 60 minutes [31]. Our
evaluations further confirm that, with more than 3 million
requests, the cold start rate never exceeds 0.23%. Therefore,
the latency impact of cold starts is limited. The cost impact is
also negligible. Our profiling shows that $1 can spin up 7K
inception-v3 Lambda instances, which is capable of serving
more than 20K requests per second. Algorithm 1 hence does
not consider the cost impact of Lambda cold starts.

Despite the negligible impacts of Lambda cold start, our
implementation employs strategical concurrency warm-up to
further amortize its impact. When a potential Lambda request
surge is expected, such as spot interruptions and unexpected
workload surges, MArk sends concurrent pings to Lambda to
warm up more instances as described in [32].

Table 4: ML models and frameworks used in evaluation.

Model Type Framework Size
Inception-v3 Image Classification Tensorflow Serving 45MB
NASNet Image Classification Keras 343MB
LSTM-ptb Language Modeling MXNet Model Server 16MB
OpenNMT-ende Machine Translation Tensorflow Serving 330MB

5 Experimental Evaluation

We have prototyped the proposed MArk system and con-
ducted extensive experimental evaluations on AWS to vali-
date its effectiveness and robustness. We first compare the
performance of MArk using on-demand instances and spot in-
stances respectively with the premier industrial ML platform
SageMaker against production traces from Twitter. To ensure
MArk’s performance does not mainly rely on prediction ac-
curacy, we then examine whether MArk is able to maintain
its advantage under unpredictable, highly bursty workload.
After that, we run a few microbenchmarks to demonstrate the
robustness of MArk in terms of handling spot interruptions,
and the ability to handle unexpected demand surges.

5.1 Evaluation Setup

MArk. We have prototyped MArk on top of Amazon EC2
and Lambda services in two versions, MArk-ondemand which
only uses on-demand instances, and MArk-spot which uses
spot instances with interruption-tolerant mechanism, i.e., us-
ing burstable servers for smooth transition during unexpected
instance interruption (§4.5).

Testbed. We use AWS as the testbed for conducting exten-
sive experiments. The types of instance used in our evalua-
tion include all the c5 and m5 instances as examples of CPU
instances and p2.xlarge instances as an example of GPU ac-
celerators. In our experiments, we used up to 42 c5 instances,
10 m5 instances, and 12 p2.xlarge instances.

ML models. We use four popular ML models that are of
various sizes and cover diverse domains deployed in three
popular ML serving software frameworks to evaluate MArk’s
performance, which are summarized in Table 4. To config-
ure the batching of the ML models on EC2 instance, we
performed lightweight profiling following the instructions de-
tailed in §4.3. The optimal batching hyperparameters Wbatch

and Nbatch for p2.xlarge instance found by our tuning al-
gorithm outlined in §4.3 are 200ms and 8 for Inception-v3,
750ms and 16 for NASNet, 490ms and 16 for OpenNMT-ende.
For LSTM-ptb, we only performed experiments on CPU as
MXNet Model Server does not support batching at the time
of writing. For OpenNMT-ende on CPU instance, the optimal
batching hyperparameter Nbatch is found to be 2, and Wbatch is
set accordingly. For the other models on CPU instance, we do
not use batching as it does not bring benefits (see Fig. 2).

SLO. Recall that the SLO requirement is specified as at

USENIX Association 2019 USENIX Annual Technical Conference 1057

200 250 300 350 400
2000

3000

4000

5000
truth

predicted

(a) Twitter

50 100 150 200

1000

2000

3000

4000
truth

predicted

(b) MMPP

Figure 5: Snapshots of the arrival process using Twitter and
MMPP with the prediction results of LSTM based algorithm.

least SLmin percent of requests must be served in RTmax time
(§4.1). We set SLmin to 98% for all models, and set RTmax as
600ms, 1000ms, 100ms, and 1400ms for Inception-v3, NAS-
Net, LSTM-ptb, and OpenNMT-ende respectively.

Workload. In our evaluation, we drive the arrival process
of ML workloads in two different ways. First, as there is no
publicly available traces for ML serving, we synthesize ML
requests based on the tweets traces from Twitter [20]. We
believe that the Twitter traces serve as a good benchmark,
as it represents a popular web service with highly dynamic
load. The trace exhibits typically characteristics of ML in-
ference workloads, containing recurring patterns (e.g., hour
of the day, day of the week) as well as unpredictable load
spikes (e.g., breaking news). In particular, the peak request
rate in the traces is 4 times higher than the valley, a result of
transient demand surges commonly found in industrial-scale
web applications. Fig. 5a(a) illustrates a snapshot of the trace.

Second, to further evaluate the performance sensitivity of
MArk w.r.t the workload, we synthesize random and bursty
ML request load using Markov-Modulated Poisson process

(MMPP) [28,35,60]. The load generated by MMPP are highly
unpredictable, as the occurrence and duration of demand
surges are completely random, as shown in Fig. 5b.

In summary, we use the Twitter traces to evaluate how well
MArk performs against synthesized real workload that can
be largely predicted. Using MMPP-generated workload, we
stress test MArk’s performance in the presence of frequent,
unpredictable load spikes.

Baseline. We use SageMaker [13] as the baseline for the eval-
uation. SageMaker is AWS’s leading ML training and hosting
system. SageMaker hosting employs AWS’s new target track-
ing autoscaling policy [16,18]. Given the dynamics in request
arrival rate (i.e., the arrival rate can increase more than double
in just a few minutes), to ensure service quality, we follow
the AWS guidelines [16] and set the over-provisioning factor
to 2 for SageMaker. We will show in Fig. 7 that even so the
over-provisioning is still incapable of handling the volatile
workload of the Twitter traces.

MO MS SM
Serving Options

200

400

600

800

la
te

n
c
y
 (

m
s
)

mean

median

(a) Latency of Inception-v3 on TFS

MO MS SM
Serving Options

600

800

1000

1200

1400

la
te

n
c
y
 (

m
s
)

mean

median

(b) Latency of NASNet on Keras

MO MS SM
Serving Options

0

20

40

60

80

100

la
te

n
c
y
 (

m
s
)

mean

median

(c) Latency of LSTM-ptb on MMS

MO MS SM
Serving Options

1000

2000

3000

4000

la
te

n
c
y
 (

m
s
)

mean

median

(d) Latency of OpneNMT on TFS

Figure 6: Latency comparison of MArk-ondemand (MO),
MArk-spot (MS), and SageMaker (SM) on 4 ML models
using Twitter workload.

5.2 Macrobenchmarks

Workload prediction. For Twitter traces, we use the data
of the first 5 months to train the workload prediction model.
For MMPP-generated arrival process, we use a period of 24-
hour data for training. Fig. 5b demonstrates snapshots of
the prediction results. We see that the prediction accuracy is
in general good for the Twitter traces, yet very poor for the
MMPP case. Since striving for the best workload prediction
is NOT the focus of this paper, and we mainly use the LSTM
based algorithm as an example of the pluggable workload
prediction component, we do not provide detailed evaluation
of the prediction algorithm in the interest of space.

Experimental results using Twitter traces. We first com-
pare MArk-ondemand, MArk-spot, and SageMaker on the
ML models described in §5.1 by feeding the arrival rate ex-
tracted from Twitter traces. The experiments were performed
on AWS spanning more than 8 hours each. We report two
metrics: request latency in Fig. 6, and cost breakdown in Ta-
ble 5. The request latency is measured as the time between
request arriving at the serving system and getting response
back, while the cost is the charge billed by AWS. The compar-
ison results suggest that MArk can significantly reduce both
the cost and latency compared with SageMaker. For cost re-
duction, compared with SageMaker, MArk-ondemand respec-
tively achieves 3.63×, 2.79×, 2.41×, and 3.15× for the four
ML models; MArk-spot achieves 6.21×, 5.91×, 6.64×, and
7.83×, respectively. For latency, MArk-ondemand achieves
up to 57% reduction and MArk-spot achieves up to 60% re-
duction compared with SageMaker.

The latency advantage of MArk over SageMaker comes
in three-fold. First, with appropriate batching configuration,

1058 2019 USENIX Annual Technical Conference USENIX Association

Table 5: Cost ($) comparison of MArk-ondemand (MO),
MArk-spot (MS), and SageMaker (SM) on 4 ML models
using Twitter workload.

Setting
Inception-v3 NASNet

MO MS SM MO MS SM
EC2 20.94 9.83 80.98 24.21 10.71 68.1

Lambda 1.34 3.2 NA 0.19 0.81 NA
Total 22.28 13.03 80.98 24.40 11.52 68.1

Setting
LSTM-ptb OpenNMT-ende

MO MS SM MO MS SM
EC2 6.17 2.24 14.9 27.54 10.79 87.1

Lambda 0 0.04 NA 0.12 0.33 NA
Total 6.17 2.28 14.9 27.66 11.12 87.1

GPU instances can reduce the overall latency by performing
more efficient parallel computation. Second, the SLO-aware
design of MArk helps reduce the queuing delay. In addition,
the predictive scaling and SLO-awareness together form an
efficient hybrid approach that enjoys the benefits in both proac-
tive and reactive designs. It is worth pointing out the different
performance behaviors between MArk-ondemand and MArk-
spot. As shown in the latency box plots in Fig. 6, MArk-spot
has longer latency tails, since more requests are handled by
Lambda compared with MArk-ondemand, in case of interrup-
tions. However, the average and median latencies of MArk-
spot are usually the same or even better than MArk-ondemand.
This is because in spot market, the performance-cost ratio is
highly dynamic, which allows MArk-spot to opportunistically
use large instances and GPU instances at cheaper price than
on-demand, leading to better latency performance.

MArk’s cost reduction comes from the following aspects.
First, predictive scaling together with Lambda services brings
a more judicious over-provisioning design that can reduce
the cost. The 2× cost reduction over SageMaker in MArk-
ondemand using only CPU instances for LSTM-ptb is a good
example. Second, GPU instances can further reduce the cost
during high arrival rate as batching increases the efficiency of
computing. The cost reduction is more significant for Open-
NMT as it benefits the most from batching as shown in Fig. 2d.
MArk-spot further brings down the cost by enjoying the spot
market discounts. Note that although Lambda service used
by MArk is expensive in price, but the cost of Lambda can be
well justified by enabling more judicious over-provisioning.

We have also performed a case study of SLO compliance
and report the Complementary Cumulative Distribution Func-

tion (CCDF) of request latency in Fig. 7. As expected, MArk
managed to maintain its compliance with SLO requirements,
thanks to the SLO-aware design. SageMaker, on the other
hand, is SLO-oblivious, so the queuing delay adds up during
high arrival periods, and the SLO is violated.

Experimental results using MMPP-generated load. Next
we evaluate MArk using the more challenging, less pre-
dictable MMPP workload. We still use the same four ML
models, and each experiment lasts about 4 hours on AWS. In

MRK TWT SM TWT MRK MP SM MP

100 600

latency(ms)

100

0.88
3.89

0.01

31.72

C
C

D
F
 (

%
)

(a) Inception-v3

200 1000

latency(ms)

100

10.41

0.01

C
C

D
F
 (

%
)

(b) NASNet

100 1000

latency(ms)

100

1.63

0.11

C
C

D
F
 (

%
)

(c) LSTM-ptb

700 1400

latency(ms)

100

0

10.8

C
C

D
F
 (

%
)

(d) OpneNMT

Figure 7: CCDF of latency comparison between MArk and
SageMaker. RTmax is drawn as a black dashed vertical line (the
black dashed horizontal line shows the corresponding CCDF
value of RTmax). MRK and SM represents MArk and Sage-
Maker, while TWT and MP represents Twitter and MMPP
workload respectively.

the interest of space, we only demonstrate the SLO compli-
ance results in Fig. 7. Fig. 7a shows that the SLO compliance
of SageMaker is significantly degraded from Twitter case to
MMPP case due to the much more dynamic and bursty be-
haviors in MMPP. However, MArk can still meet the SLO
requirements even when the workload is highly dynamic and
unpredictable, thanks to the SLO Monitor that can detect the
failure of proactive prediction and timely add backup ma-
chines based on the feedback control algorithm. Note that
we only evaluated SageMaker with MMPP-driven arrival pro-
cess on Inception-v3 model as it is too expensive for us to
run all of them. However, given the SLO-oblivious nature of
SageMaker, we expect the behavior would be similar.

5.3 Microbenchmarks

In this section, we evaluate the robustness of MArk by taking
a closer look at how MArk handles unexpected demand surges
and spot interruptions.

Robustness against unexpected surge. MArk harvests per-
formance and cost benefits by using a judicious over-
provisioning scheme. One important question is whether
MArk can handle unexpected demand surges well in the
presence of unforeseeable flash crowds or poor workload
prediction accuracy. To answer this question, we increase the
request rate for LSTM-ptb serving by 50%, 75%, and 100% in
2 minutes and compare the latency over time between MArk

USENIX Association 2019 USENIX Annual Technical Conference 1059

0 10 20 30

time slot (min)

0

50

100

150

200

250

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 50% MArk

50% SageMaker

(a) 50% surge in 2 min

0 10 20 30

time slot (min)

0

50

100

150

200

250

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 75% SageMaker

75% MArk

(b) 75% surge in 2 min

0 10 20 30

time slot (min)

0

100

200

300

a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 100% MArk

100% SageMaker

(c) 100% surge in 2 min

1 3 5 7 9 11 13 15 17 19

time slot (min)

140

160

180

200

220

240
a
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
) 40%

20%

80%

(d) spot instance interruption

Figure 8: Microbenchmark results. (a), (b), (c): The latency
change comparison during unexpected demand surge between
MArk and SageMaker, where the surge starts at the 11th min
shown by the dashed line. (d): The latency change when differ-
ent percentages of spot instances are interrupted in MArk-spot,
where the interruption notice is received at the 7th min.

and SageMaker in Figs. 8a, 8b, and 8c. 3 Since the surge is
unpredictable, both MArk and SageMaker handle it reactively.
The results suggest that MArk acts faster and effectively than
SageMaker during the unforeseeable surge, i.e., the increased
latency period and amount are much smaller, thanks to the
Lambda-based fallback mechanism, which can immediately
take over and cap the latency to prevent queue building up
like in SageMaker. In addition, MArk’s SLO Monitor can
detect the SLO violations and issue backup instance requests
right away to adapt to the new arrival rate, while SageMaker
is only able to react in the next scaling cycle.

Robustness against spot interruption. MArk-spot utilizes
spot instances to reduce the cost. However, the interruption
of spot instance can cause performance degradation if not
handled properly. We evaluate MArk-spot by zooming in
the interruption handling periods under different interruption
ratio of instances. We launched a 20-instance Inception-v3
cluster, and manually interrupted 20%, 40%, and 80% of the
instances respectively. Fig. 8d illustrates the latency change
during the interruption. The interruption happens at the 7th
minute (vertical dashed line), and MArk resumes t2 instances
as transient resources upon receiving interruption notice. The
proactive controller then adjusts the provisioning plan and
requests new instances. At the 13th minute new spot instances
are ready, and the latency goes back to normal. The average
latency drops during transient period because burstable t2 in-
stances can have temporal boosted performance as discussed

3Given that we only compare latency here, we show the results of MArk-
spot as the latency results of MArk-ondemand can only be better.

in §3.2. The short latency bump at the 13th minute is due to
the switching overhead (i.e., warm up of new instances).

To sum up, the results above confirm that MArk can handle
unexpected surge and spot interruption robustly.

6 Discussion

Cloud platform. The measurements and evaluations in this
paper are mainly based on AWS. However, the main design
of MArk can be generally extended to other major cloud
platforms, as they offer both IaaS and FaaS services, as well as
flexible pricing models. Nevertheless, some hyperparameters
used in the algorithm are platform-dependent, and must be
re-tuned. Also, we have not considered reserved instances, as
they require a long-term usage commitment. We believe they
will bring down the cost of serving stable inference demands
in a long run, and will leave it as a future work.

Large models. Deep learning models are becoming increas-
ingly large and may not fit into the memory of Lambda (or
even IaaS) instances. A possible solution goes to distributed
inference under the model parallel scheme, which is not sup-
ported in our current design. We will leave it as a future work.

Hardware accelerator. We used the most common ML accel-
erator GPU as an example of utilizing hardware accelerators.
The same batching formulation can be applied to other accel-
erators (e.g., FPGA) as they benefit from batching similarly.

MArk’s architecture requires a master machine to make
provisioning decisions. While such design has limitations
on scalability and is vulnerable to the single point of failure,
these problems can be easily addressed with mature industrial
solutions such as Zookeeper [46].

7 Concluding Remark

In this paper, we conducted a systematic study of serving
ML models on cloud and concluded that combining FaaS
and IaaS can achieve scalable ML serving with low over-
provisioning cost. Driven by the unique characteristics of ML
model serving, we proposed MArk, a cost-effective and SLO-
aware ML serving system. We prototyped MArk on AWS
and showed that compared with the premier autoscaling ML
platform SageMaker, MArk yields significant cost reduction
(up to 7.8×) while complying with the SLO requirements
with even better latency performance.

Acknowledgement

This work was supported in part by RGC ECS grant 26213818,
NSF grant CCF-1756013, and IIS-1838024 (using resources
provided by AWS as part of the NSF BIGDATA program).
Chengliang Zhang and Minchen Yu were supported by the
Hong Kong PhD Fellowship Scheme and the Huawei PhD
Fellowship Scheme, respectively.

1060 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Amazon EC2. https://aws.amazon.com/ec2/, 2018.

[2] Amazon ECS. https://aws.amazon.com/ecs/, 2018.

[3] AWS Lambda. https://aws.amazon.com/lambda/, 2018.

[4] Docker. https://www.docker.com, 2018.

[5] Google Cloud Functions. https://cloud.google.com/

functions/, 2018.

[6] Google Kubernetes Engine. https://cloud.google.com/

kubernetes-engine/, 2018.

[7] PredictionIO. https://predictionio.apache.org, 2018.

[8] RedisML. https://github.com/RedisLabsModules/redis-ml,
2018.

[9] ALI-ELDIN, A., KIHL, M., TORDSSON, J., AND ELMROTH, E. Ef-
ficient provisioning of bursty scientific workloads on the cloud using
adaptive elasticity control. In Proceedings of the 3rd ACM Workshop

on Scientific Cloud Computing (2012).

[10] ALI-ELDIN, A., TORDSSON, J., AND ELMROTH, E. An adaptive
hybrid elasticity controller for cloud infrastructures. In IEEE Network

Operations and Management Symposium (2012).

[11] AMAZON. Amazon Web Services. https://aws.amazon.com/,
2018.

[12] AMAZON. AWS autoscaling. https://aws.amazon.com/

autoscaling/, 2018.

[13] AMAZON. Build, train, and deploy machine learning models at scale.
https://aws.amazon.com/sagemaker/, 2018.

[14] AMAZON. Configuring Lambda functions. https://docs.aws.

amazon.com/lambda/latest/dg/resource-model.html, 2018.

[15] AMAZON. Dynamic scaling for Amazon EC2 auto scaling. https:
//amzn.to/2W2jvhc, 2018.

[16] AMAZON. Load testing for variant automatic scaling.
https://docs.aws.amazon.com/sagemaker/latest/dg/

endpoint-scaling-loadtest.html, 2018.

[17] AMAZON. New Amazon EC2 spot pricing model: Simplified purchas-
ing without bidding and fewer interruptions. https://aws.amazon.
com/blogs/compute/new-amazon-ec2-spot-pricing/, 2018.

[18] AMAZON. Target tracking scaling policies for Amazon EC2
auto scaling. https://docs.aws.amazon.com/autoscaling/ec2/
userguide/as-scaling-target-tracking.html, 2018.

[19] ANIELLO, L., BONOMI, S., LOMBARDI, F., ZELLI, A., AND BAL-
DONI, R. An architecture for automatic scaling of replicated services.
In Networked Systems. Springer, 2014, pp. 122–137.

[20] ARCHIVETEAM. Twitter streaming traces, 2017.

[21] AWS. Amazon EC2 reserved instances. https://aws.amazon.com/
ec2/pricing/reserved-instances/, 2018.

[22] AWS. Burstable performance instances. https://amzn.to/2APg4hG,
2018.

[23] AWS. Right sizing: Provisioning instances to match workloads. https:
//amzn.to/2VdIiK9, 2018.

[24] AWSLABS. MXNet model server. https://github.com/awslabs/
mxnet-model-server, 2018.

[25] BARRETT, E., HOWLEY, E., AND DUGGAN, J. Applying reinforce-
ment learning towards automating resource allocation and application
scalability in the cloud. Concurrency and Computation: Practice and

Experience 25, 12 (2013), 1656–1674.

[26] BERGSTRA, J., BASTIEN, F., BREULEUX, O., LAMBLIN, P., PAS-
CANU, R., DELALLEAU, O., DESJARDINS, G., WARDE-FARLEY, D.,
GOODFELLOW, I., BERGERON, A., ET AL. Theano: Deep learning on
GPUs with Python. In NeuralPS, Big Learning Workshop (2011).

[27] BODÍK, P., GRIFFITH, R., SUTTON, C., FOX, A., JORDAN, M. I.,
AND PATTERSON, D. A. Statistical machine learning makes automatic
control practical for internet datacenters. In USENIX HotCloud (2009).

[28] CASALE, G., ZHANG, E. Z., AND SMIRNI, E. Trace data characteri-
zation and fitting for markov modeling. Perform. Eval. 67, 2 (2010),
61–79.

[29] CHOLLET, F., ET AL. Keras: Deep learning library for Theano and
TensorFlow. https://keras.io, 2015.

[30] CRANKSHAW, D., WANG, X., ZHOU, G., FRANKLIN, M. J., GONZA-
LEZ, J. E., AND STOICA, I. Clipper: A low-latency online prediction
serving system. In NSDI (2017), pp. 613–627.

[31] CUI, Y. How long does AWS Lambda keep your idle functions around
before a cold start? https://bit.ly/2tb7bLJ, 2018.

[32] CUI, Y. I’m afraid you’re thinking about aws lambda cold starts all
wrong. https://bit.ly/2Q1rrcr, 2018.

[33] DOYLE, R. P., CHASE, J. S., ASAD, O. M., JIN, W., AND VAHDAT,
A. Model-based resource provisioning in a web service utility. In
USENIX Symposium on Internet Technologies and Systems (2003),
vol. 4, pp. 5–5.

[34] FANG, W., LU, Z., WU, J., AND CAO, Z. Rpps: a novel resource
prediction and provisioning scheme in cloud data center. In IEEE

International Conference on Services Computing (2012).

[35] FISCHER, W., AND MEIER-HELLSTERN, K. The Markov-modulated
Poisson process (MMPP) cookbook. Perform. Eval. 18, 2 (1993),
149–171.

[36] GERS, F. A., SCHMIDHUBER, J., AND CUMMINS, F. Learning to for-
get: Continual prediction with LSTM. In 9th International Conference

on Artificial Neural Networks (1999).

[37] GOOGLE. Google cloud. https://cloud.google.com/, 2018.

[38] GOOGLE. Google cloud autoscaling. https://cloud.google.com/
compute/docs/autoscaler/, 2018.

[39] GOOGLE. Kubernetes horizontal scaling. https://kubernetes.io/
docs/tasks/run-application/horizontal-pod-autoscale/,
2018.

[40] GOOGLE. Cloud TPU performance guide. https://cloud.google.
com/tpu/docs/performance-guide, 2019.

[41] GUJARATI, A., ELNIKETY, S., HE, Y., MCKINLEY, K. S., AND

BRANDENBURG, B. B. Swayam: distributed autoscaling to meet
slas of machine learning inference services with resource efficiency.
In Proceedings of ACM/IFIP/USENIX Middleware Conference (2017),
ACM, pp. 109–120.

[42] HAN, R., GHANEM, M. M., GUO, L., GUO, Y., AND OSMOND, M.
Enabling cost-aware and adaptive elasticity of multi-tier cloud applica-
tions. Future Generation Computer Systems 32 (2014), 82–98.

[43] HARLAP, A., TUMANOV, A., CHUNG, A., GANGER, G. R., AND

GIBBONS, P. B. Proteus: Agile ML elasticity through tiered reliability
in dynamic resource markets. In Proceedings of ACM EuroSys (2017).

[44] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning
for image recognition. In Proceedings of IEEE CVPR (2016).

[45] HE, X., SHENOY, P., SITARAMAN, R., AND IRWIN, D. Cutting the
cost of hosting online services using cloud spot markets. In Proceedings

of the 24th International Symposium on High-Performance Parallel

and Distributed Computing (2015), ACM, pp. 207–218.

[46] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B. Zookeeper:
Wait-free coordination for internet-scale systems. In Proceedings of

USENIX ATC (2010).

[47] KLEIN, G., KIM, Y., DENG, Y., SENELLART, J., AND RUSH, A. M.
Opennmt: Open-source toolkit for neural machine translation. arXiv

preprint arXiv:1701.02810 (2017).

USENIX Association 2019 USENIX Annual Technical Conference 1061

https://aws.amazon.com/ec2/
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://www.docker.com
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://predictionio.apache.org
https://github.com/RedisLabsModules/redis-ml
https://aws.amazon.com/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://amzn.to/2W2jvhc
https://amzn.to/2W2jvhc
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-loadtest.html
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-target-tracking.html
https://aws.amazon.com/ec2/pricing/reserved-instances/
https://aws.amazon.com/ec2/pricing/reserved-instances/
https://amzn.to/2APg4hG
https://amzn.to/2VdIiK9
https://amzn.to/2VdIiK9
https://github.com/awslabs/mxnet-model-server
https://github.com/awslabs/mxnet-model-server
https://keras.io
https://bit.ly/2tb7bLJ
https://bit.ly/2Q1rrcr
https://cloud.google.com/
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/tpu/docs/performance-guide
https://cloud.google.com/tpu/docs/performance-guide

[48] LEE, H., SATYAM, K., AND FOX, G. Evaluation of production server-
less computing environments. In Proceedings of IEEE CLOUD (2018).

[49] LEE, Y., SCOLARI, A., CHUN, B.-G., SANTAMBROGIO, M. D.,
WEIMER, M., AND INTERLANDI, M. PRETZEL: Opening the black
box of machine learning prediction serving systems. In Proceedings of

USENIX OSDI (2018).

[50] LEITNER, P., AND SCHEUNER, J. Bursting with possibilities: An
empirical study of credit-based bursting cloud instance types. In Pro-

ceedings of IEEE/ACM Utility and Cloud Computing (2015).

[51] MERITY, S., KESKAR, N. S., AND SOCHER, R. Regularizing and
optimizing LSTM language models. arXiv preprint arXiv:1708.02182

(2017).

[52] MICROSOFT. Microsoft Azure cloud computing platform & services.
https://azure.microsoft.com/en-us/, 2018.

[53] NIKRAVESH, A. Y., AJILA, S. A., AND LUNG, C.-H. Towards an
autonomic auto-scaling prediction system for cloud resource provision-
ing. In Proceedings of IEEE International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (2015).

[54] NVIDIA. NVIDIA TensorRT. https://developer.nvidia.com/
tensorrt, 2018.

[55] OLSTON, C., FIEDEL, N., GOROVOY, K., HARMSEN, J., LAO, L., LI,
F., RAJASHEKHAR, V., RAMESH, S., AND SOYKE, J. TensorFlow-
Serving: Flexible, high-performance ML serving. arXiv preprint

arXiv:1712.06139 (2017).

[56] PENG, Y., BAO, Y., CHEN, Y., WU, C., AND GUO, C. Optimus: an
efficient dynamic resource scheduler for deep learning clusters. In
Proceedings of ACM EuroSys (2018).

[57] PRODAN, R., AND NAE, V. Prediction-based real-time resource pro-
visioning for massively multiplayer online games. Future Generation

Computer Systems 25, 7 (2009), 785–793.

[58] QU, C., CALHEIROS, R. N., AND BUYYA, R. A reliable and cost-
efficient auto-scaling system for web applications using heterogeneous
spot instances. Journal of Network and Computer Applications 65

(2016), 167–180.

[59] QU, C., CALHEIROS, R. N., AND BUYYA, R. Auto-scaling web
applications in clouds: A taxonomy and survey. ACM Computing

Surveys (CSUR) 51, 4 (2018), 73.

[60] RAJABI, A., AND WONG, J. W. MMPP characterization of web
application traffic. In Proceedings of IEEE MASCOTS (2012).

[61] ROY, N., DUBEY, A., AND GOKHALE, A. Efficient autoscaling in the
cloud using predictive models for workload forecasting. In Proceedings

of IEEE CLOUD (2011).

[62] SANDERS, J., AND KANDROT, E. CUDA by example: an introduction

to general-purpose GPU programming. Addison-Wesley Professional,
2010.

[63] SHARMA, P., LEE, S., GUO, T., IRWIN, D., AND SHENOY, P.
Spotcheck: Designing a derivative iaas cloud on the spot market. In
Proceedings of ACM EuroSys (2015).

[64] SHI, X., CHEN, Z., WANG, H., YEUNG, D.-Y., WONG, W.-K., AND

WOO, W.-C. Convolutional lstm network: A machine learning ap-
proach for precipitation nowcasting. In Proc. NeuralPS (2015).

[65] SONG, B., YU, Y., ZHOU, Y., WANG, Z., AND DU, S. Host load
prediction with long short-term memory in cloud computing. The

Journal of Supercomputing (2017), 1–15.

[66] SZEGEDY, C., IOFFE, S., VANHOUCKE, V., AND ALEMI, A. A.
Inception-v4, inception-resnet and the impact of residual connections
on learning. In AAAI (2017), vol. 4, p. 12.

[67] SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS, J., AND WOJNA,
Z. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE CVPR (2016).

[68] TENSORFLOW. TensorFlow Serving batching guide. https://bit.
ly/2VOpb9O, 2018.

[69] TU, Z., LI, M., AND LIN, J. Pay-per-request deployment of neural
network models using serverless architectures. In Proceedings of

NAACL: Demonstrations (2018).

[70] URGAONKAR, B., SHENOY, P., CHANDRA, A., GOYAL, P., AND

WOOD, T. Agile dynamic provisioning of multi-tier internet appli-
cations. ACM Transactions on Autonomous and Adaptive Systems

(TAAS) 3, 1 (2008), 1.

[71] WANG, C., URGAONKAR, B., GUPTA, A., KESIDIS, G., AND LIANG,
Q. Exploiting spot and burstable instances for improving the cost-
efficacy of in-memory caches on the public cloud. In Proceedings of

ACM EuroSys (2017).

[72] WANG, W., WANG, S., GAO, J., ZHANG, M., CHEN, G., NG, T. K.,
AND OOI, B. C. Rafiki: Machine learning as an analytics service
system. arXiv preprint arXiv:1804.06087 (2018).

[73] YAN, F., REN, L., DUBOIS, D. J., CASALE, G., WEN, J., AND

SMIRNI, E. How to supercharge the amazon t2: Observations and
suggestions. In Proceedings of IEEE CLOUD (2017).

[74] YAN, F., RUWASE, O., HE, Y., AND SMIRNI, E. SERF: efficient
scheduling for fast deep neural network serving via judicious paral-
lelism. In Proceedings of IEEE/ACM SC16 (2016).

[75] ZHANG, H., STAFMAN, L., OR, A., AND FREEDMAN, M. J. SLAQ:
Quality-driven scheduling for distributed machine learning. In Pro-

ceedings of ACM SoCC (2017).

[76] ZOPH, B., VASUDEVAN, V., SHLENS, J., AND LE, Q. V. Learning
transferable architectures for scalable image recognition. arXiv preprint

arXiv:1707.07012 2, 6 (2017).

1062 2019 USENIX Annual Technical Conference USENIX Association

https://azure.microsoft.com/en-us/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://bit.ly/2VOpb9O
https://bit.ly/2VOpb9O

	Introduction
	Background and Related Work
	Machine Learning Model Serving
	Autoscaling Dynamic Workload in Cloud
	Cloud Provisioning Services

	Characterizing Model Serving in the Cloud
	What service to use: IaaS, CaaS, or FaaS?
	IaaS: Can we use burstable instances?
	IaaS: Big instances or small instances?
	IaaS: How does GPU compare with CPU?
	Characterization in Google Cloud
	Characterization Summary

	MArk
	Overview
	Workload Prediction
	Instance Provisioning and Batching
	SLO tracking
	Spot Instance and Lambda Cold Start

	Experimental Evaluation
	Evaluation Setup
	Macrobenchmarks
	Microbenchmarks

	Discussion
	Concluding Remark

