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Abstract

We present a markerless motion capture approach that

reconstructs the skeletal motion and detailed time-varying

surface geometry of two closely interacting people from

multi-view video. Due to ambiguities in feature-to-person

assignments and frequent occlusions, it is not feasible to di-

rectly apply single-person capture approaches to the multi-

person case. We therefore propose a combined image seg-

mentation and tracking approach to overcome these diffi-

culties. A new probabilistic shape and appearance model

is employed to segment the input images and to assign each

pixel uniquely to one person. Thereafter, a single-person

markerless motion and surface capture approach can be ap-

plied to each individual, either one-by-one or in parallel,

even under strong occlusions. We demonstrate the perfor-

mance of our approach on several challenging multi-person

motions, including dance and martial arts, and also provide

a reference dataset for multi-person motion capture with

ground truth.

1. Introduction

Nowadays, motion capture is an essential acquisition

technology with many applications in computer vision and

computer graphics. Many human motions can only be ob-

served in the context of human-human interactions. In

some application areas like sports science, biomechanics,

or character animation for games and movies, these inter-

actions involve frequent close physical contact. Marker-

based systems can in principle capture such motions of in-

teracting subjects, but they suffer from widely known short-

comings, such as: errors due to broken marker trajectories,

long setup times, and the inability to simultaneously cap-

ture dynamic shape and motion of actors in normal cloth-

ing. Further on, in multi-person sequences, frequent man-

ual intervention is necessary. Markerless multi-view cap-

turing algorithms overcome some of these limitations for

single person motions, and succeed to reconstruct motion

and time-varying geometry of people in loose apparel, like

(a) (b) (c)

Figure 1. Our approach captures the motion of interactive charac-

ters even in the case of close physical contact: (a) one of the 12

input images, (b) segmentation, (c) estimated skeleton and surface.

a skirt [12, 16, 25]. However, on sequences where multi-

ple persons interact closely, markerless methods typically

struggle.

In the multi-person case, the amount of pose ambigu-

ities increases significantly since commonly used features

like silhouettes, color, edges, or interest points cannot be

uniquely assigned to one person. Due to frequent occlu-

sions, these ambiguities become even more challenging

when people interact closely. It is infeasible to directly ap-

ply single-person pose optimization algorithms that rely on

such features to the multi-person case, e.g., by jointly opti-

mizing the pose parameter space of two body models. How-

ever, if each image pixel could be assigned to one of the ob-

served persons or the background, pose estimation could be

performed by a single-person tracker, even under occlusion.

In this paper, we propose a markerless motion capture

method for two interacting characters that is based on robust

segmentation of the input multi-view videos, see Fig. 1. Af-

ter segmentation, an existing state-of-the-art single-person

markerless motion capture method is adapted to track each

person.

In order to resolve the pixel assignment before pose es-

timation, we employ multi-view image segmentation to de-

termine the image regions each person belongs to. To this

end, we introduce a novel shape prior for segmenting in-

teracting characters that integrates the previously estimated
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poses and shapes. The segmentation allows us to gener-

ate separate silhouette contours and image features for each

person, which drastically reduces the ambiguities. This al-

lows us to perform pose and surface estimation efficiently

and in parallel for each performer. Our main contributions

are:

• We introduce a maximum a-posteriori Markov random

field (MAP-MRF) optimization framework to segment

the persons in each image. We incorporate shape, pose,

and local appearance information from the previously

tracked frame into our energy function.

• We adapt the single-person motion capture method

from [16] to reliably recover skeletal motion and de-

tailed time-varying geometry of multiple persons, even

for complex motions like dancing and martial arts.

Tracking is efficient since every segmented person is

captured independently.

• We provide a new multi-view human-human interac-

tion (MHHI) dataset1 for evaluating multi-person cap-

ture approaches. The ground truth of the dataset is ob-

tained by an industrial marker-based capture system.

We demonstrate the reliability of our approach with 7

different sequences consisting of over 1500 frames of multi-

view video that were tracked fully automatically.

2. Related Work

Our work advances markerless motion capture ap-

proaches, that, so far, struggle to capture closely interact-

ing actors. To enable this, we also capitalize on previous

research in image segmentation.

Markerless Motion Capture Markerless human motion

capture has been a very active field in computer vision for

the past decades [21, 22]. Popular methods like [8, 13, 4]

model a human’s motion by articulated bone hierarchies.

However, simple articulated models are often not able to

capture the shape and motion of the human body in all de-

tail. Statistical SCAPE body models [2, 3] represent the hu-

man body better, but time varying geometry, such as moving

cloth, is not captured. Approaches like [23, 24] rely on the

visual hull to reconstruct detailed geometry, but often suffer

from topology changes that occur frequently in shape-from-

silhouette reconstructions. Some recent approaches [10, 12]

overcome these problems by using a template mesh which

is tracked through the sequence. The methods of Vlasic

et al. [25] and Gall et al. [16] combine the advantages of

skeleton-based and mesh-based approaches. They estimate

both skeleton motion and the time varying geometry.

Markerless motion-capture of multiple performers has

only been considered in very few works. Cagniart et

1The dataset is available upon request.

al. [10, 11] use a patch-based approach for surface tracking

of multiple moving subjects based on the visual hull geom-

etry. However, they do not provide skeleton motion and the

subjects are well separated and never interact closely. In the

very restricted context of pedestrians and walking motion,

the skeleton motions of several persons have been estimated

in [1, 17].

Segmentation for Shape Reconstruction and Track-

ing The joint problem of human pose estimation and multi-

view segmentation has been addressed for a single person in

several works [7, 9, 15]. The works [9, 15] use the previous

articulated pose as shape prior for level-set segmentation

and estimate the pose either within an analysis-by-synthesis

framework [15] or in combination with optical flow and

SIFT features [9]. Graph-cut segmentation is used in [7]

where a multi-view foreground image segmentation is cou-

pled with a simple stick model for pose estimation. For each

time instant, the method computes the segmentation costs

for all candidate poses and chooses the pose with minimal

energy. However, the pose estimates may sometimes be in-

accurate since the minimum cut cost does not necessary co-

incide with the correct pose. In the case of multiple persons,

this may become even more of a problem since occlusions

often change the 2D topology.

There are a few recent papers which consider segmenta-

tion and tracking with more than one subject. Guillemaut et

al. [18] propose a volumetric graph-cut method for the seg-

mentation and reconstruction of multiple players in sports

scenes like football games. This approach reconstructs only

a rough 3D shape of each player, which is suitable for ap-

plications like 3D television broadcast, but not for detailed

performance capture. Egashira et al. [14] propose a volu-

metric segmentation on the visual hull of the scene to sepa-

rate the persons. However, when two persons are in physical

contact, volumetric segmentation of the visual hull is not as

accurate as the visual hulls of the persons segmented in the

image domain.

Our approach is the first method that handles challenging

human-human interactions, extracts accurate silhouettes for

each person, and recovers pose and detailed time varying

geometry of more than one person.

3. Overview

The performance of human interactions is captured by

synchronized and calibrated cameras. Similar to [16], we

acquire for each person a rigged 3d shape model compris-

ing a bone skeleton, a triangle mesh surface model, and

skinning weights for each vertex, which connect the mesh

to the skeleton (Fig. 2(a)). The mesh surface of each per-

son can be generated using a laser scanner or multi-view

stereo methods. In our experiments, we use laser scans of

the actors, each rigged with a skeleton with 39 degrees of

freedom. Such a skeleton partitions the whole body into 15



(a) (b) (c) (d) (e) (f)

Figure 2. Overview of our processing pipeline: (a) articulated template models, (b) input silhouettes, (c) segmentation, (d) contour labels

assigned to each person (e) estimated surface, (f) estimated 3D models with embedded skeletons.

body parts where the highest skinning weight of a vertex

determines its unique association to a body part. For each

image, foreground silhouettes are extracted by background

subtraction (Fig. 2(b)).

As in [16, 25], we aim at estimating the skeleton config-

uration (pose), consisting of the global rigid transformation

of the torso and the joint angles of the skeleton, as well as

non-articulated surface deformations (shape) that cannot be

approximated by a skeleton driven deformation. Unlike pre-

vious work, we go beyond single person tracking and cap-

ture pose and shape in the context of challenging human-

human interactions with physical contact.

An outline of the processing pipeline is given in Fig. 2.

Starting with the estimated poses and shapes of the two

persons in the previous frame, the proposed algorithm es-

timates the poses and the shapes in the current frame based

on the captured multi-view images and foreground silhou-

ettes covering the two persons (the initial pose is found as

in [16]) . Since the whole space for the unknown pose and

shape parameters becomes very large for two persons, we

split the whole tracking problem into a multi-view 2D seg-

mentation problem (Fig. 2(c,d)) and a 3D pose and shape es-

timation problem (Fig. 2(e,f)). The segmentation separates

the two persons in the image domain by assigning a label

to each foreground pixel. It relies on a novel probabilistic

shape prior derived from the previous estimated poses and

shapes (Sec. 4). Then, based on the labeled pixels, the pose

and the shape are estimated for each person independently

(Sec. 5).

4. Multi-view Image Segmentation

The proposed multi-view segmentation of foreground

pixels (Fig. 2(b)) is defined as MAP-MRF [6] based on ap-

pearance, pose, and shape information. Our energy func-

tion yields segmentations that are both efficient and robust

for human motion capture under serious occlusions and am-

biguous appearance.

4.1. MAP­MRF Image Segmentation

In image segmentation, I is the set of image pixels to be

segmented, andN defines a neighborhood on this set (in our

case 8 pixels). A configuration L defines a segmentation. In

our case, we have a label for each person, i.e., li ∈ {A,B}.

The image segmentation problem can be solved by finding

the least energy configuration of the MRF. Given the ob-

served data D, a commonly used energy corresponding to

configuration L comprises three terms:

Ψ(L)=
∑

i∈I


φ(D|li)+

∑

j∈Ni

(φ(D|li, lj) + ψ(li, lj))


 (1)

where φ(D|li) is a likelihood data term which imposes in-

dividual penalties for assigning a label to pixel i. While this

term incorporates only appearance information for a stan-

dard segmentation problem, we propose a term that takes

appearance, pose, and shape information into account. The

term will be described in detail in Section 4.2. ψ(li, lj) is

a smoothness prior taking the form of a generalized Potts

model [6]. The contrast term φ(D|li, lj) favors pixels with

similar color having the same label. As in [5, 7], we use the

contrast term

φ(D|li, lj)=

{
µ

S(i,j) exp
(

−||Ii−Ij ||
2

2σ2

)
if li 6= lj ,

0 if li = lj ,
(2)

where ||Ii−Ij ||
2 measures the difference in the color values

of pixels i and j and S(i, j) the spatial distance between the

pixels. Once the MAP-MRF energy function in Eq. (1) has

been defined, it can be minimized via graph cuts [5].

4.2. Segmentation Using Shape and Appearance

A standard MRF for image segmentation performs

poorly when segmenting images in which the appearance

models of the two persons are not highly discriminative. For

instance, skin and hair colors of two persons are often very

similar. In our case, the poses and shapes of the two persons

have been recovered in the previous frame, which are strong
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Figure 3. Segmentation with shape and appearance information. (a) Input image after background subtraction. (b) Body parts B
j

k. (c) Prob-

ability for label A according to color term using a whole body appearance model (white: high, black: low). (d) Probability using the body

part appearance model. (e) Shape prior. (f) Data term Eq. (5) combining shape and color. (g) Segmentation result from (f).

cues that can be integrated as shape priors for segmentation.

However, we have to pay attention to the fact that the two

persons are very close and may occlude each other. Hence,

we propose a functional that models the appearance locally

on the surface of each person and integrates shape priors for

each person.

We represent the shape priors conditioned on the previ-

ous estimated surfaces and poses. The skeleton pose of per-

son k is parameterized by a vector Θk that defines the global

position and rotation of the torso and the configuration of

the joint angles. Together with the estimated surface Sk,

we get the current mesh Mk by applying the correspond-

ing transformation TΘk
to each vertex of the surface mesh

Sk, shortly denoted by Mk = TΘk
Sk. The estimation of

the pose and the shape will be discussed in Sec. 5. In this

section, we assume that Θk and Sk are available from the

previous frame. Hence, we define the likelihood data term

φ(D|li) not only conditioned on the label li = k but also on

the corresponding surface and pose:

φ(D|li) ∝ − logP (D|Sk,Θk, li = k) if(li = k). (3)

The color distribution is often consistent for a body part

but varies strongly between different body parts, e.g., while

hands are typically skin colored, other parts like upper body

or legs are often covered by clothes of a specific color. Since

a color distribution for the whole body is consequently not

very discriminative to distinguish two persons, we model

the person’s appearance for each of the body parts B
j
k:

P (D|Sk,Θk, li = k) = (4)
∑

j

P (D|i ∈ B
j
k, Sk,Θk, li = k)P (i ∈ B

j
k|Sk,Θk, li = k).

P (i ∈ B
j
k|Sk,Θk, li) is a shape prior modeling the prob-

ability that a pixel i belongs to body part Bj of person k.

This term will be described in Section. 4.2.1. Since the ap-

pearance of a pixel depends only on the body part, Eq. (4)

can be simplified as

P (D|Sk,Θk, li = k) =
∑

j

P (D|i ∈ B
j
k)P (i ∈ B

j
k|Sk,Θk, li = k). (5)

The likelihood term, namely color term P (D|i ∈ B
j
k) ∝

P (Ii|H
j
k) measures the consistency of the color Ii of a pixel

i with the color distribution H
j
k for body part Bj of person

k. The distributions H
j
k are modeled using the images from

the first time step of a sequence. Fig. 3 illustrates the re-

spective terms used during segmentation. The advantage of

per-part color modeling is shown in Fig. 3(c,d).

4.2.1 Shape Prior

The term P (i ∈ B
j
k|Sk,Θk, li = k) in Eq. (5) is the shape

prior that provides for each pixel i not only an a-priori prob-

ability for assigning a label k to it, but it also encodes the

probability to which body part B
j
k it belongs to. The sim-

plest way to model this probability would be to diffuse the

2D image silhouette or the 2D body part map of each Sk

and then combine them. Regardless of whether occlusion

is taken into account, this approach struggles to model the

shape prior accurately, as shown in Fig. 4(b,c).

To address this issue, we do not rely on 2D diffusion of

the exact pose Θk and surface Sk from the previous frame,

but use the posterior probability

P (Θ|D,S) ∝ P (D|Θ, S)P (Θ), (6)

that is defined for both persons, i.e., Θ = (ΘA,ΘB) and

S = (SA, SB). While the previously estimated shapes

S remain unchanged, we sample new pose configurations

Θ for both persons from the posterior by importance sam-

pling [19]. The pose parameters Θ are predicted from the

previously estimated poses, where the distribution P (Θ) is

modeled by a Gaussian with mean corresponding to the pre-

viously estimated poses. The likelihood term, P (D|Θ, S),



(a) (b) (c) (d)

Figure 4. Comparison of shape priors using 2D shape diffusion

and 3D shape posterior. Tracked model from previous time step

(a). Combining the 2D diffused shape priors for two persons yields

ambiguities due to occlusions (b). When occluded pixels are re-

moved before 2D diffusion, the obtained shape prior (c) will give

zero probability to the part (right hand of the man) that is occluded

in the former frame. In contrast, the proposed 3D shape diffusion

gives a better probability in this region (green circle) (d), which

leads to a better segmentation (Fig. 2(c)).

measures the consistency of the projected surfaces Bv with

the foreground silhouettes Fv for all views v:

P (D|Θ, S) ∝ exp

(
−
∑

v

d(Fv,Bv)

)
, (7)

d(Fv,Bv) =
∑

i


g(Fv,i,Bv,i) +

∑

j

λj · fj(Bv,i, Fv,i)


 ,

Here, g and fj measure the pixel-wise difference between

projected surfaces and the given silhouette image. g(x, y)
is 1 if x is a foreground pixel and y is a background pixel.

fj(x, y) is 1 if x belongs to body part j and y is a back-

ground pixel. The weighting parameters λj steer the impact

of each body part j. In this work, we set λj inversely pro-

portional to the size of each body part to equalize the impact

of all body parts. Note that the likelihood takes all views

and all persons into account. Fig. 4(d) shows the advantage

of shape priors using the 3D shape posterior.

In order to approximate P (Θ|D,S), we draw a set of

samples, {Θn}, from P (Θ), and weight them by

wn =
exp (−

∑
v d(Fv,Bv(Θn)))∑

n exp (−
∑

v d(Fv,Bv(Θn)))
. (8)

Hence, the probability P (i ∈ B
j
k|Sk,Θk, li = k) in Eq. (5)

for assigning a pixel i the body part label b
j
k for person k

becomes:

P (i ∈ B
j
k|Sk,Θk, li=k) =

∑

n

wn · δ
b

j

k

(Bv,i(Θ
n)), (9)

δ
b

j

k

(Bv,i(Θ
n)) =

{
1 if Bv,i(Θ

n) = b
j
k,

0 otherwise,
(10)

(a) (b) (c) (d)

Figure 5. Impact of the weighting parameters λj (Eq. 7). (a) Shape

prior without weighting. (b) Shape prior with weighting. (c) Seg-

mentation without weighting. (d) Segmentation with weighting.

where v is the corresponding view. Fig. 5 shows the ad-

vantage of weighting the body parts as in Eq. (7). Note

that we are only interested in a good representation of the

shape prior, and thus in the projections and not in the full

pose posterior. Since several poses lead to similar projec-

tions, we achieve good results with a relatively low number

of samples, despite a 78-dimensional space Θ. In our ex-

periments, we found 300 samples enough for a reasonable

approximation of the posterior Eq. (6).

4.2.2 Resolving Intersections

When the interacting persons are close to each other, the

sampling from P (Θ) might generate meshes that intersect

with each other in 3D. For the example shown in Fig. 1,

over 80% of the samples have slight or serious intersections.

Although the sampling distribution P (Θ) can be changed to

generate only meshes without intersections, the additional

intersection tests and constraints would make the sampling

procedure expensive.

Since we are only interested in an accurate shape prior,

we can apply a simple yet efficient rendering approach.

Fig. 6(a) shows an example where the right hand of a person

intersects the chest of the other person, removing its contri-

bution to the data term (Fig. 6(b)). When this happens for

several samples, the shape prior Eq. (9) becomes inaccurate

and segmentation errors occur (Fig. 6(c,d)). However, when

using front-face culling, only triangles that are not facing

the camera are rendered, making the hand visible even in-

side of the body (Fig. 6(e)). In order to make the shape prior

more robust to intersections, we generate for each sample

Θn and view v two projections Bv and B̃v , one with cor-

rect normals and one with inverted normals. For each pixel

i, the label Bv,i is then only changed to B̃v,i if the labels

Bv,i and B̃v,i correspond to two different persons. Other-

wise, the label remains unchanged. As shown in Fig. 6, this

procedure improves the shape prior and the corresponding

segmentation.



(b) (c) (d)

(e) (f) (g)(a)

Figure 6. Resolving intersections. (a) Intersection between two

persons. The hand is inside the chest. (b) Standard projection.

(c) Corresponding data term and (d) Segmentation from (c). (e)

Projection with front-face culling. (f) Data term combining both

projections. (g) Corresponding segmentation.

5. Pose Tracking and Surface Estimation

After image segmentation (Fig. 2(c)), the boundary pix-

els of the segmented regions are associated to one of the

persons. Contour pixels of a person that are adjacent to

the background are easily assigned to the correct person.

Boundary pixels in regions where two persons overlap get

the label of the person whose boundary region is closest to

the camera. To this end, we evaluate the depth values of the

projected models in a neighborhood of the boundary pixel

and take the label with the lowest average depth. Fig. 2(d)

illustrates the contour labeling.

Once the extracted contours of the persons are labeled,

mesh-to-image correspondences can be extracted for each

person k. Now skeleton poses Θk and surface deforma-

tions Sk can be estimated by local optimization as in [16]

(Fig. 2(e,f)). Since the contours are labeled, correspon-

dences are only established between points that are asso-

ciated to the same person. We also use texture correspon-

dences between temporal successive frames obtained by

matching SIFT features [20]. Having the labels for the sil-

houettes, the matching becomes more reliable since only

features with the same label are matched.

As shown in [16], the local optimization gets sometimes

stuck in a local minimum and global optimization is then

performed to correct the estimation error. As the energy

term that has been proposed in [16] for global optimization

does not handle occlusions, we use a modified measure for

the consistency error between the projected surface Bv(Θk)
in model pose ΘK and the segmented silhouette Fv:

Ev(Θk) =
1

area(F k
v )

∑

i

g(F k
v,i,B

k
v,i) (11)

+
1

area(Jk
v )

∑

i

∑

j∈Jk
v

fj(B
k
v,i, F

k
v,i),

where Jk
v is the set of visible body parts for camera v in

the previously estimated frame. After global optimization,

(a) (b) (c)

Figure 7. Input image after background subtraction (a), motion

tracking without segmentation (b) and with segmentation (c).

Without segmentation, features are assigned to the wrong model

which leads to significant errors.

the skeleton is skinned and then surface geometry is opti-

mized [16] based on the contour information of individual

persons.

6. Results

We recorded 7 test sequences consisting of over 1500

frames. The data was recorded with 12 cameras at a resolu-

tion of 1296 × 972 pixels and at a framerate of 44fps. The

initial segmentations were generated by background sub-

traction. The sequences consist of a wide range of differ-

ent motions, including dancing, fighting, and jumping, see

Figs. 1, 9, and accompanying video. The motions were per-

formed by 5 different persons wearing casual clothing. We

also recorded an evaluation sequence where one of the per-

formers was simultaneously tracked by a marker-based mo-

tion capture system, yielding ground-truth data for a quan-

titative evaluation.

Impact of Feature-to-Person Assignment Tracking both

persons with the method of [16] without the proposed

feature-to-person assignment is prone to errors, see

Fig. 7(b). In particular interactions with close physical

contact and severe occlusions are problematic due to am-

biguous data-to-model associations. Since the errors origi-

nate from the underlying energy function for pose estima-

tion, even global optimization strategies cannot resolve the

problems caused by wrong associations. Furthermore, re-

lying only on global optimization would be very expen-

sive. In contrast, our segmentation-based approach en-

ables the tracker to correctly and efficiently determine shape

and pose, as local optimization succeeds to find the correct

poses for most frames, Fig. 7(c). Relying only on color or

shape prior for segmentation is not sufficient, and may also

lead to tracking errors (see supplementary video).

Segmentation and Tracking Our approach enables us to

fully-automatically reconstruct skeletal pose and shape of

two people, even if they are as closely interacting as in a



martial arts fight, during a leap-frog jump, or while danc-

ing, see Fig. 9 and accompanying video. Despite of severe

occlusions, our method successfully captures pose and de-

forming surface geometry of people in loose apparel, see

Fig. 9(e). In some cases, segmentation may lead to small

errors in one of the multi-view frames due to very fast mo-

tions (Fig. 9(a)) or color similarity (Fig. 9(e)) that cannot

be resolved by the shape prior. However, this happens only

at very few frames and the motion capture method is ro-

bust enough to deal with small inaccuracies in segmenta-

tion. The whole system for motion capture takes 3 to 6

minutes (higher motion speed triggers global optimization

and costs more time) for a frame that consists of 12 images

on a standard PC using unoptimized code.

Quantitative Evaluation In the evaluation sequence, 38
markers were attached to one of the participating sub-

jects whose motions are captured with a commercial

PhaseSpaceTM marker-based motion capture system. The

marker-based system runs synchronously with the multi-

view video setup that records the same scene. As in all

other sequences, the proposed markerless motion tracking

and segmentation method is applied to the raw video data

without exploiting any special knowledge about markers in

the scene. The untextured black motion-capture suit and the

fast and complex motion make it challenging to track this

sequence. After tracking and surface reconstruction, 38 ver-

tices on the mesh surface are associated with the 38 tracked

markers (pairing is done in the first reconstructed frame).

Fig. 8 shows one of the captured frames with tracked mark-

ers and their corresponding mesh vertices overlaid. Al-

ready by visual inspection one can clearly see that our re-

constructed mesh-vertices are almost identical to the refer-

ence markers. The average distance between the markers

and their corresponding vertices across all 500 frames of

the evaluation sequence is 29.61mm with a standard devi-

ation of 25.50mm. This distance also includes errors in-

troduced by the marker-based system itself, as we are using

raw marker positions that have not been post-processed.

Limitations Currently, our approach is designed for two-

person tracking, but an extension to the multi-person case

is feasible and will be investigated in the future. The seg-

mentation approach can also be modified to handle general

scene backgrounds. In certain situations, segmentation er-

rors arise that may lead to pose inaccuracies. For instance,

our segmentation and tracking method may fail when the

hands from two persons touch as neither appearance nor

shape information are sufficient to uniquely identify the per-

former, see Fig. 9(e). This issue may be resolved at the cost

of computation time by explicitly modeling 3D-mesh inter-

sections. Runtime performance can also be improved by

using lower resolution meshes in shape prior calculation.

(a) (b)

Figure 8. Illustration of tracking accuracy. (a) Input image after

background subtraction. (b) Position comparison of marker points

(green points) and the corresponding 3D vertices (red points), with

surface point cloud overlay.

7. Conclusion

In this paper, we proposed a segmentation-based mark-

erless motion capture method that enables us to track skele-

ton motion and detailed surface geometry of interacting per-

sons. The segmentation approach is based on a new prob-

abilistic shape and appearance model that enables reliable

image segmentation of the two persons even under chal-

lenging occlusions. This robust multi-view segmentation

enables us to reliably and accurately capture shape and pose

of each actor. To our knowledge, this is the first method to

fully-automatically track people in close interaction.
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