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Abstract

The potential of economic variables for financial risk measurement is an open

field for research. This article studies the role of market capitalization in the

estimation of Value-at-Risk (VaR). We test the performance of different VaR

methodologies for portfolios with different market capitalization. We perform

the analysis considering separately financial crisis periods and non-crisis periods.

We find that VaR methods perform differently for portfolios with different mar-

ket capitalization. For portfolios with stocks of different sizes we obtain better

VaR estimates when taking market capitalization into account. We also find

that it is important to consider crisis and non-crisis periods separately when es-

timating VaR across different sizes. This study provides evidence that market

fundamentals are relevant for risk measurement.
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1 Introduction

The accords on banking supervision from the Bank for International Settlements (BIS)

single out Value-at-Risk (VaR) as a measure of financial risk. The BIS accords and

in particular VaR play a central role in financial risk measurement and management.

Despite its importance the most popular methods in practice for estimating VaR (his-

torical simulation and RiskMetrics) are yet relatively simple. This is a constraint of

real-world. The complexity of financial institutions calls for sound simple models, easy

to estimate.

There is a vast academic literature on methods for estimating VaR. These meth-

ods can be very sophisticated and they are mainly reduced form in the sense that

they explain risk in an autoregressive manner. The very well known GARCH model

(Bollerslev (1986)) is perhaps the prime example of this. Recently there has been an

increased interest on structural approaches for risk measurement involving market and

macro-economic variables; see Andersen et al. (2012) for a detailed overview. This

article contributes to this stream of research. Our aim is to understand the relation

between stock size, measured by market capitalization, and equity risk measured by

VaR.

By definition the 100α% VaR is the value such that the probability of observing a

loss larger than VaR is smaller than the confidence level 1−α, over a given time horizon.

The time horizon usually is a 1-day or 10-day holding period for market risk and 1 year

for credit and operational risk. The confidence level α typically ranges between 95%

and 99%. Hence VaR is in the tail of the profit-and-loss or returns distribution. This
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fact makes the estimation of VaR a difficult task. In probabilistic terms the definition

of VaR is very simple. VaR is the negative of the 1 − α probability quantile of the

returns distribution.

To compute VaR by the existing models it is necessary to obtain an estimate of the

distribution of the portfolio returns sometime in the future. The only exception is the

regression quantile method introduced in Chernozhukov and Umantsev (2001) and En-

gle and Manganelli (2004), where the quantile of the distribution is modelled directly.

All the other VaR models use different approaches to estimating the distribution of

the returns. We can classify these VaR models as follows: Historical simulation, in-

troduced by Boudoukh et al. (1998), uses the empirical distribution function obtained

from past data to estimate VaR as an empirical quantile; Filtered historical simula-

tion estimates VaR as an empirical quantile of the residuals obtained from fitting a

parametric model to the original returns. Most commonly the method is implemented

with a GARCH type model to filter the returns as introduced by Barone-Adesi et al.

(1998, 1999); Fully parametric methods which model the complete returns distribution.

RiskMetrics (1996) and GARCH, from Bollerslev (1986), are prime examples of fully

parametric models used for estimating VaR. Chavez-Demoulin et al. (2005) introduce

a parametric sophisticated alternative to the use of GARCH as a filter based on a point

process approach; Extreme Value Theory (EVT) methods model the tail of the returns

distribution. The filtered EVT model, where the returns are filtered with a GARCH

model, was first introduced in McNeil and Frey (2000).

Since the seminal work of Banz (1981), Stattman (1980), Rosenberg et al. (1985),

and Fama and French (1992) that firm and market specific variables are known to be

4



useful in explaining the expected return on stocks. Both the expected return and the

quantile are characteristics of the asset return distribution. It seems pertinent to ask

if there is a relationship between VaR, as a quantile, and market variables. Here we

concentrate on market capitalization.

Reference papers comparing the performance of different VaR models are Bao et al.

(2003, 2006), Brooks et al. (2005), Kuester et al. (2006) and Pritsker (1997). Many

of the studies on the computation of VaR compare and propose different methods us-

ing data on large capitalization firms, major indices or highly traded currencies. A

complete list would be long but relevant examples are: Kuester et al. (2006) who use

daily returns on the NASDAQ Composite Index; McNeil and Frey (2000) do back-

testing on the S&P500 and DAX indices, BMW stock prices, US dollar-British pound

exchange rate and gold prices; Mancini and Trojani (2011) use the S&P500 index,

US dollar-Japanese Yen exchange rate, Microsoft and Boeing stock prices; Bao et al.

(2003) use daily returns on the S&P500 and NASDAQ indices; Engle and Manganelli

(2004) implemented their CAViaR methodology on returns of General Motors, IBM

and S&P500. Hence, there might be a bias in the results found in the literature con-

cerning the performance of VaR estimation methods.

To the best of our knowledge market variables have not been often studied in con-

nection with VaR estimation. The empirical study of VaR methods where we found

market capitalization being used is Halbleib and Pohlmeier (2012). The authors raise

the question whether market capitalization is important but the paper has a much

wider focus exploring the performance of different VaR models and distributional as-

sumptions across different estimation time windows. Although within a complex study,
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the authors find evidence that market capitalization is important for VaR estimation.

The contribution of this paper is to explore the importance of market capitaliza-

tion in estimating VaR. We use returns on NYSE, AMEX and NASDAQ stocks. We

specifically consider separately periods of financial crises and periods without crises,

challenging the performance of methods for forecasting VaR. There is a number of

methods for computing VaR. Since there is no ultimate consensus on which is the best

we use several methods in our study. We calculate one period ahead (out-of-sample)

sequences of VaR estimates. Then we compare the sequences of VaR estimates with the

realized returns and test if the estimated VaR corresponds to the level of risk desired.

The result of these tests gives the performance of the VaR methods. This is called

backtesting a VaR model. We backtest VaR models on ten portfolios with different

market capitalization during crisis periods and non-crisis periods. We test if the meth-

ods perform differently across different market capitalization portfolios during calm and

during unstable market periods. Finally we estimate VaR for a portfolio composed of

stocks of different sizes with and without taking market capitalization into account.

Then we compare the performance of the two approaches to find if considering market

capitalization significantly improves VaR estimation.

This article is organized as follows. In Section 2 we outline the methods for the

estimation of VaR used in this study. Section 3 describes the backtesting methodology

which quantifies the performance of the VaR methods. The empirical implementation of

the VaR estimation methods and corresponding backtesting is reported in Section 4. In

Section 5 we test the significance of market capitalization in explaining the performance

of VaR methods for different stock size portfolios. We study the effectiveness of using
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market capitalization on estimating the VaR of a portfolio composed of stocks with

different sizes in Section 6. Finally Section 7 synthesizes the results and presents final

conclusions.

2 VaR estimation methods used in this study

The 100α% VaR is the negative of the quantile of probability 1 − α of the returns

distribution. In most applications α varies between 95% and 99% but α can also take

the value of 99.9% as for instance it is required for operational risk in the Basel II

Accord. Formally, for a confidence level α ∈ (0, 1), the 100α% VaR for period t + h,

conditional on the information available up to time t, is given by

VaRα
t+h = −Q1−α(Rt+h|Ft) = − inf{r ∈ R : P (Rt+h ≤ r|Ft) ≥ 1− α}, (1)

where Rt is the random variable representing the return in period t, Qα(·) denotes

the quantile of probability α and Ft represents the information available at time t.

Estimating VaR is equivalent to estimating a quantile of the unknown distribution of

returns for period t+ h.

The methods used here for estimating VaR can be classified as historical simulation

(HS), fully parametric, and (semi-parametric) extreme value theory (EVT) models.

Historical simulation uses empirical quantiles obtained from (filtered or not) past data.

Fully parametric models characterize the complete return distribution using a, possibly

dynamic, parametric model. EVT models use a parametric family to describe the tail of

the distribution while the center of the returns distribution is modeled by the empirical

distribution function.
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We assume that the returns can be defined as a location scale process conditional

on the set of information available at time t:

rt+h = E(Rt+h|Ft) + ϵt+h = µt+h + σt+h zt+h, (2)

where µt+h is the expected return for the period t+h given the information available at

time t, σt+h is the conditional scale, ϵt+h is an error term and zt+h has a zero location,

unit scale probability density function fZ(·). The 100α% VaR forecast for the period

t+ h conditional on the information available at time t is then

VaRα
t+h = − (µt+h + σt+hQ1−α(Z)) , (3)

where Qα is the α quantile of fZ(·).

Different VaR methods assume different specifications for the conditional location

µt+h, conditional scale σt+h, and probability density fZ(·). An outline of the VaR

methods used in this study follows.

2.1 Historical Simulation

The simplest method of estimating VaR (see for instance Christoffersen (2012)) is to

use the empirical quantile of the return distribution. This method is usually called (see

Kuester et al. (2006)) the naive historical simulation. The theoretical justification for

this estimator is that if we assume that the process of the returns is stationary then the

empirical distribution is a consistent estimator of the unobserved future distribution

function.

In order to define the estimator consider a sample of past ω returns (rt, rt−1, . . . , rt−w+1)

and the ordered sample (r(1), r(2), . . . , r(ω)), where r(1) ≤ r(2) ≤ . . . ≤ r(ω) are the so-
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called ordered statistics. The historical simulation 100α% VaR for period t+1 is given

by

V̂aR
α

t+1 = −Q̂1−α(rt, rt−1, . . . , rt−w+1) = −r([(1−α)×ω]) (4)

where [.] represents the integer part of a real number. As an example, if we consider

a sample of return observations with size ω = 1000, then the 90% VaR estimate is the

negative of the 100-th sample statistic, V̂aR
0.9

t+1 = −r(100).

The simplicity of the historical simulation method, although attractive from the

practical point of view, raises doubts about its performance. Weaknesses and possible

improvements for this method are studied in Pritsker (2006) and references therein.

A more sophisticated approach consists of using the empirical quantile of the distri-

bution fZ(·) in model (2) and equation (3). This method is know as filtered historical

simulation (FHS). In this approach (2) is used to pre-filter the data and then the

empirical quantile is calculated from the filtered residuals, zt+1 = (rt+1 − µt+1)/σt+1.

2.2 Fully parametric models

Fully parametric models assume a parametric family for the probability distribution

fZ(z) of zt in equation (2). The so-called unconditional parametric VaR methods

assume that µt+h ≡ µ and that σt+h ≡ σ. In this case the returns have probability

density fZ(σ
−1(rt − µ)). The unconditional estimator of the 100α% VaR for period

t+ 1 is

V̂aR
α

t+1 = −(µ+ σ Q̂1−α(Z)). (5)

In this case the VaR is the 1−α quantile of the distribution assumed for Z adjusted for

location and scale. If FZ(·) denotes the cumulative distribution function corresponding
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to fZ(·) then the quantile is estimated by Q̂1−α(z) = F−1
Z (1− α), where F−1

Z (·) is the

inverse function of FZ(·). Most studies use a family with a continuous distribution

function but if the distribution function FZ(·) is not continuous the inverse can be

replaced by the generalized inverse function. In this study we assume that Z can have

a Normal or a Student-t distribution. These two distributions, although frequently

used in modeling returns, are symmetric and there is plenty of literature reporting

that the returns distribution is skewed. Hence, we also consider the EVT approach as

described in the next section.

In this study conditional parametric models (conditional because location and scale

in equation (2) are time varying) consider a conditional mean function of past infor-

mation described by an ARMA(p, q) model of the form

µt = µ+

p∑
i=1

ϕi(rt−i − µ) +

q∑
j=1

θjϵt−j, (6)

where ϕ(z) = 1−ϕ1z− . . .−ϕpz
p and θ(z) = 1−θ1z− . . .−θqz

q have no common roots

and no roots inside the unit circle. We use a time varying scale parameter following a

GARCH(r, s) process

σ2
t = c0 +

r∑
i=1

ciϵ
2
t−i +

s∑
j=1

djσ
2
t−j, (7)

where c0 > 0, ci ≥ 0, dj ≥ 0 as introduced in Bollerslev (1986).

2.3 VaR estimation using Extreme Value Theory

VaR concerns only one side of the returns distribution and more specifically the tail

region of the distribution. Hence EVT is especially suited for VaR estimation. For a

comprehensive overview of EVT for finance see Embrechts et al. (1997). EVT studies

10



the asymptotic distributional properties of the maximum of random variables. For

VaR estimation we are usually concerned with the tail of the (negative) losses, hence

we apply the EVT results to the right tail of the negative of the returns distribution.

In this case equation (3) becomes

VaRα
t+h = µt+h + σt+hQα(Z), (8)

where Qα is the α quantile of fZ(·).

Let (X1, X2, . . . , XT ) be a sequence of iid random variables and denote its maxima

by MT = max(X1, X2, . . . , XT ). If there exist coefficients cT > 0 and dT ∈ R, and

the limit distribution of the standardized maxima c−1
T (MT − dT ) exists then this limit

distribution has to be of the form

Hξ(x) =


exp{−(1 + ξx)−1/ξ} if ξ ̸= 0,

exp{− exp(−x)} if ξ = 0,

(9)

where 1+ξx > 0. The distributionHξ is called Generalized Extreme Value Distribution

(GEV). Given a random variable X with distribution function FX , if the limit distri-

bution of the maxima MT exists then FX belongs to the so-called Maximum Domain

of Attraction (MDA) of Hξ, FX ∈ MDA(Hξ). Most of the continuous distributions

commonly used in applied statistics are in the MDA(Hξ). See Embrechts et al. (1997)

for a detailed account of the distributions in the MDA(Hξ). The shape parameter ξ

controls the shape of the tail of the distribution. If ξ < 0 the distribution of X has

a finite right end point, for instance a uniform distribution, and the limit distribution

Hξ is a Weibull distribution. In case ξ = 0, Hξ is a Gumbel distribution and the tail of

the distribution of X decreases at an exponential rate as it is the case of the Normal.

When ξ < 0 the distribution FX has a heavy tail and Hξ is a Fréchet distribution. The
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later is the most useful case in finance as returns very often have a heavy tail. A well

known example of a heavy tail distribution used in finance is the Student-t.

The estimation of the tail of a distribution using EVT is often done using a method

called Peaks-Over-Threshold (POT); again see Embrechts et al. (1997). The method

uses a result, due to Pickands (1975), on the exceedances of X calculated over a high

threshold u.

Consider the random variable Y = X − u. The excess distribution function of X is

given by

Fu(y) = P (X − u ≤ y|X > u) = P (Y ≤ y|X > u), y ≥ 0. (10)

When u goes to the right end point xF of the distribution FX
1, the limit distribution

of the scaled exceedances is given by

Gξ,β(x) =


1−

(
1 + ξy

β

)−1/ξ

if ξ ̸= 0,

1− e−y/β if ξ = 0,

(11)

where

x ≥ 0 if ξ ≥ 0,

0 ≤ x ≤ −1/ξ if ξ < 0,

and β > 0 is a scale parameter. This distribution is the Generalized Pareto Distribution

(GPD).

From Equation (10) we have that

F̄ (u+ y) = F̄ (u)F̄u(y), (12)

where y > 0, u is the threshold and F̄ (·) denotes the survival function 1 − F (·). A

1xF can be +∞.
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natural estimator for F̄ (u) is the empirical distribution function

F̄T (u) =
1

T

T∑
i=1

IXi>u =
Nu

T
,

where Nu is the number of observations larger than u. For a sufficiently high threshold

u, Fu(y) can be approximated by the GPD: F̄u(y) ≈ 1 − Gξ,βu(y). As a consequence

the estimator for the tail distribution F̄ (u+ y) for y > 0 is given by

̂F̄ (u+ y) =
Nu

T

(
1 + ξ̂

y

β̂

)−1/ξ̂

.

Finally, the POT method estimator for the quantile of probability α is given by

Q̂α(X) = u+
β̂

ξ̂

((
T

Nu

(1− α)

)−ξ̂

− 1

)
. (13)

The number of exceedances Nu is defined by the choice of threshold u. If u is chosen

too high the estimates will have a large variance and if u is too small the estimates

will be biased. We set a threshold u such that the number of exceedances is equal to

15% of the sample data. This is a common value used in the literature; for a recent

application see Chavez-Demoulin et al. (2011) and references therein.

EVT used as an unconditional method of estimating VaR suffers from the problem

that EVT results described in this section assume that X1, X2, . . . , XT are iid. In gen-

eral, returns cluster and are not iid. There are generalizations of the EVT results to the

non iid case (see Section 8.1 in Embrechts et al. (1997)). But the estimation of VaR by

pre filtering the data should solve this problem. If the variance equation is well spec-

ified, fitting a GARCH type model assuming Normal residuals should produce consis-

tent estimates and iid residuals even if the innovations are not normally distributed; see

Bollerslev and Wooldridge (1992). This so-called Quasi-Maximum Likelihood GARCH
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coupled with an EVT model for the residuals was first implemented by McNeil and

Frey (2000). In practice the variance model will never be completely well specified and

a fat-tailed, as a Student-t or even an asymmetric distribution for the residuals, may

perform better in terms of out-of-sample VaR forecasts.

After filtering the data we apply the POT method to estimate the quantile of the

standardized residuals zt = (rt−µt)/σt. The conditional VaR estimate is then obtained

by replacing the POT quantile in equation (8).

3 Testing the fit of VaR models

Using the methods described in the previous section applied to a rolling window of ob-

servations of size w we obtain sequences of out-of-sample VaR estimates {V̂aR
α

t }t=ω+1,...,T .

Next we test the quality of these VaR forecasts. We have to compare the ex-ante VaR

forecasts with the ex-post realized returns. This exercise is called backtesting and we

follow here the procedure as in Christoffersen (1998).

Assume that we are using daily returns. Given 100α% VaR forecasts we would

expect to observe 100(1 − α) return losses larger than the forecasted VaR every 100

days. The losses larger than the forecasted VaR are called violations.

Consider a sequence of past VaR forecasts {V̂aR
α

t }t=ω+1,...,T and a sequence of real-

ized returns {rt}t=ω+1,...,T . In order to implement Christoffersen’s backtesting procedure

we start by defining the hit sequence {It}t=1+ω,...,T of VaR violations where

It =


1 if rt < −VaRt,

0 if rt ≥ −VaRt.

(14)
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We expect VaR violations to be independent and uniformly spread through time. The

implication is that accordingly It will have a Bernoulli distribution with parameter

1−α, where α usually varies between 95% and 99% depending on the confidence level

required for the VaR.

3.1 Testing the unconditional coverage

The simplest test checks if the percentage of violations is significantly different from

the corresponding VaR level 1−α. This procedure is called the unconditional coverage

test.

Denote the number of zeros in the hit sequence by T0, and the number of ones by

T1. We call π̂ the observed ratio of violations, π̂ = T1/T . A likelihood ratio test is

given by

LRuc = −2 ln [L(1− α)/L(π̂)] , (15)

where L(·) is the likelihood function of an iid Bernoulli sequence. Replacing with the

appropriate function we obtain the expression for the likelihood ratio test

LRuc = −2 ln
[
αT0(1− α)T1/

{
(1− T1/T )

T0(T1/T )
T1
}] a∼ χ2

1, (16)

which asymptotically has a chi-square distribution with one degree of freedom.

3.2 Testing the independence of the violations

The unconditional coverage test checks if the number of violations is what we would

expect given a level α for the VaR. But given that financial returns often show volatility

clusters, VaR violations are also likely to cluster over time. This is an important fact.
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It is more dangerous for the financial stability of a bank to have ten VaR violations in

two weeks than to have the same ten violations occurring over a period of one year.

Hence, it is relevant to test the hypothesis of independence of the VaR violations. From

a global point of view this question is even more important. Clusters of volatility are

usually associated with events that affect several financial institutions at the same time.

As a consequence these clusters of VaR violations are likely to occur simultaneously

across different financial institutions. This poses a problem to the regulators with

respect to systemic risk.

The Christoffersen (1998) test of independence for VaR violations assumes, under

the hypothesis of dependence, that the hit sequence can be described by a first-order

Markov process with transition probability matrix

Π1 =

 1− π01 π01

1− π11 π11

 , (17)

where π11 is the probability that tomorrow’s return is a violation given that today is

a violation, and π01 is the probability that tomorrow’s return is a violation given that

today is not a violation.

Given a sample of size T the likelihood function of the first-order Markov process

is

L(Π1) = (1− π01)
T00πT01

01 (1− π11)
T10πT11

11 , (18)

where Tij, i, j = 0, 1, is the number of observations in the hit sequence with a j following

an i. The maximum likelihood estimates of the transition probabilities are

π̂01 =
T01

T00 + T01

and π̂11 =
T11

T10 + T11

.
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Given a sample of returns it can happen that T11 = 0. In this case the likelihood

function is simply

L(Π̂1) = (1− π̂01)
T00 π̂T01

01 . (19)

Under the null hypothesis of independence π01 = π11 = π and the transition matrix is

Π̂ =

 1− π̂ π̂

1− π̂ π̂

 , (20)

where π̂ = T1/T is the estimator for the ratio of violations as in the unconditional

coverage test. The likelihood function in the case of independence is then given by

L(Π̂) = (1− π̂)T00+T10 π̂T01+T11 . (21)

The likelihood ratio

LRind = −2 ln
[
L(Π̂)/L(Π̂1)

]
a∼ χ2

1 (22)

can be used to test the independence hypothesis that π01 = π11. The likelihood ratio

has an asymptotic chi-square distribution with one degree of freedom.

3.3 Testing the conditional coverage

Christoffersen (1998) tests simultaneously if the number of violations is correct and

if the VaR violations are independent. This means testing if π01 = π11 = 1 − α.

Christoffersen uses the likelihood ratio test

LRcc = −2 ln
[
L(1− α)/L(Π̂1)

]
a∼ χ2

2 (23)

which has an asymptotic chi-square distribution with two degrees of freedom. L(1−α)

is the same as the likelihood used in equation (15). In practice it is worth noting that

LRcc = LRuc + LRind, (24)
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the conditional coverage likelihood ratio test is the sum of the two likelihood ratios

from the unconditional coverage and independence tests.

3.4 The three color scheme from Basel II

In practice VaR models are classified by the regulators according to a three color

scheme devised by the Basel Committee on Banking Supervision (1996). According to

this criteria a VaR model is acceptable if it falls in the “green zone”, it is disputable if

it falls in the “yellow zone” and it is seriously flawed if it belongs to the “red zone”.

The color classification of a VaR model is a function of its number of violations.

A model is in the green zone if the number of violations of the 99% VaR is below the

95% quantile of a binomial distribution with probability of success 0.01. The model

is in the yellow zone if the number of violations is between the 95% and the 99.99%

quantiles of the same binomial distribution. A model is classified in the red zone if the

number of violations is above the 99.99% quantile.

We add this classification to the backtesting procedure in our study in order to

know how the models perform to the eyes of the regulators.

According to the colors criteria from the regulator point of view the smaller the

number of violations the better the model is. That is not necessarily the case from

the financial institution point of view. A number of violations much smaller than the

expected number αT means that the VaR is being overestimated, the regulatory capital

is overestimated and there is an economic cost from the loss of investment opportunity

on the excessive regulatory capital.
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4 Market capitalization in the estimation of VaR

We show the importance of stock market capitalization in the estimation of VaR using

ten equity portfolios ranging from small to large size stocks.

We use data from the NYSE, AMEX, and NASDAQ stocks obtained from the

Kenneth R. French Data Library.2 The data is originally obtained from the CRSP

database consisting on stock prices. We use ten portfolios each one corresponding to

a decile of the market capitalization distribution. The first decile portfolio contains

the 10% of stocks with the smallest market capitalization. The second decile portfolio

contains the stocks with market capitalization between the 10% and 20% decile. The

tenth portfolio contains the 10% of stocks with the largest market capitalization in the

market. These are equally weighted portfolios.

We opted for using these data because first, coming from large data bases it is

representative of the market. Second, being a standardized database gives reliability

to our conclusions and facilitates an easy replication of the results.

The data covers the period July 1, 1963 to June 30, 2012. It has been shown that

during crisis periods the distributional characteristics of equity returns changes, most

notably volatility increases. Hence the effect of market capitalization on VaR estima-

tion might differ between crisis periods and non-crisis periods. We use the recession

periods (see Appendix A) published by the “NBER Business Cycle Dating Commit-

tee”3 as crisis periods. Evidence for the link between market volatility and economic

recessions is reported in Schwert (1989). At a firm level, Bloom et al. (2009) finds that

2Available from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french.
3http://www.nber.org/cycles/cyclesmain.html
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there is a clear effect of recession on volatility.

We compute the VaR of daily logarithmic returns for the ten different market

capitalization portfolios and for the equally weighted portfolio with all the stocks. We

use different VaR methods and consider separately crises periods, non-crisis periods

and the complete time period.

4.1 Empirical results

Table 1 presents summary statistics of the daily logarithmic returns for each portfolio.

The average return decreases with market capitalization. All the portfolios present

asymmetry with a considerable negative sample skewness. The kurtosis is also large.

These two statistics suggest that normality would not be a reasonable assumption for

the distribution of the returns.

Given a time series of daily returns for each of the portfolios considered we compute

the one day ahead (out-of-sample) VaR estimates using a rolling window of past returns.

We consider three different possible window lengths: ω = 250, ω = 500, and ω = 1000.

We include in this paper the numerical results for ω = 1000. The tables with the results

for ω = 250 and ω = 500 are available from the author on request. The conclusions

are consistent across the three window lengths. For each portfolio and window length

we obtain a sequence of VaR estimates that can be backtested against the observed

returns.

In this study we consider crisis periods, non-crisis periods and the full sample. The

samples for the three different cases naturally have different sizes. In order to keep the

comparability of the backtesting for different samples we backtest all the models using
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Table 1: Summary statistics of the returns on the different market size portfolios.

Portfolio/Cap Mean Std. Dev. Skewness Kurtosis Min Max Semi Std.Dev
Lower Decile 0.1054 0.7480 -0.7580 11.875 -8.44 7.19 0.7666
2nd Decile 0.0567 1.1049 -0.2884 13.008 -12.60 10.03 1.1526
3rd Decile 0.0570 1.0996 -0.3474 10.517 -12.21 9.21 1.1410
4th Decile 0.0530 1.0900 -0.3297 10.908 -12.72 9.61 1.1281
5th Decile 0.0536 1.0922 -0.3177 10.943 -12.29 10.42 1.1245
6th Decile 0.0512 1.0366 -0.3559 11.819 -13.53 11.23 1.0621
7th Decile 0.0510 1.0464 -0.3493 14.615 -14.53 12.94 1.0692
8th Decile 0.0489 1.0565 -0.2888 15.133 -15.35 13.64 1.0751
9th Decile 0.0475 1.0476 -0.4158 18.858 -18.00 13.43 1.0611
Higher Decile 0.0426 1.0731 -0.3517 20.097 -19.52 14.20 1.0681
All stocks 0.0567 0.9932 -0.4308 13.607 -13.64 11.12 1.0317

Notes: Summary statistics of the daily returns on the ten portfolios from small to large market

capitalization stocks and for the portfolio with all the stocks. The data covers the period from July

1, 1963 to June 30, 2012. In the last column Semi Std.Dev stands for the square root of the negative

semi-variance. The negative semi-variance measures the dispersion of all observations falling below

the mean and it is defined as (σ2)− = E([E(R)−R]+)2.

series of VaR estimates with the same length. As the crisis periods listed in Appendix

A cover 3081 days of the total sample period we use the last 3081 daily VaR estimates

in all the backtesting performed.

If the 100α% VaR is well estimated then, on average, 100(1 − α)% of the returns

will produce a VaR violation. In this study we use the level of 99% for the VaR. We

choose to use this level of confidence because the directives of the Basel Committee

on Banking Supervision (1996) set the required regulatory capital as a function of the

performance of 99% VaR internal models.

The most popular VaR estimation method in industry is the simple unconditional

historical simulation. Table 2 presents the results from estimating the 99% VaR for

the different portfolios and corresponding backtesting using a window of ω = 1000

observations. VaR denotes the average VaR. The percentage number of violations which

fall in the green, yellow and red Basel II color classification have normal, italic and bold

21



Table 2: Performance of unconditional historical simulation VaR method

Decile Lower 2nd 3rd 4th 5th 6th 7th 8th 9th Higher All
Non-crisis periods

VaR 2.07 3.45 3.43 3.32 3.42 3.15 3.36 3.28 3.19 3.16 3.07
% Viol. 0.77 0.64 0.55 0.61 0.68 0.77 0.74 0.84 0.90 1.00 0.74
LRuc 0.20 0.03 0.00 0.02 0.05 0.20 0.13 0.37 0.60 0.96 0.13
LRind 0.00 0.11 0.65 0.61 0.58 0.53 0.16 0.21 0.02 0.31 0.54
LRcc 0.00 0.03 0.02 0.06 0.14 0.36 0.12 0.31 0.07 0.60 0.28

Crisis periods

VaR 2.28 2.99 3.05 2.99 3.07 3.04 2.92 2.81 2.67 2.83 2.80
% Viol. 1.56 2.04 1.98 2.24 2.50 2.34 2.50 2.60 2.47 2.76 2.34
LRuc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Full sample period

VaR 2.52 4.03 4.08 3.97 4.14 3.87 4.03 3.91 3.84 3.89 3.70
% Viol. 1.26 1.39 1.39 1.46 1.55 1.65 1.72 1.81 1.68 1.68 1.55
LRuc 0.15 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.00 0.14 0.13 0.00 0.00 0.06 0.00 0.00 0.01 0.06 0.04
LRcc 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: The table reports the results from using the historical simulation method to estimate the 99%

VaR across the different deciles of market capitalization using a rolling window of 1000 days. VaR

denotes the average VaR. The percentage number of violations which fall in the green, yellow and red

Basel II color classification have normal, italic and bold type face respectively. LRuc are the p-values

obtained from the unconditional coverage test in equation (16). LRind and LRcc are the p-values of the

independence test (see equation (22)) and conditional coverage test (see equation (24)) respectively.
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type face respectively. LRuc are the p-values obtained from the unconditional coverage

test given in equation (16). LRind and LRcc are the p-values of the independence test

(see equation (22)) and conditional coverage test (see equation (24)) respectively.

From Table 2 we observe that the percentage of violations observed for the full

period sample is higher than the target level of 1% chosen for the VaR. In general the

excess percentage of violations over the 1% level increases with the market capitaliza-

tion. As a consequence the historical simulation method falls in the yellow zone only

in the five lower decile portfolios. For all the higher decile portfolios the method is in

the red zone.

This result is actually an averaging of the performance for non-crisis and crisis

periods. In the same table we observe that the VaR is overestimated for the non-crisis

periods and is underestimated during the crisis periods.

Although the Basel classification is green for the percentage violation during the

non-crisis periods the economic capital is actually being overestimated in relation to

what would be necessary to maintain a level of 99% VaR with the consequent invest-

ment opportunity cost. During the crisis periods the VaR is underestimated and the

risk is higher. The regulatory capital is insufficient to overcome possible losses with a

99% VaR confidence level. Hence, by backtesting over the full sample period we would

conclude that the historical simulation VaR model performs better than it actually

does. In fact, whether during crises or non-crisis periods, the model always performs

poorly.

From Table 2 we can also observe that the difference between the observed per-

centage of violations and the target VaR level increases with the market capitalization
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Table 3: Performance of unconditional Normal VaR estimates

Decile Lower 2nd 3rd 4th 5th 6th 7th 8th 9th Higher All
Non-crisis periods

VaR 1.51 2.84 2.85 2.81 2.85 2.60 2.64 2.70 2.64 2.61 2.49
% Viol. 1.94 1.52 1.49 1.46 1.29 1.59 1.49 1.52 1.26 1.59 1.59
LRuc 0.00 0.00 0.00 0.01 0.11 0.00 0.01 0.00 0.15 0.00 0.00
LRind 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.03 0.01 0.23 0.00
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

Crisis periods

VaR 1.64 2.26 2.36 2.39 2.43 2.36 2.30 2.34 2.32 2.44 2.17
% Viol. 4.05 4.31 4.44 4.41 4.44 4.21 4.93 4.41 4.64 4.57 4.41
LRuc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Full sample period

VaR 1.87 3.40 3.46 3.46 3.54 3.23 3.26 3.31 3.24 3.22 3.07
% Viol. 2.95 2.79 2.72 2.75 2.46 2.72 3.08 2.79 2.62 2.59 2.75
LRuc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.11
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Results from using the unconditional Normal method to estimate the 99% VaR across the

different deciles of market capitalization using a rolling window of 1000 days. See also notes in

Table 2.

during crises and decreases during non-crisis periods. This indicates that accurate

unconditional VaR estimates are more difficult to obtain for different market capital-

ization in different states of the market.

To further investigate the differences between VaR estimates for different market

capitalization sizes we use three unconditional fully parametric methods as in equation

(5). We use the unconditional method with a Normal distribution which should be more

appropriate for the non-crisis periods, with the Student-t distribution which should

work better during crisis periods, and with EVT which allows for asymmetry of the

returns distribution.

The results for the unconditional Normal method are reported in Table 3. The

quality of the VaR estimates decreases for both crisis and non-crisis periods. The VaR

is underestimated for all the deciles. There is again a large difference in the observed
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Table 4: Performance of unconditional Student-t VaR estimates

Decile Lower 2nd 3rd 4th 5th 6th 7th 8th 9th Higher All
Non-crisis periods

VaR 2.18 3.48 3.45 3.39 3.48 3.25 3.37 3.45 3.43 3.43 3.17
% Viol. 0.61 0.71 0.68 0.61 0.74 0.97 0.81 0.87 0.87 0.90 0.81
LRuc 0.02 0.09 0.05 0.02 0.13 0.88 0.27 0.48 0.48 0.60 0.27
LRind 0.61 0.14 0.00 0.61 0.16 0.43 0.19 0.23 0.23 0.25 0.51
LRcc 0.06 0.08 0.00 0.06 0.12 0.72 0.24 0.38 0.38 0.45 0.44

Crisis periods

VaR 2.24 2.83 2.91 2.91 2.98 2.89 2.83 2.86 2.79 2.93 2.70
% Viol. 2.20 2.53 2.30 2.36 2.85 2.82 2.85 2.85 2.72 2.85 2.46
LRuc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Full sample period

VaR 2.53 4.09 4.11 4.08 4.24 3.99 4.12 4.18 4.15 4.16 3.82
% Viol. 1.65 1.72 1.49 1.42 1.62 1.75 1.78 1.88 1.72 1.75 1.55
LRuc 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.00 0.07 0.18 0.02 0.00 0.08 0.00 0.02 0.01 0.08 0.04
LRcc 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Results from using the unconditional Student-t method to estimate the 99% VaR across the

different deciles of market capitalization using a rolling window of 1000 days. See also notes in Table 2.

percentage violations during crises and non-crisis periods. Similarly to the historical

simulation method the difference between the observed percentage of violations and

the target VaR level increases with market capitalization during crises and decreases

during non-crises.

Given the high sample kurtosis of the returns reported in Table 1 we backtest the

unconditional Student-t method. The results are listed in Table 4. The Student-t

still underestimates VaR during crisis periods. There is a large difference between the

overestimation of VaR during non-crisis periods and the underestimation during crisis

periods.

Despite the problem with the lack of independence of the returns pointed out in

Section 2.3, we implemented the unconditional EVT method. The returns reveal asym-

metry hence using EVT should overcome the symmetry of the Normal and Student-t.
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Table 5: Performance of unconditional EVT VaR estimates

Decile Lower 2nd 3rd 4th 5th 6th 7th 8th 9th Higher All
Non-crisis periods

VaR 1.94 3.38 3.35 3.26 3.34 3.10 3.18 3.23 3.15 3.12 2.99
% Viol. 0.94 0.68 0.58 0.68 0.77 0.84 0.81 0.87 0.90 1.00 0.87
LRuc 0.74 0.05 0.01 0.05 0.19 0.37 0.27 0.48 0.60 0.97 0.48
LRind 0.00 0.13 0.63 0.58 0.17 0.49 0.51 0.23 0.25 0.03 0.48
LRcc 0.00 0.05 0.03 0.14 0.17 0.53 0.44 0.38 0.45 0.11 0.60

Crisis periods

VaR 2.24 2.93 2.96 2.94 2.98 2.88 2.82 2.81 2.73 2.81 2.70
% Viol. 2.01 2.33 2.33 2.36 2.66 2.66 2.92 2.79 2.62 2.98 2.46
LRuc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Full sample period

VaR 2.40 3.99 3.98 3.91 4.04 3.76 3.87 3.90 3.84 3.81 3.60
% Viol. 1.59 1.72 1.59 1.62 1.72 1.75 1.88 1.88 1.81 1.78 1.72
LRuc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.00 0.07 0.23 0.00 0.01 0.08 0.00 0.02 0.02 0.09 0.07
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Results from using the unconditional EVT method to estimate the 99% VaR across the different

deciles of market capitalization using a rolling window of 1000 days. See also notes in Table 2.

The results, reported in Table 5, do not point to different conclusions than the uncon-

ditional Student-t method.

If we take the perspective of which method performs best in which situation then,

using a window of ω = 1000, during non-crisis periods the best performing method

is the unconditional EVT. During crisis periods and using the full sample the best

performing method is the unconditional historical simulation. This result might be

surprising as we would expect that the EVT method would outperform during crisis

periods where extreme losses occur more frequently. For a window of ω = 250 the

historical simulation method performs the best in any case. For ω = 500, during crisis,

non-crisis or using the full sample, historical simulation is the best performing model

for smaller market capitalization stocks, and Student-t is the best model for larger

market capitalization stocks.
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4.2 Empirical results from conditional VaR methods

In order to evaluate the effect of market capitalization on the performance of con-

ditional methods for estimating VaR we consider the following models: filtered his-

torical simulation (where the filters are an AR(1)-GARCH(1,1) with Student-t and

Normal innovations); a simple AR(1)-GARCH(1,1) with Student-t innovations; a sim-

ple AR(1)-GARCH(1,1) with Normal innovations; filtered EVT (where the filters are

an AR(1)-GARCH(1,1) with Student-t and Normal innovations).

To keep the readability of the paper we present in this section the results for the

models with Student-t innovations and window size ω = 1000. The results from these

models are representative of the conclusions relating the importance of market capi-

talization in the estimation of VaR. For reference the tables with the results obtained

with the models having Normal innovations and window size ω = 1000 are available

in Appendix B. The results obtained with window sizes ω = 250 and ω = 500 are

available from the author on request.

We report in Tables 6, 7 and 8 the results for the conditional VaR forecasts. In gen-

eral the three methods underestimate VaR. The p-values of the independence test are

high for the three models. The conditional model with filtered historical simulation has

high p-values for the three backtesting tests. The other two models, AR-GARCH-t and

AR-GARCH-t filtered EVT, have low p-values for the unconditional and conditional

coverage tests.

The performance for the full sample is systematically better than for the crisis

and non-crisis periods separately. This is an important result with repercussions in

practice. If we backtest a model using the full sample we can obtain good backtesting
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Table 6: Performance of Conditional VaR forecasts.

Decile Lower 2nd 3rd 4th 5th 6th 7th 8th 9th Higher All
Non-crisis periods

VaR 1.37 2.54 2.54 2.45 2.40 2.12 2.08 2.15 2.07 2.05 2.09
% Viol. 1.65 1.23 1.23 1.46 1.29 1.46 1.72 1.42 1.46 1.49 1.49
LRuc 0.00 0.20 0.20 0.01 0.11 0.01 0.00 0.02 0.01 0.01 0.01
LRind 0.18 0.32 0.32 0.24 0.29 0.66 0.16 0.63 0.24 0.23 0.23
LRcc 0.00 0.27 0.27 0.02 0.16 0.05 0.00 0.07 0.02 0.01 0.01

Crisis periods

VaR 1.86 2.96 3.10 3.13 3.22 3.12 3.18 3.24 3.21 3.35 2.92
% Viol. 1.81 1.59 1.75 1.49 1.55 1.59 1.85 1.65 1.49 1.20 1.72
LRuc 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.27 0.00
LRind 0.14 0.20 0.16 0.68 0.21 0.76 0.84 0.80 0.63 0.33 0.85
LRcc 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.34 0.00

Full sample period

VaR 1.88 3.66 3.70 3.65 3.67 3.28 3.31 3.36 3.26 3.16 3.20
% Viol. 1.52 1.20 1.10 1.00 1.07 1.26 1.55 1.13 1.26 1.23 1.16
LRuc 0.00 0.27 0.56 0.97 0.69 0.15 0.00 0.45 0.15 0.20 0.36
LRind 0.22 0.33 0.00 0.41 0.39 0.50 0.21 0.36 0.31 0.32 0.34
LRcc 0.01 0.34 0.00 0.72 0.64 0.29 0.00 0.50 0.21 0.27 0.42

Notes: Results from using the conditional AR(1)-GARCH(1,1)-t method to estimate the 99% VaR

across the different deciles of market capitalization using a rolling window of 1000 days. See also notes

in Table 2.

Table 7: Performance of Conditional VaR forecasts.

Decile Lower 2nd 3rd 4th 5th 6th 7th 8th 9th Higher All
Non-crisis periods

VaR 1.60 2.65 2.59 2.49 2.46 2.23 2.18 2.22 2.18 2.10 2.18
% Viol. 1.13 1.10 0.97 1.23 1.20 1.20 1.10 1.36 1.42 1.29 1.13
LRuc 0.45 0.56 0.88 0.20 0.27 0.27 0.56 0.05 0.02 0.11 0.45
LRind 0.36 0.37 0.43 0.32 0.33 0.45 0.37 0.58 0.25 0.29 0.36
LRcc 0.50 0.57 0.72 0.27 0.34 0.42 0.57 0.13 0.04 0.16 0.50

Crisis periods

VaR 2.08 3.22 3.32 3.38 3.46 3.31 3.44 3.38 3.38 3.39 3.14
% Viol. 1.13 0.94 1.07 0.94 0.94 1.10 1.26 1.26 1.16 1.13 1.00
LRuc 0.45 0.74 0.69 0.74 0.74 0.56 0.15 0.15 0.36 0.45 0.97
LRind 0.36 0.45 0.39 0.45 0.45 0.37 0.31 0.50 0.34 0.40 0.41
LRcc 0.50 0.51 0.64 0.71 0.71 0.57 0.21 0.29 0.42 0.53 0.72

Full sample period

VaR 2.12 3.77 3.73 3.63 3.67 3.34 3.43 3.39 3.33 3.14 3.26
% Viol. 1.16 1.00 1.07 1.10 1.07 1.28 1.16 1.26 1.29 1.23 1.00
LRuc 0.36 0.97 0.69 0.56 0.69 0.11 0.36 0.15 0.11 0.20 0.97
LRind 0.34 0.41 0.00 0.37 0.39 0.53 0.34 0.31 0.29 0.48 0.41
LRcc 0.42 0.72 0.00 0.57 0.64 0.23 0.42 0.21 0.16 0.35 0.72

Notes: Results from using the conditional AR(1)-GARCH(1,1)-t filtered historical simulation method

to estimate the 99% VaR across the different deciles of market capitalization using a rolling window

of 1000 days. See also notes in Table 2.
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Table 8: Performance of Conditional VaR forecasts.

Decile Lower 2nd 3rd 4th 5th 6th 7th 8th 9th Higher All
Non-crisis periods

VaR 1.29 2.52 2.62 2.49 2.37 2.05 2.03 2.11 1.90 1.86 2.02
% Viol. 2.43 1.94 1.42 1.68 2.04 2.10 2.01 1.72 2.40 2.43 1.97
LRuc 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.39 0.00 0.02 0.17 0.53 0.21 0.50 0.30 0.37 0.14 0.48
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Crisis periods

VaR 1.69 2.69 2.88 3.00 2.98 2.87 2.94 3.10 2.75 2.88 2.72
% Viol. 2.49 2.53 2.43 2.07 2.33 2.46 2.33 2.04 2.85 2.69 2.33
LRuc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.43 0.46 0.79 0.55 0.33 0.41 0.74 0.53 0.69 0.77 0.11
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Full sample period

VaR 1.85 3.59 3.77 3.76 3.63 3.20 3.17 3.35 2.92 2.81 3.11
% Viol. 1.49 1.52 1.03 0.97 1.39 1.62 1.68 1.10 2.10 2.36 1.36
LRuc 0.01 0.00 0.83 0.48 0.03 0.00 0.00 0.56 0.00 0.00 0.05
LRind 0.23 0.22 0.00 0.48 0.26 0.78 0.82 0.38 0.64 0.51 0.27
LRcc 0.01 0.01 0.00 0.60 0.06 0.00 0.00 0.58 0.00 0.00 0.08

Notes: Results from using the conditional AR(1)-GARCH(1,1)-t filtered EVT method to estimate the

99% VaR across the different deciles of market capitalization using a rolling window of 1000 days. See

also notes in Table 2.

results although the model performs poorly during crisis periods and during non-crisis

periods. This means that VaR is always wrongly estimated if we don’t take crisis and

non-crisis periods into consideration.

In terms of best performing models, the AR-GARCH models with Normal and

Student-t innovations filtered historical simulation have the best performance for every

period and window size.

5 Significance of market capitalization

In this section we want to test if the number of violations produced by a model signif-

icantly changes with the market capitalization of a portfolio.

For the several models we regress the percentage of VaR violations on the market
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Table 9: Relation between market capitalization and the percentage number of viola-
tions.

VaR Model Non-crisis periods Crisis periods All sample

Unconditional historical simulation 0.035∗∗∗ 0.106∗∗∗ 0.053∗∗∗

(0.010) (0.017) (0.008)

Unconditional Normal −0.026 0.049∗ −0.017
(0.019) (0.021) (0.019)

Unconditional Student-t 0.033∗∗∗ 0.068∗∗∗ 0.024∗

(0.008) (0.018) (0.012)

Unconditional EVT 0.024∗ 0.089∗∗∗ 0.027∗∗∗

(0.012) (0.016) (0.007)

AR-GARCH-Normal 0.0112 −0.05∗∗∗ 0.017
(0.020) (0.013) (0.023)

AR-GARCH-t 0.012 −0.033 −0.001
(0.018) (0.018) (0.021)

AR-GARCH-Normal Filtered HS 0.037∗∗∗ 0.009 0.022
(0.010) (0.010) (0.012)

AR-GARCH-t Filtered HS 0.031∗∗ 0.021∗ 0.024∗∗

(0.010) (0.010) (0.008)

AR-GARCH-Normal FEVT 0.039 0.013 0.089∗

(0.038) (0.033) (0.047)

AR-GARCH-t FEVT 0.034 0.018 0.093∗

(0.038) (0.028) (0.044)

Notes: This table reports the regression coefficient estimates (and standard errors in parentheses)

of regressing the percentage number of VaR violations (obtained using a 1000 day window) on the

market capitalization of portfolios. The explanatory variable market capitalization takes values 1 to

10 corresponding to the first to the tenth deciles.
∗ Significant at 10%

∗∗ Significant at 5%
∗∗∗ Significant at 1%
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capitalization to inspect the significance of this variable on the computation of VaR. We

perform the regressions using OLS. Table 9 has the estimated regression coefficients and

the level of significance of each coefficient for VaR estimates obtained with a window

ω = 1000. For unconditional methods we observe that there is a significant difference

between the number of violations in ten out of twelve cases. VaR models produce higher

percentage of violations for larger market capitalization. For the conditional methods,

there is a difference in the percentage of violations in seven out of the eighteen cases

considered. The conditional model AR-GARCH with Student-t innovations and filtered

historical simulation, which is one of the best performing models, produces significantly

higher percentage number of violations for larger stocks during crisis periods, non-crisis

periods or using the full sample. The filtered EVT model does not reveal a significant

difference in the number of violations across different market capitalization portfolios

during crises or non-crisis periods but it does if the full sample is used. Note that

what most distinguishes this model from the remaining models used is its ability to

incorporate returns asymmetry. But different market capitalization portfolios do not

reveal very different sample skewness. Hence our results point to the possible existence

of different asymmetry characteristics in market capitalization more complex than what

sample skewness can measure.

The study is this section infers about differences in number of violations produced

by different models by testing if there is a linear relation between number of violations

and market capitalization. In the next section we analyze if these differences have

an effect on the VaR estimates of portfolios containing different market capitalization

stocks.
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6 VaR of a portfolio with different market capital-

ization stocks

The analysis in the previous sections shows that VaR models perform differently for

portfolios with different market capitalization. Although these differences are statis-

tically significant it is necessary to show that taking market capitalization into con-

sideration implies better estimates for the VaR of a portfolio containing stocks with

different market capitalization.

To answer this question we compare the VaR models performance with and without

taking market capitalization into consideration. Suppose that we want to estimate the

VaR for the equally weighted portfolio with stocks from all sizes. On the one hand we

estimate VaR on the full portfolio returns. On the other hand we estimate VaR for

each of the ten market capitalization sub-portfolios and then we calculate the average

of these ten VaRs. We consider separately crisis periods, non-crisis periods and the

entire sample period. We repeat the exercise with all the VaR methods used previously

in this article.

Table 10 has the results for the unconditional VaR methods where VaR was esti-

mated using a window of ω = 1000 days. The results using windows of ω = 500 and

ω = 250 are available on request as mentioned before. In the table the column named

portfolio corresponds to estimating VaR without taking market capitalization into ac-

count and the results in the column average take market capitalization into account.

For the entire sample period and for the crisis periods the percentage of violations is

always closer to the target VaR confidence level of 1% when considering market capital-
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ization in the estimation of VaR. For the non-crisis periods three out of four methods

perform better without considering market capitalization.

During crisis and non-crisis periods the VaR model performing better is the uncon-

ditional EVT for ω = 1000 and historical simulation for the other two window sizes.

If we use the full sample the student-t model is the best with ω = 500 and ω = 1000.

For ω = 250 historical simulation gives better VaR estimates.

The results for the conditional VaR methods, see Table 11, are very significant.

Overall for non-crisis periods, crisis periods and full sample considering market capital-

ization gives better VaR estimates. The models AR-GARCH with Normal or Student-t

innovations filtered EVT perform better when market capitalization is taken into ac-

count. The two AR-GARCH models with filtered historical simulation perform better

in terms of the number of violations when ignoring market capitalization but give su-

perior results in the independence test when considering market capitalization. This

pattern is consistent for crisis, non-crisis and full sample periods.

The results are clear, market capitalization has a positive effect on the estimation

of portfolio VaR. In principle, estimating VaR for different size sub-portfolios and then

aggregate the estimates in a single VaR could be considered a drawback. A proper

method for aggregating VaR should imply a multivariate model for the returns on the

different sub-portfolios. But we show that even using a simple average gives better

VaR estimates than ignoring market capitalization. We would expect that combining

market capitalization with a more sophisticated VaR aggregation procedure, adequate

for the portfolio at hand, would lead to an even superior performance.

Concerning the best performing models, during crises AR-GARCH-t filtered histor-
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Table 10: Performance of unconditional VaR methods with and without taking into
account market capitalization.

Non-crisis periods Crisis periods Entire sample
Portfolio Average Portfolio Average Portfolio Average

Unconditional historical simulation

VaR 3.07 3.18 2.80 2.87 3.70 3.83
% Viol. 0.74 0.68 2.34 2.24 1.55 1.49
LRuc 0.13 0.05 0.00 0.00 0.00 0.01
LRind 0.54 0.58 0.00 0.00 0.04 0.03
LRcc 0.28 0.14 0.00 0.00 0.00 0.00

Unconditional Normal

VaR 2.49 2.61 2.17 2.28 3.07 3.20
% Viol. 1.59 1.33 4.41 3.73 2.75 2.33
LRuc 0.00 0.07 0.00 0.00 0.00 0.00
LRind 0.00 0.11 0.00 0.00 0.11 0.03
LRcc 0.00 0.06 0.00 0.00 0.00 0.00

Unconditional Student-t

VaR 3.17 3.29 2.70 2.82 3.82 3.97
% Viol. 0.81 0.64 2.46 2.30 1.55 1.46
LRuc 0.27 0.03 0.00 0.00 0.00 0.01
LRind 0.51 0.60 0.00 0.00 0.04 0.03
LRcc 0.44 0.09 0.00 0.00 0.00 0.00

Unconditional EVT

VaR 2.99 3.10 2.70 2.81 3.60 3.75
% Viol. 0.87 0.74 2.46 2.33 1.72 1.52
LRuc 0.48 0.13 0.00 0.00 0.00 0.00
LRind 0.48 0.54 0.00 0.00 0.07 0.03
LRcc 0.60 0.27 0.00 0.00 0.00 0.00

Notes: Estimation of VaR, using a 1000 day window, for a portfolio with stocks from all market

capitalization sizes. The column portfolio has the estimates without considering size. The column

average has the estimates from obtaining VaR for each of the ten portfolios with different market

capitalization and then take the average of the ten VaR estimates. VaR denotes the average VaR for

the sample period. LRuc, LRind and LRcc are the p-values of the unconditional coverage, independence

and conditional coverage test respectively.

ical simulation using ω = 1000 and AR-GARCH-t using ω = 250 or ω = 500 produce

the best VaR estimates. During non-crisis periods the AR-GARCH-Normal filtered

EVT with ω = 250 and the AR-GARCH-Normal filtered historical simulation with

ω = 500 or ω = 1000 outperform. Using the full sample, the AR-GARCH-t and

AR-GARCH-t filtered historical simulation have the best performance for all window

sizes.
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Table 11: Performance of conditional VaR methods with and without taking into
account market capitalization.

Non-crisis periods Crisis periods Entire sample
Portfolio Average Portfolio Average Portfolio Average

AR-GARCH-Normal

VaR 1.97 2.05 2.69 2.81 3.00 3.09
% Viol. 1.88 1.52 2.46 1.75 1.65 1.36
LRuc 0.00 0.00 0.00 0.00 0.00 0.05
LRind 0.13 0.22 0.80 0.84 0.18 0.27
LRcc 0.00 0.01 0.00 0.00 0.00 0.08

AR-GARCH-t

VaR 2.09 2.18 2.92 3.04 3.20 3.29
% Viol. 1.49 1.20 1.72 1.26 1.16 1.00
LRuc 0.01 0.27 0.00 0.15 0.36 0.97
LRind 0.23 0.33 0.83 0.50 0.34 0.41
LRcc 0.01 0.34 0.00 0.29 0.42 0.72

AR-GARCH-Normal Filtered HS

VaR 2.18 2.27 3.13 3.23 3.22 3.33
% Viol. 1.07 0.87 1.03 0.77 0.97 0.84
LRuc 0.69 0.48 0.83 0.19 0.88 0.37
LRind 0.39 0.48 0.40 0.53 0.43 0.49
LRcc 0.64 0.60 0.69 0.36 0.72 0.53

AR-GARCH-t Filtered HS

VaR 2.18 2.27 3.14 3.24 3.26 3.35
% Viol. 1.13 0.84 1.00 0.84 1.00 0.81
LRuc 0.45 0.37 0.97 0.37 0.97 0.27
LRind 0.36 0.49 0.41 0.49 0.41 0.51
LRcc 0.50 0.53 0.72 0.53 0.72 0.44

AR-GARCH-Normal Filtered EVT

VaR 2.05 2.15 2.73 2.78 3.13 3.21
% Viol. 1.75 1.42 2.33 1.88 1.26 1.10
LRuc 0.00 0.02 0.00 0.00 0.15 0.56
LRind 0.16 0.63 0.11 0.82 0.31 0.37
LRcc 0.00 0.07 0.00 0.00 0.21 0.57

AR-GARCH-t Filtered EVT

VaR 2.02 2.12 2.72 2.78 3.11 3.20
% Viol. 1.97 1.46 2.33 1.97 1.36 1.10
LRuc 0.00 0.01 0.00 0.00 0.05 0.56
LRind 0.48 0.66 0.11 0.48 0.27 0.37
LRcc 0.00 0.05 0.00 0.00 0.08 0.57

Notes: Estimation of VaR, using a 1000 day window, for a portfolio with stocks from all market

capitalization sizes. The column portfolio has the estimates without considering stock size. The

column average lists the VaR estimates computed considering stock size. See also notes in Table 10.
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7 Conclusion

Given the recent financial crisis it is obviously necessary to understand better the

drivers of financial risk. In this work we explore the role of market capitalization in

the estimation of equity VaR. We analyze the performance of different VaR estimation

methods for portfolios of stocks with different market capitalization. We consider

separately the estimation of VaR during crisis periods, non-crisis periods, and the full

sample hence ignoring crises.

Our work reveals that the backtesting procedure without separating crises and

non-crisis periods may give misleading results leading to believe that VaR models are

performing better than they actually are. Without considering crises and non-crisis

periods the resulting good performance can actually be an average of overestimating

VaR during non-crisis periods and underestimating VaR during crisis periods. This

means that once in a crisis period the regulatory capital will not cover the potentially

large portfolio losses. This is important to know not only for risk managers but also

for regulators.

We find that VaR methods perform differently for portfolios of stocks with different

market capitalization. In the literature, often large market capitalization stocks or

indices are used to test VaR models. Hence, we should keep in mind that VaR models

performance varies with market capitalization especially when computing VaR for a

small number of stocks.

In our study historical simulation methods (unconditional or filtered) give the best

performance in several cases. We would expect the EVT method to outperform more
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often than it did especially during crisis periods. This result might be due to the fact

that we use data from portfolios containing a large number of stocks. The EVT method

will possibly outperform in estimating VaR for individual stocks or portfolios with a

small number of assets. The distribution of the returns of a portfolio with many stocks

should be typically different from the distribution of an individual stock returns.

We find that taking market capitalization into account produces better VaR esti-

mates. We consider a portfolio with all stocks from small to large market capitalization.

Estimating VaR for different size sub-portfolios and then aggregating those VaR esti-

mates gives better backtesting results than computing VaR of the full portfolio returns

ignoring market capitalization. Given that financial institutions typically held portfo-

lios with different size stocks, this result has an immediate methodological impact in

the risk measurement of portfolios with diverse assets.

It is important to note the consequences, especially during crisis periods, of the

fact that taking market capitalization into account improves the performance of VaR

methods. During these periods of market instability risk is higher and our results stress

the need of understanding the drivers of risk, how they are related, and their effects

on existing risk measurement tools.

In this article we concentrate on the effect of market capitalization on the estimation

of VaR for equity portfolios. There is a considerable amount of work to be done

exploring the possible roles that economic variables and models in general can play in

quantifying and managing financial risk.
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Appendix A

Recession periods from July 1, 1963 to December 31, 2010 according to the “NBER

Business Cycle Dating Committee” available from

http://www.nber.org/cycles/cyclesmain.html.

From − to

December 1969 − November 1970

November 1973 − March 1975

January 1980 − July 1980

July 1981 − November 1982

July 1990 − March 1991

March 2001 − November 2001

December 2007 − June 2009
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Appendix B

Conditional AR(1)-GARCH(1,1)-Normal

Table 12: Performance of Conditional VaR forecasts.

Decile Lower 2nd 3rd 4th 5th 6th 7th 8th 9th Higher All
Non-crisis periods

VaR 1.26 2.41 2.39 2.32 2.27 2.02 1.97 2.02 1.93 1.88 1.97
% Viol. 2.04 1.75 1.62 1.81 1.62 1.78 2.20 1.91 1.78 1.94 1.88
LRuc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.10 0.16 0.19 0.84 0.78 0.15 0.62 0.81 0.15 0.45 0.13
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Crisis periods

VaR 1.66 2.72 2.85 2.91 2.99 2.89 2.95 3.01 2.97 3.12 3.69
% Viol. 2.53 2.33 2.49 2.20 2.23 2.27 2.30 2.14 2.20 1.81 2.46
LRuc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.00 0.00 0.43 0.65 0.07 0.00 0.72 0.60 0.65 0.84 0.80
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Full sample period

VaR 1.72 3.46 3.50 3.46 3.48 3.11 3.09 3.15 3.01 2.90 3.00
% Viol. 2.01 1.59 1.46 1.39 1.55 1.68 1.97 1.62 1.78 1.88 1.65
LRuc 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.10 0.20 0.00 0.61 0.21 0.17 0.11 0.19 0.15 0.82 0.18
LRcc 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Results from using the conditional AR(1)-GARCH(1,1)-Normal method to estimate the 99%

VaR across the different deciles of market capitalization using a rolling window of 1000 days. VaR

denotes the average VaR. The percentage number of violations which fall in the green, yellow and

red Basel II color classification have normal, italic and bold type face respectively. LRuc, LRind

and LRcc are the p-values of the unconditional coverage, independence and conditional coverage test

respectively.
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Conditional AR(1)-GARCH(1,1)-Normal filtered historical sim-

ulation

Table 13: Performance of Conditional VaR forecasts.

Decile Lower 2nd 3rd 4th 5th 6th 7th 8th 9th Higher All
Non-crisis periods

VaR 1.57 2.66 2.60 2.50 2.47 2.23 2.19 2.22 2.19 2.10 2.18
% Viol. 1.16 0.97 0.94 1.16 1.07 1.16 1.16 1.36 1.33 1.33 1.07
LRuc 0.36 0.88 0.74 0.36 0.69 0.36 0.36 0.05 0.07 0.07 0.69
LRind 0.34 0.43 0.45 0.34 0.39 0.34 0.34 0.58 0.28 0.28 0.39
LRcc 0.42 0.72 0.71 0.42 0.64 0.42 0.42 0.13 0.12 0.12 0.64

Crisis periods

VaR 2.05 3.22 3.29 3.35 3.47 3.29 3.45 3.36 3.37 3.41 3.13
% Viol. 1.20 1.03 1.13 1.03 1.90 1.10 1.16 1.20 1.13 1.20 1.03
LRuc 0.27 0.83 0.45 0.83 0.60 0.56 0.36 0.27 0.45 0.27 0.83
LRind 0.33 0.40 0.36 0.40 0.46 0.37 0.34 0.33 0.36 0.45 0.40
LRcc 0.34 0.69 0.50 0.69 0.67 0.57 0.42 0.34 0.50 0.42 0.69

Full sample period

VaR 2.04 3.76 3.71 3.60 3.66 3.32 3.41 3.36 3.29 3.12 3.22
% Viol. 1.29 1.03 1.03 1.10 1.00 1.23 1.20 1.33 1.23 1.33 0.97
LRuc 0.11 0.83 0.83 0.56 0.97 0.20 0.27 0.07 0.20 0.07 0.88
LRind 0.29 0.40 0.00 0.36 0.41 0.32 0.33 0.28 0.32 0.55 0.43
LRcc 0.16 0.69 0.00 0.57 0.72 0.27 0.34 0.12 0.27 0.18 0.72

Notes: Results from using the conditional AR(1)-GARCH(1,1)-Normal filtered historical simulation

method to estimate the 99% VaR across the different deciles of market capitalization using a rolling

window of 1000 days. See also notes in Table 12.
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Conditional AR(1)-GARCH(1,1)-Normal filtered EVT

Table 14: Performance of Conditional VaR forecasts.

Decile Lower 2nd 3rd 4th 5th 6th 7th 8th 9th Higher All
Non-crisis periods

VaR 1.30 2.53 2.65 2.47 2.37 2.11 2.07 2.18 1.95 1.87 2.05
% Viol. 2.27 1.75 1.23 1.65 1.85 1.85 1.78 1.62 2.14 2.43 1.75
LRuc 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.70 0.16 0.48 0.80 0.84 0.39 0.15 0.78 0.22 0.14 0.16
LRcc 0.00 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Crisis periods

VaR 1.64 2.69 2.88 2.98 2.98 2.85 2.95 3.13 2.76 2.91 2.73
% Viol. 2.46 2.59 2.53 2.01 2.33 2.46 2.33 1.94 2.88 2.69 2.33
LRuc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LRind 0.45 0.50 0.41 0.75 0.33 0.41 0.74 0.14 0.71 0.32 0.11
LRcc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Full sample period

VaR 1.85 3.58 3.78 3.71 3.60 3.23 3.19 3.42 2.96 2.80 3.13
% Viol. 1.55 1.49 1.03 0.94 1.36 1.46 1.62 1.00 2.10 2.49 1.26
LRuc 0.00 0.01 0.83 0.74 0.05 0.01 0.00 0.97 0.00 0.00 0.15
LRind 0.21 0.23 0.00 0.45 0.27 0.66 0.19 0.41 0.69 0.43 0.31
LRcc 0.00 0.01 0.00 0.71 0.08 0.05 0.00 0.42 0.00 0.00 0.21

Notes: Results from using the conditional AR(1)-GARCH(1,1)-Normal filtered EVT method to esti-

mate the 99% VaR across the different deciles of market capitalization using a rolling window of 1000

days. See also notes in Table 12.
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