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Abstract: We propose a markerless image alignment method for pressure-sensitive paint mea-
surement data replacing the time-consuming conventional alignment method in which the black
markers are placed on the model and are detected manually. In the proposed method, feature points
are detected by a boundary detection method, in which the PSP boundary is detected using the
Moore-Neighbor tracing algorithm. The performance of the proposed method is compared with the
conventional method based on black markers, the difference of Gaussian (DoG) detector, and the
Hessian corner detector. The results by the proposed method and the DoG detector are equivalent to
each other. On the other hand, the performances of the image alignment using the black marker and
the Hessian corner detector are slightly worse compared with the DoG and the proposed method. The
computational cost of the proposed method is half of that of the DoG method. The proposed method
is a promising for the image alignment in the PSP application in the viewpoint of the alignment
precision and computational cost.

Keywords: pressure-sensitive paint; image alignment; feature point detection; flow measurement

1. Introduction

The pressure-sensitive paint (PSP) technique is an optical flow diagnosis method for
measuring pressure on a model to which a PSP coating is applied [1–4]. The PSP technique
has received much attention, as it enables non-intrusively measuring pressure distribution.
Indeed, the PSP technique has been applied to various fluid dynamic experiments: wind
tunnel testing [5–9], rotating machineries [10–12], and micro devices [13–17]. In the PSP
technique, pressure is measured by the variation of the luminescence intensity from the PSP
coating with a CCD/CMOS camera [2,3]. To improve the measurement accuracy of the PSP
technique, a temperature compensation method is intensively investigated [18–25]. In addi-
tion, there are many studies on measurement system [26,27] and post-processing [28–31] for
the noise reduction in the PSP image. On the other hand, there is less research on an image
alignment method. The alignment of the reference and the run images is an important
procedure in the post-processing of PSP data, because the misalignment of the images
leads to large measurement error. In conventional techniques, black markers placed on a
model surface are used to image alignment [32,33]. Sant et al. [32] proposed an automatic
method that detects black markers and links those of the reference and the run images. The
linking method is based on the distance between the markers, and the method requires an
iterative calculation. Since the positions of the markers in both reference and run images
are detected and linked manually in the method proposed by Fujimatsu et al. [33], the
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method is time consuming for practical applications. The advantage of the method pro-
posed by Fujimatsu et al. also uses corners of a model for the image alignment to improve
the alignment accuracy. In general, since the positions of black markers are heuristically
determined, the performance of the image alignment will vary by the researchers. In these
conventional methods using black markers, pressures at the markers cannot be measured.

In this study, we focus on features of images such as corners, edges, and contours [34].
We propose an image alignment method using features and its feature values, while the
above-mentioned methods do not use feature values; that is, the existing method only
uses the information of the marker positions. The use of feature values, characterizing the
neighborhood of the features [35], enables us to easily link the features between the reference
and the run images and to align the images without using black markers. Although there
are many studies on image alignment/registration in various fields such as computer
vision and medical image fields [34,35], these methods are not directly applicable to the
PSP images. This is because the images obtained in the PSP measurement usually consist
of white solid color (luminescence from PSP) and black solid color (background) parts with
few features. Kuzub et al. [36] proposed the method using feature points. Since the features
on the PSP such as small scratches and defects are usually affected by the illumination, the
mismatching of the features between the reference and the run images will occur due to the
change of the illumination condition. Then, Kuzub et al. also used the black markers. In this
study, we propose a markerless image alignment method based on a boundary detection
method. The performance of the proposed method is compared with the conventional
method based on black markers, the difference of Gaussian (DoG) detector, and the Hessian
corner detector.

2. Lifetime-Based PSP Measurements

A PSP coating consists of phosphorescence dye and binder and is applied to a model
surface. When the dye is photoexcited, the phosphorescence is emitted from the dye. The
intensity/lifetime of the phosphorescence depends on pressure due to oxygen quenching.
Therefore, the pressure on the model can be measured by detecting the variation of the
intensity/lifetime; there are two approaches for measuring pressure distribution: the
intensity-based method and lifetime-based one [2,3]. In the intensity-based method, the
change in position of the model will induce the error due to the change in the illumination
distribution. As a demonstration of the image alignment methods, we used a lifetime-based
method known as the two-gated lifetime method [37–40] in this study. Two images are
captured in the two-gated lifetime method: Gate 1 image is captured during the excitation
of PSP, and Gate 2 one is captured during the decay of the luminescence of PSP after
excitation light is off. Then, the image ratio R is calculated as

R =
IGate1

IGate2
(1)

where IGate1 and IGate2 are Gate 1 and Gate 2 images, respectively. Theoretically, the image
ratio Rrun obtained at the run condition relates to pressure. However, it is difficult to
obtain pressure distribution from Rrun due to the non-uniformity of the lifetime spatial
distribution. To compensate for the effect of this non-uniformity, the image ratio Rref
obtained at the reference condition is used. Then, the ratio of Rrun and Rref is used for
pressure measurement [41].

Rrun

Rref
= ∑

i
ai

(
prun

pref

)i
(2)

where ai are calibration constants.
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3. Image Alignment Method
3.1. Feature Point Detection

There are many feature point detection methods detecting rotation invariant and
scale-variant feature points. However, the scale of PSP images is usually not changed. As
feature point detection methods, we use the following three methods: the difference of
Gaussian (DoG) detector, the Hessian corner detector, and the proposed method. It is noted
that PSP image is usually a grayscale one. In the DoG detector, the DoG operator, which is
an approximation form of the Laplacian of Gaussian (LoG) operator, is applied to image to
detect feature point [35,42]. The DoG operator DoG is written as

DoG(x, y) =
1.6{G(x, y, 1.6σ)− G(x, y, σ)}

σ2 (3)

where G(x, y, σ) is the two-dimensional Gaussian filter at pixel (x, y) of image with the
standard deviation σ. After applying the DoG operator, the points with higher values than
a threshold are adopted as feature points. In this study, the threshold was determined
to detect the feature points near the corners and edges, because the feature points on the
model usually lead to mismatching due to the change of the illumination condition between
the images.

In the Hessian corner detector, the following Hessian matrix is considered [35,43]:

H(x, y) =
[

Ixx(x, y) Ixy(x, y)
Ixy(x, y) Iyy(x, y)

]
(4)

where I(x, y) indicates the intensity of the image at pixel (x, y) and the subscript indicates
the gradient in the x or y direction. For example, Ix(x, y) = I(x + 1, y) − I(x, y) is the
gradient in the x direction, and Iy(x, y) = I(x, y + 1)− I(x, y) is the y direction gradient.
Since the computational cost for Equation (4) is high, we treat the approximation form
using box filters [44]. Following Ref. [44], the 9× 9 box filters are used to approximately
express Ixx, Iyy, and Ixy. The approximated gradients Ixx, Iyy, and Ixy are denoted as Dxx,
Dyy, and Dxy, respectively. Then, the determinant of the Hessian matrix is considered

det(H) = DxxDyy −
(
wDxy

)2 (5)

where w is the relative weight of the filter responses and is 0.9 in this study following
Ref. [44]. Calculating Equation (4), we adopt the points with higher value of the determinant
as feature points.

The proposed method is as follows. The boundary of the PSP/model is traced using
the Moore-Neighbor tracing algorithm [45,46]. In the algorithm, the image is binarized, and
the outline of the PSP/model is traced in the binary image. A pixel on the boundary of an
object has to be specified as a starting point of the tracing. The Harris corner detector [35,47]
is used to find the pixel on the boundary (corner) of PSP. The traced outline is varied due
to a binarization threshold value; thus, we trace the outlines under six binarized images
based on six binarization threshold values. The 0.04, 0.08, 0.12, 0.16, 0.20, and 0.24 are used
as binarization threshold values in the PSP image normalized by the maximum intensity
value. The obtained six outlines are adopted as feature points. The advantage of this
method is its lower computational cost than the conventional method.

3.2. Description of Feature Point

As a feature descriptor, a vector of the descriptor with 64 dimensions is used in this
study and is calculated from the neighborhood around the feature point following Ref. [44].
For obtaining a rotation-invariant descriptor, the Haar wavelet (size of 4s× 4s) responses in
the horizontal and vertical axes of the image are calculated for each point within a circular
neighborhood of radius 6s around the point of interest, where s is 1.6 following Ref. [44]
in this study. Then, the responses are filtered by the Gaussian filter with the standard
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deviation of 2s. The response angles are calculated as the arctangent of the ratio of the
horizontal response to the vertical one. The responses are summed in the sliding angle
window of π/3. The orientation of the feature point is determined by the ratio of the
summed horizontal response to the vertical one in the region with the maximum summed
response. The square region of 20s× 20s around the featured point is considered and is
rotated in the calculated orientation. Then, the region is divided into 4× 4 subregions. The
Haar wavelet responses (size of 2s× 2s) in the horizontal and vertical axes are calculated
from 5× 5 regularly sampled points for each subregion. The absolute values of them are
also calculated. The Gaussian filter with the standard deviation of 3.3s is also applied
following Ref. [44]. These four Haar wavelet responses are obtained for 4× 4 subregions;
thus, the descriptor with 64 dimensions is obtained for each feature point. In this study, we
used OpenSURF code and calculated the descriptor [48].

3.3. Matching of Feature Points between Images

Based on the calculated descriptor, the corresponding feature points between the refer-
ence and the run image are estimated using the Harris algorithm. We used “matchFeatures”
of MATLAB [49], where the pairwise distance between feature vectors are calculated. In
the input arguments for “matchFeatures”, the “MaxRatio” was set at 0.9. The default
values were used for other arguments. Based on the matched feature points, the geometric
transformation matrix is calculated using “estimateGeometricTransform” function [50].
We used “affine” for “transformType” in the function. In this function, the outliers are
excluded based on the M-estimator sample consensus [50]. Then, the reference and run
images are aligned by applying the transformation matrix.

4. Experimental Method

We investigated the performance of the methods using the PSP data of a two-bladed
rotor model [51]. In this paper, we briefly introduce the experimental method. The details
are provided in Nagata et al. [51]. The chord and the span of the blade were 44.7 mm
and 89.4 mm, respectively. The rotor diameter was 303 mm. In this study, we used
platinum (II) mesotetra(pentafluorophenyl)porphine (PtTFPP) as a pressure-sensitive dye
and poly(isobutyl-co-1,1,1,3,3,3-hexafluoroisopropyl methacrylate) (PHFIPM) as a polymer
binder. We painted PSP on only one blade in the following procedure. First, a white
polyester film (1080-M10, 3M Japan, Japan) was stuck onto the model. Second, a PHFIPM
solution without PtTFPP was applied to it as a buffer layer to prevent a chemical interaction
between PtTFPP and the white polyester film. Then, the PSP (PtTFPP/PHFIPM) was
applied to it. We also painted six black circular markers on the blade to compare the
proposed markerless method with the conventional marker-based one.

The PSP coating was illuminated by an LED device with a central wavelength of
395 nm (IL-106UV LED, HARDsoft Microprocessor Systems, Kraków, Poland). The emis-
sion of the PSP coating was captured with repeatedly short exposure time by a CCD camera
(PCO1600, PCO, Germany). In this study, we obtained two image ratios with a difference
position of the blade, Rref (before rotation) and Rrot (after rotation), to examine the image
alignment methods. It is noted that both image ratio images were obtained under an
atmospheric pressure without rotating motion, and the pressure on the blade was uniform;
thus, we can evaluate the accuracy of the image alignment by calculating the ratio of the
image ratios, Rrot/Rref, which is ideally unity for a well-aligned image.

5. Results and Discussion

Figure 1 shows the IGate1 images of the blade before rotation and rotated 25◦. The
images were aligned by the methods introduced in Section 3. As a comparison, the images
were aligned by the conventional method using black markers. Figure 2 shows the feature
points obtained by each method and the results of feature point matching. The matched
points are connected by yellow solid lines. The resultant ratios of the image ratios, Rrot/Rref,
are shown in Figure 3. As described in the previous section, this ratio is ideally unity for
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the well-aligned image. We computed the mean value and standard deviation of Rrot/Rref
for the 100× 100 pixels at the center and near edge areas (shown in Figure 3e) of the blade
to evaluate the alignment performance. The results are summarized in Table 1. The results
shown in here are the best results for each method. The mean values and the standard
deviation of Rrot/Rref at the center portion of the blade were equal for each method, as
shown in Table 1. Due to the shot noise of the camera, the standard deviations of Rrot/Rref
were approximately 0.04 for all cases except for the result of the Hessian corner detector.
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Table 1. Results of image alignment by each method.

Method Number of Matched Points for Image Alignment Mean of Rrot/Rref±(Standard Deviation)

DoG detector 443
I : 1.010± 0.043
II : 1.012± 0.039
III : 1.010± 0.045

Hessian corner detector 60
I : 1.011± 0.044
II : 0.980± 0.150
III : 1.011± 0.065

Proposed method 157
I : 1.010± 0.043
II : 1.012± 0.039
III : 1.010± 0.047

Black marker —
I : 1.010± 0.043
II : 1.010± 0.044
III : 1.012± 0.039

Figures 2 and 3 illustrate that the results using the conventional black marker method,
the DoG detector, and the proposed method were similar. However, the values of Rrot/Rref
were approximately 0.9 (it is observed as the black line) at the upper portion (leading edge)
of the blade for the conventional black marker method. It is considered that the number
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of the point used for the image alignment was only six, and there were no points for the
alignment near the leading edge of the blade in this study. Since the black markers are
generally not placed the boundary of the PSP or the edge of the model, the alignment
accuracy will be worse near these areas. This indicates that the image alignment accuracy
of the conventional black marker method is slightly worse compared with those of the DoG
detector and the proposed method. The result obtained by the Hessian corner detector was
worse. For example, the values of Rrot/Rref at the right side and bottom (trailing edge) of
the blade were approximately 0.9. Then, the mean and standard deviation of Rrot/Rref at
area II were respectively lower and higher than those of the other methods. This is because
there was no matching feature point in the lower-left corner of the blade, as shown in
Figure 2b. The luminescent intensity at the lower-left corner area was lower than that at
other areas, as shown in Figure 1a, and the feature point was not detected by the Hessian
corner detector using a single threshold. As shown in Figure 3 and Table 1, the results
obtained by the DoG detector and the proposed method were equivalent. However, the
number of matched points was approximately 2.5 times larger in the DoG method than
in the proposed method. In other words, the number of matching points of the proposed
method was enough to correctly align the images. It is noted that the computational cost of
the DoG method (about 2.5 min in a laptop PC of Windows 10 professional with CPU of
Intel(R) Core(TM) i7-7500U, Matlab 2020a) was higher than that of the proposed method
(approximately 1 min). The proposed method was also confirmed to be successfully applied
to the PSP images used in Ref. [31].

6. Conclusions

A markerless image alignment method for pressure-sensitive paint (PSP) measurement
data was proposed. Since the images are generally aligned using feature points, the
performance of image alignment mainly depends on whether the preferred feature points
are detected or not. Conventionally, the PSP images are aligned based on black markers
placed on a model surface. The positions of the markers are detected manually, and this
method is time consuming for practical applications. Since the positions of black markers
are heuristically determined, the performance of the image alignment will vary by the
researchers. Moreover, pressures at the markers cannot be measured in the method using
black markers. Then, we proposed a feature point detection method based on the boundary
detection method, in which the PSP/model boundary is detected using the Moore-Neighbor
tracing algorithm. The proposed method uses the boundary as feature points instead of
the points such as small scratches and defects of the paints, which are affected by the
illumination condition. The performance of the image alignment by the proposed method
was compared with the conventional method based on black markers, the difference of
Gaussian (DoG) detector, and the Hessian corner detector. For this purpose, we measured
the PSP images before and after rotation of a rotor blade, to which a PSP was applied. In this
study, we used a lifetime-based method to eliminate the effect of illumination distribution
before and after rotation. The results obtained by the proposed method and the DoG
detector were equivalent to each other. On the other hand, the performances of the image
alignment using the black marker and the Hessian corner detector were worse compared
with the DoG and the proposed method. In the black marker and the Hessian corner
detector, the feature points were not prepared (black marker) or detected (the Hessian
corner detector) near or on the edge and corner of the PSP; thus, the alignment accuracy
decreased such areas. Now, if we focus on the proposed method and the DoG detector, the
number of matched points was approximately 2.5 times larger in the DoG method than
in the proposed method. In other words, the number of matching points of the proposed
method was enough to correctly align the images and reduces the computational cost. The
computational cost of the proposed method is 2/5 of the DoG detector without losing
the alignment accuracy. The proposed method will be a powerful markerless alignment
method for the PSP data.
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