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ABSTRACT

We present a vision-based trunk-motion tolerant approach

which estimates lung volume–time data remotely in forced

vital capacity (FVC) and slow vital capacity (SVC) spirome-

try tests. After temporal modelling of trunk shape, generated

using two opposing Kinects in a sequence, the chest-surface

respiratory pattern is computed by performing principal com-

ponent analysis on temporal geometrical features extracted

from the chest and posterior shapes. We evaluate our method

on a publicly available dataset of 35 subjects (300 sequences)

and compare against the state-of-the-art. By filtering com-

plex trunk motions, our proposed method calibrates the entire

volume–time data using only the tidal volume scaling fac-

tor which reduces the state-of-the-art average normalised L2

error from 0.136 to 0.05.

Index Terms— trunk shape modelling, noncontact vision-

based respiratory assessment, chest shape, spirometry.

1. INTRODUCTION

Lung function diseases are among the leading causes of death

worldwide. In 2015, Chronic Obstructive Pulmonary Disease

(COPD) and Asthma together affected ∼532 million people

worldwide, of whom ∼3.6 million died [1].

Spirometry is a clinically approved method for diagnosis

and assessment of lung function diseases. A routine spirome-

try test is performed in an upright sitting posture, in which

patients breathe into a contact-based pneumotach in a par-

ticular pattern, depending on the intended lung function test.

Two primary clinical spirometry tests are forced vital capacity

(FVC) and slow vital capacity (SVC). Both tests start with a

few cycles of normal breathing, called tidal volume, followed

by a maximal inhalation–exhalation, called main effort. The

main effort inhalation–exhalation is performed at the same

speed of normal breathing in the SVC test, whereas it is per-

formed as fast and forcefully as possible in the FVC test. Us-

ing respiratory volume–time data obtained from a pneumo-
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tach, several pulmonary function testing (PFT) measures, e.g.,

FVC, FEV1, PEF, FEF25−75%, TV, ERV, are computed and

used for the diagnosis of pulmonary function diseases [2].

Although spirometry is a reliable clinical approach, it has

several drawbacks which reduce its suitability and usability.

As a contact-based device, a pneumotach is intrusive and dif-

ficult for anyone to perform with it, especially frail elderly,

children and cognitively impaired patients. To measure accu-

rately enough, a pneumotach must be manually recalibrated

before each session. Further, spirometry is rather expensive

given the cost of the required consumables (mouthpiece and

nose-clip) and the price of the pneumotach itself.

Recently, we introduced a vision-based pulmonary func-

tion testing approach [3–5] which addresses spirometry draw-

backs by remotely computing 11 FVC and SVC measures,

e.g., FVC, FEV1, PEF, FEF25−75%, TV, ERV. These PFT

measures are computed from calibrated depth-based volume–

time data obtained by estimating the chest volume variation

using depth measurements obtained from a single [3, 4] or

two depth sensors [5]. The calibration process linearly scales

the estimated chest volume to the real lung volume, and is re-

quired to compute correct PFT measures. The calibration pro-

cess is performed using subject-specific (intra-subject) scal-

ing factors, learnt in a training phase from both depth-based

and spirometer volume–time data. The medical achievements

of our remote approaches were reported in [6, 7]. Apart from

our works [3–7], we know of only [8,9] which also performed

remote respiratory assessment, rather than just breathing rate

estimation or respiration monitoring [10–15]. In [8, 9], Os-

tadabbas et al. detected airway obstruction as mild, moder-

ate and severe, and computed only FEV1 in [8]. To acquire

only chest-surface respiratory motion, they heavily restrained

trunk motions in both works.

As a natural reaction of the human respiratory system,

subjects inevitably move their trunk during PFT, especially at

the main effort inhalation–exhalation stage. Since constrain-

ing such reactive motions would affect the lung function mea-

sures, PFT must be performed as in routine spirometry, with-

out restraint. However, when a single depth sensor is used,

decoupling trunk motion and chest-surface respiratory mo-



(a) deep inhalation (b) deep forced exhalation

Fig. 1. Natural reaction of subject’s trunk to (a) deep inhala-

tion, and (b) deep forced exhalation, in main effort breathing.

tion would be potentially impossible, and our single Kinect

method [3, 4] was therefore influenced in three ways. First,

PFT measures were directly affected as they were computed

from volume–time data corrupted by trunk motion. Second,

while the calibration scaling factors were supposed to remain

unchanged for a subject in all PFT performances (trials), trunk

motion caused inconsistent training scaling factors, conse-

quently decreasing the accuracy of the computed PFT mea-

sures. Third, different patterns of trunk motion during tidal

volume and main effort breathing, required their data to be

calibrated individually using distinct scaling factors, whereas

in theory the whole volume–time data (tidal volume + main

effort) must be calibrated using a single scaling factor.

In our most recent work [5], we presented a depth-based

whole body photoplethysmography (dPPG) approach which

filtered the trunk motion by constructing a 3-D model of a

subject’s trunk and then subtracting the average depth of the

chest-wall from the average depth of the posterior-wall per

frame. While the dPPG method showed significant advance-

ment in the accuracy of the computed PFT measures and also

in the consistency of the scaling factors, there is still room for

further improvements. First, the dPPG method cannot filter

complex trunk motion patterns, particularly at the main effort

inhalation–exhalation, due to using only the average depth of

the chest and posterior walls. Second, different patterns of

trunk motion in tidal volume and main effort breathing, re-

quires individual calibration of their volume–time data rather

than calibrating the whole volume–time data using a single

scaling factor. For example, Fig. 1 (a) and (b) show the body’s

natural reaction to the main effort deep inhalation and deep

forced exhalation during a routine spirometry FVC test, re-

spectively. Correspondingly, Fig. 2 presents the volume–time

data of the single Kinect Vsk(t) [4] and dPPG VdPPG(t) [5]

methods for this PFT test which are entirely calibrated using
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Fig. 2. The single Kinect [4] and dPPG [5] volume–time data

and their tidal volume to main effort scaling factors ratio.

only the tidal volume scaling factor. As seen, both the single

Kinect and dPPG methods fail to provide an accurate enough

volume–time data, though the dPPG performed better. Also,

as the ratios of the tidal volume to main effort scaling fac-

tors in each case, i.e., 2.33 and 1.72, denote, both methods

obtained considerably different scaling factors. This can be

perceived by comparing the scale of depth-based main effort

to the spirometer’s main effort in Fig. 2.

In this work, we propose a novel trunk shape modelling

approach to extract the chest-surface respiratory pattern by

temporal modelling and tracking of trunk shape, generated us-

ing the depth measurements acquired by two opposing depth

sensors. Instead of filtering the trunk motion by subtracting

the average depth of the chest from the average depth of the

posterior in [5], here we extract the chest-surface respiratory

pattern by performing a principal component analysis (PCA)

on temporal 3-D geometrical features extracted from the chest

and posterior shape models in R
3 space. To present the real

volume of exchanged air, the respiratory volume–time data is

then calibrated using scaling factors learnt in a training phase.

We validate our method on a dataset of 35 subjects (300 se-

quences) introduced in [5], by computing the normalised L2

error, dynamic time warping and Fréchet distances, as well

as correlation of determination between the depth-based and

spirometer volume–time data.

2. PROPOSED METHODOLOGY

We acquire the subject’s 3-D body data using the open

source data acquisition and registration pipeline introduced

in [16]. This pipeline synchronises and calibrates two op-

posing Kinects by which we create an almost complete 3-D

model of a subject with a consistent frame rate (30fps) dur-

ing PFT performance (Figs. 1 and 3). Using skeletal joint



(a) Front view (b) Side view

Fig. 3. A subject’s chest and posterior shape models with their

data points presented as small green spheres on them.

data, a 3-D mask is automatically generated and used to filter

inessential body parts. Fig. 3 shows a sample of a trunk shape

model laid over the subject’s reconstructed body.

Although the dPPG method [5] was able to decouple the

trunk motion to a notable extent, it failed to correctly filter

the complex trunk motion patterns due to, (i) using the depth

as the only feature of the chest and posterior walls, i.e., z-

coordinate of their data points in R
3 space, and (ii) eliminat-

ing useful potential features by filtering the chest and poste-

rior data points to single average depth values. We address

these issues by extracting a set of temporal geometrical fea-

tures over the entire chest and posterior walls within a PFT

sequence. Using these features, partial volumes are uniformly

computed from the full trunk, and tracked per frame. How-

ever, as a markerless trunk reconstruction approach, we are

faced with two main challenges for extracting the proposed

features. First, the number and location of data points in ei-

ther of the chest and the posterior regions may vary from one

frame to another. Second, since each Kinect captures either

the chest or the posterior, these two regions are different in

the number of the data points and their locations. Thus, it is

quite unlikely that there would be a corresponding co-located

posterior data point for a chest data point in the xy-plane.

We address these issues by (a) defining a fixed size 2-D

region Rxy(t) which covers the chest in the xy-plane at time

t through the sequence, and generating a fixed number of

points uniformly distributed in it, and (b) defining temporal

interpolant functions I
t
ch and I

t
po to compute correspond-

ing chest and posterior data points in R
3 space which are lo-

cated at the same position in the xy-plane. Fig. 3 shows the

data points on the chest and posterior shapes as small green

spheres. The interpolant functions are generated by applying

a Delaunay triangulation on the chest and the posterior origi-

nal data points [17]. Using I
t
ch and I

t
po, partial volumes are
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Fig. 4. Comparing volume–time data and scaling factors ratio

of the proposed method to the single Kinect [4] and dPPG [5].

computed over the trunk as

vij(t)=

[

I
t
po

(

pij(t)
)

−I
t
ch

(

pij(t)
)

]

, ∀pij(t)∈Rxy(t). (1)

Since the extent of body motion along the trunk during

PFT varies, i.e., from the minimum at the hips to its maximum

at the shoulders, we accumulate vij(t) along the longitudinal

direction to further reduce their sensitivity to the trunk mo-

tion. Thus, the final feature matrix for the whole sequence is

created by extracting these partial volumes and their location

in the xy-plane for each frame of the sequence as

F =
[〈

Rxy(t),
∑

j vij(t)
〉]t=τ

t=0
. (2)

Finally, PCA is performed on the feature matrix F by

which the respiratory volume–time data Vr(t) is provided by

the first principal component. Vr(t) is then smoothed using

a 4th order Butterworth low-pass filter to eliminate high fre-

quency noise. Given a wide range of respiratory frequencies

for adults and elderly at 0.2− 0.6Hz [18], the cut-off fre-

quency was chosen as 1.2Hz to ensure preserving the res-

piratory data. Fig. 4 presents Vr(t) and its comparison to the

volume–time data obtained by the spirometer Vs(t), single

Kinect Vsk(t) [4] and dPPG VdPPG(t) [5] methods. As seen,

while Vsk(t) and VdPPG(t) have been significantly affected

by the trunk motion, especially at the deep forced inhalation–

exhalation stage, Vr(t) is much more accurate.

To present the real volume of exchanged air, Vr(t) is cal-

ibrated by linearly scaling the y-axis using scaling factors

learnt per subject in a training phase from spirometer and

depth-based volume–time data. In the training phase, cor-

responding data samples of Vs(t) and Vr(t) are identified by

sampling Vs(t) at 30Hz, and detrending Vs(t) and Vr(t), and

temporally aligning them. Next, the tidal volume and main ef-

fort scaling factors are separately computed by solving linear



Table 1. Evaluation results of 155 FVC and 145 SVC trials,

calibrated using tidal volume and main effort scaling factors

Metric Single Kinect [4] dPPG Method [5] Proposed Method

F
V

C
te

st NL2 3.118± 13.88 0.059± 0.097 0.013 ± 0.016

FRD 55.14± 102.93 12.38± 9.13 6.36 ± 3.40

DTW 808.9± 1764.8 113.2± 104.8 54.30 ± 47.90

R2 0.60± 0.32 0.84± 0.19 0.96 ± 0.04

S
V

C
te

st NL2 0.763± 3.311 0.032± 0.042 0.015 ± 0.016

FRD 36.71± 56.97 12.06± 5.78 8.36 ± 4.26

DTW 586.3± 1069.0 128.8± 96.02 67.62 ± 42.89

R2 0.75± 0.23 0.92± 0.07 0.96 ± 0.03

Table 2. Evaluation results of 155 FVC and 145 SVC trials,

calibrated using only tidal volume scaling factor

Metric Single Kinect [4] dPPG Method [5] Proposed Method

F
V

C
te

st NL2 0.679± 1.243 0.181± 0.309 0.051 ± 0.079

FRD 39.31± 35.51 21.08± 17.89 11.95 ± 8.08

DTW 541.4± 566.1 248.3± 246.7 136.2 ± 125.8

R2 0.59± 0.32 0.78± 0.28 0.93 ± 0.06

S
V

C
te

st NL2 0.229± 0.327 0.092± 0.137 0.049 ± 0.047

FRD 31.15± 20.64 19.72± 13.35 15.49 ± 7.34

DTW 510.2± 470.9 279.6± 250.6 204.1 ± 132.6

R2 0.73± 0.23 0.91± 0.06 0.90± 0.07

least square equations for Vs(t) and Vr(t) using an overde-

termined system. This process is repeated for every pair of

training spirometer and depth-based volume–time data which

provides several pairs of training scaling factors.

For a test sequence, Vr(t) is first computed using the pro-

posed trunk shape modelling approach, and then calibrated

by an average of all the training scaling factors. The training

and testing process was carried out using leave-one-out cross-

validation due to the limited number of trials per subject.

3. EXPERIMENTAL RESULTS

The evaluation was performed on a publicly available dataset

(http://doi.org/ckrh) of 27 males and 8 females comprising

300 PFT sequences, i.e., 155 FVC and 145 SVC, recently

introduced by [5]. Our method is able to process and retrieve

the volume–time data of 2 sequences which were not used

in [5] due to their complex trunk motion.

We evaluate our method in the signal level by comput-

ing (i) NL2 =
∑

τ

t=0

(

Vs(t) − Vr(t)
)

2

/
(

τ ∗ (V max

s − V min

s )
)

,

(ii) Fréchet distance (FRD) [19], (iii) dynamic time warping

distance (DTW), and (iv) correlation of determination (R2),

between the depth-based and spirometer volume–time data.

Tables 1 and 2 report the mean± SD of these metrics across

the 300 PFT sequences for two sets of differently calibrated

volume–time data. In the first set, the data was calibrated us-

ing individual tidal volume and main effort scaling factors,

whereas in the next set it was calibrated using only the tidal

volume scaling factor. Our method outperforms the single

Kinect [4] and dPPG [5] methods across all of the evaluation

metrics in both calibration methods, except for R2 of SVC

test in Table 2 where our method achieves almost the same

R2 as dPPG. For example, the average NL2 error across 300
sequences has been reduced from 1.94 and 0.045 by the sin-

gle Kinect [4] and dPPG [5] methods to 0.014 by our method

for individual calibration of tidal volume and main effort. It

is clear that the more accurate the volume–time is, the more

accurate the extracted PFT measures would be.

Comparing Tables 1 and 2 verifies that calibrating the en-

tire volume–time data using only the tidal volume scaling fac-

Table 3. Comparing RTM for 155 FVC and 145 SVC trials

Metric Single Kinect [4] dPPG Method [5] Proposed Method

FVC RTM 1.11± 0.61 1.27± 0.41 1.07 ± 0.17

SVC RTM 1.11± 0.56 1.30± 0.41 1.10 ± 0.14

tor achieves lower accuracy than the individual calibration

of tidal volume and main effort. However, as a significant

achievement, the difference in this accuracy is notably lower

in our approach than the single Kinect [4] and dPPG [5] meth-

ods, e.g. while FVC average NL2 error increases by 0.038 in

our method, it increases by 0.122 in the dPPG. Calibrating

the entire volume–time data using only the tidal volume scal-

ing factor eliminates the threshold-based analysis required for

separate calibration of tidal volume and main effort, which not

only allows our approach to perform on-line, but also removes

the calibration error due to incorrect keypoints computation.

To further evaluate our method in filtering different pat-

terns of trunk motion in tidal volume and main effort, we

computed the mean± SD of tidal volume to main effort scal-

ing factors ratio (RTM) across all our sequences (see Table 3).

Our method obtains the closest ratio to 1 with the lowest SD,

achieving very close tidal volume and main effort scaling fac-

tors. This implies that we can calibrate the entire volume–

time data using only the tidal volume scaling factor which is

more reliable and less affected by the trunk motion.

4. CONCLUSION

We proposed a trunk-motion tolerant approach for estimat-

ing respiratory volume–time data within forced and slow vi-

tal capacity tests. Using temporal geometrical features ex-

tracted from the chest and posterior shapes, a feature ma-

trix is created for the whole PFT sequence from which the

respiratory volume–time data is computed by performing a

principal component analysis. Evaluation on a dataset of 300
PFT sequences verifies that our method achieves more accu-

rate volume–time data and also closer tidal volume and main

effort scaling factors, compared to the state-of-the-art.
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