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Abstract: We consider Fisher and Arrow-Debreu markets under additively-separable, piecewise-linear, con-
cave utility functions, and obtain the following results:
• For both market models, if an equilibrium exists, there is one that is rational and can be written using

polynomially many bits.
• There is no efficiently checkable necessary and sufficient condition for the existence of an equilibrium: The

problem of checking for existence of an equilibrium is NP-complete for both market models; the same holds
for existence of an ε-approximate equilibrium, for ε = O(n−5).
• Under standard (mild) sufficient conditions, the problem of finding an exact equilibrium is in PPAD for

both market models. We note that this is the first result showing membership in PPAD for a market model
defined by an important, broad class of utility functions.
• Finally, building on the techniques of [3] we prove that under these sufficient conditions, finding an equi-

librium for Fisher markets is PPAD-hard.
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1 Introduction
The following was the central question within math-

ematical economics for almost a century: Does a com-
plex economy, with numerous goods and a large num-
ber of agents with diverse desires and buying powers,
admit equilibrium prices? Its study culminated in the
celebrated Arrow-Debreu Theorem [1] which provided
an affirmative answer under some assumptions on the
utility functions (they must satisfy non-satiation and
be continuous and quasi-concave) and initial endow-
ments of the agents (each agent must have a positive
amount of each commodity); these are called stan-
dard sufficient conditions. Over the years, milder suf-
ficient conditions were obtained for the existence of
equilibrium, see e.g. [20] and the references therein.
In some restricted cases, the sufficient conditions were
also found to be necessary, i.e., they characterized the
existence of equilibria in the corresponding markets.

Besides existence, another fundamental question is
efficient computability of equilibria. We note that the
proof of the Arrow-Debreu Theorem was based on the
Kakutani’s fixed point theorem and alternative proofs
are based on Brouwer’s theorem; they are all therefore
highly non-constructive. In fact, theorems proving
the existence of market equilibria and the existence of
fixed points are closely related and in a sense equiv-
alent: for excess demand functions that satisfy stan-

dard conditions, the existence of an equilibrium can
be derived from Brouwer’s theorem, and conversely
Brouwer’s theorem, for general continuous functions,
can be derived from the equilibrium theorem [25]; the
sufficient conditions on an excess demand function are
continuity, homogeneity and Walras’ Law, i.e., that
the inner product of the price vector and the excess
demand function vector be zero. Furthermore, by
the Sonnenschein-Mantel-Debreu theorem, all func-
tions satisfying these standard conditions for excess
demand functions can be realized by suitable utility
functions.

Scarf [23] initiated the development of algorithms
for computing market equilibria, introducing a family
of procedures that compute approximate price equi-
libria by pivoting in a simplicial subdivision of the
price simplex. A number of other methods, including
Newton-based, homotopy methods, etc., have been
developed in the following decades. These algorithms
perform well in practice for several markets, but their
running time is not polynomially bounded. The study
of efficient computability of equilibria, from the per-
spective of modern theory of computation, was initi-
ated by Megiddo [21] and Papadimitriou [22].

In recent years there has been a surge of interest
in understanding computability of market equilibria,
which is in part motivated by possible applications to
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markets on the Internet. This study has concentrated
on the two fundamental market models of Fisher [2]
and Arrow-Debreu [1] (the latter is also known as
the Walrasian model or the exchange model, and is
more general than the Fisher model) under increas-
ingly general and realistic utility functions. For each
class of utility functions, two main algorithmic ques-
tions arise: (1) Can we determine necessary and suffi-
cient conditions for the existence of an equilibrium? A
good characterization should be efficiently checkable,
hence the question can be phrased algorithmically as:
What is the complexity of checking for existence of an
equilibrium? (2) If suitable sufficient conditions have
been established for the existence of an equilibrium,
what is the complexity of finding an equilibrium for
an instance satisfying these conditions?

In a general setting, e.g., for markets satisfying
standard sufficient conditions, and specified by de-
mand functions given by polynomial-time Turing ma-
chines or by explicit algebraic formulae, the compu-
tation of equilibria is (apparently) hard [13, 22]. To
have any hope of efficient algorithms, we need to re-
strict the class of demand/utility functions. Several
important classes of functions have been studied over
the years.

Not surprisingly, the first results were for linear util-
ity functions [14]. If the input parameters are rational
(as is standard in computer science), then there is al-
ways a rational equilibrium for this case and there are
simple, efficiently checkable necessary and sufficient
conditions for the existence of an equilibrium; for the
Fisher model, the conditions are straightforward, and
for the Arrow-Debreu model, they were given by Gale
[15]. Moreover, for instances satisfying these condi-
tions, polynomial time algorithms were obtained for
finding equilibria [11, 18].

Complexity results were also obtained for some spe-
cific non-linear utility functions that are well-studied
in economics, e.g., Cobb-Douglas, CES, and Leontief;
the last case is particularly relevant to this discussion.
For this case, the equilibria are in general irrational
for both market models [5, 12]. For the Fisher model,
assuming suitable sufficient conditions, the problem
of approximately computing an equilibrium is poly-
nomial time solvable [5, 26]. For the Arrow-Debreu
model, checking existence of an equilibrium is NP-
hard, and for instances satisfying the standard Arrow-
Debreu sufficient conditions, the computation of ap-
proximate equilibria is PPAD-hard [6, 9, 17]. Note
that these are hardness, rather than completeness, re-
sults because these problems for Leontief markets not
lie necessarily in NP and PPAD. Also note the differ-
ence in the complexities of the two market models.

Within economics, concave utilities occupy a spe-
cial place, since they capture the natural condition of
decreasing marginal utilities. Hence, resolving their
complexity has taken center stage over the last few
years. Since we are dealing with a discrete compu-
tational model, it is natural to consider piecewise-
linear, concave utilities. These can be further divided
into two cases, non-separable and additively separa-
ble over goods; clearly, the latter is a subcase of the
former. The non-separable case contains Leontief util-
ities and so the hardness results mentioned above for
the Arrow-Debreu model carry over to this case. How-
ever, if the number of goods is a constant, then a poly-
nomial time algorithm exists for both market models
[10].

This leaves the case of additively separable
piecewise-linear, concave utility functions. Recently,
Chen, Dai, Du and Teng [3] made a breakthrough on
this question by showing PPAD-hardness of comput-
ing equilibria, even approximate equilibria, for Arrow-
Debreu markets with such utilities1.

Our results for this class of utility functions are
summarized below.
• For both market models, if an equilibrium exists,

there is one that is rational and can be written
using polynomially many bits.
• There is no efficiently checkable necessary and

sufficient condition for the existence of an equi-
librium: The problem of checking for existence
of an equilibrium is NP-complete for both mar-
ket models; the same holds for existence of an
ε-approximate equilibrium, for ε = O(n−5).
• Under standard (mild) sufficient conditions, the

problem of finding an exact equilibrium is in
PPAD for both market models. We note that
this is the first result showing membership in
PPAD for a market model defined by an impor-
tant, broad class of utility functions.
• Finally, building on the techniques of [3] we prove

that under these sufficient conditions, finding an
equilibrium for Fisher markets is PPAD-hard.

Observe that, unlike the Leontief case, the two market
models turn out to have the same complexity in this
case.

We remark that two of these results were obtained
independently and concurrently by other authors: ra-
tionality was also proven by Devanur and Kannan
for both market models [10] and PPAD-hardness for
Fisher markets was proven by Chen and Teng [7] (as
noted in both these papers).

We also remark that in a recent paper, Ye

1Their initial claim, that the problem of finding an approx-
imate equilibrium lies in PPAD, has been recently rescinded.
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showed a distinction between Fisher and Arrow-
Debreu markets for a related, though different, model
of piecewise-linear concave utility functions; in partic-
ular, he showed that the Fisher case can be solved in
polynomial time, whereas the Arrow-Debreu case is
equivalent to solving a linear complementarity prob-
lem [26]. In Section 2 we will explain how his model
is different from ours.

How does the “invisible hand of the market,” in
Adam Smith’s famous words, find equilibria? The
intractability results of [3, 7] and the current paper
make this question even more mysterious.

1.1 Techniques Used
Our results involve several novel techniques; below

we give an overview primarily for the positive results
(the first and third results in the list in the Abstract).

The combinatorial algorithm for Fisher’s linear case
[11] gave new insights into the combinatorial structure
underlying equilibrium prices and allocations. Given
prices p, [11] showed how to construct a suitable net-
work such that a max-flow in it helped determine if p
are equilibrium prices.

We first extend this structure to the case of sepa-
rable, piecewise-linear, concave utilities; the main dif-
ference being that in this case, in general, at given
prices p, a buyer’s optimal bundle must include cer-
tain quantities of certain goods – these are called
forced allocations. The money that is left over af-
ter buying forced allocations is to be spent on buy-
ing flexible allocations from a suitable subset of goods
with specified upper bounds on quantity, and any al-
location exhausting the left-over money leads to an
optimal bundle.

Our network is also a function of prices p and in-
corporates information about forced allocations and
the choices available for flexible allocations. Again,
a max-flow in this network helps determine if p are
equilibrium prices (see Lemma 1). The problem of
finding a max-flow in this network can be written as
an LP in a straightforward manner.

The next transformation is the most interesting.
We assume that prices p are now variables and the
network is constructed for a guess on forced alloca-
tions and choices available for flexible allocations. It
turns out that all edge capacities in this network are
linear functions of the price variables. Moreover, max-
flow in this network, which is a function of prices, can
still be written as an LP. We then show if the guess is
good, i.e., corresponds to an equilibrium, then the op-
timal solution to this new LP gives the corresponding
equilibrium prices and allocations. Since the solution
to an LP is rational, the theorem follows.

Because of rationality, equilibria for these markets
can be computed exactly and this leads to the pos-
sibility that these problems may lie in PPAD, under
suitable sufficient conditions. We show that this is
indeed the case for both market models; this is the
technically most involved result of our paper.

There are very few ways for showing membership
in PPAD. A promising approach for our case is to use
the characterization of PPAD of [13] as the class of
exact fixed point computation problems for piecewise-
linear, polynomial time computable Brouwer func-
tions. The Brouwer functions that have been pro-
posed for market equilibria, such as those of Geneako-
plos and McKenzie, are the obvious candidates. Un-
fortunately, we do not see how to do this: Although
it is possible to show that these functions are polyno-
mial time computable (this is nontrivial, e.g., for the
Geneakoplos function), it is not clear how to transfer
the piecewise-linearity of the utility functions to the
Brouwer function.

Another approach is to reduce the problem to
the computation of an approximate fixed point for
a suitable general (not necessarily piecewise-linear)
Brouwer function F that satisfies three conditions:
(i) it is polynomially continuous (for example, Lip-
schitz continuous for a Lipschitz constant that is
O(2poly(n))), (ii) it is polynomial-time computable,
and (iii) any weakly approximate fixed point of the
function can be used to efficiently obtain a desired so-
lution, e.g., a price equilibrium in our case (see [13]
for a proof). By a weakly approximate fixed point we
mean a point x such that |F (x)−x| is small. However,
such a point may be far from all the fixed points, and
this makes task (iii) challenging2.

The task is further complicated by the fact that,
for given prices, the demand, i.e., optimal bundle, of
an agent is in general not unique, i.e., it is a cor-
respondence and a not function. Furthermore, this
correspondence is very sensitive to the prices – an ex-
tremely small change in prices may lead to drastic
changes in the demand.

Instead, we employ a combination of the two ap-
proaches. Let M be an instance of a market in the
class defined above. We start with the correspondence
F of a Kakutani Theorem-based proof of existence of
equilibrium forM; this is a correspondence on pairs of
price and allocation vectors, (p, x), such that the price
components of its fixed points correspond to the set

2For example, this is the reason that we cannot place in
PPAD the approximation of Nash equilibria in 3-player games.
If we could do this, then this would have other important con-
sequences; e.g., it would resolve the longstanding open problem
of determining whether the square root sum problem is in NP
[13].
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of price equilibria forM. We next obtain a piecewise-
linear Brouwer function G that approximates F . The
function G is easily computable, and hence finding
an exact fixed point, (p∗, x∗), for it is in PPAD, by
the characterization of PPAD given in [13]. Clearly,
(p∗, x∗) may not be a fixed point of F . In addition, it
may not even be close to any fixed point of F .

The heart of the proof lies in showing how to ef-
ficiently compute a price equilibrium p′ for M from
the fixed point (p∗, x∗) of G. For this, we show sev-
eral properties of the fixed point (p∗, x∗) that allow
us to identify which allocations should be forced and
which flexible in an equilibrium, i.e., to pin down the
combinatorial essence of the problem. We set up an
LP, similar to the one used for proving rationality for
the specification of flexible and forced allocations de-
rived from (p∗, x∗), but with the constraints relaxed
by a variable error amount ε. The objective function
of the LP is to minimize ε. We use the properties
of the fixed point (p∗, x∗) to show that it induces a
feasible solution to the LP with a very small value
of ε = 2−2m, where m is a parameter of the market
instanceM that upper bounds the bit complexity of
an optimal solution to the LP, i.e., the size of the LP
and bounds on its coefficients imply that the optimal
solution to it must be either 0 or at least 2−m; hence
it must be zero. Therefore, solving the LP gives us an
exact price equilibrium for market M, say p′. Note
that the entire computation involves finding a fixed
point of G, a piecewise-linear Brower function, fol-
lowed by a polynomial time computation. Since this
can all be accomplished in PPAD, we get the desired
membership result.

Observe that the function G is a Brouwer function,
so it has a fixed point (p∗, x∗) regardless of whether
the given market has an equilibrium or not. Obviously
we cannot derive from (p∗, x∗) a market equilibrium if
there is none, so the proof of correctness for the con-
structed price vector p′ has to crucially use the fact
that the given market instance satisfies the standard
sufficient conditions for the existence of an equilib-
rium. Moreover, the proof must simultaneously show
(constructively, in polynomial time) their sufficiency.
Can we expect this procedure and proof to work for
all piecewise-linear markets that have an equilibrium,
i.e., even ones not satisfying the sufficient conditions?
In view of the NP-completeness of the existence prob-
lem, the answer is “No”; indeed, if this were the case,
then NP would be contained in PPAD, which would
imply NP=coNP.

We comment briefly on the negative results (the
second and fourth results). We exploit the fact that
the high sensitivity of the demands (optimal bundles)

to small changes in prices can be combined with well-
chosen “pieces” of the piecewise-linear utility func-
tions to give the problems a discrete feel: an agent
either buys a segment of a good completely or not at
all, depending on how the prices of goods compare
with each other. With a careful encoding, this dis-
creteness can be reflected in the choices of the prices
in the potential equilibria.

2 Fisher’s Model with Piecewise-
linear, Concave Utilities

Fisher’s market model [2] is the following. Let G be
a set of divisible goods and B be a set of buyers, |G| =
g, |B| = n. Assume that the goods are numbered
from 1 to g and the buyers are numbered from 1 to
n. Each buyer i ∈ B comes to the market with a
specified amount of money, say e(i) ∈ Q+ dollars.
We will assume w.l.o.g. that the amount of each good
available is unit. For each buyer i and good j we are
specified a function f ij : R+ → R+ which gives the
utility that i derives as a function of the amount of
good j that she receives. Her overall utility, ui(x)
for a bundle x = (x1, . . . , xg) of goods is additively
separable over the goods, i.e., ui(x) =

∑
j∈G f

i
j(xj).

Let M =
∑
i∈B e(i) denote the total money of all

buyers.
In this paper, we will deal with the case that the f ij ’s

are (non-negative) non-decreasing piecewise-linear,
concave functions. Given prices p = (p1, . . . , pg) for
all the goods, consider bundles (baskets) of goods that
make each buyer i happiest (there could be many such
bundles). We will say that p are equilibrium prices if
there are choices of optimal bundles for the buyers,
such that after each buyer is given an optimal bun-
dle, all the money is spent and there is no deficiency
or surplus of any good, i.e., the market clears.

Remark: Ye uses a somewhat different model
of piecewise-linear concave utility functions in [26].
Specifically, the utility function ui(x) of buyer i for a
bundle x = (x1, . . . , xg) of goods is a function of the
form mink uki (x), where each uki (x) is a homogeneous,
linear function of the form uki (x) =

∑
j∈G u

k
ijxj . A

utility function ui(x) in our model can be expressed
as the minimum of a set of linear functions, but (i)
an exponential number of functions will be needed in
general, and (ii) the functions are not homogeneous.

We will call each piece of f ij a segment. The set
of segments defined in function f ij will be denoted
seg(f ij). The slope of a segment specifies the rate at
which the buyer derives utility per unit of good re-
ceived. Suppose one of these segments, s, has range
[a, b] ⊆ R+, and a slope of c. Then, we will define
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amount(s) = b − a, slope(s) = c, and good(s) = j.
We will assume that for each segment s specified in
the problem instance, slope(s) and amount(s) are ra-
tional numbers. Let segments(i) denote the set of all
segments of buyer i, i.e., segments(i) =

⋃g
j=1 seg(f ij).

The following (mild) condition suffices for the exis-
tence of an equilibrium, as shown in Section 4.

∀i ∈ B ∃j ∈ G :
∑

s∈seg(fi
j

),slope(s)>0

amount(s) > 1

3 Rationality of Equilibrium Prices
Given an instance M of Fisher’s market with

piecewise-linear, concave utilities and prices p of
goods, we first show how to determine if p constitute
equilibrium prices. We will assume that p satisfies the
condition that the sum of prices of all goods equals
the total money of the buyers, i.e.,

∑
j pj =

∑
i e(i).

3.1 Bang per Buck, Allocations, and the
Network

Given nonzero prices p = (p1, . . . , pg), we charac-
terize optimal baskets for each buyer relative to p.
Define the bang per buck relative to prices p for seg-
ment s ∈ seg(f ij), j �= 0, to be bpb(s) = slope(s)/pj .
Sort all segments s ∈ segments(i) by decreasing
bang per buck, and partition by equality into classes:
Q1, Q2, . . .. If for segment s, good(s) = j, then the
value of segment s, value(s) = amount(s) · pj . For a
class Ql, define value(Ql) to be the sum of the values
of segments in it. At prices p, goods corresponding
to segments in Ql make i equally happy, and those in
Ql make i strictly happier than those in Ql+1.

Find ki ≥ 1 such that
∑
l<ki

value(Ql) ≤ e(i) <∑
1≤l≤ki value(Ql). At prices p, i’s optimal alloca-

tion must contain goods corresponding to all seg-
ments in Q1, . . . , Qki−1, and a bundle of goods worth
e(i) − (

∑
1≤l≤ki−1 value(Ql)) corresponding to seg-

ments in Qki . We will say that for buyer i, at prices
p, Q1, . . . , Qki−1 are her forced partitions, Qki is her
flexible partition, and Qki+1, . . . are her undesirable
partitions. Similarly, segments in these three sets will
be called forced, flexible and undesirable segments, re-
spectively.

For buyer i, we will denote the amount of
money spent on forced segments by spent(i) =∑
l<ki

value(Ql). Define unspent(i) = e(i)− spent(i).
For good j, let forced(j) denote the amount of good
j sold to all buyers under their forced allocations and
let unsold(j) = 1− forced(j).

First ensure that for each buyer, i, unspent(i) ≥ 0
and for each good j, unsold(j) ≥ 0; otherwise, p do

not constitute equilibrium prices. The network N(p)
is defined over vertices {s}∪G∪B∪{t}, where s and t
are its source and sink. For each good j, there is edge
(s, j) with capacity unsold(j) ·pj and for each buyer i,
there is edge (i, t) with capacity unspent(i). For each
buyer i, N(p) will contain an edge (j, i) corresponding
to each segment s in its flexible partition, Qki , where
good(s) = j; the capacity of this edge is amount(s)·pj .

Lemma 1 Prices p constitute equilibrium prices iff
max-flow in N(p) is

∑
i∈B unspent(i).

3.2 Proofs of Rationality for Fisher and
Arrow-Debreu Markets

Let p′ be any equilibrium prices for M. Consider
all forced allocations made at equilibrium. For each
buyer i, let Qki denote i’s flexible partition in this
equilibrium and let Li denote the set of goods of the
segments in Qki . Let Ri = G − Li be the remaining
goods. For j ∈ Li, let sij denote the segment of good
j that is in Qki . For j ∈ Ri, let sij denote the last seg-
ment of good j that is fully allocated to i and let s′ij
denote the next (unallocated) segment; if no segment
of good j is allocated to i, then sij = φ. Next, we will
construct an LP which will have a variable, pj , corre-
sponding to each good j, and any optimal solution to
this LP will be equilibrium prices. The equilibrium
p′ considered above must be one of its solutions and
since the LP has only rational parameters, it must
have a rational solution as well, thereby completing
the proof.

First write spent(i) and unspent(i) for each buyer
as linear polynomials using the variables pj ’s. For
each good j, unsold(j) is a constant determined by the
forced allocations and hence the left-over value of this
good, unsold(j) · pj is a linear expression. Construct
the network, say N , described in Section 3.1, except
that the capacities of edges will be linear polynomi-
als in the pj ’s. We will add edge (t, s) of unbounded
capacity to the network. This constitutes the set E
of edges of N . Next, we introduce a variable fe cor-
responding to each edge e in N , which will represent
the flow on this edge.

We can finally describe the LP itself. Its objec-
tive is to maximize f(t,s) +

∑
i∈B spent(i), subject to

capacity constraints on each edge e ∈ E − {(t, s)}
and a flow conservation equation for each vertex in
{s, t} ∪ G ∪ B. In addition, for each buyer i, it has
the following constraints to ensure that the forced and
flexible segments of i satisfy desired properties; even-
tually this ensures that i indeed gets a utility maxi-
mizing bundle of goods.
• For each j, j′ ∈ Li, we have the equation: slope(sij)·
pj′ = slope(sij′ ) · pj .
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• For each j ∈ Li and j′ ∈ Ri, if sij′ �= φ, we have the
two inequalities: slope(sij) · pj′ ≥ slope(sij′ ) · pj and
slope(sij) · pj′ ≤ slope(s′ij′ ) · pj.
• If sij′ = φ, we have one inequality: slope(sij) ·pj′ ≤
slope(s′ij′ ) · pj .
• Add the following constraints using the linear ex-
pressions derived above: ∀i ∈ B : unspent(i) ≥ 0,
∀j ∈ G : unsold(j) ≥ 0, and

∑
j∈G pj = M, where

M is the total money of all buyers.
• Finally, we add non-negativity constraints: ∀e ∈ E :
fe ≥ 0 and ∀j ∈ G : pj ≥ 0.

Clearly, the starting equilibrium prices p′ form an
optimal solution, of value M , for the LP constructed.
One half of Theorem 2 follows from Lemma 1 and
the fact that this LP must have an optimal rational
solution.

Next we deal with the Arrow-Debreu case [1]. Such
a market under piecewise-linear, concave utilities dif-
fers from a Fisher market only in that each agent i
does not come to the market with money but with an
initial allocation w(i) = (wi1, . . . , wig) of goods; each
of the goods still totals 1 unit in the market, w.l.o.g.
For any prices of the goods, the agents sell all their
initial endowments at these prices and use the money
to buy optimal baskets. The problem again is to find
market clearing prices.

The main change needed in the proof is that at
given prices of goods, p, we will let ei denote the
total value of i’s initial endowment. If p is a vector
of variables, then ei will be a linear sum

∑
j wijpj in

these variables. The sum M of the prices can be set
arbitrarily (if p is an equilibrium in an Arrow-Debreu
market, then αp is also an equilibrium for all α > 0),
thus we can set w.l.o.g. M = 1. The rest of the proof
is same as before. Hence we get:

Theorem 2 Let M be a Fisher or Arrow-Debreu
market with additively-separable piecewise-linear, con-
cave utilities and all parameters rational. If M has
an equilibrium, then it admits an equilibrium in which
prices are rational numbers that can be written using
polynomially many bits.

4 Membership in PPAD for Fisher
and Arrow-Debreu Markets

Consider the Arrow-Debreu market with a set B of
n agents (buyers) 1, . . . , n and a set G of g goods
1, . . . , g. Each agent i has a given initial endow-
ment (supply) vector w(i) = (wi1, . . . , wig) ≥ 0
of goods, a given (nonnegative, nondecreasing) con-
cave piecewise-linear utility function f ij for each good
j ∈ G, and his overall utility is ui(x1, . . . , xg) =∑
j∈G f

i
j(xj). We may assume w.l.o.g. that the to-

tal initial supply of each good j is equal to 1, i.e.,∑
i wij = 1. We assume for computational purposes

that all the input numbers (endowment vectors, slopes
and breakpoints of the utility functions) are rationals.

As is well known, a Fisher market F can be reduced
to an Arrow-Debreu market D with the same set G of
goods, the same set B of agents, and the same utility
functions. Assume w.l.o.g. that the total supply of
each good in F is 1 and that the sum of the budgets
of the agents is also 1. If an agent i has budget ei in
F , then his initial endowment w(i) in D contains the
same amount wij = ei for each good j ∈ G. Then a
price vector p is an equilibrium in F if and only if p
is an equilibrium in D. Thus, Fisher markets corre-
spond essentially to the special case of Arrow-Debreu
markets, where every agent’s endowment contains the
same amount of each good.

From the Arrow-Debreu theorem, a sufficient condi-
tion for the existence of an equilibrium for an Arrow-
Debreu market in our setting is that (C1) all agents
i have positive initial endowments wij for all goods
j, and (C2) nonsatiation of the agents’ utility func-
tions: for every bundle, there is another bundle that
gives strictly more utility to each agent. In our case
of piecewise linear functions, (C2) can be equivalently
stated as: for every agent i ∈ B, there is a good j ∈ G
such that limx→∞ f ij(x) = ∞, i.e., the last (infinite)
segment of f ij has positive slope; we will say that agent
i is nonsatiated with respect to good j, and the func-
tion f ij is nonsatiated. Since the initial total supply
of each good is assumed to be 1, it suffices actually to
assume that each agent derives increasing utility from
some good up to an amount greater than 1 (i.e. the
utility function f ij could go flat after some value > 1).

Some weaker sufficient conditions for the existence
of an equilibrium have been shown subsequently by
other authors. In particular, Maxfield [20] showed a
sufficient condition in terms of the following economy
graph: The graph has a node for each agent i ∈ B
and has an arc i → j if there is a good k ∈ G such
that wik > 0 and j is nonsatiated with respect to k.
The sufficient condition is: (C’) The economy graph
is strongly connected. Clearly, (C’) implies (C2), and
the conjuction of (C1) and (C2) implies (C’). Note
that in a Fisher market, each agent has a positive ini-
tial budget ei, and thus, when we express a Fisher
market in the Arrow-Debreu framework with an ini-
tial endowment w(i) = (ei, . . . , ei), condition (C1) is
automatically satisfied; in this case (C2) and (C’) are
equivalent.

We will show that, under the above sufficient condi-
tions, the problem of computing a (exact) price equi-
librium is in PPAD. As part of the proof, we will show
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also the sufficiency of the conditions for the existence
of an equilibrium.

Theorem 3 The problem of computing a (exact)
price equilibrium for an Arrow-Debreu market with
additively-separable, piecewise-linear concave utility
functions, satisfying the condition (C’), is in PPAD.
The same is true for the Fisher market under the con-
dition (C2).

The proof is rather long and involved and will be
provided in the journal version of the paper. We
sketch below the main steps. We are given an instance
of an Arrow-Debreu market as above, satisfying the
sufficient condition (C’). Trim each utility function f ij
so that it goes flat after 1.1 unit of good j; this does
not change the price equilibria. Let S be the unit
g-simplex for the prices, S = {p|p ≥ 0,

∑
j pj = 1},

and let D be the box [0, 1.1]ng of possible demand
vectors (allocations) x = (xij |i ∈ B, j ∈ G). Define
the correspondence mapping F from S × D to itself
which takes a pair (p, x) and maps it to the set of all
pairs (p′, x′) where: p′ is a price vector that maximizes
p′x =

∑
ij p
′
jxij subject to p′ ∈ S, and x′ is a de-

mand vector that consists of optimal budget-feasible
bundles (in D) for the buyers under prices p. A point
(x, p) is a fixed point of F if (p, x) ∈ F (p, x). The price
components of the fixed points of F are precisely the
price equilibria of the market.

Let b be the maximum number of bits in numera-
tor and denominator of the (rational) input numbers.
Assume wlog that the slopes of all nonflat segments
of the utilities are integers > 0, and let t be the total
number of segments. Let m be the number of bits
that suffice in the optimal solution of LPs with at
most 3ng variables, t2 + 5ng constraints, and rational
coefficients of bit complexity 2b. Note that m is poly-
nomially bounded in n, g, t, b, andm >> n, g, t, b. Let
δ = 1/210m.

Consider a regular simplicization of the domain
S × D with resolution δ. Every cell (little simplex)
in the simplicization has rational vertices which are
equal in each coordinate or differ by δ. Define a func-
tion G which picks at each vertex (p, x) of the sim-
plicization an arbitrary element of F (p, x), and is ex-
tended to the domain S ×D by linear interpolation.
We’ll denote by G1, G2 the p− and x− components of
G. By definition, G is a continuous, piecewise linear
function and is it easy to see that is polynomial-time
computable. Thus, computing a (exact) fixed point
(p∗, x∗) of it is in PPAD [13]. Let C be the simplex
that contains (p∗, x∗). Note, a fixed point of G is
not a fixed point of F . We show that (p∗, x∗) has a
sequence of properties, which allow us eventually to

compute a price equilibrium.

Lemma 4 The total demand for each good j in x∗ is∑
i x
∗
ij ≤ 1 + 4ngδ, i.e. approximately bounded by the

supply.

Lemma 5 For each agent i,
∑
j p
∗
jx
∗
ij ≤
∑
j p
∗
jwij +

2.2gδ, i.e. (p∗, x∗) is “almost" budget-feasible for
each agent. Also,

∑
j p
∗
jx
∗
ij ≥
∑
j p
∗
jwij − 2.2gδ and∑

i,j p
∗
jx
∗
ij ≥ 1− 2.2gδ.

Consider the utility function f ij of agent i for good
j, and the l-th segment of the function; let sijl be
its slope and suppose the segment runs from amount
cijl to cij,l+1 for the good j. For a demand vector
x, we say that the segment is empty (resp. full) if
xij ≤ cijl (resp. ≥ cij,l+1); we say it is partial if xij is
between the two amounts. For each good j, there is
a last segment which is full and a first segment which
is empty; either there is a partial segment which is
between the two - we call this the active segment - or
the two segments are consecutive and the amount xij
is the common breakpoint. Let us say that a segment
is almost full if it is full to a fraction > 1 − 2−2m of
its length and almost empty if it has < 2−2m fraction
of its length. Condition (C’) (or C1) is needed for the
following lemma.

Lemma 6 1. All agents have budget (income) at
least 1/2m at p∗.
2. Suppose that p∗j < 2−3m for some good j ∈ G.
Then all the segments of good j that have positive
slope are full in x∗.

We show now that the allocation x∗ is approxi-
mately consistent with the bang-per-buck order of all
the segments in the utility functions of every buyer
with respect to the prices p∗. Recall that t is the
total number of segments of the utility functions.

Lemma 7 The following holds for the demand vector
x∗ for each buyer i and each pair of goods j1, j2. If l1
is a full or partial segment of j1 and l2 is an empty or
partial segment of j2, both with positive slopes, then
the slopes of the segments and the vector p∗ satisfy
p∗j1/si,j1,l1 ≤ p∗j2/si,j2,l2 + 2tδ, unless both l1, l2 are
partial and l1 is almost empty and l2 is almost full.

Assume we have a fixed point (p∗, x∗) of the func-
tion G. Compute for each buyer the full, partial,
and empty segments wrt x∗. We will set up a Lin-
ear Program, whose solution will give us a (exact)
price equilibrium. The variables of the LP are the
same as for proving rationality, i.e. prices pj, flows
fij for buyer i, good j , corresponding to the costs
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of the allocations on the active segments , and in
addition variable ε for the error (tolerance). The
LP is: minimize ε subject to a set of constraints.
For every pair of segments (i, j1, l1), (i, j2, l2) of the
same buyer i, if their slopes and the vector p∗ satisfy
p∗j1/si,j1,l1 ≤ p∗j2/si,j2,l2 + 2tδ, then we include a con-
straint pj1/si,j1,l1 ≤ pj2/si,j2,l2 + ε. For every buyer
i and good j, let aij be the sum of the lengths of all
full segments of good j wrt x∗. We have constraints∑
j aijpj ≤

∑
j wijpj + ε, for all buyers i. We set up

the network as in the rationality proof, except that
we add ε to all the capacities. If a segment is partial
but almost empty, then we include the corresponding
edge in the network with capacity ε. We have flow
conservation constraints and capacity constraints. In
addition we have constraints that say that the total
flow out of s (or into t) is at least 1−∑i,j pjaij−ε (i.e.
Walras law is almost satisfied), And finally

∑
pj = 1,

and all variables are ≥ 0.
Using the previous lemmas, it is easy to verify that

the vector with p = p∗, and flow f = cost of active
segments according to x∗ and p∗, and ε = 2−2m sat-
isfies all the constraints. The value of this solution is
2−2m. The LP has less than 3nk variables, t2 + 5ng
constraints, and rational coefficients of bit complex-
ity 2b. Thus, there is an optimal solution with bit
complexity m, hence the optimal value is either 0 or
at least 2−m. Therefore, it is 0. Consider an optimal
solution (π, φ, 0). The following lemma completes the
proof of the theorem.

Lemma 8 π is a price equilibrium.

5 PPAD-hardness for Fisher Markets
Theorem 9 Computing a price equilibrium of a
Fisher market with additively-separable piecewise-
linear concave utilities that satisfies condition (C2) is
PPAD-hard, and hence PPAD-complete. The compu-
tation of a ε-approximate equilibrium for ε = O(n−13)
is also PPAD-complete.

Our reduction builds on the construction of [3]
which proves the PPAD-hardness for Arrow-Debreu
markets of computing a ε-approximate price equilib-
rium, i.e. a price vector p for which there is an al-
location x that gives each agent an optimal bundle
with respect to p, and the market clears approxi-
mately in the sense that |∑i xij −

∑
i wij | ≤ ε

∑
iwij

for every good j. Their reduction constructs from
a given 2-player game Γ, with n pure strategies for
each player, an Arrow-Debreu market D such that
a n−13-approximate equilibrium of D can be effi-
ciently mapped to a n−6-well supported approximate

Nash equilibrium of the game Γ; the latter problem
is PPAD-complete [4]. The constructed market in-
stance D has a set G of g = 2n + 2 goods. and two
sets B0, B1 of agents. The first set B0 has g(g − 1)
agents whose definition (endowments and utilities) do
not depend on the game Γ; these agents have the bulk
of the endowment in the market (each one of them has
a supply of 1/n units of a good) and serve a “price-
regulating" role, ensuring that in every (approximate)
equilibrium all the prices are within a factor 2 of each
other. The second set B1 has 2n2 agents with much
smaller endowment (total O(1/n4) for each), and their
definition encodes the payoff matrices of the game.

Our reduction consists of a simpler gadget (in place
of B0) for price regulation, and essentially a reduction
from Arrow-Debreu to Fisher for the rest of the mar-
ket. We construct a Fisher instance F that has the
same set G of g = 2n+2 goods. The set of agents con-
sists of a single agent 0 for the price regulation and
the same remaining set B1 of 2n2 agents as in the
Arrow-Debreu instance D. The budget e0 of agent 0
is 2 + 1

n , and his utility function for every good j has
slope 2 until e0 units and slope 1 from then on. Every
agent k in B1 is given budget ek in instance F equal
to the maximum amount maxj wkj of any good in his
endowment in instance D; thus all agents in B1 have
budget at most O(1/n4).

The utility function of an agent k ∈ B1 in the Fisher
market F is defined as follows. Let ukj be the utility
function in D for each good j ∈ G, and let sk be the
maximum slope of any segment in these functions over
all j ∈ G. The utility function fkj for good j in the
Fisher instance F has slope 3sk until ek − wkj , and
from that point on, the additional utility is a copy of
the function ukj . That is, fkj (x) = 3skx if x ≤ ek−wkj ,
and fkj (x) = 3sk · (ek − wkj) + ukj (x − (ek − wkj)) if
x > ek − wkj .

Let M be the sum of all the budgets; note that the
total budget of the setB1 of agents is≤ 2n2·O(n−4) =
O(n−2), while the budget of agent 0 is 2 + n−1; thus
M = 2+n−1+O(n−2). The total supply of each good
is set equal toM . This concludes the definition of the
Fisher instance F .

Since there are M units of each good and a to-
tal budget of M , the sum of the prices of an equi-
librium must satisfy

∑
j pj = 1. We say that p

is an ε-approximate equilibrium for the Fisher mar-
ket if

∑
j pj = 1 and there is an allocation x that

consists of optimal bundles for all the agents with
respect to p (subject to their budgets) such that
|∑i∈B xij −M | ≤ εM for all goods j ∈ G.

Lemma 10 In any 0.9-approximate price equilibrium
for the above Fisher market instance F , the prices of
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all the goods are positive and are within a factor 2 of
each other.

The heart of the proof of correctness of the reduc-
tion is summarized in the following lemma; Theorem
9 follows.

Lemma 11 Let p be a n−13-approximate equilibrium
for the Fisher market F , and x be an allocation that
witnesses this. Then the allocation x of the Fisher
instance F can be mapped to an allocation y for the
Arrow-Debreu instance D that satisfies the conditions
witnessing that p is also a n−13-approximate equilib-
rium for the instance D.

6 NP-completeness of Existence of
Equilibrium

Theorem 12 The problem of determining whether a
given Fisher or Arrow-Debreu market with additively-
separable piecewise linear concave utilities has an
equilibrium is NP-complete. The same holds for the
existence of a ε-approximate equilibrium with ε =
O(n−5).

Membership in NP follows from the analysis of Sec-
tions 4 and 5 and Theorem 2. For the NP-hardness,
we reduce from the Exact Cover by 3-Sets (X3C) prob-
lem [16]. In this problem, we are given a family C of
n sets C1, . . . , Cn, where each set Ci is a 3-element
subset of a set X = {x1, . . . , xn}. The question is
whether there exists a subfamily C′ of C which covers
X exactly, i.e. every element xj ∈ X belongs to ex-
actly one set in C′; such a subfamily is called an exact
cover.

Given an instance of the X3C problem, we con-
struct an instance D of an Arrow-Debreu market and
a corresponding instance F of a Fisher market such
that the X3C instance has a solution iff D and F have
an equilibrium iff they have an approximate equilib-
rium. The piecewise linearity of the utility functions
allows us to encode an X3C instance by the markets in
such a way so that certain goods corresponding to the
sets must have in an equilibrium one of two possible
prices, corresponding thus to a binary choice for the
sets, and a combination of prices is part of an equi-
librium iff the sets corresponding to one price form
an exact cover. The details of the constructions and
the proofs will be given in the journal verison of the
paper.

7 Discussion
Nash equilibria and market equilibria play a cen-

tral role in game theory and economics. In the case

of games, 2-player games have rational Nash equilib-
ria and the complexity of computing them is charac-
terized exactly by the class PPAD, as shown by two
fundamental results, the classical Lemke-Howson al-
gorithm [19] for membership and the reductions of
[4, 8] for hardness.

In the case of markets, the class of separable,
piecewise-linear, concave utility functions are an im-
portant, broad class which, as we showed, have ratio-
nal equilibria, if any. As we saw, there is no effeciently
checkable necessary and sufficient condition for the
existence of equilibria for this case, unlike the linear
case. However, under standard (mild) sufficient con-
ditions, the results of the present paper together with
[3, 7] show that the equilibrium computation problem
for this case, for both market models, is characterized
exactly by the class PPAD.

3-player games have irrational Nash equilibria in
general and the complexity of computing or approxi-
mating them is characterized by the class FIXP. Leon-
tief and non-separable piecewise-linear concave util-
ities also have irrational equilibria in general (un-
der standard sufficient conditions). Are they FIXP-
complete?

The definition of the class PPAD was designed to
capture problems that allow for path following al-
gorithms, in the style of the algorithms of Lemke-
Howson [19] and Scarf [24]. Our result, showing mem-
bership in PPAD for both market models under sep-
arable, piecewise-linear, concave utility functions, es-
tablishes the existence of such path following algo-
rithms for finding equilibria for these market models
(and one can obviously derive such algorithms indi-
rectly by the membership proof). It will be interest-
ing to obtain natural direct algorithms for this task
(hence leading to a more direct proof of membership
in PPAD), which may be useful to compute equilibria
in practice.
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