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Summary - Best linear unbiased prediction (BLUP) is applied to a mixed linear model
with additive effects for alleles at a market quantitative trait locus (MQTL) and additive
effects for alleles at the remaining quantitative trait loci (QTL). A recursive algorithm
is developed to obtain the covariance matrix of the effects of MQTL alleles. A simple
method is presented to obtain its inverse. This approach allows simultaneous evaluation
of fixed effects, effects of MQTL alleles, and effects of alleles at the remaining QTLs, using
known relationships and phenotypic and marker information. The approach is sufficiently
general to accommodate individuals with partial or no marker information. Extension of
the approach to BLUP with multiple markers is discussed.

marker-assisted selection - best linear unbasied prediction - genetic marker

Résumé - Sélection assistée par un marqueur: utilisation du meilleur prédicteur
linéaire sans biais (BLUP). La méthode du BLUP (meilleure prédiction linéaire sans
biais) est appliquée à un modèle linéaire mixte comprenant des effets additifs associé
aux allèles d’un locus quantitatif flanqué d’un gène marqueur, et d’effets additifs pour les
autres locus quantitatifs. Un algorithme récursif permet d’obtenir la matrice de covariances
associée aux effets des allèles du locus marqué. Une méthode simple est aussi proposée
pour calculer l’inverse de cette matrice. Cette approche permet d’évaluer simultanément
les effets fixés, les effets des allèles du locus marqué, et les effets génétiques additifs de
l’ensemble des autres locus, d’après les relations de parenté, les données phénotypiques
et l’information sur les marqueurs. Cette approche est assez générade pour tenir compte
de données incomplètes chez certains individus. On discute l’extension à un BL UP avec
plusieurs marqueurs.
sélection assistée par un marqueur - meilleure prédiction linéaire sans biais - marqueur
génétique

INTRODUCTION .

Genetic engineering techniques have produced a variety of molecular genetic mark-
ers with the potential to identify a large number of genetic polymorphisms (Soller

*Author to whom correspondence should be addressed.



and Beckmann, 1982; Smith and Simpson, 1986; Schumm et al., 1988). Marker-
assisted selection is one application of these techniques to animal and plant
breeding. Information on marker loci that are linked to quantitative trait loci, to-

gether with phenotypic information, could be used to increase genetic progress by
increasing accuracy of selection and by reducing generation interval (Soller, 1978;
Smith and Simpson, 1986).

Geldermann (1975) proposed a least-squares procedure to estimate effects of
marker alleles on quantitative traits. Based on selection index principles, Soller

(1978) combined marker information and phenotypic information to obtain genetic
evaluations. This method has been used to study the additional genetic progress
expected from marker-assisted selection (Soller, 1978; Soller and Beckmann, 1983,
Smith and Simpson, 1986). Because of the complex nature of animal breeding data,
however, these methods may not be applicable directly to marker-assisted selection
with field data.

Data from field-recorded populations are affected by non-genetic nuisance fac-

tors, such as age of animal, age of dam, management system, season of birth and
herb. Also, non-random mating, selection and overlapping generations contribute
to the complexity of the data. Best linear unbasied prediction (BLUP; Henderson,
1973, 1975, 1982) deals with these complications when predicting breeding val-
ues from phenotypic data. The objective of this paper is to present methodology
for the application of BLUP to marker-assisted selection in animal breeding. Each

methodological development is illustrated with a numerical example using a single
hypothetical pedigree

METHODOLOGY

Consider a single polymorphic marker locus (ML), closely linked to a quantitative
trait locus (QTL). Let MP and Mil denote alleles at the ML that individual i

inherited from its paternal (p) and its maternal (m) parent, and let QP and Q7
denote alleles at the market QTL (MQTL) linked to M! and Mil, as shown below:

Let vf and vi&dquo; be the additive effects of Qp and Q7. Additive effects of alleles at
the remaining QTLs, unlinked to the ML, will be denoted by the residual additive
effect ui. Now, the additive effect for individual i, ai, can be written as

The usual model to obtain BLUP if additive effects, given phenotypic information,
is

where yi is the phenotypic value of individual i, xi is a vector of known constants, /3
is a vector of unknown fixed effects, and ei is a random error. Using equ.(2), BLUP
allows information from relatives to contribute to the predictor of ai through the



covariance matrix of ai values. Note that this covariance matrix depends on the
type of genetic information available. When only relationship information (r) is

available, the covariance of ai values is

which is proportional to the numerator relationship matrix (e.g., Henderson, 1976).
When marker information (m) is also available, the covariance matrix ai values is

It can be shown that Galr i- Galr,m, in general. For example, the covariance between
half-sibs that receive the same ML allele from their common parent is higher than
the covariance between half-sibs that receive different ML alleles. This is because

half-sibs receiving the same ML allele also receive the same MQTL allele with

greater frequency than half-sibs receiving different ML alleles.

A. Marker model
I

To obtain BLUP with phenotypic and marker information, it is convenient to use

which is equivalent to equ.(2). The covariance matrix of vi values (G&dquo;) depends
on relationship and marker information. The covariance matrix of ui values (Gu)
depends only on relationship information and is proportional to the numerator
relationship matrix (e.g., Henderson, 1976). Given the covariance matrices Gv and

Gu, BLUPs of vi and ui values can be obtained using the mixed model equations
(Henderson, 1973). The inverse of Gu, which is required on the mixed model
equations, usually is obtained using an algorithm given by Henderson (1976). A
recursive algorithm to construct Gv is given in section B, and an algorithm to
obtain its inverse is in section C.

B. Covariance matrix of MQTL effects

l. Theory. To construct Gv, consider the covariance between additive effects of
MQTL alleles. Without loss of generality, consider only paternal MQTL alleles.
Suppose arbitrary individuals o and o’ have sires s and s’. The MQTL alleles
inherited by o and o’ from their sires are QP and Q!, having additive effects vP and
V’ . For paternal MQTL alleles in o and o’, the covariance between their additive
effects voP and vo, is

where Var(vo) = w is the additive variance of an MQTL allele and P(Q! Qpt)
is the probability that Qo is identical by descent to QPI. For an arbitrary pair of
individuals, one is not a direct descendent of other. If o is not a direct descendant
of the o’, QP can be identical by descent to QP, in 2 mutually exclusive ways:
1) Qo is identical by descent to the maternal MQTL allele of the sire of o’ (1!9, )

and o’ inherits QPI or

2) QP is identical by descent to the paternal MQTL allele of the sire of o’ and
o’ inherits Q9 .



If marker information is available, the conditional probability that o’ inherits Q!/,
given that o’ inherits M:’, is (1 - r), where r is the recombination rate between
the ML and the MQTL. Thus if o’ inherits M:’, the probability in equ.(4) can be
calculated recursively as

Similarly, if o’ inherits MS

If marker information is not available, so that it is not known whether o’ inherits

M9 or Mfi, 0.5 replaces r in equs.(5) and (6). This is because, in the absence of
marker information, Q!I and Qfi have equal probability of being transmitted to o’.

The above development leads to a tabular method to construct Gv, which is
similar to the method used to construct the numerator relationship matrix (e.g.
Henderson, 1976). Note that Gv has twice as many rows as individuals because

each individual has 2 effects: 1 for the paternal and 1 for the maternal MQTL
allele. The rows and columns of G2! should be ordered so that those corresponding
to progeny follow those for their parents. Let the row indices of Gv, corresponding
to the effects of MQTL alleles of individual o( vg, v’), be iP, io ; of its sire s(vP, v7 ) ,
be i!,i!; and of its dam d(vd, !), be id, i’. Also, let element i j of Gv be gij. Then

from equs.(4), (5) and (6), the elements of row io, below the diagonal, are obtained
as

for j = 1... io - 1, where p§ = r if o inherits M9 or pP, = (1 &mdash; r) if o inherits Mfi.
Elements of column iP, above the diagonal, are obtained from the corresponding
row elements because Gv is symmetric. Similarly, elements of row 17, below the

diagonal, are obtained as

for j = 1 ... io -1, where p7 = r if o inherits Md and p7 = (1 - r) if o inherits Md .
Elements of column im, above the diagonal, are obtained from the corresponding
row elements.

From equ.(4), the diagonal elements of Gv are equal to o,2. If marker information
cannot be used to determine which of the 2 marker alleles o are inherited from its

sire or its dam, then 0.5 replaces pP in equ.(7a) or p7 in (7b).

2. Numerical example. Consider the pedigree in Table 1. To construct Gv, rows
and columns are arranged by individual and by paternal and maternal MQTL alleles
within individual (Table II). For convenience, we will assume that av = 1 and that
r = 0.1. The first two individuals are assumed to be unrelated; thus the upper left
4 x 4 submatrix of Gv is the identity matrix. Elements on the diagonal are equal
to or2= 1. Now, row elements below the diagonal can be obtained from equs.(7a)
and (7b); column elements above the diagonal are obtained by symmetry. Each row
element for vl is equal to (1 - r) = 0.9 times the corresponding row element for vi 1
plus r = 0.1 times the corresponding row element for vi . Each row element for v3
is equal to r = 0.1 times the corresponding row element for v2 plus (1 &mdash; r) = 0.9
times the corresponding row element for vr. The ML allele inherited by 4 from



its sire is unknown. Thus, each row element for f! is the mean (r = 0.5) of the
corresponding row element for vi and for vi . Marker information is available for
v4 , so that each row element for v4 is (1 &mdash; r) = 0.9 times the corresponding row
element for v3 plus r = 0.1 times the corresponding row element for v3 .

C. Algorithm for inverting Gv

1. Theory. The approach taken here follows that by Quaas et al. (1984) and Quaas
(1988) to invert the matrix of additive relationships. We define a linear model to
relate the effect of the paternal MQTL allele of an individual (o) to effects of

paternal and maternal MQTL alleles of its sire (s)

where EP is a residual effect. Similarly, a linear model for effect of the maternal
MQTL allele of o is

It can be shown that the residuals eP in equ.(8a) and Em in (8b) have a diagonal
covariance matrix ( Gs ; see Appendix). Now, the vector of effects of MQTL alleles
(v) can be written as



where P is a matrix with each row containing only two non-zero elements, if the
parent is known or containing only zeros, if the parent is unknown; and where is
a vector of residuals. For example, row iP will have (1 &mdash; po) in column iP and pa
in column il, if the sire of i is known. Similarly, row 17 will have (1 &mdash; pl) in the
column iP and p7 in column id , if the dam of i is known.

To proceed, we need the diagonal elements of Ge. Consider, for example, the
variance of eo. From equ.(8a), if the sire of o is known

because effects of MQTL alleles of sire s are uncorrelated with residuals of its

offspring o (see Appendix). Hence

The covariance between the effects of paternal and maternal MQTL alleles can be
written as

where FS is the inbreeding of sire s. Now, equ.(10) can be written as

because Var(vo) = Var(v§ ) = Var(v7 ) = Qv, and where (1- !)! = (1- r)r for po
or for pg = (1 - r). When the sire is not inbred: Var(eo) = 2o!(l &mdash; r)r, if marker
information is available; or Var(e§) = a!/2, if marker information is not available.
If the sire is not known, Var(e§) = w.

Similarly, if dam of o is known, the variance of e7 is

where (1 - p7 )p§! = (1 - r)r for p’ = r or for p- = (1 - r) and where Fd is the

inbreeding of dam d. When the dam is not inbred: Var(eo ) = 2o,2 (1 - r)r, if marker
information is available; or Var(eo ) = u§ /2, if marker information is not available.
If the dam is not known, Var(eo ) = Qv.
Rearranging (9), v can be written as

for non-singular (I - P), and thus G.&dquo; can be written as

From equ.(14), it is clear that a;;l can be written as

As shown earlier, P has a simple structure, with each row containing at most 2
non-zero elements, and GE is diagonal.

To obtain the rules for inverting Gv 1, equ.(15) is written as

where Q = (I - P’). Because G, is diagonal, equ.(16) can be written as



where n is number of individuals in the pedigree, qj is column j of Q, and dj is

diagonal element j of G§! . By definition of Q, element j of qj is unity. Further,
qj will have, at most, only 2 other non-zero elements; for j = iP, element iP equals
- (1 - pP,) and element is equals -pPo, if the sire of o is known. Similarly, for
j = i!, element id equals -(1 - p!) and element id equals - p!, if the dam

of o is known. Thus, given parent and marker information of an individual, the
contributions to Gv 1, corresponding to effects of paternal and maternal MQTL
alleles of the individual, are easily obtained.

Now, to obtain the inverse of G&dquo;: 1) calculate diagonals of Gs : when the parent
is known, the diagonal is given by equ.(12a) or (12b), and when the parent is

unknown, the diagonal is o, V; 2 2) set Gv to the null matrix; 3) for each offspring o,
with sire s and dam d, add the following to the indicated elements of G-1:

if sire is known, add (1 - p!)2di! to diagonal element iP, iP;

if dam is known, add (1 &mdash; p:;’ )2di:;. to diagonal element il, il;
.. - - 0 .... - - 

d d

2. Numerical example. Consider the pedigree in Table 1. To construct Go we

again take Qv = 1 and r = 0.1. Because the parents of individuals 1 and 2 are not
known, the first 4 elements on the diagonal of G, are w = 1. For individual 3, each
parent is known and marker information is available. Thus, from equs.(12a) and
(12b), the two diagonals of G, corresponding to effects of paternal and maternal
MQTL alleles of individual 3 are 2(1&mdash;r)r = 0.18. Each parent of individual 4 is also
known, but the marker inherited from the sire is not known. Therefore, the diagonal
of G, corresponding to v4 is 0.5, and that corresponding to v4 is 2(1&mdash; r)r = 0.18.

The P matrix for this example is given in Table III. The first 4 rows of P are null
because parents of the first 2 individuals are not known. The sire of individual 3 is 1,
and Mi was transmitted to 3. Thus, the row corresponding to v3 has (1 &mdash; r) = 0.9
in the column corresponding to vi and r = 0.1 in the column corresponding to
vr. Similarly, the dam of individual 3 is 2, and M2 was transmitted to 3. Thus,
the row corresponding to v3 has r = 0.1 in the column corresponding to v2 and
(1 - r) = 0.9 in the column corresponding to v2 . The sire of individual 4 is 1, but
marker information is not available. Thus, the row corresponding to v4 has 0.5 in
the columns corresponding to vi and vr. The dam of individual 4 is 3, and M3



was transmitted to 4. Thus, the row corresponding to v4 has (1 - r) = 0.9 in the
column corresponding to vp and r = 0.1 in the column corresponding to v7n

The matrix Q = (I - P’) is given in Table IV. The product QGE 1 Q’ is given
in Table V. It can be verified that this is identical to the inverse of the matrix Gv
in Table II.



D. BLUP with multiple markers

If information on another marker locus linked to a QTL is available, the model can
be expanded to include effects of alleles of this MQTL. This approach, however,
results in 2n additional equations for each marker introduced into the analysis.
Thus, for a large number of individuals (n) and a large number of MQTLs, solving
the mixed model equations may not be feasible. An alternative would be to use

equ.(2), with

where v!i and vkj are effects of paternal and maternal alleles of the kti’ MQTL.
The covariance matrix of effects of MQTL alleles at each locus ( Gv! ) can be
constructed using the tabular method described in Section ILB. Then, assuming
gametic equilibrium, the covariance of matrix ai values (Ga!T n!) can be obtained
as

where Z is a n x 2n matrix with elements for row i containing a 1 corresponding to
each of the paternal and maternal MQTL effects of individual i and zeros for the
remaining elements. The problem with this approach, however, is that it could not
be applied to large systems, unless a simple algorithm to invert Galr,m is available.

DISCUSSION

Results presented here are an application of BLUP to marker-assisted selection.
This is a generalization of the method presented by Soller (1978) and Soller
and Beckmann (1983). This generalization allows simultaneous evaluation of fixed
effects, MQTL effects and the residual QTL effects, using known relationships
and phenotypic and marker information. It is sufficiently general to accommodate
individuals with partial or no marker information.

Several authors have calculated the additional genetic progress expected from
marker-assisted selection (Soller, 1978, Soller and Beckmann, 1983; Smith and

Simpson, 1986). Because the method presented here is a generalization of the
method considered by these authors, their results give an indication of the advantage
expected by using marker-assisted BLUP.

Application of this procedure requires knowledge of the recombination rate (r)
between the marker and the MQTL and the variance of the additive effect of the
MQTL alleles (a’). Assuming that effects of MQTL alleles are normally distributed,
the model presented here could be used to estimate r and ufl by restricted maximum
likelihood (REML; Patterson and Thompson, 1971). The robustness of REML
estimation, with respect to the distribution of effects of MQTL alleles, needs to
be examined.
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APPENDIX

Proof that G, is diagonal

Let o be an individual that is not a direct descendant of o’. From equs.(8a) and
(8b), the additive effects of the MQTL alleles of o and o’ are

and

where z can take values p or m, = s when z = p, or = d when z = m. Similarly,
z’ can take values p or m, !’ = s’ when z’ = p, or !’ = d when z’ = m. Note
that for an arbitrary pair of individuals, ones is not direct descendant of the other.
Therefore, to prove that G, is diagonal, it is sufficient to show thar the covariance
between E’ and eo, is null.

From equs.(A1) and (A2), the covariance between additive effects of MQTL
alleles v! and v’, can be written as
0 0

But, from equs.(7a) and (7b)

Thus, for equ.(A3) to equal (A4), the third term in equ.(A3), Cov(vz, Ez,), must be
zero. The same reasoning can be used to show that Cov( vf, E&dquo;!;) and Cov(v!7ejl )
are zero. Therefore, given that Cov( v!, Ez,), Cov( vf, and Cov( vr ’ ejl ) are zero,
Cov(eo, ejl ) must be zero.

Further, taking o to be the a parent of o’, the residual (ejl) in equ.(A2) is

uncorrelated with vf, and with vfi in equ.(A2), because Cov(vz, E’O,) = 0, as shown
above. The result that be effect of each MQTL allele of a parent is uncorrelated
with the residual 0 of its offspring was used to obtain equ.(10)
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