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Abstract

In this paper we develop a computer vision-based sys-
tem to transfer human motion from one subject to another.
Our system uses a network of eight calibrated and synchro-
nized cameras. We first build detailed kinematic models of
the subjects based on our algorithms for extracting shape
from silhouette across time [6]. These models are then
used to capture the motion (joint angles) of the subjects in
new video sequences. Finally we describe an image-based
rendering algorithm to render the captured motion applied
to the articulated model of another person. Our render-
ing algorithm uses an ensemble of spatially and temporally
distributed images to generate photo-realistic video of the
transferred motion. We demonstrate the performance of the
system by rendering throwing and kungfu motions on sub-
jects who did not perform them.

1 Introduction

Generating animations of human characters with realis-
tic motion and appearance is one of the most difficult prob-
lems in computer graphics but these characters are required
for such applications as game development, virtual reality
experiences and movie production. For example, the ability
to create realistic videos of people performing new motions
would allow more realistic video games. Such technology
might also allow a movie director to change a scene in post-
production without gathering the cast to re-shoot the scene.

In current approaches for transferring motion, a laser
scanner is used to model the shape of one person and then
an optical motion capture system is used to capture the mo-
tion of another person. The model and motion are then com-
bined to create a rendering of the first person performing the
action of the second person. In this paper, we suggest an al-
ternative to this approach by describing a complete end-to-
end markerless system to transfer articulated motion from
one person to another and render it photo-realistically. Our
system is based on computer vision techniques which use a
set of simple cameras and no markers of any kind.

Figure 1 illustrates the overall structure of our marker-
less motion transfer system. Our system uses eight synchro-
nized, calibrated and color balanced cameras evenly spaced
around the perimeter of a capture area. The motion transfer
process consists of three steps: (a) human kinematic mod-
eling, (b) markerless motion capture and (c) image-based
rendering of one subject moving with the motion performed
by a different subject. The first two steps of the system are

based on our recently published work in vision-based kine-
matic modeling and motion capture [5] which we briefly re-
view in Sections 3 and 4. In Section 5, we describe in detail
the image-based rendering algorithm that we use to gener-
ate photo-realistic videos of the articulated models and mo-
tion we acquired in the first two steps. We demonstrate the
power of our approach by transferring a throwing motion
and a kungfu motion from one subject to another (Figure 1).

2 Related Work

In the last decade, considerable research has been de-
voted to capturing motion or recognizing posture without
using markers (see [14] for a survey). Among the marker-
less systems that use model-based approaches, the work by
Sidenbladh et al. [15], that by Delamarre and Faugeras [8],
that by Carranza et al. [3] and that by Mikic et al. [13] are
most closely related to our tracking algorithm. Our marker-
less motion capture technique differs from their approaches
in two ways: we use detailed and person-specific models to
perform the tracking and we use both silhouette and color
information as tracking cues.

The approach most closely related to our silhouette-
based human kinematic model acquisition algorithm is
Kakadiaris and Metaxas [11]. They used deformable tem-
plates to segment the 2D body parts in silhouette sequences
from three orthogonal view-points and then combined the
information into a 3D shape using Shape-From-Silhouette.
Our approach of estimating the joint locations individually
instead of all at once is partly inspired by their system.

Carranza et al. [3] rendered tracked human motion using
a view-dependent texture mapping algorithm that is simi-
lar to our pixel rendering algorithm. However, they replay
the captured motion on the same person rather than transfer
the motion to another person. Moreover their texture map-
ping is a frame-based approach while our algorithm utilizes
both spatial and temporal textures. Vedula et al. developed
an image-based spatial and temporal view interpolation al-
gorithm for non-rigid dynamic events [16, 17]. There are
two major differences between our algorithm and the one
in [16]. In our rendering algorithm, we assume the hu-
man model consists of articulated rigid body parts each with
rigid motions, but Vedula et al. assumed the human and the
motion were non-rigid. Moreover, Vedula et al. “interpo-
lated” the motion spatially and temporally while we “ex-
trapolate” the human body model with new motions. We
adopt some of the efficiency optimization techniques by
Vedula et al. [16] and the original view-dependent texture
mapping idea by Debevec et al. [7].
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Figure 1. Our markerless motion transfer system consists of three parts: (a) kinematic modeling: extracting segmented 3D shape
and joint locations, (b) markerless motion capture: articulated tracking of joint angles and (c) image-based rendering of the motion
applied to the other subject.

3 Kinematic Modeling

The kinematic modeling process consists of two parts:
shape acquisition and joint skeleton estimations (Fig-
ure 1(a)). To acquire the shape of the subject, we capture
video of the subject standing on an uncalibrated turntable
for 30 seconds. Using an algorithm called Shape-From-
Silhouette Across Time [6], we recover the motion of the
turntable automatically. The recovered motion is used to
align the video images across both space and time and build
a detailed voxel-based shape model of the subject using the
traditional Shape-From-Silhouette algorithm [1].

To estimate the joint skeleton of the subject, we ask the
subject to exercise each of his or her body joints one at
a time. By extending the Shape-From-Silhouette Across
Time algorithm to articulated objects [5], we recover the
joint position and segmentation of each joint of the sub-
ject from the captured video. The joint information is then
merged with the shape model obtained from the footage
captured with the subject on the turntable. The result-
ing kinematic model consists of nine body parts: torso,
right/left upper/lower arms, right/left upper/lower legs con-
nected by eight joints. The head is modeled as rigidly con-
nected to the torso as are the hands to the lower arms and the
feet to the lower legs. The shoulder and hip joints have three
degrees of freedom (DOF) each while there is one DOF for
each of the elbow and knee joints. Including translation and
rotation of the torso base, there are a total of 22 DOF in
the model. The kinematic models of subjects #1 and #2 are

shown in Figures 1(a) and (b) respectively. Further details
of the kinematic modeling process can be found in [4].

4 Markerless Motion Capture

Once the kinematic models have been acquired, they are
used to recover the motion data (joint angles) of each sub-
ject. We incorporate joint constraints into the Shape-From-
Silhouette Across Time algorithm for articulated objects [5]
and align the kinematic model with respect to both the sil-
houette and color video images. The alignment is done hi-
erarchically: first fit the torso base and then fit each limb
independently. No markers are required. Figure 1(b) shows
two frames of the tracked motion of subject #2 miming a
throw motion. Details of our motion tracking algorithms
can be found in [4, 5].

5 Image-Based Rendering

The last step of our markerless motion transfer system
is to render one subject performing the motion of the other
subject. While we can apply the captured motion of one
subject to the textured voxel model of the other subject and
render the model directly, the resulting video is not photo-
realistic due to the lack of detailed texture.

Instead we develop an image-based algorithm for render-
ing articulated objects using an ensemble of spatially and
temporally distributed images. The data available in this
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Figure 2. The pixel rendering process of our Image-Based Rendering Algorithm for articulated objects.

collection of images increases the photo-realism of the re-
sulting video. We explain our algorithm using the example
of rendering subject #1 performing the throwing motion of
subject #2. We assume the following data is available: (1)
the articulated kinematic model of subject #1 which we built
in Section 3, (2) the throwing motion (hereafter referred to
as the target motion) we captured in Section 4, and (3) a set
of
�✂✁

(from
✁

cameras each with
�

frames) source images
of subject #1 performing some kind of motion with captured
motion data (see Figure 1(c)). The first frame of this set of
source images is called the reference frame.

As a pre-processing step, the articulated voxel model
is converted into a smooth mesh model using the March-
ing Cubes Algorithm [12] and a mesh smoothing technique
[10]. The triangles of the mesh-based model can be skinned
to eliminate discontinuities at the joints (see Figure 5).

After the mesh model has been transformed with the tar-
get motion data, it can be rendered from any virtual camera
viewpoint to produce the target image. The pixels in the
target image are taken from a set of source images of the
subject on the turntable as shown in Figure 2. The color of
a target pixel is determined using the following four steps:

Step 1: Intersect rays with the articulated model.

A viewing ray is cast from the (virtual) camera center
through the target pixel and intersected with the transformed
mesh model of the person in the 3D space. If the ray does
not intersect the model, the target pixel is assigned the ap-
propriate background color. Otherwise, the body part ✄
where the ray first intersects the mesh model and the point
of intersection, ☎ , are found (Step 1 in Figure 2).

The most straightforward way to find the intersection
point ☎ is to intersect the viewing ray with all the faces of
the articulated mesh model and choose the intersection that
is closest to the camera. However, in practice this approach
is slow as the model contains thousands of faces. Instead,
we employ an idea from hardware acceleration called the
item buffer [16, 18]. Each mesh face is assigned a distinct
RGB color as its identity (ID) number (with 24 bit colors,
up to 16M faces can be assigned distinct ID numbers). Af-

ter the model is transformed by the target motion data, the
mesh faces are rendered from the virtual camera viewpoint
using their ID colors. The triangular face that is intersected
by the ray through a target pixel can easily be found by read-
ing the ID color of the same pixel in the rendered ID picture.
Once the correct mesh face is found, it is intersected with
the viewing ray to locate the target model point ☎ .

Step 2: Compute the source model points ☎✂✆ .
The position of ☎ in the source reference frame, ☎✞✝ , can

be computed from the inverse target motion transformation
equations of part ✄ . Once ☎✟✝ is known, its positions at all
the other source frames, represented by ✠✡☎ ✆☞☛✍✌✏✎✒✑✔✓✖✕✖✕✗✕✘✓ �✚✙
are calculated using the given source motion data (Step 2 in
Figure 2). We refer to ☎ ✆ as the source model points of the
target pixel.

Because skinning weights are used to smooth the mo-
tion of the model near the joints, some of the mesh faces
are stretched after the target motion data is applied (Fig-
ure 3). We compensate for this stretching when calculating☎✚✝ (the source model point at the reference frame) from ☎ .
Let ✛ ✝ ✓ ✛✢✜ ✓ ✛✢✣ be the vertices of the intersecting mesh face
after applying the target motion data, and ✛ ✝✝ ✓ ✛✤✜✝ ✓ ✛✢✣✝ be
the corresponding vertices of the same face at the reference
frame. Note that ✛ ✝✝ ✓ ✛✤✜✝ ✓ ✛✤✣✝ are known and ✛ ✝ ✓ ✛✤✜ ✓ ✛✤✣ can
be calculated using the motion weights. Now because ☎ lies
on and inside the triangular patch formed by ✛ ✝ ✓ ✛✤✜ ✓ ✛✢✣ ,
we have

☎ ✎✦✥ ✝ ✛ ✝✟✧ ✥ ✜ ✛ ✜ ✧ ✥ ✣ ✛ ✣ ✓ (1)

where ✥ ✝ ✓★✥ ✜ ✓✩✥ ✣ are constants between 0 and 1. Now
we apply the same constants to the corresponding vertices✛ ✝✝ ✓ ✛✢✜✝ ✓ ✛✤✣✜ in the reference frame as

☎ ✝✪✎✒✥ ✝ ✛ ✝✝ ✧ ✥ ✜ ✛ ✜✝ ✧ ✥ ✣ ✛ ✣✝✬✫ (2)

By substituting Equation (1) into Equation (2), ☎✞✝ is calcu-
lated by

☎✭✝ ✎✯✮ ✛ ✝✝ ✛✤✜✝ ✛✢✣✝✱✰ ✮ ✛ ✝ ✛✤✜✲✛✢✣ ✰✴✳ ✝ ☎ ✫ (3)
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Figure 3. Step 2 of the pixel rendering process: every mesh
face is stretched because of the different skinning weights
of the vertices. This stretching has to be compensated for
when calculating ✵✍✶ from ✵ .

Step 3: Project ☎ ✆ onto source images to get pixel colors.

After computing the source model points ☎ ✆ , they are
projected into the source color images to get a total of

�✷✁
source pixels that could be used as the color of the target
pixel (Step 3 in Figure 2). However, among these

�✷✁
pix-

els, only those which come from frames where ☎✷✆ is visible
in camera ✸ are valid. We test the visibility of ☎ ✆ against

the ✸✔✹✻✺ camera at frame ✌ using a 2D z-buffer approach as
discussed in [9, 16]. We first generate a 2D depth image of
the mesh model at frame ✌ of camera ✸ using the z-buffer
graphic hardware. The visibility of any point is then deter-
mined by first projecting the point into the depth image to
get a depth value and then comparing this depth value with
the distance of the point from the camera (details of the ap-
proach can be found in [9, 16]). This 2D z-buffer approach
is faster than directly testing the visibility against the 3D
shape model because each depth test only requires one 3D
to 2D projection and one scalar (depth) comparison.

Step 4: Average the visible source pixel colors according
to the viewing angles.

The final color of the target pixel is the weighted aver-
age of the valid source pixel colors using the viewing angle
between the virtual camera and the source camera as the
weight (Step 4 in Figure 2). The viewing angles are calcu-
lated in the reference frame. Figure 4 shows the viewing an-

gle for the source pixel color from the ✸✼✹✻✺ camera at the ✌ ✹✻✺
frame. Both the virtual camera ✽✿✾❁❀❃❂❄✹❆❅✴❇❁❈ and the ✸✔✹✻✺ source
camera ✽✿❉ are transformed to the reference frame. Let the
6D rigid transformation between ☎ (the target frame) and☎✚✝ (the reference frame) be ❊ and that between ☎✷✆ (the

✌ ✹✻✺ source frame) and ☎ ✝ be ❊ ✆ , i.e. ☎ ✝✦✎ ❊●❋✻☎✢❍ and☎✚✝ ✎ ❊✿✆■❋❏☎❑✆▲❍ (Note that both ❊✢✆ and ❊ can be found
from the target and the source motion data). The position

of ✽ ✾❁❀❃❂❄✹❆❅✴❇❁❈ and ✽✢❉ in the reference frame are then given

by ❊ ✳ ✝ ❋▼✽◆✾❁❀❖❂P✹❆❅✴❇❁❈❏❍ and ❊ ✳ ✝✆ ❋❏✽ ❉ ❍ respectively. The viewing

angle ◗ ❉✆ is then calculated using the following equation:

❘✘❙❯❚ ◗ ❉✆ ✎ ❋❆❊ ✳ ✝✆ ❋❏✽ ❉ ❍✭❱❲☎ ✝ ❍ ✕ ❋❳❊ ✳ ✝ ❋▼✽◆✾❁❀❖❂P✹❆❅✴❇❁❈❏❍✚❱❨☎ ✝ ❍❩ ❊ ✳ ✝✆ ❋❏✽ ❉ ❍✭❱❲☎ ✝ ❩■❩ ❋❳❊ ✳ ✝ ❋▼✽ ✾❁❀❖❂P✹❆❅✴❇❁❈ ❍✍❱❨☎ ✝ ❩ ✫ (4)
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Figure 4. Step 4 of the pixel rendering process: comput-

ing the viewing angle between the virtual camera, the ❬❯❭❫❪
source camera at the ❴ ❭❫❪ frame and the target model point✵ .

Because the reliability of the source pixel is inversely re-
lated to the viewing angle we compute weights (see [7,16])

for each color pixel as
✝✝ ✳❛❵❝❜★❞✗❡❁❢❣

. The valid source pixel col-

ors are then sorted according to their weights and the pixel
colors corresponding to the ❤ largest weights are averaged
to compute the target pixel color. The value of ❤ is chosen
experimentally.

Depending on the source images used, there may be
some target pixels whose pixel color cannot be determined
because the 3D source model points ☎✂✆ of a target pixel
were not visible in any camera while the subject was on the
turntable. To fill in the color of a missing target pixel (or
hole), the average color of its neighboring pixels is used. In
the averaging process, only colors of those neighbors from
the same body part as the missing pixel are used to prevent
color diffusion between body parts.

Shadows and background are also added to the rendered
image to increase photo-realism. In particular, we use the
planar surface shadowing technique in [2].

6 Results

We compare the quality of the rendered images using
three different methods: render the textured voxel model
directly, render the textured mesh model directly and ren-
der using our algorithm. We also explore the effect of the
number of source pixels, ❤ , on the quality of the rendered
target pictures. We use subject #1 and 240 source images
(8 cameras each with 30 frames) from the sequence where
subject #1 stood on the turn-table.

The top and middle rows of Figure 5 shows subject #1
performing a motion (taken from a motion database) ren-
dered from two different camera viewpoints. The bottom
row of the figure displays the face region from the top row at
a higher resolution for better comparison. Figures 5(a) and
(b) show the results of directly rendering the colored voxel
and texture-mapped mesh models. Figures 5(c), (d) and (e)
show rendering results using the algorithm described in this
paper with the target pixel color computed by averaging 1,
5 and 9 source pixels.

The images obtained using our rendering algorithm are
sharper than those obtained from the direct rendering of
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Figure 5. Images obtained by (a) direct rendering of the colored voxel model, (b) direct rendering of the texture-mapped mesh
model, (c) using our algorithm with each target pixel color computed by averaging one source pixel, (d) five source pixels and (e)
nine source pixels. The top and the middle rows show subject #1 performing a motion (taken from a motion database) rendered from
two different viewpoints. The bottom row displays the face region from the top row at a higher resolution for better comparison.

either the voxel or mesh models, especially in highly tex-
tured areas such as the face. The voxel model also suffers
from discontinuities at the joints (see the knee joints in Fig-
ure 5(a)). The white patches in Figure 5(b) represents the
part of the mesh model where no texture can be obtained
from the source sequence (hole filling was not used here).
The last three columns of Figure 5 show that the images
rendered using different numbers of source pixels are visu-
ally very similar to each other. If the cameras are color-
balanced, our rendering algorithm is not particularly sensi-
tive to the number of source pixels used.

Figure 6(a) shows subject #1 performing a throwing mo-
tion with the corresponding frames from the original throw-
ing sequence of subject #2. For comparison, the camera
viewpoint of the rendered sequence is that of the first cam-
era of the source sequence. Our system can also render
the subject from novel and moving viewpoints. An ex-

ample is included in the supplementary video clip1. Fig-
ure 6(b) shows another example of transferring a kungfu
motion from subject #3 to subject #2. The complete ren-
dered sequence in Figure 6(a) is included in the supplemen-
tary video clip.

On a 750MHz computer, Step 1 of our rendering algo-
rithm takes approximately 2 seconds per image (640 x 480
pixels), Step 2 takes about 9 seconds and Steps 3 and 4 take

1The supplementary video clip can be found at
http://www.cs.cmu.edu/˜german/Research/MotionTransfer/MT.mpg

about 4 minutes each (the timing of Step 4 includes the time
required to read the source images from memory).

7 Discussion

Three factors contribute to the visual artifacts in the im-
ages rendered using our algorithm. First, the captured mo-
tion was not re-targeted from subject #2 to subject #1, caus-
ing the feet of subject #1 to slide in the rendered video. Sec-
ond, although the cameras are color balanced, self shadows
in the source images produce unevenly lit pixels in our fi-
nal rendered video. This artifact is caused by the ceiling
lights in our setup and could be reduced by careful place-
ments of lighting. Third, because the position of the 3D
source model point in each frame is calculated using the
motion data of the source image sequence, any tracking er-
rors in the source motion data cause the algorithm to pick
the wrong source pixel color. To reduce artifacts caused by
this problem, it is important to make sure the motion of the
person in the source sequence is tracked correctly.

One limitation of our system is that both the motion
tracking and rendering algorithms are appearance based. To
apply our algorithms to the same subject in a different set
of clothing, we have to update the texture of the kinematic
model and capture new video sequences of the subject in
the new clothing as source images for rendering.
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Figure 6. Selected frames showing (a) a throwing motion
transferred from subject #2 to subject #1, (b) a kungfu mo-
tion transferred from subject #3 to subject #2.

Moreover, because we model each separate body part as
rigid, our system is not able to capture and render subtle sur-
face deformation effects caused by movement of the mus-
cle and clothing. One of our future directions of research
is to incorporate deformable models to capture and animate
muscle movement and skin deformation.

In this paper, we have shown that using vision-based al-
gorithms, we can create accurate human kinematic models,
track motion in video sequences and generate realistic video
of motion transferred from one person to another person
without using markers of any kind. Our system provides an
inexpensive and simple alternative to marker-based systems
for human motion transfer.
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