
RESEARCH ARTICLE Open Access

Marker assisted pyramiding of drought
yield QTLs into a popular Malaysian rice
cultivar, MR219
Noraziyah Abd Aziz Shamsudin1,2, B. P. Mallikarjuna Swamy2, Wickneswari Ratnam1, Ma. Teressa Sta. Cruz2,

Anitha Raman2 and Arvind Kumar2*

Abstract

Background: Three drought yield QTLs, qDTY2.2, qDTY3.1, and qDTY12.1 with consistent effect on grain yield under

reproductive stage drought stress were pyramided through marker assisted breeding with the objective of improving

the grain yield of the elite Malaysian rice cultivar MR219 under reproductive stage drought stress. Foreground selection

using QTL specific markers, recombinant selection using flanking markers, and background selection were performed.

BC1F3-derived lines with different combinations of qDTY2.2, qDTY3.1, and qDTY12.1 were evaluated under both reproductive

stage drought stress and non-stress during the dry seasons of 2013 and 2014 at IRRI.

Results: The grain yield reductions in the stress trials compared to non-stress trials ranged from 79 to 93 %. In the stress

trials, delay in days to flowering and reduction in plant height were observed. In both seasons, MR219 did not produce

any yield under stress, however it produced a yield of 5917 kg ha−1 during the 2013 dry season and 8319 kg ha−1 during

the 2014 dry season under non-stress. Selected introgressed lines gave a yield advantage of 903 to 2500 kg ha−1 over

MR219 under reproductive stage drought stress and a yield of more than 6900 kg ha−1 under non-stress during the 2014

dry season. Among lines with single qDTY, lines carrying qDTY2.2 provided a higher yield advantage under reproductive

stage drought stress in the MR219 background. Two-qDTY combinations (qDTY3.1+qDTY2.2 and qDTY3.1+qDTY12.1)

performed better than lines with three qDTY combinations, indicating the absence of positive interactions between the

three qDTYs.

Conclusion: We successfully developed drought-tolerant MR219 pyramided lines with a yield advantage of more

than 1500 kg ha−1. Differential yield advantages of different combinations of the qDTYs indicate a differential synergistic

relationship among qDTYs. This is the first report on the successful effect of qDTYs in increasing the yield under drought

in genetic backgrounds other than those in which the qDTYs were earlier identified.
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Background
Drought is the major constraint to rice production and

yield stability in rainfed rice-growing areas in many Asian

countries. The severity of drought varies with rainfall pat-

tern, irrigation source, soil type, water availability within

and between seasons, and stage of crop growth [1], caus-

ing the varied responses of rice cultivars in different years

and environments. In South and Southeast Asia as well as

in Africa, severe drought is observed almost every year,

which drastically affects rice production [2]. In Asia alone,

about 45 % of the total rice-growing areas have no assured

irrigation access and are subjected to frequent drought

[3]. Drought adversely affects the rice crop at all stages of

growth and early reproductive stage drought stress (RS),

especially during anthesis, has been found to result in

significant yield reduction as also observed in wheat

and barley [4, 5]. The reduction in rice yield is fre-

quently associated with the increased percentage of

spikelet sterility [6–8] and spikelet number per panicle

[9]. The degree of seed yield reduction due to water

* Correspondence: a.kumar@irri.org
2International Rice Research Institute, Los Banos DAPO BOX 7777, Metro Manila,

Philippines

Full list of author information is available at the end of the article

© 2016 Shamsudin et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Shamsudin et al. BMC Genetics  (2016) 17:30 

DOI 10.1186/s12863-016-0334-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-016-0334-0&domain=pdf
mailto:a.kumar@irri.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


deficit is highly dependent on the timing and duration

of stress [10]. Also, water deficit at the meiotic stage

has been reported to reduce the seed set in some culti-

vated rice varieties [11]. The ability of the rice crop to

withstand dry conditions and to reproduce in limited

water conditions is essential for rice production to still

prosper despite drought [12, 13]. It is, therefore, vital to

focus on the development of high yielding drought-

tolerant rice cultivars which have a targeted yield advan-

tage of at least 1000 kg ha−1 over popular and widely

adapted varieties under drought. However, breeding ef-

forts for drought-tolerant rice varieties are limited due to

factors such as the difficulty of defining a representative

RS condition as well as the low heritability (H) of yield

component traits such as spikelet sterility, relative water

content, root pulling force, root dry weight, and harvest

index under RS as these are highly influenced by multiple

genes, the environment, and the interrelation between

genotype and environment as well as interaction with

other abiotic and biotic stresses [14].

Marker assisted breeding (MAB) has provided new op-

portunities to introgress regions governing tolerance to

RS in drought-tolerant donors through careful QTL iden-

tification and fine mapping studies. At the International

Rice Research Institute (IRRI), traditional and improved

donors were used in developing mapping populations for

the identification of major qDTYs [15]. As a result, several

qDTYs with large and consistent effects such as qDTY1.1
[16, 17], qDTY2.1 [18], qDTY2.2 [19, 20], qDTY3.1 [18],

qDTY4.1 [20], qDTY6.1 [21], qDTY9.1 [20], qDTY10.1 [20],

and qDTY12.1 [22] were identified. Generally, these major

effect qDTYs have a genetic gain of 10 to 30 %, with a yield

advantage of 150 to 500 kg ha−1 under RS. However, to

provide more significant economic benefits to farmers, a

yield advantage of at least 1000 kg ha−1 is required [1]. In

the past few years, consistent efforts have been made to

introgress the identified qDTYs into drought-susceptible

mega-varieties through the MAB strategy.

Rice breeding programs in Malaysia have focused on de-

veloping high productivity rice varieties and have come up

with many high-yielding cultivars such as MR84, MR219,

and MR220. Most of these cultivars are susceptible to

drought. Several studies on the genetic diversity and the

morphological, biochemical, and physiological responses of

Malaysian rice germplasms under controlled drought envi-

ronments have been conducted. However, not many studies

were undertaken to improve the yield of current popular

varieties under drought or to develop new drought-tolerant

rice genotypes. Swamy et al. [20] reported that introgres-

sion lines with two and three qDTYs in an IR64 background

gave a yield advantage of 1200 to 2000 kg ha−1 under RS as

well as yields that were similar to that of IR64 under non-

stress (NS) conditions, yet the effect of the identified qDTYs

in diverse genetic backgrounds remains unknown. Thus, in

this study, three drought-tolerant improved lines developed

at IRRI and which have performed well under NS condi-

tions were used as qDTY donors. IR 84984-83-15-18-B is

the donor of qDTY12.1, the only qDTY for upland environ-

ment used in this study. This line was derived from a cross

between Way Rarem, a high-yielding drought-sensitive

Indonesian upland rice cultivar, and Vandana, a high-

yielding and drought-tolerant Indian upland rice cultivar.

Way Rarem belongs to the indica group while Vandana

has 50 % japonica and 50 % aus background. The qDTY12.1
QTL was flanked between RM28048 and RM511 on

chromosome 12. This QTL explained about 51 % of the

total genetic variance with an estimated additive effect of

172 kg ha−1 for yield observed under severe upland RS over

two years of field evaluation at IRRI [23]. IR 77298-14-1-2-

10 and IR 81896-B-B-195 are the donors of qDTY2.2 and

qDTY3.1, respectively, which were both identified under se-

vere lowland RS condition. IR 77298-14-1-2-10 was de-

rived from the cross between two indica varieties: AdaySel,

a drought-tolerant Indian rice cultivar, and IR64, a modern

cultivar grown in South Asia which is highly susceptible to

RS. qDTY2.2 was flanked between RM109 and RM279 on

chromosome 2 and explained 33 % of the genetic variance

under severe lowland RS [18]. IR 81896-B-B-195 was de-

rived from a cross between Apo, an improved indica

upland variety with high yield potential under aerobic

condition, and Swarna, a widely grown indica rainfed

lowland Indian rice cultivar [18, 24]. qDTY3.1 was

flanked between RM520 and RM16030 on chromosome

3, explaining about 31 % of the genetic variance for the

trait [18]. In the present study, the three qDTYs were

pyramided through stepwise marker assisted QTL pyra-

miding into the high-yielding Malaysian rice cultivar

MR219 with the objectives of (i) improving its yield

under drought, (ii) understanding the effect of different

QTLs in enhancing yield in the background of MR219

individually and in combinations, and (iii) gaining a

better understanding of QTL interactions to obtain

higher yield advantage under drought.

Result
Development of BC1F3 pyramided lines using marker

assisted breeding

The number of selected individuals in every generation of

BC1F3 development is shown in Fig. 1. In the 1st season,

96 % of the total F1:1A individuals from Cross 1, 94 % of

the total F1:1B individuals from Cross 2, and 96 % of the

total F1:1C individuals from Cross 3 amplified the alleles of

both parents (heterozygous). This indicated their true hy-

brid nature as confirmed using peak simple sequence re-

peat (SSR) markers at each qDTY locus (RM236 for

qDTY2.2, RM520 for qDTY3.1,, and RM511 for qDTY12.1).

In the 2nd season, Cross 4 was made to develop the F1(2)
population by crossing five confirmed F1:1A individuals
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with 20 confirmed F1:1B individuals. From 587 F1(2) individ-

uals genotyped, only 14 individuals showed donor alleles at

both the qDTY2.2 and qDTY3.1 loci when ran with the peak

and foreground SSR markers of these loci (OSR17, RM236,

RM12460, RM279, RM12569, RM12949, RM12992,

RM520, RM416, and DTY3-14). At the same time, 141

BC1F1:1C individuals from Cross 5 were also genotyped for

the presence of the qDTY12.1 locus using six peak and fore-

ground SSR markers (RM28076, RM28099, RM28130,

RM511, RM1261, and RM28166). However, only 24

BC1F1:1C individuals were amplified qDTY12.1 alleles.

In the 3rd season, Cross 6 was made to produce the F1(3)
population by crossing 24 BC1F1:1C selected individuals with

the five F1(2) individuals (IR 97992, IR 97995, IR 97998, IR

98001, and IR 98003). These five F1(2) individuals were se-

lected from the 14 F1(2) individuals with two qDTYs

(qDTY2.2+ qDTY3.1) as they had morphological characteris-

tics similar to that of MR219. In the 4th season, a total of

472 F1(3) individuals were genotyped for the presence of all

the three qDTY loci and 24 F1(3) individuals were amplified

specific alleles of all the three qDTYs. However, only four

F1(3) individuals which had similar morphological charac-

teristics as that of the recipient parent and with the higher

recipient parent genomes (83 % in IR 98001-7, 89 % in

IR 98003-130 and IR 98003-58, and 94 % in IR 98003-

257) were further backcrossed with MR219 to produce

the BC1F1 population.

In the 5th season, from the total of 1263 BC1F1 indi-

viduals genotyped, 104 individuals were amplified spe-

cific alleles of all the three qDTYs. However, only 18

BC1F1 individuals which had similar morphological char-

acteristics to that of MR219 were selected. These 18 se-

lected BC1F1 individuals were then genotyped with 48

background SSR markers, results of which showed that

the genome recovery varied from 83 % in IR99778-60 to

99 % in IR99784-4. Thus, these 18 selected BC1F1 indi-

viduals were selfed to generate a large number of BC1F2
seeds. In the 6th season, a total of 5677 BC1F2 individ-

uals obtained from the 18 individuals from the BC1F1
populations were genotyped for the presence of specific

Fig. 1 Crossing scheme for the development of BC1F5 MR219 pyramided lines and the number of plants selected at every generation
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alleles of all the three qDTY loci, and results showed

that 437 BC1F2 individuals were homozygotes at the dif-

ferent qDTY loci and their combinations. Furthermore,

only 33 BC1F2 individuals carried all the three qDTYs.

From a total of 437 BC1F2 individuals that were homozy-

gotes at different qDTY and their combinations, only

198 BC1F2 individuals were finally selected based on

their morphological similarity to MR219 and were fur-

ther advanced in the 7th season to develop 198 BC1F3
families of pyramided lines (PLs).

Imposition of drought stress

Water table depth in the experimental plots of the RS trials

during the dry season (DS) of 2013 and 2014 are shown in

Fig. 2. Daily rainfall data at the IRRI experimental field dur-

ing the months of January to April in 2013 DS and 2014 DS

were also taken (Fig. 3). In the 2013 DS, the total rainfall was

257.7 mm and the RS treatment was initiated in the 2nd

week of February while the stress trial was not irrigated until

February 12. However, the stress trials received 137.6 and

37.8 mm rainfall in the 3rd week of February and 1st week

of March, respectively, and only 0 to 15.5 mm rainfall from

then on up to the last week of April. In the 2014 DS, the RS

treatment was initiated also in the 2nd week of February and

the stress trial received only 43 mm total rainfall from the

day the stress was imposed until harvest. Ground water table

continued to decrease to up to 100 cm within a month until

harvest. Furthermore, the average water table depth during

the critical flowering stage was 100 cm in both seasons, indi-

cating that the crop faced severe RS in both seasons. Figure 4

shows the rice crop in its various growth stages in the RS tri-

als after stress imposition.

Validation of marker assisted breeding for drought

tolerance by phenotyping

Line means and heritability

The overall performance of the MR219 PLs and their recipi-

ent parent is shown in Table 2. Mean days to 50 % flowering

(DTF) in the MR219 PLs varied from 81 to 99 days in the

NS trials and 87 to 92 days in RS. Flowering was delayed by

6 to 9 days in the RS trials as compared to the NS trials.

Plant height (PH) ranged from 60 to 71 cm in the RS trials

and from 87 to 95 cm in the NS trials. RS reduced PH by 24

to 30 cm. The mean grain yield (GY) of PLs ranged from

397 to 920 kg ha−1 in the RS trials and from 6040 to

7120 kg ha−1 in the NS trials. The 86 to 93 % reduction in

yield showed that the MR219 PLs were subjected to severe

RS in both 2013 DS and 2014 DS. The H of DTF was high

in both NS and RS trials (Table 2). For PH, the H value was

low to moderate in the RS trials but moderate to high in the

NS trials. The H of GY was medium to high in the RS trials

and medium in the NS trials.

Fig. 2 Parching water table in stress trials; a during 2013 dry season; b during 2014 dry season
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Fig. 3 Daily rainfall during the dry season experiment period from January to April in 2013 and 2014

Fig. 4 Crop at various stages after stress imposition a after 3 weeks of transplanting; b at reproductive stage; c at severe stress showing leaf rolling
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Performance of promising drought tolerant pyramided lines

The yield performance of 16 most promising drought-

tolerant BC1F5 MR219 PLs is presented in Table 3. In

the 2013 DS and 2014 DS, the recipient parent, MR219,

did not flower in the RS trials. The differences in the

DTF of the MR219 PLs under NS and RS conditions

were considerable (86 to 94 days under NS and 92 to

105 days under RS). In the NS trials, the DTF for the

chosen MR219 PLs was relatively lower than that of

MR219 (data not shown). Differences in PH for the

chosen MR219 PLs under RS and NS were also notable

(82 to 101 under NS and 55 to 69 cm under RS). Mean

PH for the selected MR219 PLs in both RS and NS tri-

als was lower than that of MR219. The GY of selected

MR219 PLs ranged from 6947 to 11,672 kg ha−1 in the NS

trials and from 903 to 2523 kg ha−1 in the RS trials.

MR219 produced very little or no GY under RS. However,

under NS, the mean GY of MR219 ranged from 5917 to

8319 kg ha−1. Thus, the yield advantage of the PLs over

MR219 under RS ranged from 756 to 2521 kg ha−1 in the

2013 DS and from 923 to 2523 kg ha−1 in the 2014 DS. In

NS, most of these lines yielded similar to MR219 while

some lines recorded higher yields than MR219 (Table 3).

Performance of different combinations of qDTY

The mean GY of the MR219 PLs with single and different

combinations of qDTYs (QTL class – A, B, C, D, E, F, and

G) alongside the recipient parent (no QTL class) is pre-

sented in Table 4. Under RS, the mean GY for the PLs was

significantly higher than that of MR219. Generally, among

MR219 PLs with a single qDTY, the mean GY of Class G

(with qDTY2.2) was highest, followed by Class F (with

qDTY3.1) and Class E (with qDTY12.1). On the other hand,

among the PLs with two qDTYs, Class E (qDTY2.2 +

qDTY3.1) followed by Class C (qDTY12.1 + qDTY3.1) and

Class B (qDTY12.1 + qDTY2.2) provided a significant yield

advantage over MR219 under RS. However, under NS, the

yield levels of the recipient parent were higher compared

to other QTL classes. These results indicate that PLs with

qDTY/s were quite effective in enhancing GY under severe

RS conditions (Fig. 5).

Discussion
Selection of parents

Developing and improving rice varieties with high GY

under RS through different breeding strategies is neces-

sary for obtaining sustainable rice yields even as the fre-

quency and severity of drought are predicted to increase.

However, like in all breeding programmes to develop su-

perior lines, the selection of parents is a critical step. Until

now, only one study has reported on improving drought

tolerance in the Malaysian mega-variety MR219 which is

known to be highly sensitive to drought [25]. However,

the drought stress level used in the study was mild as the

yield reduction of improved lines in the RS trials was less

than 20 % compared to the control. According to [26], se-

vere levels of RS with more than 65 % yield reduction in

RS trials compared to control are necessary to identify

true drought-tolerant lines.

Despite having a high adaptability to drought, several

Malaysian traditional rice varieties and landraces usu-

ally carry undesirable traits such as low yield potential,

poor response to high-input management, and taller

plant type. One or more of these traits located close to

qDTY regions, thus becoming a potential linkage drag

in breeding for drought tolerance using conventional

approaches. Moreover, in quantitative traits such as GY

and PH, variability might be controlled by many minor

QTLs. Thus, introgression of several minor genes to

improve one quantitative trait is difficult to achieve due

to two reasons: (i) the effect of minor genes is regularly

inconsistent and (ii) there will be too many markers to

handle in the breeding program. Different QTLs segre-

gating in different mapping populations, QTL x genetic

background interaction, and QTL x environment inter-

action could be the reasons for the inconsistency in the

Fig. 5 Graph showing QTL classes (X axis) and mean grain yield (Y axis) of short (SD) and medium duration (MD) lines with MR219 as the recipient

parent. Trials were conducted during dry seasons of 2013 and 2014
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estimated QTL effects [27]. Thus, the selection of major

effect QTLs to be used in breeding programs is essential.

qDTY12.1 has shown the largest effect on GY under upland

RS conditions while qDTY2.2 and qDTY3.1 have shown the

larger effect on GY under lowland RS conditions [18, 22,

28]. It is interesting to note that these three qDTYs were

identified in severe levels of RS under field conditions.

Furthermore, qDTY2.2, qDTY3.1, and qDTY12.1 also exhib-

ited a consistent effect in different mapping populations.

The use of pre-breeding lines or near isogenic lines with

major effect QTL is the key to be successful QTL pyra-

miding [1, 29].

Pre-breeding lines that possess drought yield QTLs

coupled with appropriate plant type and high yield have

been generated at IRRI. These lines were produced by

crossing low-yielding but drought-tolerant donors with

high-yielding but drought-susceptible recipients [1]. In

this study, MR219 was used as recipient parent as it

carries desirable traits such as high yield potential, ap-

propriate PH, and moderate to high tolerance to multiple

pests and diseases. Pre-breeding lines in the background of

high-yielding mega-varieties with a major and consistent

effect qDTY, namely, IR 77298-14-1-2-10, IR 81896-B-B-

195, and IR 84984-83-15-18-B were used as donor parents.

Development of drought tolerant MR219 PLs using

stepwise MAB technique

MAB has been an effective and efficient strategy in crop

improvement as it speeds up and simplifies the selection

process especially for complex traits [30–32]. Several re-

searchers successfully pyramided QTLs/genes for multiple

disease resistance to provide a broader spectrum of resist-

ance than those conferred by a single QTL/gene [33–36].

Swamy and Kumar [1] reported that Vandana-

introgressed lines with qDTY12.1 showed a yield advan-

tage of only 500 kg ha−1 over the drought-tolerant

cultivar Vandana. Thus, introgression of only a single

qDTY into drought-susceptible mega-varieties may not

produce adequate yield increments under RS conditions.

In this study, several MR219 PLs gave 1000 kg ha−1 or

more yield in the RS trials. This result indicates that

marker-assisted QTL pyramiding of major-effect qDTYs

through backcross breeding is an appropriate strategy to

achieve an increase of at least 1000 kg ha−1 of GY under

RS conditions.

Marker assisted pyramiding can also enable breeders

to introgress two or more QTLs controlling various

traits associated with biotic and abiotic stresses in plants.

Frisch and Melchinger [37] concluded that the effective-

ness of marker assisted breeding/pyramiding depends on

the availability of closely linked markers and/or flanking

markers for the target locus, the size of the population

as well as the number of backcrosses, and the position

and number of background markers. However, another

study [38] indicated that the selection of the recipient

and donor parents was more crucial. MAB with a step-

wise screening technique was applied to select genotypes

with desirable genes/QTLs by reducing a number of se-

lected individuals in each step [35, 39].

In the present study, peak markers tightly-linked to the

QTL region were selected. The linkage drag was elimi-

nated using flanking markers while background markers

were used for the fast recovery of the recipient parent’s

genetic background [40]. Donor fragments of approxi-

mately 15 Mbp of the three drought yield QTLs, qDTY2.2
(10 Mbp), qDTY3.1 (1.7 Mbp), and qDTY12.1 (3.5 Mbp)

were introgressed into MR219 crosses. The PLs in which

all the qDTYs were successfully introgressed represented

about 3.8 % of the genome. With this size of the intro-

gressed fragments, linkage drag might have occurred and

affected the phenotype of the plants with qDTYs. This is

partly evident from the variability in the DTF of the

MR219 PLs as compared to the recipient parent. Dixit et

al. [41] reported that the qDTY2.2 and qDTY12.1 regions

were narrowed down, thus, introgression of these refined

QTL regions could minimize the undesirable linkage of

the qDTY donors.

The probability of obtaining at least one ideotype car-

rying homozygous loci in the F2 population is 4n, where

‘n’ is the number of target loci [42]. In the current study

though, only 14 (F1:2) individuals with two qDTYs

(qDTY2.2 + qDTY3.1) were identified from the total of

587 individuals produced in Cross 6. This indicates that

the ideotype plant was absent probably because the

crossing program involved four different genetic back-

grounds. Therefore, a greater number of the F1:2 popula-

tion is required to get one ideotype. Similarly in BC1F2
populations, only 33 individuals from the total of 5677

individuals with all three qDTYs in homozygous loci were

identified, which confirmed that at least a doubled popula-

tion size is required to get one desired ideotype. The same

observation was reported by [35]. As the QTL regions were

large, more than one marker for each QTL was used in

step-wise system for the foreground selection. The larger

size of the individual QTL regions as well as the necessity

to pyramid two or more QTLs to obtain a sufficient num-

ber of positive plants with combinations of qDTYs requires

maintaining a larger population than pyramiding genes/

QTLs having tightly linked markers.

Introgression of QTLs involved in stress tolerance often

induces undesirable traits from the donor parents. This

might be due to the lack of a precise knowledge of the key

genes underlying the QTLs controlling the target traits

[38]. Servin and Hospital [43] reported that two to four

markers on a chromosome of about 100 cM distance

could provide adequate coverage of the genome on

backcross programs through MAB simulation study. In

this study, at least four markers per chromosome with
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an average distance of 35 cM between markers were used

for background selection in the BC1F1 populations as rec-

ommended by [39, 40]. The selected BC1F1 MR219 PLs

had 83 to 99 % of the recipient genome.

Severity of reproductive stage drought stress trials

The level of drought in the 2013 DS and 2014 DS was

considered as severe based on the mean yield reduction of

more than 65 % as compared to NS (Table 2). The soil

showed a deep crack due to insufficient water moisture

(Figs. 2 and 4). In a different study, [44] reported yield re-

ductions of up to 70 % upon imposing drought for 15 days

at panicle initiation stage and 88 and 52 % reduction when

stress was introduced at flowering and grain filling stage,

respectively. Although [45] proposed that 50 % reduction

in yield is required to identify true drought-tolerant lines,

[46] did not, however, observe any response to selection in

screens that had a yield reduction of up to 56 %. They rec-

ommended that a screening protocol that could reduce

the mean yield by at least 65 % under RS as compared to

irrigated control is required in order to identify true

drought-tolerant lines.

Agronomic performance of MR219 PLs under RS and NS

conditions

Delay in flowering that was observed in the RS trials in

this study confirmed that water stress affected flowering

time. Similar results were reported by [16, 17, 19, 47–53].

MR219 was extremely sensitive to severe RS conditions

as it did not flower under RS. However, MR219 PLs were

less affected by RS probably due to the QTL alleles that ex-

hibited a tendency to reduce delay in flowering under stress

conditions. Similar results were observed in NS trials where

MR219 PLs flowered earlier than their recipient parent.

Bernier et al. [54] and Venuprasad et al. [19] showed that

qDTY12.1 and qDTY3.1 affected both GY and DTF under RS

conditions, suggesting that genes within these QTLs are

probably associated with early DTF. In this study, stress

was imposed 30 days after transplanting to ensure that even

lines with earliest flowering did not escape drought and that

the selected lines are truly drought tolerant.

Performance of identified improved drought tolerance PLs

Sixteen BC1F5 MR219 PLs with yield advantages of 903 to

2523 kg ha−1 under RS during the 2014 DS were identi-

fied. The selected MR219 PLs also performed well in the

NS trials. Two PLs, IR 99784-156-137-1-1 and IR 99784-

188-201-B-1, gave yield advantages of 1042 kg ha−1

and 2523 kg ha−1, respectively, under severe RS and

1653 kg ha−1 and 2391 kg ha−1 yield advantages over

MR219 under NS conditions. Comparison among the

chosen PLs showed that 75 % and 63 % of them carried

qDTY3.1 and qDTY2.2 either as a single qDTY or a combin-

ation with other qDTYs. PLs with qDTY12.1 either singly or

in combination with other qDTYs was the lowest (56 %).

However, no definite pattern could be assessed as to the

performance of selected lines under RS due to the inter-

action between QTLs and background genotyping. This

implies that QTL pyramiding using MAB technology is an

effective method to improve current mega-varieties and to

develop new rice cultivars that are tolerant to drought. PLs

with good yield potential and an appreciable yield under

RS can be effectively disseminated for cultivation by rice

farmers in drought-prone environments of Malaysia.

Performance of different combinations of qDTY

The higher mean GY of MR219 PLs compared to the re-

cipient parent MR219 under RS is an indication of the

positive effect of introgressed qDTYs under these condi-

tions. Mean comparisons of qDTY classes show that intro-

gressed lines with a single qDTY provided a significant

yield increase over MR219 under RS without any yield re-

duction in NS, indicating the positive effect of qDTY2.1,

qDTY3.1, and qDTY12.1 in the MR219 background to in-

crease yield under RS. These QTLs have been found to

show some effect in the background of the high-yielding

varieties IR 64 [20], Swarna, and TDK 1 [19, 55]. This is

the first report of introgression and yield increase pro-

duced by qDTY2.1, qDTY3.1, and qDTY12.1 in genetic back-

grounds other than varieties against which the individual

qDTYs were identified.

Mean comparisons of qDTY classes also show that

introgressed lines with two qDTYs (qDTY2.2 + qDTY3.1,

qDTY2.2 + qDTY12.1, and qDTY3.1 + qDTY12.1) provided

a significant yield advantage over MR219 under RS.

However, the yield advantage provided by combining

three qDTYs (qDTY2.2 + qDTY3.1 + qDTY12.1) was lower

than the two-qDTY combinations. This demonstrates

the absence of a positive interaction between three qDTYs

even though each shows a positive interaction with each

other. Mean comparisons of qDTY classes further reveal

the role of interaction between qDTYs and between

qDTYs and recipient genetic background. The results indi-

cate: (i) a non-linear interaction between multiple qDTYs

and (ii) the presence of a differential synergistic relation-

ship between qDTY combinations [20, 56]. The qDTY

combinations that provide higher yield advantage under

RS may vary from genotype to genotype due to qDTY x

qDTY and qDTY x genetic background interactions. The

results imply the necessity to identify qDTY combinations

with positive interaction against different genetic back-

grounds for their precise use in MAB.

Conclusion
Drought is a major challenge in achieving sustainable

world rice production in the rainfed ecosystems of Asia.

Breeding drought-tolerant rice cultivars can increase rice

production yields especially in rainfed ecosystems under
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drought stress. The identification and introgression of

QTL regions with a large and consistent effect on GY

under RS presents an opportunity to improve high-

yielding drought-susceptible mega-varieties through

MAB. The selected MR219 PLs developed in this study

conferred a yield advantage of 903 to 2523 kg ha−1

over their recipient parent under RS conditions and

maintained high yield potential similar to or higher

than MR219 under NS, indicating that drought toler-

ance can be successfully combined with high yield po-

tential in the background of semi-dwarf varieties.

Methods
Plant materials and breeding scheme for development of

BC1F5 population

All the plant materials including the mapping popula-

tions and PLs used in the study were developed at IRRI,

Philippines. A total of 198 BC1F3 and 525 BC1F5 PLs were

used in this study and were derived from the crossing of

the drought-susceptible Malaysian rice cultivar MR219

(recurrent parent) with three drought-tolerant donor par-

ents, namely IR 77298-14-1-2-10, IR 81896-B-B-195, and

IR 84984-83-15-18-B. MR219 is a high-yielding indica rice

cultivar with desirable traits such as short maturity, appro-

priate plant height with strong culms, and resistance to

blast and bacterial leaf blight, while the grain can be mar-

keted as a long-grain variety [57]. However, it is highly

susceptible to drought. The donor parents, meanwhile, are

the pre-breeding lines developed from mapping popula-

tions generated for QTL identification study by crossing

drought-susceptible mega-varieties with drought-tolerant

donors. Donor parents (Table 1) also carried desirable

traits such as high yield, appropriate plant height, and

medium to high resistance to pests and diseases as they

were in the background of mega-varieties.

The three qDTYs were introgressed into MR219 using

the QTL pyramiding technique as suggested by [39] and

[35] which involved six crosses, followed by a backcross

and four times of selfing thereafter (Fig. 1).

Genotyping and marker assisted breeding

The DNA marking work was conducted at the Molecu-

lar Marker Applications Laboratory (MMAL) of the

Plant Breeding, Genetics, and Biotechnology Division of

IRRI. Fresh leaves from all lines were collected and

freeze-dried. DNA extraction of leaf samples was carried

out using the modified CTAB protocol [58]. A total of

125 SSR markers linked to the three qDTY regions (fore-

ground selection) and an additional 711 SSR markers

distributed in the whole rice genome which are unlinked

to the qDTY regions (background selection) were tested

in a polymorphism survey. However, only three peak

markers and additional 13 flanking markers were found

to be polymorphic in the three qDTY regions and were

used in foreground selection in every generation. The

peak markers linked to the three qDTY regions on chro-

mosomes 2, 3, and 12 were RM236, RM520, and RM511,

respectively (Table 1). All SSR markers were assayed on

the MR219 rice population as described by [59]. The poly-

merase chain reaction products were separated in 6 % or

8 % non-denaturing polyacrylamide gel electrophoresis.

DNA fragments were then stained with SYBR Safe and vi-

sualized with UV trans-illuminator. DNA profiles from

such markers were scored in comparison with their par-

ents. Plant selection in each generation was dependent

on a number of plants that carried the target regions.

Step-wise marker assisted selection and phenotyping

technique was applied to select, to advance the chosen

plants, and to decrease the number of samples in every

generation.

Selection process

In this study, the selection process involved four steps.

First is the foreground selection for the MR219 popula-

tion where the qDTY2.2, qDTY3.1 and qDTY12.1 loci were

monitored by RM236, RM520, and RM511 markers, re-

spectively, which are tightly linked with those QTLs [18,

22]. Once the individuals with donor alleles at the peak

of the qDTY region/s were identified, these individuals

were genotyped with an additional three to six markers

flanking both sides of the qDTY region/s. This second

step is also known as recombinant selection and its main

purpose is to increase the efficiency of selection by redu-

cing linkage drag [40, 60]. Moreover, the use of flanking

markers for recombinant selection also assisted in recov-

ering the important traits of the recipient parent and in

minimizing the effects of linkage drag from the qDTY

donors. In the third step, the individuals which passed

the foreground and recombinant selections will undergo

phenotypic screening. Here, only individuals with de-

sired plant traits such as appropriate plant height (90 to

120 cm), long grains, and free of diseases were short

Table 1 Details on drought yield QTLs (qDTYs) used in the study

Recipient Donor Donor line used Ecosystem qDTY name Chromosome Interval Peak marker a R2

IR64 Adaysel IR77298-14-1-2-10 Lowland qDTY2.2 2 RM236-RM279 RM236 14 6

Swarna Apo IR81896-B-B-195 Lowland qDTY3.1 3 RM520-RM16030 RM520 30 27

Vandana Way Rarem IR84984-83-15-18-B Upland qDTY12.1 12 RM28048-RM511 RM511 47 33

Additive effect compared to trial mean (a, in percent), phenotypic variance (R2, in percent)
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Table 2 Means for days to flowering (DTF), plant height (PH) and grain yield (GY) of MR219 PLs as compared to MR219 under lowland reproductive stage drought stress and

non-stress conditions

Season/Year Stress Duration No. of MR219
PLs

DTF PH (cm) GY (kg ha-1)

Mean MR219 PLs Mean MR219 Trial H Mean MR219 PLs Mean MR219 Trial H Mean MR219 PLs RYR (%) Mean MR219 Trial H

DS2013 Non-stress Short 108 81 89 0.82 90 104 0.54 6040 93 6639 0.53

DS2013 Drought Short 108 87 - 0.81 60 - 0.27 397 - 0 0.76

DS2013 Non-stress Medium 90 85 91 0.75 95 91 0.75 6774 86 5917 0.54

DS2013 Drought Medium 90 92 - 0.88 71 - 0.36 920 - 0 0.87

DS2014 Non-stress Medium 525 99 100 0.86 87 97 0.7 7120 91 8319 0.68

DS2014 Drought Medium 525 90 - 0.78 60 - 0.52 672 - 0 0.58

MR219 did not flower under drought stress

Dry season (DS), Days to 50 % flowering (DTF), and plant height (PH, in cm), broad-sense heritability (H), grain yield (GY, in kg ha−1) and relative yield reduction in RS compared to NS (RYR, in percentage)
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listed. The first three steps of selection were performed

in every generation of development of the PLs. How-

ever, only in the BC1F1 generation, selected individuals

were also genotyped with background markers in order

to determine the percentage of the recipient parent

genome. In the fourth step, plants showing positive in-

teractions between QTLs/QTL combinations and back-

ground as evidenced by higher yield under drought

were selected.

Performance of pyramided lines

After genotyping, 198 BC1F3 (separated between short

and medium duration PLs) and 525 BC1F5 PLs with dif-

ferent qDTYs and their combinations were selected

based on similarity in morphological characteristics with

MR219. These 198 BC1F3 and 525 BC1F5 PLs were evalu-

ated together with their recipient and donor parents in

the field under lowland RS and NS conditions during the

2013 DS and 2014 DS. Field-based phenotyping trials were

conducted at the IRRI farms in lowland transplanted con-

ditions (IRRI, Los Banos, Philippines, 140 N 1210E, 21 m

above sea level). Lowland refers to field trials conducted

under flooded, puddled, and transplanted conditions. In

total, six lowland trials (three under RS and three under

NS) were conducted using this population. MR219 PLs

and MR219 were evaluated in an alpha lattice design with

two replications [61] in plot sizes of two rows of 5 m

length at 25 cm× 25 cm spacing. Missing hills were

replanted with stock seedlings within 10 days of trans-

planting. A total of 50 plants were maintained in each

plot. Inorganic fertilizers (N:P:K) were applied at the rate

of 90:30:30 kg ha−1. The post emergence herbicide Sofit

(pretilachlor 0.3 kg a.i. ha−1) was applied four days after

transplanting and hand weeding was done for weed control.

For the control of stem borers and other insects, Furadan

(carbofuran 1 kg a.i. ha−1) at five days after transplanting

and Cymbush (cypermethrin 1 kg a.i. ha−1) at 16 days after

transplanting were applied. To control snails, a mollusci-

cide, Bayluscide (niclosamide 0.25 kg a.i. ha−1) was also ap-

plied to the fields.

For the RS trials, the fields were irrigated to maintain

soil moisture at field capacity or above for four weeks after

transplanting. RS was imposed four weeks after trans-

planting by draining water from the field. Perforated PVC

pipes were placed at a 100-cm soil depth in four different

points in the field. Daily water table depth was measured

in the RS trials after stress initiation. Data on daily rainfall,

daily maximum and minimum temperature, and relative

humidity for the trial period were recorded. The fields

were allowed to dry until the soil cracked and the surface

was completely dry. When the target level of soil dried

and the check varieties as well as 70 % of the entries

showed severe leaf rolling, and the water table reached

below 100 cm and remained the same for about three

Table 3 QTL presence, and grain yield (GY) of 16 chosen best performers - across two seasons of lowland drought stress and non-stress

conditions

Line Duration in
2013DS

qDTY12.1 qDTY3.1 qDTY2.2 GY (kg ha−1)

DS2013 DS2014

RS NS RS NS

IR 99784-156-137-1-1 Medium - √ - 1362 6200 2523 10713

IR 99784-255-7-2-5 Medium √ √ - 1346 7783 1591 8383

IR 99784-188-202-1-2 Medium - √ √ 939 9431 1562 8369

IR 99784-188-202-1-1 Medium - √ √ 939 9431 1478 7937

IR 99784-255-68-1-5 Medium √ √ √ 1611 6905 1183 7782

IR 99784-188-202-1-3 Medium - √ √ 939 9431 1058 6947

IR 99784-255-55-2-5 Medium √ - √ 2073 8525 1049 7858

IR 99784-188-201-B-1 Medium √ - √ 977 8610 1042 9975

IR 99784-255-7-2-2 Medium √ √ - 1346 7783 983 9438

IR 99784-40-1-B-6 Medium - - √ 1164 8168 942 8254

IR 99784-11-35-2-2 Short - √ √ 1300 8633 - -

IR 99784-255-9-1-3 Medium √ √ - 888 8174 936 9014

IR 99784-156-87-1-9 Medium √ √ √ 923 5808 930 11672

IR 99784-188-179-1-2 Medium √ √ - 1459 9107 927 7419

IR 99784-11-8-1-5 Short - - √ 756 9573 - -

IR 99784-255-49-1-1 Medium √ √ - 2521 5832 903 8152

MR 219 - - - 13 5917 0 8322

MR219 did not flower under drought stress
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weeks, irrigation was introduced through flash flooding.

The fields were drained again after 24 h [19] to impose

the second cycle of stress. Parching water table was mea-

sured from all pipes every day after draining the field until

the crop reached 50 % maturity.

In the NS trials, 5 cm water level was maintained in

the fields throughout the crop season until draining be-

fore harvesting. The NS trials were conducted to obtain

the data on the performance of PLs under control condi-

tion to select lines combining high yield under NS and

considerably good yield under RS conditions.

Data collection

Data for DTF, PH, and GY were recorded from all trials.

DTF was recorded as the number of days from sowing till

the day when 50 % of the plants had flowering tillers. PH

(in cm) of three plants from each plot was measured at ma-

turity from ground level to the tip of the tallest tiller and

averaged for analysis. GY from each plot was harvested at

physiological maturity, dried to 14 % moisture content, and

weighed. The measured GY was then converted to kg ha−1.

Statistical analysis

Recorded data from the RS and NS trials were compiled

separately. Data from each trial were analyzed using CROP

STAT v7.2 and PB Tools v1.1.0 softwares (http://bbi.ir-

ri.org/products) based on a mixed model that considers

replications and blocks within replications as random effect

and the genotypes as fixed effect. Trial-wise broad-sense

heritability (H) for each trait was calculated as:

H ¼
σ
2
g

σ2
g þ σ2e=r

where σg
2 is genotypic variance, σe

2 is error variance, and

r is the number of replications.

Selection of drought-tolerant pyramided lines

BC1F5 PLs with different qDTY combinations that pro-

duced more than 900 kg ha−1 under RS but yielding simi-

lar or more than MR219 under NS were identified during

the 2014 DS. These identified PLs were classified as

drought tolerant. A total of 16 BC1F5 PLs were classified

as the most promising as they produced more stable and

consistent GY across the two dry seasons. The MR219

PLs with single and different combinations of qDTYs were

categorized into eight classes depending on whether they

possessed one (class E, F, and G), two (class B, C, and D)

or three (class A) qDTYs or none (class X).

QTL combinations class analysis

The performance of the genotype nested within the

QTL class in the block within the replicate is modelled

as follows:

yijkl ¼ μþ rk þ b rð Þkl þ qi þ g qð Þij þ eijkl

where μ is the population mean, rk is the effect of the kth

replicate, b(r)kl + qi is the effect of the lth block within the

kth replicate, qi is the effect of the ith QTL, g(q)ij is the ef-

fect of the jth genotype nested within the ith QTL and eijkl
is the error [62]. The effects of QTL and genotypes within

QTL are considered fixed while the replicate and blocks

within replicate effects are considered random.

Availability of data and material
All the data from which conclusions of this research are

drawn are present in Tables 1, 2, 3 and 4 and Figs. 1, 2,

3, 4 and 5.
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DTF: days to flowering; qDTYs: drought yield QTLs; DS: dry season; GY: grain

yield; H: heritability; IRRI: International Rice Research Institute; KDML

105: Khao Dawk Mali 105; MAB: marker assisted breeding; MMAL: molecular

marker application; NS: non-stress; PBGB: plant breeding, genetics, and

Table 4 QTL class mean comparisons for grain yield in kg ha−1 under reproductive stage drought stress (stress) and irrigated control

(non-stress) in MR219 as the recipient parent in trials conducted during dry season 2013 and 2014

QTL class label QTL 2013 - short duration 2013 - medium duration 2014 - medium duration

NS RS NS RS NS RS

A qDTY2.2 + qDTY3.1 + qDTY12.1 4600 ba 475.55 c 6799 ab 642 b 7706 d 442 b

B qDTY12.1 + qDTY3.1 6577 d 179.57 ab 6652 ac 1072 d 7532 cd 794 e

C qDTY12.1 + qDTY2.2 4518 ba 376.55 c 7633 b 761 bc 7364 ac 698 d

D qDTY2.2+ qDTY3.1 6867 d 444.98 c 7158 bc 1112 d 6843 b 571 c

E qDTY12.1 5935 c 373.46 cb 6229 a 654 b 6967 b 301 a

F qDTY3.1 6366 dc 582.25 c 6488 a 890 c 7374 ac 568 c

G qDTY2.2 4148 a 514.48 c 6760 ab 1104 d 7079 ba 669 dc

X (MR 219) NO QTL 6713 bdc 0 a 5917 ab 13 a 8321 bcd 0 ab

F- value 7.48 3.27 2 11.76 9.45 19.39

p-value <0.0001 0.0043 0.07 <0.0001 <0.0001 <0.0001

Means followed by the same letter are not significantly different
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