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Markers of criticality in phase synchronization
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The concept of the brain as a critical dynamical system is very attractive because systems

close to criticality are thought to maximize their dynamic range of information processing

and communication. To date, there have been two key experimental observations in

support of this hypothesis: (i) neuronal avalanches with power law distribution of size

and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations.

The case for how these maximize dynamic range of information processing and

communication is still being made and because a significant substrate for information

coding and transmission is neural synchrony it is of interest to link synchronization

measures with those of criticality. We propose a framework for characterizing criticality

in synchronization based on an analysis of the moment-to-moment fluctuations of phase

synchrony in terms of the presence of LRTCs. This framework relies on an estimation

of the rate of change of phase difference and a set of methods we have developed to

detect LRTCs. We test this framework against two classical models of criticality (Ising

and Kuramoto) and recently described variants of these models aimed to more closely

represent human brain dynamics. From these simulations we determine the parameters at

which these systems show evidence of LRTCs in phase synchronization. We demonstrate

proof of principle by analysing pairs of human simultaneous EEG and EMG time series,

suggesting that LRTCs of corticomuscular phase synchronization can be detected in the

resting state and experimentally manipulated. The existence of LRTCs in fluctuations of

phase synchronization suggests that these fluctuations are governed by non-local behavior,

with all scales contributing to system behavior. This has important implications regarding

the conditions under which one should expect to see LRTCs in phase synchronization.

Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness

facilitating rapid task-dependent shifts toward and away from synchronous states that

abolish LRTCs.

Keywords: criticality, long-range temporal correlations, phase synchronization, detrended fluctuation analysis,

oscillations, Kuramoto, Ising

1. INTRODUCTION

The concept of the brain as a dynamical system close to a critical

regime is attractive because systems close to criticality are thought

to maximize their dynamic range of information processing and

communication, show efficiency in transmitting information and

a readiness to respond to change (Linkenkaer-Hansen et al., 2001,

2004; Beggs and Plenz, 2003; Stam and de Bruin, 2004; Kinouchi

and Copelli, 2006; Sornette, 2006; Shew et al., 2009; Werner, 2009;

Chialvo, 2010; Beggs and Timme, 2012; Meisel et al., 2012; Shew

and Plenz, 2013).

A number of modeling studies have shed important light on

the behavior of neurally inspired systems close to their criti-

cal dynamical range (Kitzbichler et al., 2009; Shew et al., 2009;

Breakspear et al., 2010; Daffertshofer and van Wijk, 2011; Poil

et al., 2012). To date there have been two significant experimen-

tal observations suggesting that the brain may operate at, or near,

criticality. These are: (i) the discovery that the spatio-temporal

distribution of spontaneous neural firing statistics can be char-

acterized as neuronal avalanches with a power law distribution

of avalanche size (Beggs and Plenz, 2003) and (ii) the presence

of long-range temporal correlations (LRTCs) in the amplitude

fluctuations of neural oscillations, typically bandpassed MEG or

EEG (Linkenkaer-Hansen et al., 2001; Hardstone et al., 2012).

The mechanisms by which avalanches and LRTCs of oscillation

amplitude may maximize the dynamic range of information pro-

cessing and communication are still to be fully understood and

experimental and computational neuroscience data linking the

two phenomena are only just beginning to emerge (Plenz and

Chialvo, 2009; Poil et al., 2012).

Population coding approaches to neuronal information stor-

age and transmission show that both changes in the firing rate

and changes in neuronal synchronization and desynchronization
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of action potentials are required to indicate changes in signal

salience (Pfurtscheller, 1977, 1992; Singer, 1999; Baker et al.,

2001; Schoffelen et al., 2005). At a coarser spatio-temporal scale,

extracellular brain signals (local field potentials, corticography,

EEG, and MEG), which depend on recordings within the brain,

at the brain surface and at the scalp are observed to be quasi-

oscillatory (brain oscillations) and in the resting state contain

spectral peaks within distinct frequency bands sitting on a 1/f

decrease in power with increasing frequency (Buzsaki, 2006).

Brain oscillations both in the resting state and during task con-

ditions show short-range and long-range synchronization when

examined both from the phase and amplitude envelope perspec-

tives (Wang, 2010). Primarily neuroscience has focused on the

detection of synchronization between areas either at zero phase

lag, or with a fixed phase delay. This is in part a consequence of

the fact that the averaging necessary to extract evidence of signal

correlation requires a consistent phase relationship between the

two signals for at least some period of the recording.

Importantly, neural synchronization is weak and it fluctuates

spontaneously over time. A number of experiments have shown

neural synchronization to be consistently modulated by cognitive,

perceptual and motor tasks supporting the idea that synchro-

nization and de-synchronization within and across frequency

bands may play an important role in communication within

the nervous system (Conway et al., 1995; Farmer, 1998; Baker

et al., 1999; Singer, 1999; Pikovsky et al., 2003; Schoffelen et al.,

2005; Buzsaki, 2006; Doesburg et al., 2009; Fries, 2009; Akam

and Kullmann, 2010). Changing synchronization patterns may

indicate an evolution in the relationship and exchange of infor-

mation (Pikovsky et al., 2003). Neural synchronization can exist

between nearby and distant regions, across a range of time scales,

and can be characterized using a number of techniques based on

time- and frequency-domain techniques as well as mutual infor-

mation (Halliday et al., 1998; Schoffelen et al., 2005; Buzsaki,

2006; James et al., 2008; Brittain et al., 2009; Siegel et al., 2012).

Neuronal synchronization occurs when the mutual influence

of neurons on each other causes them to fire close together in

time. It is favored by oscillatory activity. Oscillators can be tipped

in and out of weak synchonization through shared noise, a phe-

nomenon first appreciated by Huygens (Pikovsky et al., 2003).

Therefore, weak yet variable synchrony between neuronal oscil-

lators may easily emerge within complex and highly interactive

neural networks. In this paper the term synchronization will be

used to encapsulate both zero and fixed phase lag synchrony but

also situations in which any non-trivial phase relationship exists

between signals. Importantly, we will introduce a new method-

ology to demonstrate that non-fixed yet non-random phase

relationships between signals are present in models of critical syn-

chronization and we will show that, in principle, the methodogy

can be applied to neural data in order to further explore the rela-

tionship between neural synchronization and systems operating

close to a critical regime.

Recent evidence supporting the idea of criticality in the

dynamics of the resting state brain activity and the appreci-

ation that synchronization is an important extractable prop-

erty of neural spatio-temporal dynamics has led researchers to

ask whether neuronal synchrony can have properties consistent

with a dynamical system at criticality. These approaches identify

power law distributions in neural synchronization where syn-

chronization has been defined as phase consistency between two

thresholded time series, e.g., see the phase lock interval (PLI)

measure and the lability of global synchronization (GLS) mea-

sure in Kitzbichler et al. (2009). These findings are of considerable

interest, however, the results supporting power law behavior of

PLI have been shown by the present authors to be vulnerable to

data pooling and therefore may not provide robust estimates of

critical synchronization in neural time series data (Botcharova

et al., 2012, see also Shriki et al., 2013).

As discussed above, LRTCs (these will be formally defined

in Section 2.3) exist in dynamical systems thought to operate

close to a critical regime (Linkenkaer-Hansen et al., 2001). They

are typically identified by the autocorrelation function of the

time series decaying in the form of a power law (Granger and

Joyeux, 1980). The detrended fluctuation analysis (DFA) tech-

nique allows a characterization of LRTCs through an exponent

similar to the Hurst exponent. DFA has been widely used in

order to demonstrate the presence of LRTCs in a number of

natural and human phenomena (see Peng et al., 1994, 1995a,b;

Stanley et al., 1994; Hausdorff et al., 1995; Bak, 1996; Robinson,

2003; Karmeshu and Krishnamachari, 2004; Wang et al., 2005;

Samorodnitsky, 2006; Hardstone et al., 2012, for examples). In

neurophysiology, the finding of LRTCs in amplitude fluctuations

of the bandpass filtered MEG and EEG (Linkenkaer-Hansen et al.,

2001, 2004) has inspired us to develop a methodological frame-

work that can be used to to verify the presence or absence of

power law scaling of detrended fluctuations and where power

law scaling is present to estimate and ascertain non-trivial DFA

exponents in the moment to moment fluctuations of phase syn-

chronization (quantified in terms of the rate of change of phase

difference time series) between pairs of neuronal oscillation time

series. It should be noted here that our focus on the rate of

change of phase difference time series means that our frame-

work is not reliant on the definition of (discrete) phase locking

events. It is therefore expected to contribute insights regard-

ing phase synchronization that corroborate or complement those

provided by the study of intermittency in phase synchronization

(e.g., Gong et al., 2007).

The methodology is tested as follows: (i) on synthetic time

series where their phase difference has known temporal properties

with a known DFA exponent. Using these simulations we demon-

strate the method’s ability to recover known DFA exponents in

the phase difference, and we test the method’s robustness to addi-

tive noise in such signals; (ii) the method is tested on two classical

models of criticality, Ising and Kuramoto (Ising, 1925; Onsager,

1944; Kuramoto, 1975, 1984), from which time series and their

pairwise phase differences can be extracted. The output of these

models is examined using our method for those parameter val-

ues that determine the sub-critical, critical, and super-critical

regimes. The classical Kuramoto model is tuned close to the phys-

iological β frequency range of MEG and EEG and examined with

additive noise. We show from this analysis that a rise in DFA

exponent associated with robust power law detrended fluctuation

scaling occurs close to the critical regimes of both the Ising model

and the Kuramoto model with noise.

We next use our methodology to examine a system of

Kuramoto oscillators, operating in a range of frequencies close
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to the physiological γ frequency range of MEG and EEG that

are connected through a network constructed based on empiri-

cal estimations of brain connectivity parameters with time delays,

noise and non-uniform connectivity (Cabral et al., 2011). From

these simulations, we determine the parameters at which this

system shows evidence of LRTCs in the rate of change of phase

differences and we relate the presence of LRTCs to the network’s

connectivity.

Finally, we demonstrate that in principle this methodology

may be applied to neurophysiological data through analysing

pairs of human EEG and EMG time series. These preliminary

results suggest that LRTCs can be detected in the phase syn-

chronization between oscillations in human neurophysiological

recordings.

We present and discuss our methodology in detail and we offer

an interpretation of its results in relation to the emerging litera-

ture on neural synchrony and criticality within neural systems.

We suggest that the existence of a valid DFA exponent in fluctua-

tions of a phase difference measure suggests that the fluctuations

are governed by non-local behavior, with all scales contributing

to system’s behavior.

2. MATERIALS AND METHODS

We seek to characterize the presence of LRTCs in the (time-

varying) phase difference between two time series. These time

series may be physiological signals such as EEG, MEG, or EMG,

time series extracted from a simulation or physical model, or data

recorded from other natural phenomena. Below, we present the

detail of the various components of our proposed methodology,

including a technique used to calculate phase differences, DFA

and the recently introduced ML-DFA method for validating the

output of DFA. Figure 1 illustrates the application of our method-

ology to neurophysiological data using two sample MEG time

series. We note that for these signals, we bandpassed filter the data

to a frequency band of interest, however, this step will be omitted

in model data considered further in the manuscript.

2.1. SIGNAL PHASE

The phase of a single time series s(t) is calculated by first finding

its analytic signal:

sa(t) = s(t) + H
[

s(t)
]

(1)

where H
[

s(t)
]

is the Hilbert transform:

H [s(t)] = p.v.

∫ ∞

−∞
s(τ )

1

π(t − τ )
dτ (2)

and p.v. indicates that the transform is defined using the Cauchy

principal value.

2.2. PHASE DIFFERENCE

The signal phase is defined such that it belongs to a range φ(t) ∈
[0, 2π ] or φ(t) ∈ [−π, π]. When a single oscillatory cycle is

completed the phase returns to its starting value. A time-varying

phase therefore has the properties of a sawtooth function (see

panel 3 in Figure 1). In order to turn the phase into a continu-

ous signal, the phase is unwrapped, so that at each discontinuity,

a value of 2π is added to the phase (Freeman and Rogers, 2002;

Freeman, 2004).

The phase difference φ1(t) − φ2(t) between two different time

series s1(t) and s2(t) is calculated using the respective Hilbert

transform of the signals H[s1(t)] and H[s2(t)] (Pikovsky et al.,

2003):

φ1(t) − φ2(t) = tan−1

{

H [s1(t)]s2(t) − s1(t)H [s2(t)]
s1(t)s2(t) + H [s1(t)]H [s2(t)]

}

(3)

Full synchronization between the two signals is indicated by a

constant difference in phase over some time period (Pikovsky

et al., 2003). The time series φ1(t) − φ2(t) is an unbounded pro-

cess because φ1(t) and φ2(t) themselves are unbounded as long as

the signals s1(t) and s2(t) continue to evolve as time increases. As

we shall use DFA, see Section 2.4, to assess the presence of LRTCs

and DFA in its standard form assumes a bounded signal, in this

paper, we characterize phase synchronization in terms of the time

derivative of the phase difference time series φ1(t) − φ2(t), i.e.,

the rate of change of the phase difference.

2.3. LONG-RANGE TEMPORAL CORRELATIONS

The autocorrelation function Rss(τ ) of a signal s(t) quantifies the

correlation of a signal with itself at different time lags τ (Priemer,

1990), formally:

Rss(τ ) =
∫ −∞

∞
s(t + τ )s̄(t)dt (4)

where s̄(t) is the complex conjugate of s(t) and therefore s̄(t) =
s(t) if s(t) is real-valued.

In signals with short-range or no dependence (Beran, 1994),

the autocorrelation function shows a rapid decay. Gaussian white

noise, for example, is a signal with no temporal dependence

because each successive value of the time series is independent

and thus its autocorrelation function decays exponentially. In

contrast, a slow decay of the autocorrelation function indicates

that correlations persist even across large temporal separations,

and this is referred to as long-range dependence (Beran, 1994).

If there is power law decay of the autocorrelation function,

namely:

Rss(τ ) ∼ Cτ−α (5)

where C > 0 and α ∈ (0, 1) are constants, and the symbol ∼
indicates asymptotic equivalence (Clegg, 2006), then the time

series is said to contain LRTCs. LRTCs are a subject of consid-

erable scientific interest. They have been detected in biological

data (Peng et al., 1994; Carreras et al., 1998; Willinger et al., 1999;

Linkenkaer-Hansen et al., 2001; Samorodnitsky, 2006; Berthouze

et al., 2010) and have been discussed within the context of

complex systems operating in a critical regime.

Applying a Fourier transformation to Equation (5), a similar

formulation exists for the spectral density of the signal (Clegg,

2006), with f representing frequency:

Gss(f ) ∼ Bf −β (6)
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FIGURE 1 | Step-by-step illustration of the proposed method. We use

two sample MEG signals from the left and right motor cortex, displayed

throughout panels 1–4 in red and blue, respectively. Panel 2 shows an

optional bandpass filtering step. In panel 3 the instantaneous phases of

the two time series are calculated using the Hilbert transform. Panel 4

shows the unwrapped phases leading to a time-varying phase difference

displayed in panel 5. In panel 6, the rate of change of this phase

difference is calculated. This step is illustrated using two plots, each

showing a different time scale in the x-axis. These two time scales

correspond to the minimum and maximum window sizes used in the

DFA analysis, see Section 2.4. Panel 7 shows the resulting DFA

fluctuation plot. The validity of this plot is determined using ML-DFA, see

Section 2.5. In this case, the validity of the DFA plot was confirmed,

with a DFA exponent of 0.57.

where β = 1 − α and is also related to the level of temporal

dependence.

The exponents α and β in Equations (5, 6) are connected to

the Hurst Exponent, H, by α = 2 − 2H and β = 2H − 1 (Beran,

1994; Taqqu et al., 1995).

In practice, finding the exponent α and β is not straight-

forward for an arbitrary signal. In the time-domain, α is best

approximated by the slope of the autocorrelation function in

the limit of infinite time lags τ where measurement errors are

also largest (Clegg, 2006). Similarly, in the frequency domain,

β is best approximated by the shape of the spectral density at

large frequency shifts f . Determination of the Hurst exponent for

non-stationary signals is not straightforward, and therefore, for

practical applications, the related property of self-similarity (see

below) is considered.

2.4. DETRENDED FLUCTUATION ANALYSIS

DFA may be used to determine the self-similarity of a time

series (Peng et al., 1994, 1995b). The application of DFA returns

the value of an exponent, which is closely related to the Hurst
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exponent (Beran, 1994; Clegg, 2006). DFA is often considered to

be applicable to both stationary and non-stationary data although

recent reports, e.g., Bryce and Sprague (2012), have suggested that

the ability of DFA to deal with non-stationary signals is over-

stated. In Section 2.5, we will describe our approach to mitigating

this concern.

To calculate the DFA exponent, the time series is first

detrended and then cumulatively summed. The root mean square

error is then calculated when this signal is fitted by a line over

different window sizes (or box sizes). Extensions of the tech-

nique can be used to fit any polynomial to each window, however,

here we only consider linear detrending. If the time series is self-

similar, there will be power law scaling between the residuals (or

detrended fluctuations) and the box sizes. In the log space, this

power law scaling yields a linear relationship between residuals

and box sizes, the so-called DFA fluctuation plot, and the DFA

exponent H is obtained using least squares linear regression. A

DFA exponent in the range 0.5 < H < 1 indicates the presence

of LRTCs. An exponent of 0 < H < 0.5 is obtained when the

time series is anti-correlated, H = 1 represents pink noise, and

H = 1.5 is Brownian noise. Gaussian white noise has an exponent

of H = 0.5.

When performing DFA on oscillatory signals, the smallest win-

dow length should be large enough to avoid errors in local root

mean square fluctuations, and it is typically taken to be sev-

eral times the length of a cycle at the characteristic frequency

in the time series (Linkenkaer-Hansen et al., 2001). If the mini-

mum window size is significantly smaller than this value, then the

fluctuation plot will typically contain a crossover at the window

length of a single period (Hu et al., 2001). However, for non-

oscillatory time series for which there is no characteristic tempo-

ral scale and there are rapid changes at each innovation, such as

Gaussian white noise or FARIMA time series (see Section 2.6.1),

a smaller window size may be used.

The maximum window size should encompass a significant

proportion of the time series yet contain sufficient estimates to

allow for a robust estimate of the average fluctuation magnitude

across the time series. It is typically taken to be N/10 where N is

the length of the data (Linkenkaer-Hansen et al., 2001).

In our application of DFA to neurophysiological and model

data, we use 20 window sizes with a logarithmic scaling and a

minimum window of 8 time steps for simulated data, and 1 s

for neurophysiological oscillations (sampled at 512 Hz, band-pass

filtered 15.5–27.5 Hz) providing for a minimum of 16 cycles

per second. Following Linkenkaer-Hansen et al. (2001) we take a

maximum window size of N/10 time steps where N is the length

of the time series.

2.5. ASSESSING THE VALIDITY OF DFA

As mentioned above, a self-similar process will produce a

power law relationship between the magnitude of the detrended

fluctuations and the box sizes. In DFA, this power law scaling

is characterized in terms of the linear scaling between the log

detrended fluctuations and the log box sizes (DFA fluctuation

plot). It is beyond the scope of this paper to argue the validity

of operating in the log domain (but see Clauset et al., 2006 for a

reasoned view as to why this may not be appropriate), however,

since the object of DFA is to find evidence for or against scaling

and because a valid DFA exponent can only be obtained when the

DFA fluctuation plot is indeed linear we have introduced a model

selection method for establishing the linearity of DFA fluctuation

plots (Botcharova et al., 2013).

Our arguments for adopting a more rigourous approach are

as follows: (i) there is no a priori means of confirming that a

signal is self-similar, (ii) a DFA fluctuation plot will necessarily

increase with window size, (iii) an exponent may be too easily

obtained through simple regression analysis producing a statis-

tically significant result with a high r2 value even though the

linear model may not best represent a given DFA fluctuation plot,

(iv) the discovery of an exponent >0.5 with a high r2 value may

lead to the incorrect conclusion that the signal is self-similar with

LRTCs.

Instead of a simple regression we use the model selection tech-

nique (ML-DFA) introduced in Botcharova et al. (2013) to deter-

mine whether a given DFA fluctuation plot is best-approximated

by a linear model. This is a heuristic technique, which has been

tested extensively and found to perform well in assessing linearity

in the fluctuation plots of the following time series: (i) those with

known combinations of short and LRTCs, (ii) self-similar time

series with varying Hurst exponent, (iii) self-similar time series

with added noise and (iv) time series with known oscillatory

structure, e.g., sine waves (Botcharova et al., 2013).

The technique fits the DFA fluctuation plot with a number of

different models (see below) and compares the fit of each model

using the Akaike Information Criterion (AIC), which discounts

for the number of parameters needed to fit the model. The DFA

exponent is accepted as being valid only if the best fitting model

is linear. We want to stress that this does not equate to stating

that the fluctuation plot is linear. Rather, we do not reject the

linear model hypothesis. In what follows, only those time series

for which the linear model hypothesis is not rejected (i.e., their

DFA fluctuation plot is best-fitted by the linear model) contribute

to the DFA exponents presented in the present paper and where

appropriate we indicate where linear scaling of the fluctuation

plot is lost.

The models included in ML-DFA are listed below

(see Botcharova et al., 2013 for a justification), with the ai

parameters to be found. The number of parameters ranges

between 2 for the linear model, and 8 for the four-segment spline

model.

Polynomial - f (x) =
∑K

i = 0 aix
i for K = {1, . . . , 5}

Root - f (x) = a1(x + a2)1/K + a3 for K = {2, 3, 4}
Logarithmic - f (x) = a1log(x + a2) + a3

Exponential - f (x) = a1ea2x + a3

Spline with 2, 3 and 4 linear sections.

The first step of ML-DFA is to normalize the fluctuation

magnitudes with:

lFscaled = 100 ×
lF − lFmin

lFmax − lFmin
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where lFmin and lFmax are the minimum and the maximum values

of vector lF, respectively. A function L is then defined:

L =
n

∏

i = 1

p(lns(i))lFscaled(i)

which is a product across all windows i, and which works in a

similar way to a likelihood function, where p(lns) represents the

function:

p(lns) =
∣

∣f (lns)
∣

∣

∑n
i = 1

∣

∣f (lns)
∣

∣

where f (lns) is the fitted model. Absolute values are used in order

to ensure that p(lns) remains in the range [0, 1], so that a function

is rejected if it falls below 0.

The next step is to apply a logarithm toL to produce a function

that is similar in form to a log-likelihood:

logL =
n

∑

i = 1

lFscaled(i)logp(lns(i))

This is maximized to find the parameters ai necessary for f (lns). It

is worth mentioning that the application of the logarithm means

that the values belonging to lns are not equally weighted for all i.

The larger window sizes have a lower weighting, which is bene-

ficial because these estimates are also the least robust since they

have fewer samples associated with them.

Akaike’s Information Criterion (AIC) is then computed, which

is designed to prevent over-fitting—a situation that should in gen-

eral be avoided—by taking into account the number of param-

eters used (Akaike, 1974; Mackay, 2003). For a model using k

parameters, with likelihood function logL, the AIC is calculated

using the following expression:

AIC = 2k − 2logL +
2k(k + 1)

n − k − 1

where k is the number of parameters that the model uses (Akaike,

1974). An adapted formula was proposed by Hurvich and Tsai

(1989), which accounts for small sample sizes. The model which

provides the best fit to the data is that with the lowest value of

AIC. It is important to recall that the AIC can only be used to

compare models. It does not give any information as to how good

the models are at fitting the data, i.e., it is only its relative value, for

different models, that is important; and it would not be possible,

for instance, to compare AIC values obtained from different data

sets to each other.

2.6. METHOD VALIDATION

2.6.1. FARIMA processes

An Autoregressive Fractionally Integrated Moving Average model

(FARIMA) (Hosking, 1981) can be used to create time series with

self-similarity. The model provides a process that can easily be

manipulated to include a variable level of LRTCs within a signal,

from which DFA should return the exponent used to construct

the FARIMA process.

To construct a FARIMA process a time sequence of zero-

mean white noise is first generated, which is typically taken to

be Gaussian, and necessarily so to produce fractional Gaussian

noise. The FARIMA process, X(t), is then defined by parameters

p, d, and q and given by:

⎛

⎝1 −
p

∑

i = 1

ϕiB
i

⎞

⎠ (1 − B)d X(t) =

⎛

⎝1 +
q

∑

i = 1

ϕiB
i

⎞

⎠ ε(t) (7)

B is the backshift operator operator, so that BX(t) = X(t − 1) and

B2X(t) = X(t − 2). Terms such as (1 − B)2 are calculated using

ordinary expansion, so that (1 − B)2X(t) = X(t) − 2X(t − 1) +
X(t − 2). While the parameter d must be an integer in the ARIMA

model, the FARIMA can take fractional values for d. A binomial

series expansion is used to calculate the result:

(1 − B)d =
∞
∑

k = 0

(

d

k

)

( − B)k

The left hand sum deals with the autoregressive part of the model

where p indicates the number of back-shifted terms of X(t) to

be included, ϕi are the coefficients with which these terms are

weighted. The right hand sum represents the moving average part

of the model. The number of terms of white noise to be included

are q, with coefficients ϕi. In the range |d| < 1
2 , FARIMA pro-

cesses are capable of modeling long-term persistence (Hosking,

1981). As we will only consider p = 1 and q = 1 throughout the

manuscript, we will refer to ϕ1 as ϕ and ϕ1 as θ . We set |ϕ| < 1,

|θ | < 1 to ensure that the coefficients in Equation (7) decrease

with increasing application of the backshift operator, thereby

guaranteeing that the series converges, and X(t) is finite (Hosking,

1981).

A FARIMA(0,d,0) is equivalent to fractional Gaussian noise

with d = H − 1
2 (Hosking, 1981). This produces a time series

with a DFA fluctuation plot that has been shown to be asymptoti-

cally linear with a slope of d + 0.5 (Taqqu et al., 1995; Bardet and

Kammoun, 2008). By manipulating the ϕ and θ parameters, the

DFA fluctuation plots can also be distorted.

2.6.2. Surrogate data

Two time series x1(t) and x2(t) can be constructed such that the

time derivative of their phase difference is a FARIMA time series

X(t) with a known DFA exponent (Hosking, 1981). Concretely,

we work backwards from the time series X(t) to which DFA is

applied. The phase difference of the two time series �(φ(t)) will

be the cumulative sum of X(t), which is discrete in this case:

�(φ(t)) =
t

∑

s = 1

X(s)

The two phases φi(t) and φ2(t) of x1(t) and x2(t), respectively,

must be constructed to have a difference of �(φ(t)), or some

multiple of �(φ(t)) since DFA is unaffected by multiplying a

time series by a constant. We therefore set φ1(t) =
∑t

s = 1 X(s)
2fs

and
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φ2(t) = −
∑t

s = 1 X(s)
2fs

where fs takes the role of a nominal sampling

rate for the surrogate data.

Since the phase of a cosine signal is equal to its argument, the

two signals x1(t) and x2(t) are defined as:

x1 = cos

(

ω +
∑t

s = 1 X(s)

2fs

)

and

x2 = cos

(

ω −
∑t

s = 1 X(s)

2fs

)

where ω is a constant.

In what follows, we used ω = 1 and fs = 600. These values

were chosen in order to produce a smooth enough phase dif-

ference. This was necessary to prevent artifacts produced by the

Hilbert transform when applied to non-smooth data. When using

physiological data, a high enough sampling rate guarantees that

the signals will be smooth.

A hundred time series X(t) were generated using the algo-

rithm described in Hosking (1981) for each of the 11 DFA

exponents 0.5, 0.55, 0.6, . . . , 1. Each simulation contains 222 =
4194304 innovations. The value of the exponent of X(t) is

first computed, the two signals x1(t) and x2(t) are then con-

structed, and the phase analysis method is applied. Window

sizes used for application of DFA were logarithmically spaced

with a minimum of 600 time steps to correspond to fs and

maximum N/10 where N = 222 is the length of the time

series.

A further control analysis was performed in which a Gaussian

white noise time series ηi(t) was added to one of the signals,

namely,

x′
1(t) = cos(ω +

∑t
s = 1 X(s)

2
) + ηi(t)

before the phase analysis method was applied in order to recover

the DFA exponent of the phase difference X(t). This allowed

us to alter the signal-to-noise ratio of x1(t) in an additive way,

which we may suppose to be the case for noise in a neurophys-

iological time series. By applying the phase analysis method to

signals with additive noise, we were able to test the robustness

of the method to noisy data. In this analysis, first we will esti-

mate the extent to which the DFA exponent alters when noise

is added. Second, we will assess whether ML-DFA rejects those

DFA exponents that we know to contain noise, and if so, we

will quantify the level of noise at which exponents are no longer

valid.

2.7. MODEL SIMULATIONS

2.7.1. The Ising model

The Ising model is a model of ferromagnetism (Ising, 1925).

In two dimensions, the model is implemented on a lattice

(grid) of elements, or particles which represent a metallic sheet.

A temperature parameter controls the collective magnetiza-

tion (Onsager, 1944). The Ising model has been recently used

as a model for a two-dimensional network of connected and

interacting neurons (Kitzbichler et al., 2009).

Each element of the grid is assigned a spin pi, initially at ran-

dom, which takes a value +1 (spin up) or −1 (spin down). Spins

may switch up and down in time in a fashion influenced by both

the energy of the full system and by the spin configuration of

other neighboring elements. The energy of the system in a given

configuration of spins p is given by the Hamiltonian function

H(p) = −J�N
i,j = nn(i)pipj, where j is an index for the four elements

that are nearest neighbors nn of each element, i of the square grid.

The negative sign is included by convention. The average energy

of the system E =< H > where the symbol <> indicates taking

the expectation value.

The probability P of a given configuration occurring is

then proportional to P = e−H(p)/kT , where T is the tempera-

ture parameter and k is Boltzmann’s constant. The system may

switch into a new configuration if its associated probability

is higher or equal to that of the current configuration. The

Ising model is implemented using the Metropolis Monte Carlo

Algorithm (Metropolis et al., 1953).

At temperature T = 0, the system is highly ordered and corre-

sponds to a magnetic state (see Figure 2 for an example of an Ising

model lattice). With increasing temperature values, the proba-

bility of a spin changing increases. As the system temperature

increases the spins change more rapidly and the system becomes

increasingly disordered and corresponds to a non-magnetic state

(Figure 2A). The temperature value at which a transition occurs

between the magnetized and non-magnetized states is known as

the critical temperature Tc. At this temperature (see Figure 2B),

the system will have a large dynamic range and infinite correlation

length. However, in practice, this means that the system contains

spin clusters of all sizes, and correlations between elements of

an infinite system remain finite (Onsager, 1944; Daido, 1989).

In other words, the Ising model is predicted to have long-range

correlations between its elements at Tc.

The value of the critical temperature Tc was calculated for the

two-dimensional Ising model in Onsager (1944), and is given by

the solution to the equation

sinh

(

2J

kTc

)

= 1

In the implementation of the Ising model used here, the lattice

consists of 96 × 96 elements. The constants J and k are set to

J = 1 and k = 1 without loss of generality, which gives the critical

temperature Tc = 2

ln(1 +
√

2)
≈ 2.269.

In order to obtain a time series from this spatial model, we

follow the procedure introduced by Kitzbichler et al. (2009).

Namely, the lattice is divided into a number of smaller square

lattices, which we refer to as sub-lattices, and a number of time

series are created by taking an average spin value for each sub-

lattice. Here, we use a sub-lattice size of 8 × 8 as in Kitzbichler

et al. (2009), but we also investigated other sub-lattice sizes

(results not shown) in order to verify that this choice of sub-

lattice size did not affect the results. Indeed, previous work by

Priesemann et al. (2009) suggests that the sub-sampling
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FIGURE 2 | The Ising model lattice at a single time point once steady state

has been reached for 3 different values of the temperature parameter. (A)

The Ising lattice at a cold temperature of 1.5. Almost all spins are aligned (white)

and there is little change across time. (C) The Ising lattice at a high temperature

of T = 105. The spins form a more or less random pattern across the lattice. (B)

The Ising lattice near critical temperature, T = 2.3. The lattice contains clusters

of spins that are both small and large. Note that these are snapshots and that

the spin structure of the model is best appreciated when evolving across time.

of a system may cause it to be mis-classified as sub-

critical or supercritical when it is in fact in a critical

state.

Pairs of time series, for every possible pairing of sub-lattices

belonging to the larger grid, were used as input signals for

the phase analysis method. For the sub-lattice of size 8 ×
8 considered here, 144 time series could be created allow-

ing for 10, 296 pairings. Each time series consisted of 64, 000

innovations.

2.7.2. The Kuramoto model

The Kuramoto model is a classical model of synchroniza-

tion (Acebrón et al., 2005; Chopra and Spong, 2005) and has been

used to study the oscillatory behavior of neuronal firing (Pikovsky

et al., 2003; Kitzbichler et al., 2009; Breakspear et al., 2010) among

many other biological systems.

The Kuramoto model describes the phase behavior of a system

of mutually coupled oscillators with a set of differential equations.

Each of N oscillators in the system rotates at its own natural fre-

quency
{

ωi, i = 1, . . . , N
}

, drawn from some distribution g(ω).

However, it is attracted out of this cycle through coupling K,

which is globally applied to the system. Time t is taken to run

for T seconds of length dt = 10−3. The differential equation to

describe the phase of an oscillator is (Kuramoto, 1975, 1984):

φ̇i(t) = ωi(t) +
K

N
�N

j = 1sin(φj(t) − φi(t)) (8)

Because the Kuramoto model provides an equation governing the

phase evolution of each oscillator in the system, there is no need

for the Hilbert transform to recover the phase time series and

therefore only the latter stages of the phase analysis method are

used (see steps 3–6 in Figure 1).

Kuramoto (1975) showed that the evolution of any phase φi(t)

may be re-expressed using two mean field parameters, which

result from the combined effect of all oscillators in the system.

Namely, we may write:

φ̇i(t) = ωi + Kr(t)sin(ψ(t) − φi(t)) (9)

where ψ(t) is the mean phase of the oscillators, and r(t) is their

phase coherence, so that:

r(t)eiψ(t) =
1

N

N
∑

j = 1

eiφj(t) (10)

This crucially indicates that each oscillator is coupled to the oth-

ers through its relationship with mean field parameters r(t) and

ψ(t), so that no single oscillator, or oscillator pair drives the pro-

cess on their own. The oscillators synchronize at a phase equal

to the mean field ψ(t), and r(t) describes the strength of syn-

chronization, sometimes referred to as the extent of order in the

system (Strogatz and Mirollo, 1991; Bonilla et al., 1992). When

r(t) = 0, no oscillators are synchronized with each other. When

r(t) = 1, all oscillators are entrained with each other.

One solution to Equation (9) is r ≡ 0 for all time and coupling,

leaving each oscillator to evolve independently at its own natural

frequency. Using a limit of N → ∞, some further deductions can

be made, including the fact that when the natural frequency dis-

tribution g(ω) is unimodal and symmetric, another solution can

be found for ωi, with r(t) not equivalent to 0 (Kuramoto, 1975).

A critical bifurcation occurs for sufficiently high coupling, resem-

bling a second-order phase transition (Miritello et al., 2009) in

which the order parameter [here, r(t)] leaves zero and grows con-

tinuously with coupling (Strogatz and Mirollo, 1991; Dörfler and

Bullo, 2011). The coupling at the bifurcation is referred to as the

critical coupling Kc (Dörfler and Bullo, 2011).

In an infinite Kuramoto model, criticality is defined through

this point of bifurcation. For a finite system, however, the criti-

cal point can only be approximated by this theoretical value. One

defining characteristic of the critical coupling for the Kuramoto

system is that the greatest number of oscillators come into syn-

chronization at this value. In our study, we deal with finite-sized

implementations of the Kuramoto model, and we use this char-

acteristic as a marker of the onset of critical regime in addition

to the theoretical value Kc. Specifically, we use a measure char-

acterizing the onset of synchronization with increasing coupling

introduced by Kitzbichler et al. (2009). This is the change in the

“effective mean-field coupling strength,” �(Kr). If the value of
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Kr exceeds the difference between the natural frequency and the

mean phase ωi − ψ (in modulus), i.e., |ωi − ψ | < Kr, then oscil-

lator i will synchronize to the mean field (Mertens, 2011). Thus,

the value of K at which Kr increases maximally is the coupling

value at which the greatest number of oscillators are drawn into

the mean field.

In this paper, we consider the Kuramoto model with a noise

term added to the phase equation, namely, Equation (8) becomes:

φ̇i(t) = ωi(t) +
K

N

N
∑

j = 1

sin(φj(t) − φi(t)) + ηi(t) (11)

where ηi is a noise input taken to be uncorrelated Gaussian noise

with zero mean (
〈

ηi

〉

= 0) and covariance σ 2
i /T (

〈

ηi(t)
〉 〈

ηj(s)
〉

=
δijδ(t − s)σ 2

i /T) where δij is the Kronecker delta, δ(t − s) is the

Dirac delta function, σi is in radians and T = 1 s here.

This creates a richer structure in the oscillator dynamics, which

we suggest may better reflect coupling of neurophysiological oscil-

lators. Furthermore, it has been shown that addition of noise

increases the critical regime over a wider range of coupling val-

ues (Breakspear et al., 2010). This may allow for the fluctuations

of phase difference of a given oscillator pair to persist for longer

with increasing coupling before full synchronization is achieved.

Strogatz and Mirollo (1991) analytically derived a formula for

the critical coupling in an infinite Kuramoto model with added

noise Kc,noise. As the number of oscillators is inevitably finite,

this value is only an approximation to the true critical coupling

in the system, but we find it useful and it is displayed along-

side plots of �(Kr), which although originally introduced for a

noiseless model, remains a helpful marker of the effective critical

coupling in the Kuramoto model when noise levels are not too

large (Mertens, 2011).

In this study, we generated time series for 200 oscillators of

the Kuramoto model described by Equation (11). Each time series

was 6100-timestep long. The standard deviation σi was set to 0.32.

The distribution of natural frequencies was g(ω) ∼ N (44π, σω),

with standard deviation σω = 15. This corresponds to a normal

distribution centered around 22 Hz (which is a unimodal distri-

bution). In order to get an idea of the spread of the distribution,

the minimum natural frequency selected from this distribution

was 16.3 Hz and the maximum was 27.8 Hz. We selected this

frequency range because it spans the β-band of EEG, MEG, and

EMG oscillations (Farmer, 1998).

For these parameter values, the critical coupling Kc is equal to:

Kc =
2
√

2
√

π
σω ∼ 23.93

The integral for Kc,noise is not analytically calculable for a normal

distribution g(ω) ∼ N , but empirical calculation yields:

Kc,noise ∼ 23.85

2.7.3. The Cabral model

The third model that we consider in this paper was developed

by Joanna Cabral and her colleagues, referred to as the Cabral

model. It is a modification of the Kuramoto model, combining the

dynamics of the Kuramoto oscillators with the network properties

observed in the human brain (Cabral et al., 2011).

The Cabral model includes a noise input to the Kuramoto

oscillators and situates the 66 oscillators on a connectivity matrix

with varying connection strengths and time delays based on

empirical measurements of 998 brain regions, which have been

down-sampled to 66 (Honey et al., 2009). The list of brain regions

considered in this model are given in the supplementary material

of Cabral et al. (2011) and are reproduced in the Appendix to the

present paper. Specifically, Equation (8) is modified to include a

connectivity term Cij between oscillators j and i, namely,

φ̇i(t) = ωi(t) +
K

N
�N

j = 1Cijsin(φj(t − Dij) − φi(t)) + ηi(t)(12)

where ηi is the noise input previously introduced, and Dij is the

time delay associated with the link between oscillators j and i.

The matrix of delays D is extracted from a matrix of empirical

distances L between regions using:

Dij =
〈D〉 Lij

〈L〉

and is used to encode the length of time taken by neural activity

to traverse the connection space. The connectivity and distance

matrices (C and D, respectively) are shown in Figure 12. They

can also be visualized through the schematic diagram in Figure 3

in which the thickness and color of the lines represent the weights

of the connections between the oscillators denoting individual

brain regions. These weights are proportional to the number

of fibers that were empirically observed to connect the various

regions (Cabral et al., 2011, 2012). Brain regions may be identified

by their labels, the abbreviations of which are given in Table A1 in

the Appendix.

In Cabral et al. (2011), the model was used to generate time

series which were used as input to a hemodynamic model and

bandpass filtered. Each time series was 106 timestep-long, cor-

responding to 1000 s. The resulting time series were compared

to recordings of BOLD fMRI signals using Pearson’s correlation

coefficient and mean squared error to determine the parameter

values K and 〈D〉 that generated the time series which most closely

approximated the BOLD data.

In this model, there is no theoretically derived value of critical

coupling and �(Kr) is only a marker of effective change in cou-

pling that may or may not be critical. We interpret a rise in �(Kr)

as an increase in order of the system similar to that observed

by Kitzbichler et al. (2009).

The phase analysis method presented here was applied to

the Cabral model for coupling parameters K ranging from 1 to

20. We note that this encompasses K = 18, the value identified

by Cabral et al. (2011) as best approximating human brain resting

state BOLD fluctuations. Natural frequencies were drawn from

a normal distribution with g(ω) ∼ N (120π, σω) with standard

deviation σω = 5, which corresponds to a normal distribution

centered around 60 Hz in the γ frequency band. This was selected

because γ oscillations have been shown to play a significant
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FIGURE 3 | Schematic plot (top view) of the Cabral human brain model

showing the connections and connection weights between oscillators

which correspond to different brain regions. The weight of the

connection lines represent the strength of connectivity between the

oscillators. The darkest blue lines are the strongest 1% of connections. The

node colors represent oscillators, which model different brain regions as

detailed in Cabral et al. (2011). Colors are consistent for homologous

regions in the left and right hemispheres. Anterior and posterior, left and

right are shown.

part in the BOLD signal fluctuations (see Cabral et al., 2011 for

details).

The standard deviation σi of the noise input was set to 1.25.

It was found that values of σi < 3 did not significantly alter the

resulting parameter values of K and 〈D〉. The value 〈D〉 = 11 is

taken as in Cabral et al. (2011).

2.7.4. Clusters in the Cabral model

Cabral et al. (2011) identified a number of clusters of oscillators,

along with a set of 12 oscillators which are not part of a clus-

ter. These clusters are listed below in Table 1. In our analysis, we

considered how each of these different clusters contributed to the

overall behavior.

2.7.5. Disruptions to the Cabral model

In order to investigate the role of connectivity in sustain-

ing LRTCs of rate of change of phase difference, we modi-

fied the connectivity matrix C in the Cabral model in two

ways, as shown in Figure 4. First, beginning with the empiri-

cal connectivity matrix we deleted any connection that extended

from one hemisphere into the other. We preserved all the

other elements of the model’s connectivity and oscillator

characteristics.

Table 1 | Cluster information.

Clusters Oscillators Average weight Average degree

per node distribution

Cluster 1 7–17 0.29 19.09

Cluster 2 18–22 0.16 15.80

Cluster 3 23–26, 41–44 0.30 21.00

Cluster 4 27–40 0.34 21.71

Cluster 5 45–49 0.15 15.60

Cluster 6 50–60 0.27 18.73

Individual oscillators 1–6, 61–66 0.03 08.59

The 66 oscillators of the Cabral model can be separated into 6 clusters, based

on their mutual connectivity and distance matrix patterns, and a final set of 12

oscillators, which are not considered to belong to a cluster, but are grouped

together here for convenience. The table also states the average sum of weights

per node belonging to each cluster and the average number of connections per

node (both to 2 d.p.).

The second exploration involved a reconnection of the con-

nectivity matrix in a random arrangement, while preserving the

degree distribution and weight distribution of each oscillator by

an algorithm described in Gionis et al. (2007), Hanhijärvi et al.

(2009). Specifically, a list of the outgoing weights of each oscillator

was made alongside the node from which it extends. Two weights

were selected from this list. If they did not belong to the same

node, then the nodes were connected to each other with the asso-

ciated outgoing weights that were selected. These weights were

then deleted from the list. To continue the algorithm, two further

weights were selected. After the first step, it was necessary to check

at each iteration that the nodes were not already connected before

connecting them. If the nodes were connected, or if they were the

same node, new weights were selected from the list.

Analysis of the random connectivity model and comparison

of the results obtained from it to those derived from the discon-

nected hemisphere model and standard appropriately connected

model allowed us to determine the extent to which a realistic con-

nectivity matrix of the human brain predisposes the system to

LRTCs in the rate of change of the phase difference between the

oscillator pairs representing different brain regions.

2.7.5.1. A note on notation. From this point in the text, all

instances of oscillator phase φi(t) and r(t) will be written as φi

and r for ease of notation, unless stated otherwise. Any quantities

that are defined using the phases of one or more oscillators are

also implicitly functions of time, although the t is omitted for the

same reason.

2.8. NEUROPHYSIOLOGICAL DATA

Previously collected neurophysiological data were used to illus-

trate the application of the method (see James et al., 2008 for

full details). Briefly, EEG and EMG signals were simultaneously

recorded whilst a healthy adult subject performed a 2-min 10%

MVC (maximum voluntary contraction) isometric abduction of

the index finger of the right hand. The EMG was recorded using

bipolar electrodes situated over the first dorsal interosseous mus-

cle (1DI). The EEG was recorded using a modified Maudsley

Frontiers in Systems Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 176 | 10

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Botcharova et al. Markers of criticality in phase synchronization

FIGURE 4 | Schematic plot (top view) showing the connections and

connection weights between oscillators belonging to two modifications

to the connectivity of the Cabral human brain model. (A) The left and right

hemispheres of the brain have been disconnected, but connections within each

hemisphere are left unchanged. (B) The connections and weights of each node

are assigned randomly, but the degree distribution and weight distribution at

each node is kept constant. The weight of the connection lines represent the

strength of connectivity between the oscillators. The darkest blue lines are the

strongest 1% of connections. The node colors represent oscillators, which

model different brain regions as detailed in Cabral et al. (2011) and are identical

to Figure 3. Colors are consistent for homologous regions in the left and right

hemispheres. Anterior and posterior, left and right are shown.

montage from 24 Ag/AgCl electrodes with impedance <5 k�. The

data were amplified and bandpass filtered 4–256 Hz and sampled

at 512 Hz. We analyzed EEG recorded from over the left senso-

rimotor cortex. The signal processing pathway was set out as in

Figure 1, including bandpass filtering in the β frequency range

(15.5–27.5 Hz).

3. RESULTS

3.1. SURROGATE DATA

The signals described in Section 2.6.2 were analyzed. The scat-

ter plot presented in Figure 5 shows the DFA exponents of the

rate of change of phase difference expected from the construc-

tion of a FARIMA time series with known parameters against

those recovered by applying the phase analysis method. The scat-

ter plot shows a strong linear relationship between the expected

and recovered exponents with a slope of 0.998. The fact that the

slope is slightly <1 indicates that the recovered exponent was

slightly under-estimated by our method. This minor tendency

will decrease the likelihood of false positive results.

As noise is added to a signal with a known DFA exponent

in its phase, the exponent of its phase is found to be reduced.

Figure 6 shows that as the noise level is progressively increased,

the percentage difference between the known DFA exponent and

that recovered by the method increases. When the noise level is

above one which causes the percentage difference between known

and recovered DFA exponent to exceed approximately 5% (note,

as shown in Figure 6, that this noise level depends on the expo-

nent, e.g., 0.1 for true DFA exponent of 1, 0.025 for exponent

of 0.75), no values are returned for the recovered DFA expo-

nent. This occurs because the recovered DFA exponents are not

considered to be valid by ML-DFA because their associated DFA

fluctuation plots are not best approximated by a linear model (see

Section 2.5).

As the noise level is increased further, and as it passes a level

of ≈0.3–0.4, noise dominates the signal and valid exponents are

once again obtained. These exponents are at or close to 0.5 regard-

less of the value of the known DFA exponents, indicating that the

phase relationship of the two signals s1(t) and s2(t) is dominated

by noise only.

3.2. THE ISING MODEL

Figure 7 shows the results for sub-lattices of size 8 × 8. At a high

temperature of T = 105, the average DFA exponent across all

pairwise comparisons is 0.57 (see magenta shaded bar). This value

is in excess of 0.5 expected for Gaussian white noise and indicates

that even at high temperatures there is order within the rate of

change of phase difference between pairs of lattice time series. As

the temperature is lowered the DFA exponent of the rate of change
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of phase difference increases steadily reaching a maximum of 0.65

at T = 2.55 (see magenta shaded bar) indicating maximal LRTC

just before the critical temperature is reached.

The change in mean DFA has to be seen within the context

of the validity of the DFA fluctuation plots. As the system cools

FIGURE 5 | Plot of the recovered against the true DFA exponent for

FARIMA time series. The relationship between recovered and true DFA

values is well-approximated by a linear trend with a slope of almost 1. The

error bars increase very slightly with increasing DFA exponent.

toward the critical point the validity of DFA exponents across all

pairwise phase differences drops abruptly. The first temperature

value for which <100% of the DFA plots are valid is T = 2.75

shown as magenta shaded bar. There is a large fall in DFA fluctua-

tion plot validity as the critical temperature is reached (56–34%).

This fall in validity reflects the onset of full synchronization

between a number of the time series. At the critical point, T =
Tc which occurs between T = 2.25 and T = 2.3 (see magenta

shaded bars) the validity is 34% of time series pairs with mean

DFA exponent of 0.64. As the Ising model cools below the critical

point the DFA validity in general falls and there are no valid DFA

fluctuation plots below T = 2.15. As discussed above this occurs

because of the loss of fluctuations in the rate of change of phase

difference due to full synchronization.

Results obtained for sub-lattice sizes of 32 × 32, 16 × 16, 12 ×
12, and 6 × 6 were found to be qualitatively consistent with the

results shown in Figure 7 (results not shown).

3.3. THE KURAMOTO MODEL

The group average results for the Kuramoto model are shown in

Figure 8. As can be seen, the peak average DFA exponent occurs

on average at K ≈ 22. The value of the average DFA exponent at

this coupling value is 0.65 with standard deviation 0.06, consis-

tent with the rate of change of phase difference showing LRTCs.

The peak DFA exponent occurs one coupling value later than the

peak of the �(Kr) measure, at K ≈ 21. �(Kr) represents the cou-

pling value at which the order parameter r increases most, and the

point of greatest oscillator coupling flux in the system (Kitzbichler

et al., 2009). The peak coupling value �(Kr) and the maximum

FIGURE 6 | True and recovered DFA exponents for noisy signals

with LRTCs. (A) Recovered DFA exponent values as noise is

progressively added. For each of the DFA exponents given in the

legend (box insert), a signal x ′
1(t) was constructed with a noise level

σ ∈ [0, 1], shown on the x axis. The phase synchrony analysis

method was applied to x ′
1(t) and x2(t). This was performed 100

times. For DFA exponents corresponding to DFA fluctuation plots that

were accepted as linear by ML-DFA, the average value for the 100

signal pairs is shown. There are no data points corresponding to the

intermediate noise level of ≈0.1 to ≈0.3 because all 100 DFA

fluctuation plots for signals with this noise level were determined to

be invalid by ML-DFA. (B) The % difference between recovered and

known DFA exponents as a function of the noise added to a signal

with a known DFA exponent in its phase. The data shown in this

plot is the same as that in (A), but it is expressed in terms of

the % difference between true and recovered DFA exponents rather

than the raw recovered value. Only noise levels of σ ∈ [0, 0.1] are

shown. The colors represent different true DFA exponent values, as

indicated by the legend within the inserted box. The dashed line

indicates a 5% difference between known and recovered exponents.

When the difference between the known and recovered exponent

exceeded approximately 5% for any value of the true exponent, the

DFA fluctuation plot is not accepted as being linear by ML-DFA and

therefore the exponent is not shown on the plots.

Frontiers in Systems Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 176 | 12

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Botcharova et al. Markers of criticality in phase synchronization

FIGURE 7 | Average DFA exponents of rate of change of phase

difference between pairs of time series generated by 8 × 8

sub-lattices of the 96 × 96 Ising model lattice. The temperature

parameter, T , is varied on the x axis. The average of the valid DFA

exponents is shown in pink, and the error bars are a single standard

deviation from the mean. The proportion of valid exponents, as calculated

by ML-DFA, is denoted by the vertical bars. The theoretical critical

parameter Tc is indicated by a red asterisk. A horizontal dashed line at

DFA exponent 0.5 is plotted to guide the eye. Validity bars that are

referred to in the text are highlighted in magenta.

DFA values are just less than the theoretical critical coupling of

the infinite Kuramoto system with noise Kc ≈ 23.85. Again, these

results must be understood in context of DFA fluctuation plot

validity which is 42% of the 199, 000 oscillator pairs at K ≈ 22.

Once full synchonization occurs between an individual pair of

oscillators, their phase difference takes a constant value. ML-DFA

detects the resulting loss of scaling by indicating that the DFA

fluctuation plot is no longer linear.

After the peak DFA at K ≈ 22, further increase in K eventually

causes full synchronization between all individual oscillator pairs.

Across the whole system, fewer than 10% of oscillator pairs yield a

valid DFA after the critical coupling is exceeded. When all oscilla-

tor pairs are synchronized with each other, the order parameter of

the system approaches its maximum level of 1 but the DFA fluc-

tuation measure of rate of change of phase difference is no longer

valid.

Analysis of the Kuramoto model with noise suggests that

LRTCs in the rate of change of phase difference between oscil-

lator pairs occur when the system is in a state of maximal flux just

prior to the onset of full synchronization.

3.3.1. Individual oscillators pairs

Further insights into the rate of change of phase difference fluctu-

ation behavior can be obtained from DFA of individual oscillator

pairs. Analysis of a set of 5 oscillator pairs is shown in Figure 9.

The top panel shows the change in DFA exponent with coupling

K for a pair whose initial frequencies are very close (0.001 Hz

apart). The bottom panel shows the changes in DFA exponent for

an oscillator pair with initial frequencies that differ by ≈7.0 Hz.

The middle panels show oscillator pairs with varying amounts of

initial frequency difference (increasing top to bottom). Non valid

DFA exponents are not plotted in the left hand panel but the right

hand panels indicate for each given pair linear DFA validity “yes”

or “no” for a given value of K. At low coupling K, the oscillators

do not interact with each other and each evolves at its own natural

frequency. The order in the system is low and the DFA exponent

≈0.5 reflects the additive noise which dominates the fluctuations

in the rate of change of phase difference. A DFA value of ≈0.5

is also evident in the average DFA (Figure 8). There is almost

100% validity across all pairs because white noise time series are

scale-free and therefore the DFA fluctuation plot obtained from

analysing them is expected to be linear (Figure 8).

As the coupling parameter K is increased, the DFA exponents

of each of the oscillator pairs rise until a peak is reached. The

value of K at which a maximal valid exponent is retrieved for

these peaks is related to the difference in natural frequencies of the

two oscillators as well as their interactions with the noise and the

mean field. Oscillator pairs which start further apart in frequency

terms develop full synchonization later than those whose initial

frequencies are close together. As K increases the DFA exponent of

the rate of change of phase difference increases. The pairs with the

strongest LRTCs on the basis of the highest DFA exponent value

prior to onset of full synchronization are those with the greatest

inital frequency difference. Increasing temporal order of the rate

of change of phase difference prior to full synchonization of these

pairs may indicate a state of pre-synchronization in these pairs.

3.4. THE CABRAL MODEL

For the Cabral model we present results regarding both the global

behavior of the system through average DFA exponents across

all possible pairs of oscillators (Figure 10) and the behavior of

the system at cluster level through average DFA exponents of

intra-cluster pairs of oscillators (Figure 11).

3.4.1. Global behavior

The model introduced by Cabral et al. (2011) is affected by rich

interplay between the connectivity and distance matrices as well

as the noise and natural frequency elements of the system. The

average valid DFA exponents for all oscillator pairings (n = 2145)

are shown in Figure 10 as the coupling in the system is increased.
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FIGURE 8 | Results of the phase synchrony analysis method when

applied to the Kuramoto model. There are 200 oscillators, with a mean

natural frequency of 22 Hz, and a standard deviation of natural frequencies of

15. The theoretical critical coupling Knoise when noise is added is marked with

a blue asterisk. The average DFA exponent, order parameter r , its difference

�(Kr ) and the proportion of valid DFA fluctuation plots from the full set of

199, 000 pairs are shown. Validity bars that are referred to in the text are

highlighted in magenta.

These average exponent values indicate the presence of LRTCs in

the rate of change of phase difference. The peak values of mean

DFA exponent correspond to peaks in the change in order para-

menter (�(Kr)) derived for the classical Kuramoto model and

the Kuramoto model with noise, see Kitzbichler et al. (2009) and

Figure 8. Such peaks occur when the system undergoes the great-

est change in synchronization. The peak in �(Kr) corresponds

closely to the coupling value that shows maximum mean DFA

exponent (K = 5 and 6, respectively—see Figure 10).

The number of pairings that yield valid DFA exponents in the

rate of change of their phase difference is equal to 100% when

there is no coupling in the system (magenta shaded bar at K =
0), but it falls as coupling is introduced (magenta shaded bar at

K = 1). At the coupling value of the DFA peak, K = 6, validity

is at 20%, which is higher than the neighboring coupling values

(magenta shaded bar at K = 6).

3.4.2. Cluster behavior

At coupling value K = 6, the value at which the global behav-

ior shows peak DFA value, the intra-cluster results indicate that

only cluster 4, consisting of oscillators 27–40, shows valid non-

trivial DFA exponents. These exponents are consistent with the

presence of LRTCs. This suggests that cluster 4 acts as an orga-

nizing force in the system when the system is in its greatest state

of flux, as demonstrated by a large increase in the order parame-

ter. This cluster corresponds to the most connected brain regions

listed in Table1 and Table A1 in the Appendix.

The connectivity and distance matrices for the Cabral model

are shown in Figure 12. The linear coupling between oscillators

for two values of K is shown in Figure 13. The central clus-

ter of oscillators with high levels of synchronization is evident

from the two correlation matrices. At K = 6 (Figure 13A), i.e.,

the value at which LRTCs are detected in the rate of change of

phase difference, the central oscillator cluster shows evidence of

synchronization but with Pearson correlation values of <1.0. As

K increases to 18, the value identified by Cabral et al. (2011) as

best approximating human brain resting state BOLD fluctuations,

it can be seen from Figures 10, 11 that the proportion of oscillator

pairs with valid DFA fluctuation plots is low (approximately 5%).

Those oscillator pairs that remain and show persistently valid

DFA fluctuation plots are predominantly individual oscillators

with low average weight per node (0.03) and low average degree

distribution (8.59). Their associated DFA exponent is on average

0.5 (see Figure 11). At K = 18, the Cabral model shows strong

cluster synchronization. In particular, the central cluster 4 (oscil-

lators 27–40) which contains homologous elements connected

across the corpus callosum shows Pearson correlation values close

to 1.0 indicative of full synchrony (Figure 13B). Therefore, the

results we obtained from the Kuramoto model with noise and

those derived from the Cabral model are similar. Both show valid

DFA fluctuation plots with LRTCs of the rate of change of phase

difference at a coupling value where �(Kr) is increasing and loss

of validity as full synchronization takes over. As discussed ear-

lier, “criticality” is not defined for the Cabral model but with

increasing K there is clearly a change in the system’s order which

is detected through our method.

Figure 14 shows the DFA exponents of the rate of change of

phase difference between individual pairs of oscillators in the

form of a symmetric lattice of size 66 × 66, where each element

in the lattice represents a brain region as detailed in Table A1 of

the Appendix. Figure 14A of this figure shows the importance

of the central cluster in generating LRTCs of phase synchroniza-

tion. Importantly it shows this cluster’s influence over many of

the other oscillators in the Cabral model. Cluster group 4 has the

greatest sum of weights per oscillator and the greatest number of

connections per oscillator (see Table 1). The correlation between
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FIGURE 9 | Representative relationship of DFA exponents to the

coupling parameter K for selected oscillator pairs in the Kuramoto

system. (A,C,E,G,I) Show the value of valid DFA exponents, while

(B,D,F,H,J) indicate whether the exponent is rejected as invalid by the

ML-DFA technique (N) or not (Y). The oscillator numbers and the differences

between their natural frequencies are recorded in the legend of (A,C,E,G,I).

The first number is the difference in natural frequency (in Hz), and the

subsequent pair of numbers identifies which oscillators are being analyzed.

the number of connections of a given oscillator and the average

DFA exponent of its rate of change of phase difference with all

other oscillators is 0.359, suggesting a relationship between oscil-

lators with large connectivity and those with large DFA exponents

in their pairwise phase difference.

3.4.3. Comparison of the three connectivity structures

In the Cabral model, the �(Kr) measure has its peak at coupling

value K = 6. Here, we compare the effects of the three connectiv-

ity matrices introduced in Section 2.7.5 on the DFA exponents of

the pairwise phase difference between oscillators at this coupling

value in Figure 14.

The empirical connectivity matrix showed large DFA expo-

nents indicating the presence of LRTCs at this coupling value for a

small number of hub oscillators belonging to cluster 4 (see above).

These oscillators have a high number of connections and large

weights associated with these connections (see Table 1). When the

two hemispheres are disconnected, we see no LRTCs in the DFA

exponents of the phase difference at this coupling value. When

the distance matrix is preserved, but the connectivity and associ-

ated weights are assigned at random, LRTCs are still present in the

DFA exponent of the phase differences between oscillators, but a

lower value of DFA exponent is obtained. There is no apparent

cluster formation when connectivity is random.
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FIGURE 10 | The average DFA exponents of phase synchrony as a

function of the coupling parameter, K , in the extended Kuramoto model

(Cabral et al., 2011). The model includes 66 oscillators at normally

distributed natural frequencies with mean 60 Hz and standard deviation

σi = 1.25. The connectivity and time delay matrices are set from empirical

values. The average of the valid DFA exponents is shown in magenta and the

proportion of valid exponents, as calculated by ML-DFA, are indicated by bars.

The Kuramoto model order parameter r is in blue, and the quantity �(Kr ) is in

cyan. The peak �(Kr ) has been used as an indicator of the effective critical

coupling. A horizontal line at DFA exponent 0.5 is plotted to guide the eye.

The proportion of valid DFA bars for K = 0, K = 1, and K = 6 have been

shaded in magenta.

FIGURE 11 | Average DFA exponent for intra-cluster pairwise phase

differences with increasing coupling parameter K . Where no DFA value

appears for a particular cluster, this indicates that there are no valid DFA

exponents for the pairwise phase difference within that cluster. The final

cluster, which is labeled individual oscillators, consists of a set of nodes that

do not fit into any of the clusters as determined by the connectivity and

distance matrices but are grouped together to demonstrate their relationship

with each other.

3.4.4. Neurophysiological data

Figure 15 illustrates the application of our phase synchrony anal-

ysis technique to the human neurophysiological data described

in Section 2.8. In this example, a valid DFA exponent of ≈0.6

was obtained for the rate of change of phase difference between

the simultaneously recorded EEG and EMG data during a steady

muscle contraction, indicative of the presence of LRTCs. Analysis

of amplifier noise and artificially generated noise time series using
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FIGURE 12 | Connectivity and distance matrices for the Cabral

model. Each oscillator number represents a brain region, which is

defined in Table A1 in the Appendix. An empty (white) element means

that the two regions are not connected. Regions are not connected to

themselves so that the diagonals are white. (A) Shows the pairwise

connection matrix C between the 66 oscillators. (B) Shows the matrix

of pairwise distances L between the brain regions that are represented

by the 66 oscillators. Matrix L is symmetric, however, matrix C is not

because the connection weights are normalized by row. The values

associated with the colors of the plots are defined by the color bars.

Red colors in (A) represent higher weights. Red colors in (B) represent

longer distance connections.

FIGURE 13 | Correlation matrices for all pairs of time series generated

by the Cabral model for two coupling values K . (A) K = 6 and (B)

K = 18, which corresponds to the oscillator correlation matrix in Cabral

et al. (2011). The plots show the value of the Pearson correlation

coefficient between all pairwise combinations of the 66 oscillators used

in the model.

processing steps identical to those for the EEG and EMG data

(signal processing pathway shown in Figure 1) resulted in a valid

DFA fluctuation plot but with exponent of 0.48 consistent with

uncorrelated noise.

4. DISCUSSION

The aim of this paper is to introduce a new methodology for

eliciting a marker of criticality in neuronal synchronization. This

methodology relies on the rate of change of the phase difference

between two signals as a (time-varying) measure of phase syn-

chronization. The presence of LRTCs in this quantity is proposed

as marker of criticality and is assessed using DFA in combina-

tion with the recently proposed ML-DFA, a heuristic technique

for validating the output of DFA. With these methods, we can

first determine the presence or absence of power law scaling using

ML-DFA and secondly the presence or absence of LRTCs in the

phase synchronization of two time series based on the value of

the DFA exponent. If the method returns an exponent of ≈0.5,

this indicates a phase relationship similar to white Gaussian noise,

however, if the DFA exponent is greater than 0.5, this indicates the

presence of LRTCs. Importantly, we can attribute significance to

the loss of power law scaling within the fluctuation plot and draw

conclusions based on an exponent value only when the expo-

nent has been recovered from plots that are judged to be valid

by ML-DFA.

4.1. SURROGATE DATA

It was found that the phase synchrony analysis method recovers

a known DFA exponent value in the rate of change of phase dif-

ference between two signals of surrogate data with a high degree

of accuracy (r = 0.998). When the structure of phase synchro-

nization was perturbed with an additive noise source, it was

found that a percentage difference between the true and recov-

ered DFA exponent of above approximately 5% noise caused DFA
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FIGURE 14 | DFA exponent of the rate of change of phase difference

between all pairs of oscillators in the Cabral model at coupling K = 6 in

three scenarios. (A) For the empirically observed connectivity matrix of the

Cabral model. (B) For a connectivity matrix representing disconnected

hemispheres. (C) For random connectivity. Empty (white) elements denote

pairs for which no valid DFA exponent was found.

exponents to be judged as invalid by ML-DFA. When the surro-

gate data was characterized by a DFA exponent close to 1, the

recovery of this exponent using DFA was more resistant to noise

when compared to surrogate data with a lower DFA exponent of

0.6 (Figure 6). In these simulations we used additive noise which

was included at the amplitude stage of the surrogate time series

prior to extraction of the phase using the Hilbert transform.

4.2. THE ISING MODEL

We had initially expected to see LRTCs in the Ising model only

in the vicinity of the critical parameter, and a DFA exponent of

0.5 when the energy in the system was large (disordered phase).

However, in applying our method to the Ising model, both of

these hypotheses were not fully realized. It was found that when

the temperature was increased to a very high level of T = 105, the

DFA exponent of the rate of change of phase difference did not fall

to 0.5, but remained at ≈0.57. This did not change when the tem-

perature was set to an even higher value of T = 1012. This was not

a finite size effect of the system, as the result held when larger lat-

tice sizes (up to 1000 × 1000) were used (results not shown). We

noted that when pure phase was analyzed, i.e., an uncoupled sys-

tem of Kuramoto oscillators, DFA exponents of 0.5 were obtained

as expected, and therefore, we cannot exclude the possibility that

the Hilbert transform induced artifacts may inject some order

into the resulting phase time series. However, within the Ising sys-

tem, the expectation of a DFA exponent of 0.5 at high T is based

only on our intuition concerning the operation of the system. As

all elements in the Ising lattice interact with their neighbors it is

possible that some temporal correlation in the rate of change of

phase difference may persist regardless of temperature value, and

this may be the cause of a DFA exponent above 0.5.

Importantly, we found that the DFA exponent was indicative of

LRTCs at critical temperature but was maximal at T = 2.55, just

in excess of the critical temperature. As can be seen in Figure 7,

the consistent change in the DFA value and the change in power

law scaling behavior indicates that the phase synchrony analysis

method is capturing an important behavior of the system close to

its critical regime. However, it is important to realize that unless

an experimental neuroscientific paradigm can be discovered that

produces similar consistent changes in this measure, neurophysi-

ological data will have to be intepreted with caution, i.e., we may

be able to state that for a given pair of neural oscillation time

series there exists power law scaling with a DFA exponent indica-

tive of LRTCs in the rate of change of their phase difference but we

may not know whether for this neural state there may exist other

higher (or lower) exponent values. In other words, the technique

may provide evidence that the system is ordered in ways that are

similar to systems nearing their critical regime but whether the

technique will pinpoint the most critical regime in a neural system

is open to question. We will consider this further in our discussion

of the results of analysing a Kuramoto system with noise.

Interestingly, the evolution of the DFA exponent with the

temperature parameter shares a key characteristic with that of

a recently published measure of information flow in the same

model (Barnett et al., 2013), specifically, an asymmetry around

the critical point, with a sharp rise in the metric as temperature is

increased toward the critical T = Tc and a gradual descent as the

temperature rises significantly. It would be of interest to further

assess the extent to which the proposed method captures infor-

mation flow in the system, e.g., through a comparison of both

methods when applied to the Kuramoto model.

4.3. THE KURAMOTO MODEL

In the Kuramoto model, the critical transition is characterized in

terms of a global order parameter which reflects the overall orga-

nization of the system. However, through our phase synchrony

analysis method we are able to make observations at a pair-wise

level of Kuramoto oscillators always bearing in mind that even

at the pair-wise level the result is influenced by the oscillators’

interactions with all other oscillators in the model. As individ-

ual Kuramoto oscillator pairs become fully synchronized, their

rate of change of phase difference no longer contains moment-

to-moment fluctuations and thus power law scaling in the DFA

measure is lost. This is an important consideration because it

emphasizes the difference between our method and more stan-

dard measures of neural synchrony. Methods for detecting neural
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FIGURE 15 | Illustration of the method with simultaneous EEG/EMG

data. (A,B) One second of simultaneously recorded EEG and EMG,

respectively. (C,D) The signals after bandpass filtering in the β range

16–24 Hz. (E) Rate of change of the phase difference between the two

bandpass filtered signals for 100 s. (F) DFA fluctuation plot for the rate of

change of phase difference time series in (E). The plot was determined to be

valid by ML-DFA with a DFA exponent of ≈0.60, indicating the presence of

LRTCs.

synchrony rely on phase consistency to allow averaging out of

fluctuations so that a measure of coupling (e.g., coherence and

phase coherence) is obtained. In contrast, the method introduced

in this paper is dependent on the fluctuations of the two phase sig-

nals and their interaction. Therefore, our method detects “order”

across time in the rate of change of phase difference rather than

phase consistency between two processes.

The phenomenon of loss of fluctuations at the onset of full

synchronization is well illustrated both for the global Kuramoto

model and for individual oscillator pairs extracted from the

Kuramoto model. In the global analysis the peak in the DFA expo-

nent occurs close to the observed peak of �(Kr) and at values of

K just below theoretical critical coupling value. At these values

of K, a power law scaling exists for the rate of change of phase

difference, and the DFA exponent of oscillator pairs with different

initial frequencies indicates the presence of LRTCs. At the onset of

full synchronization the number of oscillator pairs for which DFA

is valid drops yet those whose phase differences still possess fluc-

tuations continue to show LRTCs. Once the critical regime has

been fully crossed and the order parameter r approaches 1, the

DFA of the rate of change of phase difference is no longer valid

for any oscillator pair.

The LRTC behavior is also clearly explained as the coupling

value K decreases toward zero. As can be seen in Figure 8, the

DFA exponent of the pairwise rates of change of phase difference

decreases toward 0.5 and yet scaling remains valid. These changes

in DFA exponent are evident both on the global level in the aver-

age DFA and for individual oscillator pairs. At K = 0 the phases
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are independent from one another yet contain noise; thus the rate

of change of phase difference time series contains innovations that

are random across time with a DFA which is valid and returns the

expected exponent of 0.5.

4.4. ORDER WITHIN THE ISING AND KURAMOTO MODELS

In these models, temperature T (Ising) and coupling K

(Kuramoto) play a similar role in controlling the order within the

two systems, and the DFA validity and exponent results obtained

from analysis of rate of change of phase difference in both of

these models mirror each other. In the Kuramoto model, there

is a transition from an uncoupled to a synchronized state with

increasing K. Similarly in the Ising model, there is a transition

from a very ordered to a disordered system with increasing T. In

the human brain, we are not able to characterize the system by

incrementally tuning a parameter and observing the result, and

we are only privy to snapshots of the working system. However,

we can begin to understand the behavior of the brain within this

range of behaviors by comparing the DFA of the rate of change

of phase difference of pairs of neurophysiological signals to the

outcomes of these models of criticality.

4.5. THE CABRAL MODEL

We found that LRTCs exist in the rate of change of phase dif-

ference between oscillator pairs at parameter values close to

those at which the change in order, �(Kr), increases sharply.

Extrapolating from the Kuramoto model with noise, we suggest

that there are important changes in the order of the phase syn-

chronization of interacting oscillators in the Cabral model that

involve the presence of LRTCs when the order in that system is at

or close to a point of maximal change.

It is important to note that the value of r in the Cabral model

does not reach a level of 1 in the range of coupling values 0–20. It

approaches a level of ≈0.4 as K approaches 20 with maximal rate

of change at K ≈ 6. Further analysis of the Cabral model indicates

that r will gradually reach a value closer to 1 as K increases above

a value of 60, as seen in Figure 4 of Cabral et al. (2011). Cabral

focussed her attention on K = 18 at which point the model,

when fed through the Balloon-Windkessel hemodynamic model,

produced an output that closely matched the spatio-temporal cor-

relations seen in the BOLD signals of the resting state fMRI. We

find that at this value, there are no LRTCs detectable in the rate of

change of phase difference measure.

4.6. THE ROLE OF CONNECTIVITY IN THE CABRAL MODEL

Although most of results were obtained at K = 6, selected because

it is the peak of �(Kr), it is important to note that LRTCs exist for

a broader range of coupling values K. This finding agrees with a

recent study by Moretti and Muñoz (2013) in which the authors

demonstrated that a network with complex connectivity, such as

that of the Cabral model and, indeed, that of the brain, causes the

critical point to becomes a broader critical “region.”

Our examination of oscillator pairs belonging to a single clus-

ter, as defined in Cabral et al. (2011), indicates that the emergence

of LRTCs is determined primarily by oscillators belonging to clus-

ter 4 which has a large number of connections and a large sum

of connection weights. This cluster is located centrally, and it

contains four brain regions of particular importance to the resting

state network (Fransson and Marrelec, 2008; van den Heuvel and

Sporns, 2011). These are oscillators 33 and 34, which correspond

to the left and right posterior cingulate cortices, and oscillators 32

and 35 which represent the left and right precuneus. These central

brain regions are known to be important with a higher metabolic

activity than other regions during the resting state.

Importantly, we find that LRTC behavior of this cluster, and

its relationship to the other clusters in the network, is depen-

dent on trans-callosal left-right connectivity. Indeed, disruption

of the left-right trans-callosal connections resulted in a loss of

LRTCs in the rate of change of phase difference between time

series extracted from the central cluster 4 and the other oscilla-

tors in the Cabral network. Intuitively, those oscillators that are

connected to many other oscillators in the network will also influ-

ence the phases of a large number of other oscillators. When

these oscillators try to synchronize, we suggest that those that

are well connected will be subjected to conflicting phase inputs

from their neighbors and thus increased variation in their phase

fluctuations, yielding a larger DFA exponent. These variations

in fluctuation will in turn feed into the neighboring oscillators

and cause them to also have large variations in fluctuation as

they attempt to synchronize with their well-connected neigh-

bor. On the other hand, an oscillator that is poorly connected or

connected to just one other oscillator may have a more straight-

forward task of synchronizing with just this (albeit changing)

oscillator speed.

The LRTCs in the rate of change of phase difference were also

disrupted by randomization of connectivity, albeit less severely

than when the trans-callosal connections were severed. When

a random connectivity is assigned, no clusters exist and DFA

exponents are significantly reduced.

The results obtained from the phase synchrony analysis

method here may pave the way for potential future use of the

Cabral model in investigating specific pathological modifications

of connectivity and their effects on the time-varying synchroniza-

tion patterns between different brain regions. The method has the

potential to be used to trace some types of pathological synchro-

nization such as may arise in epileptic or Parkinsonian conditions

to any roots that they may have either in the connectivity, clus-

tering or noise input elements of the Cabral model and therefore

potentially also of the nervous system.

4.7. NEUROPHYSIOLOGICAL DATA

In order to show proof of principle, we have presented an exam-

ple of our method’s application to neurophysiological data, in

this case EEG and EMG simultaneously recorded during vol-

untary muscle contraction. It was through this experimental

paradigm that corticomuscular coherence (CMC) in the 16–

32 Hz (β) frequency range was first discovered by Conway et al.

(1995), Halliday et al. (1998) and shown to be the β frequency

common drive to human motoneurons first described by Farmer

et al. (1993). These preliminary results indicate power law scaling

in the DFA plot with a DFA exponent of ≈0.6.

It has been recognized through application of time-varying

coherence measures that CMC coherence fluctuates even when

a subject attempts to maintain the same motor output
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(Muthukumaraswamy, 2011). As discussed earlier, the techniques

introduced here allow us to focus on the fluctuations within the

phase coupling rather than on the averaged measure of cou-

pling. These preliminary results indicate that the fluctuations in

the rate of change of phase difference between simultaneously

recorded EEG and EMG show power law scaling and LRTCs

within the β frequency range. We suggest that the analysis of

instantaneous phase diffence of neurophysiological data using the

methods described in this paper will allow researchers to investi-

gate the coupling between signals in a way that will allow a new

appreciation of the relationship between neural synchrony and

other oscillator systems approaching their critical regime.

4.8. LRTCs IN RATE OF CHANGE OF PHASE DIFFERENCE AND THE

BRAIN

LRTCs have been associated with model dynamical systems that

show efficiency in learning, memory formation, rapid informa-

tion transfer, and network organization. The broad dynamical

range of which LRTCs are a marker acts to support these func-

tions (Linkenkaer-Hansen et al., 2001, 2004; Stam and de Bruin,

2004; Sornette, 2006; Shew et al., 2009; Chialvo, 2010; Werner,

2010; Beggs and Timme, 2012; Meisel et al., 2012). It has been

argued by a number of researchers that these properties if present

would be of major benefit to the functions that human brain

dynamics needs to support and there is now a literature that con-

nects the theory of critical systems with properties of human

brain dynamics (Linkenkaer-Hansen et al., 2001; Beggs and

Plenz, 2003; Kitzbichler et al., 2009; Shew et al., 2009; Chialvo,

2010).

In this paper, we focus on LRTCs, and because of the impor-

tance in neuroscience of brain oscillations and the concept of

communication through coherence, we make the link between

LRTCs and phase synchrony. We note that in the model sys-

tems that we have explored the highest valid DFA exponents were

recovered when the systems were close to their critical point but

in a slightly more disordered state than at exact criticality. We

explained this on the basis of full synchronization within our

model systems being a point at which the rate of change of phase

difference is lost (observed in Ising at T < Tc and in Kuramoto

for increasing K).

In neurophysiological systems, it is important to appreciate

that full synchronization of neural oscillators is a pathological

state (e.g., observed in the EEG and MEG of epileptic seizures

and in EMGs showing pathological tremor). The healthy resting

brain state therefore is characterized by weak and variable neural

synchrony which would be expected to show fluctuations (tempo-

ral innovations) in a measure of the change in phase synchrony,

i.e., the rate of change of phase difference. From the perspective

of brain dynamics (and muscle activation dynamics) the most

important constraints are to avoid pathological synchronization

whilst at the same time maintaining the potential for useful syn-

chronization. We suggest therefore that in the healthy state the

instantaneous phase difference between neural oscillators will

show power law fluctuation plots with a DFA exponent that is

either 0.5 or that will show LRTCs. If LRTCs are found in the rest-

ing state then they may represent an optimum state of readiness to

which the system can readily return if increased synchronization

occurs as a result of sensory stimulation, motor task, or cognitive

action. Such temporary changes in synchronization may occur in

order to support communication through coherence. The resting

state, however, is characterized by fluctuations of phase synchrony

that have LRTCs and represent the behavior of weakly coupled

oscillators whose synchrony can be modulated. The hypothesis

that the LRTCs of rate of change of phase difference of brain oscil-

lations may be altered through task is an experimentally tractable

question.

To conclude the evidence for the brain as a critical system con-

tinues to accrue. There is an important need to link the criticality

paradigm with the paradigm that attaches functional significance

to neural synchrony. The methodology presented in this paper

takes us some way toward this synthesis.
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APPENDIX

Table A1 | A list of the 66 brain regions which are represented by 66 oscillators in the Cabral model.

Abbreviation Region Oscillator number

Right Left

ENT Entorhinal cortex 1 66

PARH Parahippocampal cortex 2 65

TP Temporal pole 3 64

FP Frontal pole 4 63

FUS Fusiform gyrus 5 62

TT Transverse temporal cortex 6 61

LOCC Lateral occipital cortex 7 60

SP Superior parietal cortex 8 59

IT Inferior temporal cortex 9 58

IP Inferior parietal cortex 10 57

SMAR Supramarginal gyrus 11 56

BSTS Bank of the superior temporal sulcus 12 55

MT Middle temporal cortex 13 54

ST Superior temporal cortex 14 53

PSTC Postcentral gyrus 15 52

PREC Precental gyrus 16 51

CMF Caudal middle frontal cortex 17 50

POPE Pars opercularis 18 49

PTRI Pars triangularis 19 48

RMF Rostral middle frontal cortex 20 47

PORB Pars orbitalis 21 46

LOF Lateral orbitofrontal cortex 22 45

CAC Caudal anterior frontal cortex 23 44

RAC Rostral anterior cingulate cortex 24 43

SF Superior frontal cortex 25 42

MOF Medial orbitofrontal cortex 26 41

LING Lingual gyrus 27 40

PCAL Pericalcarine cortex 28 39

CUN Cuneus 29 38

PARC Paracentral lobule 30 37

ISTC Isthmus of the cingulate cortex 31 36

PCUN Precuneus 32 35

PC Posterior cingulate cortex 33 34

The abbreviations, full names, and oscillator numbers corresponding to the left and the right hemispheres are given for each brain region. The labels, brain regions,

and oscillator numbers used in the Cabral model.
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