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ABSTRACT:

This paper addresses the registration of LiDAR point clouds. More specifically, we present an automatic method for markerless

registration of two such point clouds given in arbitrary local scan coordinates – i.e. without simplifying assumptions such as a common

up-vector. Clearly, the critical step of the registration is to find a coarse initial alignment, to be refined with established local methods for

fine registration, such as ICP or least-squares surface matching. The proposed approach builds on the 4-Points Congruent Sets (4PCS)

algorithm (Aiger et al., 2008), a popular registration tool in computer graphics, and extends it to better deal with the specific challenges

of LiDAR data. The main limitations of the original 4PCS method in that context are (i) that it does not cope well with strongly varying

point densities, such as they routinely occur in laser scans due to the constant angular sampling from different viewpoints; and (ii) that

to remain efficient, huge LiDAR point clouds must be down-sampled so heavily that approximate point-to-point correspondence can no

longer be guaranteed. To overcome these drawbacks we propose not to apply 4PCS to the original point cloud (respectively, a randomly

or regularly subsampled version of it), but rather to represent the point clouds with sets of distinctive 3D keypoints, and run (a slightly

modified) 4PCS on the keypoint sets. The resulting combination, termed Keypoint-based 4-Points Congruent Sets (K-4PCS), proves to

be very reliable: with suitable parameter settings, tests in indoor as well as outdoor environments yield 100% success rates.

1 INTRODUCTION

Terrestrial laser scanning (TLS) has become a standard method to

acquire 3D models in various applications, including manufactur-

ing, surveying, archaeology and medicine. With ever-increasing

scan resolutions and project sizes, there is a growing need to auto-

mate the processing of the scan data. TLS are line-of-sight instru-

ments, thus multiple scans are typically needed to fully cover an

object or region of interest. Consequently, one of the basic steps

of data processing is the registration of these individual scans into

a common coordinate frame. Since LiDAR point clouds have

known metric scale, registration of a new scan to a point cloud

amounts to finding a 6 DOF rigid-body transformation. The prob-

lem is commonly solved in two steps, a coarse initial alignment

followed by a fine registration.

For fine registration many computational solutions exist, which

are mostly variants of the standard principle to minimize the Eu-

clidean distances between nearby points. The most popular ap-

proach is the Iterative Closest Point (ICP) algorithm Besl and

McKay (1992) and its numerous variants (e.g. Bergevin et al.,

1996; Bae and Lichti, 2004; Minguez et al., 2006; Censi, 2008).

ICP alternates between establishing point correspondence with

nearest-neighbor search and updating the transformation param-

eters using those correspondences. For an overview of different

variants see Rusinkiewicz and Levoy (2001). All optimal fine

registration methods have in common that they perform local

minimization of a non-convex error function and thus require a

sufficiently accurate initial alignment in order to converge to the

desired solution. For an analysis of the convergence properties

see for example (Pottmann et al., 2006; Bae, 2009). In general

the convergence basin is much too narrow to start from raw scan

data in sensor coordinates.

Coarse alignment thus serves the purpose to establish a rough

initial solution from which to start the fine registration. It is com-

monly done manually, or by placing targets in the scene which

are geometrically well-defined and have high contrast, such that

they can be detected automatically (e.g. Akca, 2003; Franaszek

et al., 2009). While artificial targets afford high accuracy and ro-

bustness, they have obvious drawbacks: placing markers in the

scene such that all scan overlaps are covered complicates field

recording; the markers will inevitably occlude (small) parts of

the scene; and in some cases the markers are not acceptable in the

3D models, such that they must be removed in post-processing.

Automatic coarse alignment is thus desirable, but challenging for

several reasons: First, laser scans routinely have at least millions

of points, therefore computationally expensive methods are in-

tractable. Second, the typical recording setup to minimize field

work entails large baselines and limited overlap between scans.

And third, the angular sampling implies a quadratic fall-off of the

point density with distance, meaning that the same surface will

have very different point densities in different scans.

Much of the research about markerless (coarse) point cloud align-

ment starts by extracting a sparse set of features from the raw

point data, which is then followed by feature matching between

scans. Popular features are planar surfaces (Dold and Brenner,

2006; Theiler and Schindler, 2012), 2D keypoints in the range or

intensity images (Böhm and Becker, 2007; Kang et al., 2009), and

3D keypoints, usually found by generalizing 2D feature detec-

tors to 3D (Flint et al., 2007; Allaire et al., 2008; Lo and Siebert,

2009). Note that keypoints found with 2D methods tend to be

clustered around the scan position because in the near-field more

geometric detail is captured.

Matching is done either with descriptors computed from key-

points’ local neighborhoods (Böhm and Becker, 2007; Rusu et

al., 2009), or with geometric invariants such as pairwise key-

point distances (Theiler and Schindler, 2012) or congruent tri-

angles (Irani and Raghavan, 1996). 2D descriptors like SIFT are

of limited use for laser scans: many studies confirm that they can
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handle viewpoint differences only up to ≈ 25 degrees, which is

often exceeded in laser scanning projects. 3D descriptors are hard

to compute reliably if the point density is very uneven, as in TLS

data.

Matching based on geometric constraints amounts to finding con-

gruent point configurations in the two point clouds to establish

correspondence, and is computationally demanding: the minimal

geometric configuration to define the transformation are congru-

ent point triplets in the two scans, and even when using random-

ization in both the sampling and the verification steps, searching

for congruent triangles in clouds of n points has at least computa-

tional complexity O(n3 log n) (Irani and Raghavan, 1996). Thus,

even when using RANSAC-style sampling (Fischler and Bolles,

1981), a brute-force search for congruent point sets is only feasi-

ble if putative (albeit noisy and ambiguous) point-to-point corre-

spondence has already been established, – which again requires

descriptors. Such a combination of descriptor matching and sam-

pling has been called Sample Consensus Initial Alignment (SAC-

IA; Rusu et al., 2009). A main inspiration for the present work

has been the finding of Aiger et al. (2008) that the computational

cost of geometric matching can be reduced to O(n2) by exploit-

ing the affine properties of 4 coplanar points. Their 4-points

congruent sets (4PCS) method efficiently aligns uniformly dis-

tributed point clouds – see section 2.2.

To summarize, the aim of the work presented here is a robust and

efficient procedure for fully automatic, marker-free point-cloud

alignment, which is accurate enough to serve as initialization for

standard ICP. We propose a combination of the 4PCS method

with ideas from 3D keypoint extraction, resulting in a method we

call Keypoint based 4-Points Congruent Sets (K-4PCS). In par-

ticular, we propose to represent a LiDAR point cloud with a set of

well-distributed, stable keypoints found with the 3D difference-

of-Gaussians (DoG) detector. The resulting keypoint sets then

serve as input for 4PCS. As will be shown in the experiments,

4PCS together with the compact keypoint representation make

the method computationally efficient, while the use of repeatable,

well-distributed keypoints ensure reliable and accurate alignment

in spite of the compact representation, even in the presence of low

overlaps.

2 COARSE POINT-CLOUD REGISTRATION

Figure 1 shows the workflow of the proposed K-4PCS method.

Given two laser scanner point clouds, 3D DoG keypoints are ex-

tracted from both point clouds, after resampling them to regu-

lar point density for a more uniform coverage. This step is de-

scribed in Sec. 2.1. The extracted keypoint sets serve as inputs for

an adapted 4PCS correspondence search, described in Sec. 2.2.

Matching results in a set of corresponding keypoints, from which

the rigid-body transformation for alignment is estimated, and op-

tionally refined with ICP.

Figure 1: Workflow of the proposed K-4PCS algorithm

The framework is generic and can be combined with different

keypoint detectors, the important property being that they should

return true 3D features, not forward-projected 2D features, so

as to ensure viewpoint invariance and an unbiased distribution.

Here, we restrict ourselves to 3D-DoG features (local maxima of

the 3D difference-of-Gaussian response), a natural choice in the

presence of large viewpoint changes, which routinely occur in

TLS applications. In the following, both the 3D keypoint extrac-

tion and the adapted 4PCS constraint matching are explained in

more detail.

2.1 DoG Keypoint Extraction

The difference-of-Gaussians keypoint detector in 2D was pro-

posed by Lowe (1999), as part of his SIFT keypoint matching

framework, and since has widely been used in image processing

and machine vision. Scale invariant keypoints are detected by

finding local maxima of the DoG response in (x, y, scale)-space.

The DoG response is the difference between adjacent scales of

the image pyramid having different amounts of Gaussian blur,

and approximates the scale-normalized Laplacian, i.e. it fires at

points where the image brightness has high curvature.1

Since laser scanner points come with a measured intensity of

the reflected laser signal, one can readily apply the DoG method

to them. Given the polar nature of laser scans it would be in

principle possible to run standard 2D DoG on the corresponding

panoramic image. However, we prefer to detect keypoints in the

3D point cloud, which yields a more uniform distribution over the

depth range of the scan, and thus on average also over the overlap

area of different scans. To evade the near-field bias due to the

non-uniform point density, we resample the raw point cloud with

a Voxel Grid filter: the scan volume is divided into a regular 3D

voxel grid, and only one point per voxel is retained, computed as

the centroid of the points inside a grid cell, see Fig. 2. Calculating

the centroid – instead of the more commonly used voxel centre

– improves the approximation accuracy w.r.t. the original point

cloud, especially for voxels with irregular point distribution. As

mentioned in Sec. 1, there have been numerous attempts to ex-

tend the SIFT approach of Lowe to 3D space. We point out that

in our scheme DoG keypoints are used as input for geometrical

constraint matching, thus no 3D descriptors are needed.

Just like in the 2D case, our keypoint extraction is based on the

calculation of differences of Gaussians, only this time in 3D voxel

space. I.e. a 3D scale-space of q levels is generated by convolu-

tion of the voxel grid I(x,y,z) with a 3D Gaussian kernel G(x,y,z,σ)

L(x, y, z, kiσ) = I(x, y, z) ∗ G(x, y, z, kiσ) , i = 1...q (1)

and the difference between neighbouring scales forms the DoG-

response,

DoG(x, y, z, kiσ) = L(x, y, z, ki+1σ) − L(x, y, z, kiσ). (2)

Keypoints are extracted from the DoG-space by finding voxels

which are local minima or maxima in (x, y, z, scale)-space and

whose (absolute) DoG value exceeds a threshold. An example of

extracted DoG keypoints is visualized in Fig. 2.

2.2 4-Points Congruent Sets

The 4-Points Congruent Sets (4PCS) algorithm of Aiger et al.

(2008) is a method to robustly align two partially overlapping

point clouds with arbitrary orientations. To understand 4PCS,

first consider a straight-forward random sampling strategy: given

a randomly sampled triplet from I1, we need to find a congruent

triplet in I2. From the two triangles the alignment can be com-

puted and applied to the target point cloud to obtain I ′

1, which is

then tested for agreement with I2. This triangle sampling is re-

peated until a transformation with large enough support is found.

1Note, sometimes DoG keypoints are also called SIFT keypoints; we

prefer the name DoG, since SIFT is nowadays more commonly used for

the gradient histogram descriptor devised by Lowe in the same work.
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Figure 2: 3D keypoint extraction. The original scan point cloud (green) is resampled with a voxel grid filter, and the resulting uniform

density cloud (blue) serves as input for the extraction of DoG keypoints (red).

Unfortunately such a procedure will be rather inefficient, having

computational complexity at least O(n3 log n) (Irani and Ragha-

van, 1996).

The concept behind 4PCS is to sample base sets B(a,b, c,d) ∈
I1 of 4 approximately coplanar points, rather than minimal sets

of 3 points, and search for corresponding sets M(a′,b′, c′,d′) ∈
I2 (Fig. 3). Somewhat surprisingly, adding a fourth point re-

duces the runtime to O(n2) – see below. Random sampling is

biased towards selecting distant points to ensure stable and reli-

able transformation parameters. In case of partially overlapping

point clouds, the maximum distance between base points is cal-

culated from the approximate overlap and diameter of the inputs.

While the diameter can be automatically estimated, the approxi-

mated overlap needs to be set a priori.

Figure 3: Principle of 4PCS, with a,b, c,d ∈ I1 the base point

set and a′,b′, c′,d′ ∈ I2 the corresponding congruent set.

The insight behind 4PCS is that in a planar quadrangle of 4 points

(the base set) one can compute the intersection point e of the

diagonals (see Fig. 3). The resulting intersection ratios r1 and r2

of the two diagonals w.r.t. that point (eq. 3) are invariant under

affine transformation (Huttenlocher, 1991).

r1 = ‖a − e‖/‖a − b‖

r2 = ‖c − e‖/‖c − d‖
(3)

The task of finding a congruent point set in I2 can be carried

out in O(n2), with the following steps: First, find point pairs

{a′,b′}, {c′,d′} that have (up to a tolerance δ1) the same point-

to-point distances x = b′ − a′ and y = d′ − c′ as the diagonals

of B in I1. Then, predict the two possible diagonal intersection

points independently for each point pair:

eab = a
′ + r1 · x ; eba = b

′ − r2 · x

ecd = c
′ + r1 · y ; edc = d

′ − r2 · y .
(4)

Due to the affine invariant above, for a valid congruent set the pre-

dicted points must coincide (again up to a tolerance), i.e. we have

to check four combinations: ‖eab − ecd‖ < δ2, ‖eab − edc‖ <
δ2, ‖eba − ecd‖ < δ2, and ‖eba − edc‖ < δ2. After this test,

verification proceeds as in standard RANSAC. A candidate trans-

formation is computed for each of the k valid congruent sets, and

the one with the highest number of inliers (according to a toler-

ance δ3) is retained. This 4-point sampling and verification pro-

cedure is repeated L times, with L determined from the expected

number of point correspondences, given the approximate overlap

between the data sets. It should be pointed out that while 4PCS

has a number of thresholds (respectively tolerances) δi, they are

all estimated automatically, based on the mean density of the in-

put data.

When using keypoints rather than raw point clouds as input, the

data-driven estimation of these tolerances must be adapted to ac-

count for the properties of keypoint input. On the one hand, DoG

keypoints are a lot sparser than the original point cloud, so the

mean point density is low. On the other hand, the stable key-

points have a lot better repeatability (chance of being present in

both input point clouds) than randomly sampled points. Thus, the

chance of finding the same object point, rather than an arbitrary

nearby point, is a lot higher than in point clouds generated by ran-

dom downsampling to the same size. Estimating the tolerances

from average densities or point-to-point distances in the keypoint

cloud will therefore result in exceedingly high values, leading to

grossly wrong alignments, and thus to a failure of the subsequent

ICP. Using the original data will give too low tolerances, causing

coarse alignment to fail. We found that the necessary tolerance

for well-defined keypoints is independent of the density, and is a

constant multiple of the minimum keypoint scale. We therefore

calculate all tolerances from the (fixed) minimum scale used in

the DoG detector.

2.3 Implementation

The described K-4PCS method was implemented in C++, mak-

ing use of the open source Point Cloud Library (PCL, Rusu and

Cousins, 2011). Empirically, the most important parameters are

the minimum scale for keypoint extraction and the approximate

point cloud overlap, whereas others which could potentially have

a large influence (voxel grid spacing for filtering, spacing be-

tween DoG levels, minimum contrast threshold for DoG) do not

greatly change the result when set in a reasonable range. Conse-

quently, only these two parameters were varied in the evaluation,

while all others were kept constant (numerical values are given in

Tab. 1).

Minimum contrast 1% of brightness range

Number of octaves 5

Number of scale per octave 5

Minimum scale variable

Voxel grid spacing same as minimum scale

Point cloud overlap variable

Table 1: Numerical parameter values used for K-4PCS.

For this project, both the standard 4PCS method and the proposed

K-4PCS method were integrated into the PCL environment.
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3 EVALUATION

To test the proposed K-4PCS method we have captured two da-

tasets, each consisting of multiple scans with varying degrees of

overlap. One set of scans covers an indoor scenario with pre-

dominantly planar walls (example shown in Fig. 2) and a high

degree of symmetry, whereas the other set shows an outdoor sce-

nario with an ancient arch as the object of interest, surrounded

by paths, some vegetation and a distant building. The results are

compared against those of the standard 4PCS as baseline.

To assess the metric accuracy and the success rate of our pro-

posed method we compare it to ground truth generated by regis-

tering the scans with artificial sphere targets. The ground truth

has residual registration errors < 5 mm, and can thus be con-

sidered error-free when evaluating coarse alignments. The fol-

lowing error measures are used: to quantify metric accuracy, the

differences between the true and estimated transformations are

split into a mean angular error (MAE) using Euler angles, and

a mean translation error (MTE). Additionally we also report the

root mean square error (RMSE) between the point clouds trans-

formed with the true and with the estimated alignment matrix.

Note, since the RMSE is computed from two transformed ver-

sions of the same point cloud, it is based on true correspondences

rather than nearest neighbors. Since coarse registration is not the

final goal, a registration is considered successful if the RMSE is

below an empirical threshold, chosen conservatively to ensure

that the consecutive fine registration with ICP converges to the

correct solution (see below).

3.1 Baseline

As a state-of-the-art baseline for automatic point cloud regis-

tration we use the standard 4PCS method. It should be noted

that a totally fair comparison is not straight-forward: since the

method cannot deal with clouds of millions of points, as they are

routinely recorded by TLS, the point clouds need to be down-

sampled to a maximum size. The authors of the method resort

to random subsampling – see Aiger et al. (2008) and associated

source code. Unfortunately that strategy breaks down for the case

of LiDAR scans: Due to the quadratically decreasing point den-

sity a large fraction of the points are concentrated near the re-

spective scanner positions. When downsampling randomly one

therefore quickly runs out of (even approximately) corresponding

points in the lower-density regions of the scans, which account

for most of the recorded scene and most of the overlap area. Em-

pirically, agnostic downsampling to tractable sizes causes 4PCS

to fail in almost all cases. Instead, we therefore downsample

the point cloud with the same voxel grid filter also employed

in our scheme, but using a wider grid spacing. The spacing is

chosen such that the resulting point cloud has approximately the

same number of points as our corresponding keypoint set (but

distributed uniformly across the scan volume), and thus registra-

tion times become comparable. Running 4PCS with “intelligent”

point cloud reduction to the same size works a lot better, and ap-

pears to be the most sensible direct comparison (i.e. in case of

computation time).

3.2 Indoor Application

A first evaluation was carried out using a set of 5 scans from a

laboratory room. The scans have been acquired with the Zoller+

Fröhlich TLS Imager 5006i and each have ≈10M points, cover-

ing a field of view of 360◦ horizontally and 150◦ vertically. The

size of the scanned room is about 15×10 metres, and the dis-

tances between two scan positions range from 3 to 15 metres.

Apart from standard office furniture (desks, chairs, whiteboards)

there are a number of cylindrical pillars. Although the environ-

ment is rather simple in terms of scene geometry, alignment is

relatively challenging because of multiple rotational symmetries

of the major structures, which all give rise to solutions with high

overlap. We found that, due to the high degree of symmetry, ICP

only converges to a correct solution reliably if the RMSE of the

coarse alignment is below 0.5 m, hence that value is used as hard

threshold for a successful registration. In order to test somewhat

extreme cases with low overlap and/or significant density change

and occlusions, two scans were deliberately captured from oppo-

site corners of the room, as well as from different heights.

The approximate overlap was set to 80% for all scan pairs, re-

flecting the fact that all scans see the entire room, but with some

degree of occlusion by furniture. To even out fluctuations due to

random sampling, the alignment was repeated 10 times for each

of the 10 scan pairs. In order to test the influence of different min-

imum scale σ (respectively number) of keypoints, all tests were

run for three different settings σ = {25 mm, 50 mm, 100 mm}.

S = 0.7M S = 2.5M S = 10.0M

KP SR KP SR KP SR

σ = 100mm 1100 91% 1100 95% 1200 95%

σ = 50mm 2800 98% 2800 98% 3200 98%

σ = 25mm 5900 98% 6800 97% 8200 100%

Table 2: Mean number of extracted DoG keypoints (KP), success

rate (SR) at different voxel grid sizes σ and different point cloud

sizes S. Keypoint numbers slightly vary across different scans

and are rounded to steps of 100.

Furthermore, we also tested whether the size/resolution of the

original scan has an influence. To that end the original point

cloud was downsampled by factors of 4 and 16 before starting

our registration scheme, resulting in 3 different resolutions S =
{10.0M, 2.5M, 0.7M}. Downsampling is applied to the raw range

images, thus preserving the irregular point distribution of laser

scans. Table 2 shows the number of extracted keypoints (KP) and

the corresponding rate of successful registrations (SR) over all

scan pairs. As expected, the minimum scale (respectively voxel

grid spacing) has an impact on the number of extracted keypoints,

and also on the success rate. The scan resolution on the other

hand has little influence on the number of keypoints, but never-

theless higher point density yields a bit higher success rates.

Figure 4: Success rates for varying minimum scale σ, using the

full point cloud resolution of S = 10M points.

Overall, more than 90% of all aligments are succssful even at

the lowest resolution and scale, and that number improves to

> 97% for keypoint scales of at least 50 mm, and reaches 100%

at the highest tested resolution and scale. Note that with decreas-

ing minimum scale, the computation time increases (see Tab. 3).

We point out that all incorrect alignments without exception are

caused by the symmetry, i.e. they are 180◦ rotated around one

of the room’s main axes. Also as expected, the extreme case of

point clouds acquired from opposite corners, with only little over-

lap, has the lowest success rate (see Fig. 4), but is still registered

correctly in 80% of all trials even at low resolution.
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Figure 5: Accuracy of the resulting transformation for varying

minimum scale σ, using the full point cloud resolution of S =
10M points. Results are similar at lower resolutions.

Figure 5 shows that all registration accuracies (MAE, MTE and

RMSE) depend on the minimum DoG scale and thus on the voxel

grid spacing. Decreasing the minimum scale results in more as

well as more accurately localized keypoints, which naturally im-

proves transformation parameters, too.

We compare success rate (SR), geometrical accuracy (RMSE) and

computation time (T) of our proposed K-4PCS method with the

4PCS baseline (Tab. 3). As already mentioned in 3.1, scan point

clouds were filtered to a more uniform distribution prior to apply-

ing the original 4PCS algorithm. Consequently, the low, medium

and high values for σ are different from those used in K-4PCS.

4PCS K-4PCS

SR RMSE T SR RMSE T

σhigh 4% 0.66m 18s 91% 0.15m 8s

σmed 35% 0.46m 589s 98% 0.06m 41s

σlow 62% 0.28m 9637s 98% 0.04m 102s

Table 3: Comparison between the 4PCS and the K-4PCS in terms

of success rate (SR), accuracy (RMSE) and computation time (T),

based on low-resolution (S = 0.7M) indoor point cloud.

K-4PCS clearly outperforms 4PCS in terms of success rate, ac-

curacy as well as computational time (Tab. 3, K-4PCS exam-

ple shown in Fig. 6). The significantly lower success rates of

4PCS are caused by the coarse voxel grid filters required to yield

tractable point clouds (σhigh = 900 mm, σmed = 500 mm,

σlow = 350 mm). The resulting registrations are too inaccurate

for ICP. A closer inspection reveals that most unsuccessful trials

of 4PCS occur because it is often not able to correctly handle the

high degree of symmetry of the room. K-4PCS shows a much

higher robustness with respect to symmetries, which is owed to

the DoG keypoints. Moreover, K-4PCS always achieves consid-

erably higher geometrical registration accuracies (4-7 times lower

RMSE), while at the same time significantly speeding up the com-

putation (by factors of 2-95). Computation times of K-4PCS are

easily acceptable even with low σ, whereas the runtimes of 4PCS

quickly become too long for practical purposes.

Figure 6: Example of a successful registration using K-4PCS,

σ = 50mm and a low resolution cloud with S = 0.7M points.

Figure 7: Outdoor environment with Roman arch, paths, vegeta-

tion, and a distant building. Note the numerous artefacts caused

by walking people.

3.3 Outdoor Application

We additionally tested K-4PCS to register scans acquired out-

doors. The scene (Fig. 7) contains a Roman arch surrounded

by vegetation (trees, lawns), paths, and a distant building. We

took four scans with an approximate neighboring scan overlap

of ≈ 40%, each taken from a different angle to the arch. What

makes this dataset challenging are small scan overlaps and mov-

ing people, who visited the arch during data acquisition. As the

environment (like most outdoor recordings) exhibits a less sym-

metric layout than the indoor scene, the RMSE threshold for suc-

cessful registration could be raised to 1 m. Due to the recording

setup, only three pairs overlap sufficiently for registration. Again,

to even out the fluctuations of random sampling, each registration

was repeated 10 times, resulting in a total of 30 trials.

Since the indoor tests suggest that scan resolution only has a

minor influence on registration quality, we ran all outdoor tests

with point clouds at a single (medium) resolution (S = 1.5M

points). Tab. 4 shows the comparison of SR, RMSE with re-

spect to groundtruth and T between K-4PCS and 4PCS for dif-

ferent minimum DoG scales respective voxel grid sizes. For K-

4PCS, the minimum scales are equal to the ones in the indoor

evaluation. To receive point clouds of equal size as input for

4PCS, the voxel grid size was set to σhigh = 1500 mm, σmed =
1000 mm, σlow = 700 mm.

4PCS K-4PCS

SR RMSE T SR RMSE T KP

σhigh 10% 0.80m 652s 57% 0.52m 182s 2900

σmed 30% 0.79m 9800s 100% 0.40m 663s 6000

σlow N.A. N.A. N.A. 83% 0.17m 2047s 10400

Table 4: Comparison between 4PCS and K-4PCS in terms of suc-

cess rate (SR), accuracy (RMSE) and computation time (T), based

on medium resolution (S = 1.5M) outdoor point cloud.

K-4PCS generally outperforms 4PCS. It is faster, more accurate

and achieves a much higher success rate (Tab. 4). Compared to

the indoor scans computation time T of 4PCS as well as K-4PCS

increases (cf. Tab. 3) due to the low scan overlap of only ≈ 40%.

On one hand, the required number L of sampled 4-point bases

increases with decreasing overlap; on the other hand the outdoor

scans extend over a larger area, resulting in more DoG keypoints

for K-4PCS. The computation time of 4PCS exceeds the practical

limits already at a medium scale σmed. Tests with 4PCS at the

lowest scale did not converge in 72 hours.

The geometrical registration accuracy (RMSE) of K-4PCS in-

creases with decreasing minimum DoG scale, as for indoor scenes.

Note that the percentage of successful registrations using DoG

keypoints at σ = 25 mm is lower than at σ = 50 mm. Most
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likely, that effect is caused by the relatively low input point den-

sity, especially in the overlap areas. If that point density is below

the minimum DoG scale, more keypoints are extracted in the non-

overlapping parts, leading to a greater fraction of mismatches.

A successful registration of two outdoor scans with K-4PCS is

shown in Fig. 8.

Figure 8: Registration of point clouds with low overlap in a com-

plex outdoor environment with K-4PCS.

4 CONCLUSIONS AND OUTLOOK

We have proposed an effective and efficient model for the coarse

registration of point clouds acquired with terrestrial laserscanners

based on DoG key points and 4PCS. Our approach significantly

outperforms the baseline in terms of success rate, geometrical

accuracy and computation time.

In the future we plan to conduct experiments with larger and more

diverse indoor and outdoor datasets. For example, long hallways

will result in long but narrow scans leading to additional chal-

lenges. More experiments with multiple scans and less overlap

will also allow more insights into the robustness of K-4PCS and

its potential for large practical projects (e.g. in large-scale con-

struction). We point out that the K-4PCS method is not per se

limited to terrestrial laser scans. We plan to adapt it to airborne

LiDAR data as well as to point clouds from dense multiview im-

age matching.

A limitation at present is the lack of robustness when the envi-

ronment is nearly symmetric. Thus, we aim to further improve

K-4PCS in such a way that those sets of congruent points are

selected, which are most useful to break symmetries. Further-

more, recall that mismatches of outdoor scans were mainly due

to overly low point density in the overlap area. To address this

issue, we plan to investigate ways of enforcing a more even key-

point distribution, regardless of scan point density.
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