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Abstract

In a natural experiment with index option prices, we study how probability judgment error, and
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attractiveness, the weight they place on each rank, and their ability to discriminate between
prices. We introduce a novel behavioral process that (1) characterizes investor sentiment about
tail events in index option prices over time and probability ranks, (2) provides early warning
signals of market instability, and (3) crash probability estimates from a closed form expression
for the time varying transition probability that a seemingly stable market state will become
unstable and crash.
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1 Introduction

The burgeoning literature on investor sentiment1 and market psychology is dense with key-

words and phrases like: hope, fear, aspirations, underconfidence and overconfidence, investors

risk attitudes toward tail events, and formation of asset pricing bubbles. All of the above

can be characterized by “probability judgment error”2 (see e.g. Dierkes et al., 2020; Baele

et al., 2019; He and Zhou, 2016; Kuhnen, 2015; Wigniolle, 2014; Polkovnichenko and Zhao,

2013; Dierkes, 2013; Chabi-Yo and Song, 2013; Kliger and Levy, 2010; Dierkes, 2009; Ackert

et al., 2009; Haigh and List, 2005; Kluger and Wyatt, 2004; Fox et al., 1996). Psychological

probability, by and through the probability weighting function component of rank dependent

utility and prospect theory (Quiggin, 1982, 1993; Lopes, 1987, 1990; Tversky and Kahneman,

1992), plays a key role in evaluating probability judgment error in many of those papers.

In a natural experiment with index option prices, we investigate an unexplored area of

probability judgment error in financial markets. Namely, financial market instability driven

by probabilistic sentiment.3 We study how probabilistic sentiment characterizes financial

market switch from states of optimism to pessimism and vice versa. We derive a closed

form expression for the transition probability that a seemingly stable financial market will

become unstable and crash because of sentiment driven probability judgment error. This

allows us to estimate crash probabilities, critical values of a probability factor associated with

attractiveness of an asset, and identify early warning signals of market crash (e.g. market

surveillance). The novel approach in this paper stems from its representation of the term

1“Sentiment” is described as an “emotional reaction to risky situations that often diverge from cognitive assess-
ments of those risks” (Loewenstein et al., 2001). Thus, investors’ emotional response to associated risks in financial
markets that deviate from cognitive models of market stability constitute investor sentiment or judgment error (cf.,
De Long et al., 1990).

2The extent to which probability judgment deviates from objective probability gives us a measure for sentiment.
According to Barberis (2013, p. 176) “people do not weight outcomes by their objective probabilities pi but rather by
transformed probabilities or decision weights πi. The decision weights are computed with the help of a [probability]
weighting function w(·) whose argument is an objective probability.”

3A notable exception is Ackert et al. (2009) who examine asset price bubbles induced by probability judgment
error in an experimental market. This paper was written before the SARS-cov-19/COVID-19 pandemic that caused
governments to shut down their economies globally. The pandemic is different from a market crash induced purely
by investors’ sentiment about assets attractiveness. Those dynamics are briefly described in Figure 20, infra. We
note that without loss of generality the “financial market” in contention is one in which professional option traders
are the actors.
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structure of probability judgment error as a behavioral random field–constructed from noise

Figure 1: A random field of probability weighting functions
impied by monthly S&P 500 index option

Source: Author’s computation from data extrapolated from Polkovnichenko
and Zhao (2013) for January 1996 to December 2008. The outlier curve
reflects sentiment about the Great Recession of 2008.

in investors’ probability judgment–continuous in time and measurable in probability ranks.4

In the sequel we refer to this random field as a “BELLE process” even though that phrase

typically applies to the time dependent component of the field. It is known that probability

weighting functions reflect probability judgment error, and that they are measures of sen-

4Let X1, . . . , Xn be a random sample of outcomes, i.e. prices, X(n), . . . , X(1) be a ranking from low to high, P be
a probability measure, and F the corresponding distribution function. P (X < X(m)) = F (X(m)) = pm implies that
pm is the probability rank of X(m).
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timent (Barberis, 2013). Given professional option traders proneness to sentiment driven

probability judgment error (Fox et al., 1996; Haigh and List, 2005), probability weighting

functions (pwfs) implied by S&P 500 index option prices provides a natural experiment to

evaluate the model’s performance in well known financial crises. In Figure 1 the field of

pwfs assume different shapes depending on the sources or states of risk that characterize

the sample functions over probability ranks dimension for each time index in the data. We

call these sample functions source functions in keeping with the nomenclature in prospect

theory (Wakker, 2010; Abdellaoui et al., 2011). The shapes of source functions for index

option prices reflect investors’ sentiments about different sources of risk in the market. For

example, new information about credit events such as mark-to-market write downs causes

credit rating agencies to change credit ratings, i.e. credit ratings migration that re-rank

credit worthiness (cf. Altman, 1998; Finnerty et al., 2013), and induce a new distribution of

probability of default. This is followed by a change in market sentiment, i.e. re-evaluation

of default probabilities, that consequently changes the shapes of source functions.5

We show that unstable and stable market states are characterized by convex-concave

(S) and concave-convex (inverted S) shapes, respectively, for source functions. This enables

us to identify transient shapes of source functions over time, and the critical limit shape

when markets crash. For example, we derive critical values for a probability judgment index

for attractiveness of index option prices. Those values show that markets crash when source

functions transmogrify from inverse S-shape (or S-shape) into a tent map with upper vertex

above the 50-50 probability mark.6 To the best of our knowledge, this paper is the first to

establish a nexus between probability judgment error and tent maps in financial markets

5Refer to Wang et al. (2017) for details on Moody’s Credit Transition model. Yamazaki (2020) incorporated
source functions and default probabilities in a consumption based asset pricing model (CCAPM) to explain why
stocks of distressed firms have negative risk premium. Ismailescu and Kazemi (2010) used regression methods to find
asymmetric sovereign credit market response to downgrade versus upgrade for emerging markets, whereas Drago and
Gallo (2017) find asymmetric response in the opposite direction for developed European markets.

6Campbell et al. (1997, p. 474) describe the locus of a tent map. In our case, psychological probability w(pt) in
index option markets collapsed to the following tent map when the market crashed in 2008:

pt =

{
2pt−1, pt−1 < 1/2;
2(1− pt−1), pt−1 ≥ 1/2;

, p0 ∈ (0, 1)

3



(cf. Hsieh, 1991; Campbell et al., 1997; Brock and Hommes, 1998). Among other things, a

tent map implies that investors exhibit extreme likelihood insensitivity, i.e. they are unable

to discriminate among bets in the index option market, and they are extremely pessimistic

about 50-50 bets on option prices due to unattractive toxic assets. For instance, the flat

portion of the outlier plot in Figure 1 exhibits extreme likelihood insensitivity (Wakker,

2010, p. 203). Hence no trade takes place and markets crash. As we will see, just before

the extreme likelihood insensitivity state is reached, source functions morph into latent tent

maps.7 So, the latter provide strong signals that the market will crash. For example,

our model predicted tent map market crash states in July and August 2008–two months

before the Lehman Brothers bankruptcy induced crash in September 2008. After the crash,

source functions resumed concave-convex shapes consistent with probabilistic risk aversion.

Jackwerth (2020, p. 624) showed that deformation of functional risk neutral probability

dynamics on March 16, 2020 did a better job of anticipating the COVID-19 market crash on

March 23, 2020 compared to the S&P500 index value.

The BELLE process admits a closed form expression for the time dependent proba-

bility that a seemingly stable financial market state will transit to an unstable state.8 The

model makes the fatalistic prediction that the market will become unstable and crash al-

most surely in finite time (cf. Kindleberger and Aliber, 2011). Somewhat surprising, when

the volatility of probability judgment error is high, the probability of market instability is

lower than when the volatility of probability judgment is low. Evidently, larger volatility

for probability judgment error in index option market reflects larger differences of opinion

about prices and it mitigates market instability (Chen et al., 2012; Carlé et al., 2019).

7The natural experiment data allows us to address Campbell et al. (1997, p. 475) observation that “[t]his technique,
known as a stroboscopic map or a Poincare section, has given empirical content to even the most abstract notions of
nonlinear dynamical systems, but unfortunately cannot be applied to non-experimental data.”

8Schularick and Taylor (2012); Cesa-Bianchi et al. (2018) used a logit model of banking crisis with data for credit
growth to estimate this probability but they did not use source functions.
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Figure 2: Risk sources and investor psychology

Figure 2 provides a schema of how investor beliefs about risk sources are transmitted to

the CBOE VIX and the pwf implied by S&P 500 index option prices. According to Figure 2,

the sources of risk affect sovereigns, corporations and households and consequently the cash

flow streams anticipated by investors over a given time horizon. Information that impact risk

assessment such as credit rating migration induce re-ranking of assets and probability redis-

tribution that are reflected in the shapes of sources functions. Thus, investors probabilistic

risk attitudes are time and source (state) dependent as indicated in Figure 1.9 The CBOE

VIX provides a volatility score for risk; whereas a risk source function, i.e. the pwf corre-

sponding to the source of risk, reflects investors probabilistic risk attitudes and sentiment

about the probability ranks of index option prices that produce the VIX score. Recently,

Chabi-Yo and Song (2013) established a nexus between VIX scores and pwfs by showing

how to recover pwfs nonparametrically from S&P 500 index option implied volatility and

VIX options. Dierkes (2013) also provides a link between VIX and the curvature of source

functions.

The rest of the paper proceeds as follows. In section 2 we provide a heuristic example

of how investor sentiment affects option prices. We introduce the BELLE process which

9Refer to Baucells and Heukamp (2012); Savadori and Mittone (2015) for time varying probabilistic risk attitudes.
The source dependence of pwfs (Tversky and Wakker, 1995; Kilka and Weber, 2001; Abdellaoui et al., 2011) provides
insight about probabilistic risk attitudes that is lacking in raw VIX scores.
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characterizes stability of source functions; closed form expressions for tipping points; and

large deviation probabilities for source function shape reversal based on discrimination and

attractiveness of option prices. In section 3 we calibrate the model to source functions

corresponding to the sources of risk implied by S&P 500 index option prices, and show

how they predict market crash and provide early warning systems for market instability. In

section 4 we conclude.

2 The BELLE process for probability weighting functions

This section deals with how the BELLE process is derived.10. We consider the finite-time

behaviour of the Lyapunov exponent for an orbit of probability weighting functions with

behavioural error for a large sample of investors. Specifically, we characterize stable and

unstable pwfs and the large sample probability estimate(s) for tail event instability in a

seemingly stable system of investors’ pwfs. We apply it in Section 3 to detect market crash

phenomenon in option price data. The basin of attraction Bδ(p
⋆) characterizes the stable

and unstable pwfs for investors in the behavioral dynamical system (see Definition G.2 in the

appendix) for pwfs based on an invariant manifold theorem (see Proposition 2 in appendix).

At this point it is perhaps instructive to use an heuristic example to illustrate how the shape

parameters affect option prices.

2.1 A heuristic example of how investor sentiment affects option prices

Assume that a European style call option price at time t with expiry date T > t is a simple

mixed lottery L, i.e. buy at K with time discount e−r(T−t) and probability P2, sell at S(t)

with probability P1. So, L = {S(t), P1; −e−r(T−t)K,P2}. The actuarial value of L is a call

option C(S,K, σ, t, r) = S(t)P1 − e−r(T−t)KP2, where S is the underlying stock price, σ is

its volatility, K is strike price, r is a constant discount rate, and T is expiry date, P1 and

10BELLE stands for “behavioural empirical local Lyapunov exponent”. A Lyapunov exponent (λ) is a measure of
the rate of convergence or divergence of a trajectory over time relative to two nearby starting points
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P2 are probabilities. In Heston (1993, pp. 330,331) option pricing model P1 and P2 can be

sub(super)-additive (cf., Fox et al., 1996) and they depend on arguments of the call option.11

Motivated by Shefrin and Statman (1993, p. 125, fn 4), we assume out-of-the-money

call option valuation with psychological probabilities. We use Prelec’s (1998) sub(super)-

additive 2-parameter probability weighting function

w(P ) = exp (−β(− ln(P ))α)) (2.1)

to replace the objective probabilities in the actuarial value of L to obtain a behavioural value

C̃(S, σ, t, r; α, β) = S(t)w(P )− e−r(T−t)K(1− w(1− P )) (2.2)

*** Insert Figure 3 and Figure 4 about here ***

Assume assets are ranked from worst to best, and P1 = w(P ) and P2 = 1 − w(1 − P ).

(Pess)imists believe (P pess): P1 = w(P ) < P for high ranks, and w(1 − P ) < 1 − P , so for

them P1 < P < P2 for arbitrary P . (Opt)imists believe the opposite (P opt): P1 > P and

P2 < P , so for them P1 > P > P2 for high rank assets. Thus, P opt
1 > P pess

1 and P opt
2 < P pess

2 ,

i.e., P opt
1 − P pess

1 > 0 and P opt
2 − P pess

2 < 0. Substitution of these values in (2.2) results in

C̃opt(·; αopt, βopt) > C̃pess(·; αpess, βpess) as follows:

C̃opt(•) = S(t)P opt
1 − e−r(T−t) K P opt

2 (2.3)

C̃pess(•) = S(t)P pess
1 − e−r(T−t) K P pess

2 (2.4)

C̃opt(•)− C̃pess(•) = S(t)(P opt
1 − P pess

1 )− e−r(T−t)K (P opt
2 − P pess

2 ) (2.5)

=

+ve︷ ︸︸ ︷
S(t)(P opt

1 − P pess
1 ) +

+ve︷ ︸︸ ︷
e−r(T−t)K (P pess

2 − P opt
2 ) > 0 (2.6)

11In Heston (1993) P1 + P2 = 1 +
1

π

∫
∞

0

e−iφ ln[K]

iφ

(
Re(̂f1) + Re(̂f2)

)
dφ where f̂j is the characteristic function of

Pj , j = 1, 2. If the integrand is not zero, then P1 + P2 6= 1 so the probability measures are super(sub)-additive
accordingly. Note that P1 = N(d1) and P2 = N(d2) in the Black and Scholes (1973) formula.
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Markets breakdown when the inequality in (2.6) fails, i.e., optimist valuation of the call

option is at most equal to the pessimist valuation: C̃opt(·; αopt, βopt) ≤ C̃pess(·; αpess, βpess).

Here, α, β reflect investor sentiment: α curvature is an index for discrimination of bet on

option prices, and β elevation is an index for attractiveness of option prices. See Gonzalez and

Wu (1999) for further psychological interpretation of α and β. Each of the two components

in (2.6) depend on probabilistic risk attitudes.

Let Mood(S) = S(t)(P opt
1 − P pess

1 ) and Mood(K) = e−r(T−t) K (P pess
2 − P opt

2 ).

Pessimism If market Mood(S) is overly pessimistic about S (e.g., during and after rare

disaster (cf. Giglio et al., 2021, p. 1484)) such that P pess
1 ≫ P opt

1 and Mood(S) ≪ 0,

Mood(K) held constant, and Mood(S) +Mood(K) ≤ 0, then markets fail.

Exuberance If marketMood(K) is overly optimistic aboutK (e.g., long shot bias about lot-

tery stocks (cf., Snowberg and Wolfers, 2010)) such that P pess
2 ≪ P opt

2 andMood(K) ≪

0, Mood(S) is held constant, and Mood(S) +Mood(K) ≤ 0, then markets fail.

Mood disparity If Mood(S) +Mood(K) ≤ 0, then markets fail.

Figure 3 and Figure 4 depict optimist and pessimist likelihood insensitivity for a true

probability weight ∆P = 0.1 over P-ranks and over time. There, one can see a probability

smile (for pessimists) and probability frown (for optimists). For likelihood insensitivity,

the optimist overweighs and the pessimist underweighs the true ∆P . This overweighing

phenomenon in optimistic states (in our case option prices with high probability ranks) was

recently confirmed in Akbas and Genc (2020, p. 225) for the case of mutual funds.

2.2 Stable and unstable probability weighting functions in index options market

The phase diagrams in Figure 5 and Figure 6 show the stable manifold theorem (Theo-

rem G.1) at work in the interior fixed point for stable and unstable source functions implied

by index options.12 In particular, concave-convex shapes are stable, and convex-concave

12Roughly, the stable manifold theorem characterizes the (in)stability of the system in a neighbourhood of the fixed
point.
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shapes are unstable. The latter is characteristic of “irrational exuberance” in financial mar-

kets. This paper shows how the source functions are oriented just before, during, and after

a market crash.

*** Insert Figure 5 and Figure 6 about here ***

2.3 Local Lyapunov exponent for probability weighting functions

In this subsection we formally define and identify the Lyapunov exponent for pwfs. In-

tuitively, a Lyapunov exponent λ is a measure of the rate of system divergence from or

convergence to an equilibrium when two nearby initial conditions are perturbed.

Definition 2.1 (Lyapunov exponent). Adapted from Jost (2005, pg. 31). Let w(p) be a

probability weighting function such that the first derivative w′ exist. The Lyapunov exponent

of the orbit pn = w(pn−1), n ∈ N for p0 = p is

λ(p) := lim
n→∞

1

n

n∑

j=1

ln |w′(pj)| (2.7)

provided the limit exist.

This definition implies that the Lyapunov exponent is an invariant of the Jacobian w′(pj) =
∂w

∂pj
that determines local stability of the points that satisfy (2.7). It is the average rate

of divergence for the iterative function system p, w(p), w ◦ w(p), . . . , w ◦ . . . ◦︸ ︷︷ ︸
(n−1) times

w(p) where

w ◦ w(p) = w2(p), (w ◦ w ◦ w)(p) = w ◦ w2(p) = w3(p) and so on.

For purposes of exposition, we consider the 2-parameter probability weighting func-

tion (pwf) introduced by Prelec (1998, Prop. 1, pg. 503):

w(p) = exp(−β(− ln(p))α), 0 < α < 1, β > 0 (2.8)

Here α determines the curvature of the pwf. It determines the orientation of the curve. In

contrast, β determines the elevation or how much weight is given to a particular curvature.

9



We refer to (α, β) as a sentiment pair. After log differentiation we get

ln[w′(p)] = a(p;α, β) = ln(αβ) + (α− 1) ln(− ln(p))− ln(p)− β(− ln(p))α (2.9)

Monotonicity of w(p) guarantees that w′(p) > 0 so the absolute value requirement in (2.7)

is satisfied. However, the true probability weighting function w(p) is unknown, so the pa-

rameters α and β are unobservable in psychological phase space.

2.4 Stochastic Lyapunov exponent process in econometrics theory

The stochastic Lyapunov exponent concept was presented in nonlinear time series anal-

ysis in the early 1990s via its estimation with nonparametric regressions.13 Refer to Nychka

et al. (1992); McCaffrey et al. (1992) and references therein. Important papers by Bougerol

and Picard (1992); Whang and Linton (1999); Shintani and Linton (2004) extended the

concept to the econometrics theory literature. Recently, Park and Whang (2012, p. 64) in-

troduced a nonparametric test for random walk against a chaos alternative. In their model

the sample estimate for the Lyapunov exponent process of interest is a Brownian functional14

λn(t) =

∫ t

0

ln |mo
n(
√
nBn(s))|ds, t ∈ [0, 1] (2.10)

where mo
n is the first derivative of a Nadaraya-Watson kernel estimator for the nonparametric

nonlinear function mn(·), defined on the space of continuous function C[0, 1] on the closed

unit interval, endowed with the sup norm metric, and Bn(t) ∈ C[0, 1] is approximate Brow-

nian motion. Ben Säıda (2012); Ben Säıda (2014) applied the tests above to financial time

series that include the S&P 500 index and failed to find chaos in the data. In the sequel, our

sample function for the Lyapunov exponent process is also a Brownian functional of Bn(t)

but its “kernel estimator” mo
n is parametric.

13In fact, its roots can betraced to the seminal paper by Furstenberg and Kesten (1960).
14Refer to Karatzas and Shreve (1991, p. 185) for technical details on this concept.
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2.5 Representation theorem for BELLE process

Consider a large sample of N heterogenous decision makers (DMs) at time t. Let ǫj(t), j =

1, . . . , N be the behavioural (or measurement) error associated with the choice made by the

j-th investor (DM) at time t. Furthermore, assume that ǫj(t) ∼ iid(0, σ2). We assume a

common core belief in (2.9) so the model is represented by appending measurement error ǫj

to (2.9) such that

aj(t, p;α, β) = a(p;α, β) + ǫj(t) (2.11)

ln[w′j(t, p;α, β)] = aj(p;α, β) (2.12)

Let [0, T ] be the finite time interval for which Lyapunov exponents are observed for each

DM. Without loss of generality we normalize the time interval to coincide with [0, 1] and let

Π(n) = {0, t(n)1 , t
(n)
2 , . . . , t

(n)
k , . . . , 1} partition [0, 1] into dyadic intervals such that t

(n)
k = k.2−n.

Consider the cumulative effect of DMs behavioural errors at time t ∈ [t
(n)
k , t

(n)
k+1)

defined by the partial sums Sj
nt and Sj

[nt] below.
15 Hey (1995) specified an experiment with

time dependent behavioural error in stochastic choice so this assumption is admissible. Let

Sj
nt =

nt∑

k=1

ǫj(t
(n)
k ), Sj

[nt] =

[nt]∑

k=1

ǫj(t
(n)
k ) (2.13)

where [nt] is the integer part of nt. In the psychology and neuroscience literature (2.13)

is the basis for a random accumulator model (RAM) of decision making over time. Most

15The partial sums allow us to construct an approximate random function as follows. Suppose ǫ ∼ (0, σ2). Divide

the interval [0, 1] into n equal parts i/n, i = 1, . . . , n. Define Si = ǫ1 + · · · + ǫn. Let Wn(i/n) =
1

σ
√
n
Si. For

t ∈ [(i− 1)/n, i/n] we interpolate to get

Wn(t) =
i/n − t

1/n
Wn((i− 1)/n) +

(t− (i− 1)/n)

1/n
Wn(i/n) =

1

σ
√
n
Si−1 + n (t− (i− 1)/n)

1

σ
√
n
ǫi

For t in the half open interval [(i− 1)/n, i/n) we have i− 1 = [nt]. So we get

Wn(t) =
1

σ
√
n
S[nt] + (nt− ([nt])

1

σ
√
n
ǫ[nt]+1
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important, RAMs admit “changes of mind” or reversal when the partial sums hit a given

threshold (Resulaj et al., 2009). The random broken line connecting the points ([nt], Sj

[nt])

and (nt, Sj
nt) is given by

W j
n(t) = Sj

[nt] + (nt− [nt])ǫj([nt] + 1) (2.14)

By Donsker’s Theorem, i.e. functional central limit theorem, we assume W j
n(t) is an ap-

proximate Brownian motion in the space of continuous functions C[0, 1].16 Let w(t, p;α, β)

be the state of the core pwf at time t, i.e. continuous in time t, measurable in probability

p, and time homogenous in sentiment (α, β). According to Gikhman and Skorokhod (1969,

pp. 370-371), by virtue of (2.9), the incremental change in time dependent pwf for the j-th

DM at time t can be written as

∆ ln[w′j(t; p, α, β)] = aj(p;α, β)∆t+ σ∆W j
n(t) (2.15)

This paves the way in the limit for the following behavioural empirical local Lyapunov

exponent (BELLE) random field

Theorem 2.1 (BELLE random field). Assume that DMs probabilistic risk attitudes at time t
are characterized by Prelec (1998) 2-parameter pwf w(t, p) = exp(−β(− ln(p))α). For a given
probability measure space (Ω,F , P ) that satisfies the usual conditions (see e.g. Karatzas and
Shreve, 1991), and sample size N of DMs whose preferences are measured with behavioural
error ǫj(t, ω) ∼ iid N(0, 1), j = 1, . . . , N the behavioural stochastic Lyapunov exponent
random field λ̄N(t, p;α, β) for the sample has the following representation

dλ̄N(t, p, ω;α, β) = ām,N(p;α, β)dt+ σdW n,N(t, ω), (2.16)

where ām,N(p;α, β) is a drift term, σ is a volatility coefficient, and W n,N(t, ω) is an approx-
imate Brownian motion.

Proof. See Appendix B.

Remark 2.1. The BELLE random field is tangentially related to Park and Whang (2012)
Brownian functional result in (2.10). The existence and uniqueness (Gikhman and Sko-
rokhod, 1969, Ch. VIII, §3) of λ̄N(t, p, ω;α, β) is implied by Definition 2.1.

16This is a common assumption in econometrics theory (White, 2001, Ch. 7) and probability theory (e.g. Serfling
(1980, p. 41); Knight (1962); Gikhman and Skorokhod (1969, pp. 452-453); and Karatzas and Shreve (1991, pg. 66)).
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*** Insert Figure 7 about here ***

Figure 7 provides estimates of the sample paths for the random field λ̄N(t, ·, ω;α, β) over time.

It shows that most of the time the market is stable and attains a coffin state. However, there

is a maximal state sup{0<t<∞} λ̄N(t, ·, ω;α, β) that explodes in finite time and the market

crashes.

*** Insert Figure 8 about here ***

2.5.1 Reranking of credit ratings and market sentiment dynamics

Figure 8 depicts probability dynamics induced by a re-ranking of outcomes. For example,

as DMs receive new information about outcomes they may re-rank those outcomes. This re-

ranking causes a redistribution of probabilities and the weights given to those probabilities.

It is reflected by “spin” around the fix point probability. The BELLE process reflects the

local stochastic stability induced by the “spin”. As a practical example, credit agencies use

information about firms that causes them to rank assets by grade, i.e. AA, Aa, B, etc. This

ranking is associated with a probability of default, say. As new information comes in, firms

assets are given new ratings that cause a redistribution of probability of default. The extent

of probability redistribution dynamics can cause DMs sentiment about firms assets to shift

from optimism to pessimism (the case depicted in Figure 8) or vice versa with behavioural

error. The tail probabilities associated with shifts from optimism to pessimism, for the

BELLE process, are estimated next.

2.6 Estimating the probability of transition from stable to unstable state

To estimate the probability of stability, for the BELLE random field, we rewrite W n,N(t) in

Lemma 1 in Appendix C as an approximate Brownian motion

W n,N(t) ≡ Wn

( t

N

)
, Mn,N(t) = sup

0≤s≤t

W n,N(s) (2.17)

13



If φ(·) is the probability density function for W n,N(t), then the probability density function

for Mn,N(t) is proportional to φ(·), and Mn,N(t) is a Brownian motion (e.g. Gikhman and

Skorokhod (1969, pg. 286) and Karatzas and Shreve (1991, pg. 96, Prob. 8.2)).17 The

stochastic stability condition in Lemma 1 in Appendix C is characterized by

Pr
{
Mn,N(t) < −1

σ
ām,N(p;α, β)t

}

= Pr
{
supW n,N(s) = sup

√
t

N

N∑

j=1

W j
n(1) < −1

σ
ām,N(p;α, β)t

} (2.18)

So the stochastic instability condition is characterized by the complement probability

Pr
{

Mn,N(t) ≥ −1

σ
ām,N(p;α, β)t

}

= 1− Pr
{

sup
1

N

N∑

j=1

W j
n(1) < −1

σ
ām,N(p;α, β)

√
t
}

(2.19)

Here, Mn,N(t) induces a Lyapunov-Perron effect18 with tail event large deviation probability

of instability given by (2.19) in a seemingly stable system (Leonov and Kuznetsov, 2007,

p. 1079).

Theorem 2.2 (Probability of tail event instability for a seemingly stable source function).

Assume that at time t a large sample size N of DMs follow a BELLE random field represented

by Theorem 2.1. Then the large deviation probability of tail event stability is given by

lim
N→∞

1

N
log Pr

{
Mn,N(t) ≤ −1

σ
ām,N(p;α, β)t

}
≈ −

ā2m,∞(p;α, β)

2σ2
t

Thus, given an initial stable state with probability π0 = 1 at time t0, for stationary transition

probability with stable state (s) starting at time t0, and becoming unstable (u) at time t+ t0,

17Without loss of generality we assume that the constant of proportionality is 1.
18This effect stems from the notion of hyperbolic fixed points and unstable manifolds (Wiggins, 2003, pp. 12, 50).

Cursory inspection of Figure 23 and Figure 24 show that w(P ) is hyperbolic in a sufficiently large neighbourhood
Bδ(p

⋆) of the fixed point p⋆. So it contains an invariant manifold in R
2.
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in the limit we have

Pr(unstable at t+ t0| stable at t0) = Pus(t, p) = 1− exp

(
−
ā2m,∞(p;α, β)

2σ2
t

)
(2.20)

Proof. See Appendix D.

Remark 2.2. In the sequel we assume stationary transition probabilities. The interested

reader is referred to (Dynkin, 1960; Chung, 1960) for more on this concept.

*** Insert Figure 9 about here *** *** Insert Figure 10 about here *** *** Insert
Figure 11 about here ***

Cursory inspection of (2.20) shows that given α, β, σ at time t the stationary transition

probability of instability Pus(t, p) = 1 − exp

(
−
ā2m,∞(p;α, β)

2σ2
t

)
increases when exp(·)

gets smaller as ā2m,N(p;α, β) gets larger.19 These observations are supported by Figure 9

which depicts the almost sure stationary transition probability of instability over time, i.e.

limt→∞ Pus(t, p) → 1.20 The cross-sectional plots in Figure 10 show that for time normalized

in [0, 1], over small time window 2∆t = 2/T = 2/156 ≈ 0.01, the tail event probability of

a stable market becoming unstable, i.e. Pus(t, p), is almost zero in the range depicted on

the vertical axis across probability ranks. As the time window gets larger, i.e. 144∆t, the

range for probability of market instability narrows to Pus(t, p) ∈ [.985, 1.0]. In Figure 11 the

probability of instability Pus(t, p) takes a long time for the BELLE drift a(p;α, β) across all

probability ranks.

2.7 Drift term characterization of BELLE process

To evaluate the impact of the other control variables on Lyapunov-Perron type proba-

bility of instability we turn to comparative statics. Rewrite the drift term in Theorem 2.1

for given p so that

19The same also holds for fixed m and increasing t.
20In order not to overload the paper we did not include analytics for a two state ((u, v) Markov transition probability

matrix.
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f(α, β; p) = ln(αβ) + (α− 1) ln(− ln(p))− ln(p)− β(− ln(p))α (2.21)

∂f

∂α
= α−1 + ln(− ln(p))− β(− ln(p))α+1 (2.22)

∂f

∂α
> 0 ⇒ 0 < β <

1

α
+ ln(− ln(p))

(− ln(p))α+1
(2.23)

Similarly,

∂f

∂β
=

1

β
− (− ln(p))α,

∂f

∂β
> 0 ⇒ 0 < β < (− ln(p))−α,

∂2f

∂β∂α
= −(− ln(p))α+1 (2.24)

The first order effects for increasing drift (and hence increased probability of instability) in

(2.23) and (2.24) is given by

0 < β < max
{α−1 + ln(− ln(p))

(− ln(p))α+1
, (− ln(p))−α

}
(2.25)

Note that ∂2f/∂β∂α shows that α and β are independent (Gonzalez and Wu, 1999, p. 139)

Since α controls the curvature of w(p), it determines the degree of DM’s sentiment. Whereas

β is an elevation parameter that controls (1) the location of fixed point probability in the

underlying probability distribution, and (2) degree of “cautiously hopeful” behaviour (Lopes,

1995, p. 187). So (2.25) depicts the range of elevation that control the hyperbolic fixed points

for invariant manifolds that support stability and instability.21 In the case of Prelec (1998)

single factor model, i.e. β = 1, 0 < α < 1, we find that the set of feasible values in (2.25) for

curvature α are solutions to the nonlinear equation

α−1 + ln(− ln(p))

(− ln(p))α+1
> 1 (2.26)

⇒ (− ln(p))α+1 − α−1 − ln(− ln(p)) < 0 (2.27)

We summarize the results above in

21Refer to Chicone (1999, p. 28) and Wiggins (2003, Ch. 3) for details on hyperbolic fixed points. Chen and
Xuefeng (2003, p. 423) used a similar analytic apparatus to identify conditions for dynamics in their model.
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Proposition 1 (Critical values of probabilistic risk factors). Given a large sample N of
DMs with core Prelec (1998) 2-parameter pwfs (α and β) in a behavioral dynamical system
with the BELLE process in psychological space in Theorem 2.1, the tail event probability of
instability in Theorem 2.2 depends on either of the following

1. growth in sample size N or time t or both;

2. curvature (α) and elevation (β) of pwfs that induce the range of critical probabilistic
risk attitude factors

0 < β(p|α) < max{ϕ1(α, p), ϕ2(α, p)};

3. increased precision in the diffusion coefficient σ for classifying measurement error or
behavioural noise by DMs;

where ϕ1(α, p) =
α−1 + ln(− ln(p))

(− ln(p))α+1
and ϕ2(α, p) = (− ln(p))−α.

Remark 2.3. Gonzalez and Wu (1999) show that α and β are independent. Here β(p|α)
is based on comparative statics. In the sequel we write β(p). Budescu et al. (2011) also
provide a taxonomy of scenarios where elevation (β) and curvature (α) parameters affect
“probability reversals” if DMs weight probabilities that are close together at a different rate.
The methodology developed here is distinguished. Here, we show how the elevation and
curvature parameters interact to reverse the shape of the entire pwf by rotating the entire
pwf about a fixed point.

*** Insert Figure 12 about here ***

3 Market instability identified by BELLE process

In this section we plot and describe the source functions, i.e. pwfs, implied by option

prices from parameter estimates in Polkovnichenko and Zhao (2013). We calibrate analytic

expressions from our criterion function for market instability in Proposition 1, and compare

the predictions of the theory to historic events in option price behavior. The following

definition

*** Insert Figure 13 about here ***

*** Insert Figure 14 about here ***

*** Insert Figure 15 about here ***

*** Insert Figure 16 about here ***
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is adapted from Wakker (2010, p. 320) and it plays a key role below.

Definition 3.1 (Source function). Assume that all uncertainties can be quantified in terms
of probabilities, and that a source is a specific set of events. For each event E define W (E)
as wS(PS(E)) where S is the source from which E obtains, PS is a probability measure on S,
and wS is the pwf corresponding to E. We call wS a source function.

3.1 Calibrating source functions implied by S&P 500 index option prices

Polkovnichenko and Zhao (2013, pg. 595, Fig. 9) derived estimates of Prelec (1998) 2-

parameter pwf for shape parameter α and elevation parameter β assuming CRRA utility

u(x) =
x1−γ

1− γ
and γ = 0, 1, 2, for S&P500 index option price data for, among others, 28-days

maturity over the sample period January 1996 to December 2008. So the source functions

are term structures for probability ranks. In the sequel we use data for (α, β) collected by

eyeballing Polkovnichenko and Zhao (2013, Fig. 6) for risk neutral CRRA index γ = 0, and

risk averse CRRA index γ = 2. For γ = 0, the burden of risk attitudes is carried entirely

by the source function (Yaari, 1987). For γ = 2, the burden is shared: risk aversion carried

mostly by the utility function, and risk seeking is carried by the source function. Recall that

α reflects a DM’s discrimination among bets, and β reflects a DM’s level of attraction to the

bets.

On June 19, 1997 there was pessimism in the options market depicted by the concave-

convex inverted S-shape curve (α = 0.56, β = 0.93; γ = 2) in Figure 13. This was around the

time of the Asian currency crisis (Mishkin, 1999; Corsetti et al., 1999)–depicted in Figure 12

where the VIX spiked in that year. So we label that credit risk source function WAsia
currency =

wAsia
1997(p; α = 0.56, β = 0.93).

By April 21, 2005 the state in the options market changed to optimism depicted

by the convex-concave skewed S-shape curve (α = 1.6, β = 1; γ = 2) in Figure 13. This

time there was a real estate bubble in the US (Zhou and Sornette, 2006) driven by sub-

prime loans and asset securitization.22 This is depicted in Figure 12 where the VIX is
22Adelson (2013) argues that sub prime loans and mortgages “may have served as the spark that ignited the
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below its 12-month rolling average in 2005. So we label that credit risk source function

WUS
RealEstateCDO = wUS

2005(p; α = 1.6, β = 1.0).

3.1.1 Early warning critical values of probabilistic risk factors for toxic assets

Undeniably, option market sentiment had a phase transition from pessimism to op-

timism between 1997 and 2005, i.e. the underlying pwf flipped based on the source

of risk. The β(p)-instability distribution predicted by Proposition 1 is plotted in Fig-

ure 14 for β(p) = min{max{ϕ1(α, p), ϕ2(α, p)}, βc} where ϕ1(α, p) =
α−1 + ln(− ln(p))

(− ln(p))α+1
and

ϕ2(α, p) = (− ln(p))−α and βc is the observed pwf elevation parameter, i.e. the β parameter

estimated by Polkovnichenko and Zhao (2013) for WAsia
currency and WUS

RealEstateCDO. A quadratic

curve in p was fitted for β(p) as indicated. According to Figure 14, the region of instability

for both curves in Figure 13 is supported by probability values less than the fixed point

probability p∗ = 0.4. For example, 0 < p ≤ 0.4 for WAsia
currency and WUS

RealEstateCDO. This is the

probability support for low ranked index option prices. It reflects low ranked assets. Fig-

ure 14 shows that DMs with α = 1.6 and 0.26 ≤ β(p) < 0.74 are prone to induce instability

in states of optimism or overconfidence when βc = 1. In contrast, DMs with α = 0.56 and

0.63 ≤ β(p) < 0.93 are prone to induce instability in states of pessimism or underconfidence

when the true βc = 0.93. According to Polkovnichenko and Zhao (2013, p. 585) β shifts the

distribution and α mainly affects the tails.

powder keg” of underlying causes of the Great Recession of 2008 but it was not the cause. The Financial Crisis
Inquiry Comission (2011, Ch. 10) referred to this period as “The Madness”.
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Table 1: Parameter values for credit risk source functions

Parameter Asia 1997 Currency Crisis US 2005 Real Estate & CDO Bubble

α-curvature 0.56 1.60
β-elevation 0.93 1.00
p⋆-fixed point 0.40 0.40
β(p)-instability 0.60 0.20

0.70 0.50
β(p)-tipping point 0.93 0.67

The plots corresponding to the parameter values above are depicted in Figure 13,
Figure 14, Figure 15 and Figure 16. Tipping point values for β(p⋆) are depicted in
Figure 14.

3.2 Calibrating source functions predicted by critical values of market instabil-
ity criteria

In the analysis that follows we reiterate that pwfs are identified with the source of credit

risk so they are source functions in accord with Definition 3.1. Table 1 presents parameter

values used in the analysis below.

3.2.1 Source function for US real estate and CDO bubble circa 2005

To illustrate our theory for US real estate and CDO source functions, we select β(p)-

instability values β = 0.25 and β = 0.5 from the distribution of critical values predicted by

Proposition 1 to characterize dynamics of the underlying source functions. The orientation

of the skew S-shaped source function WUS
RealEstateCDO for (α = 1.6, β = 1.0; γ = 2) in Figure 13

switched to an all concave shape in Figure 15 depicting ex ante WUS, crash
RealEstateCDO(p; crit(α =

1.6, β = 0.2)) for fixed α = 1.6, and critical value β = 0.2. So the relative strength of

DMs confidence is such that they are now uniformly fearful and pessimistic over the entire

range of rank ordered option prices. Similarly, in Figure 16 the ex ante source function

WUS, crash
RealEstateCDO(p; crit(α = 1.6, β = 0.5)) is concave for α = 1.6 and critical value β = 0.5.

Cursory inspection of Figure 15 and Figure 16 show WUS, crash
RealEstateCDO(p; crit(α = 1.6, β =

0.2)) > WUS, crash
RealEstateCDO(p; crit(α = 1.6, β = 0.5)). According to Hogarth and Einhorn (1990,

Fig. 2, Fig. 4, pp. 786-787) the higher curve implies greater ambiguity in the market. In
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this case it depicts more pessimism (Gonzalez and Wu, 1999, p. 138) about toxic assets, and

each of those functions symbolize eminent market crash.

3.2.2 Source function for Asian currency crisis circa 1997

The elevation of the inverse S-shaped source function WAsia
1997 (p; α = 0.56, β = 0.93) in

Figure 13 for α = 0.56, β = 0.93; γ = 2 has a fixed point probability p∗ = 0.4. However,

when β = 0.6 the fixed point probability jumped from 0.4 to about p∗ = 0.75 in Figure 15.

According to Hogarth and Einhorn (1990, Fig. 2, pp. 785-786), this northeast movement

of the fixed point from p∗ = 0.4 to p∗ = 0.75, associated with ex ante source function

WAsia
1997 (p; crit(α = 0.56, β = 0.6)), implies larger anticipated losses. In this case the market

was more cautious than hopeful. In contrast, when α = 0.56 and β = 0.7 the fixed point

probability for ex ante source function WAsia
1997 (p; crit(α = 0.56, β = 0.7)) falls to about

p∗ = 0.7 in Figure 16. In this case, the market was less cautious and more hopeful compared

to when p∗ = 0.75. Each one of the source function plots in Figure 15 and Figure 16 depict

probabilistic preference reversal relative to the corresponding plots in Figure 13. Evidently,

β(p) attractiveness levels shifts the underlying distribution for given sentiment reflected by

α discrimination among bets on index option prices.

*** Insert Figure 17 about here ***

3.3 Snap shots of source function dynamics that predict market crash

In this section we examine snap shots of market dynamics that signal eminent market crash.

We conduct a natural experiment with the source functions implied by S&P 50 index option

prices when CRRA γ = 0. In that way, all market sentiments and risk attitudes are carried

by the source functions. Figure 17 depicts the time varying (αt, βt) market sentiment pair.

Recall that the curvature parameter α reflects discriminating between optimism and pes-

simism, while β reflects attractiveness among underlying bets (cf. Gonzalez and Wu, 1999).

The plot shows that discrimination among index option prices vary widely while their attrac-
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tiveness remains comparatively stable in a given range. The critical β(t, p) plot predicted by

the BELLE process shows a lot more variability over time. This reflects the notion that the

market switches from stable to unstable states over time depending on the attractiveness of

bets in the index option market.

*** Insert Figure 18 and Figure 19 about here ***

Figure 20 provides external validation for the market crash scenarios represented by our

source function analysis. It depicts 5th-degree polynomial smoothers for weekly

*** Insert Figure 20 about here ***

sentiment data for Bulls, Bears, and Risk Neutral survey participants for American Associ-

ation of Individual Investors data for the period June 1987 to December 2018. During the

Great Recession of 2008, triggered in part by the US Real Estate market failure, there was

very little difference of opinion between Bulls and Bears. In fact, the Bears were slightly

more bullish than the Bulls! Similarly, during the 1990 Japanese Real estate crisis (Peek and

Rosengren, 2000) there was no difference of opinion between Bulls and Bears and markets

crashed. Figure 20 shows that when markets crash bull and bear sentiments coincide. So we

would expect a small volume of trade or no trade at all, because the market breaks down

since all traders hold the same beliefs about asset quality (e.g. Akerlof (1970); Harris and

Raviv (1993) and Stiglitz and Grossman (1976, p. 250)).

*** Insert Figure 21 about here ***

Figure 21 provides monthly snap shots of market dynamics leading up to the Lehman

Brothers bankruptcy filing in September 2008–the largest in history–and markets crashed.

However, our BELLE process signalled eminent market crash at least 2-months before in

July 2008 as shown by the limit tent map shape for source functions. In October 2008, one

month after the crash, investors began the process of reversing likelihood insensitivity. By

November, investors exhibit even less likelihood insensitivity in that they no longer treat
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market events as impossible. In December 2008, some investors resorted to treating market

events as impossible but others were able to discriminate among assets.

4 Conclusion

We contribute to the literature on investor psychology, financial market surveillance, and

financial market (in)stability by constructing a behavioural random field (BELLE) from

investors sentiment about probability ranks, and applied it in a natural experiment with

index option prices. We show how the shape of probability weighting functions (pwfs)

implied by index option prices depend on the prevailing sources of risk in the market so

they are “source functions”.

While our model cannot predict the precise date of a market crash, it predicts crit-

ical out-of-sample tipping point values. For a single output parameter, and given market

sentiment input parameter(s), it predict market crash signals. We illustrated the model’s

robustness across different risk sources. Furthermore, we provide snap shots of monthly

market dynamics generated by the BELLE process which would have predicted the Great

Recession of 2008. One of the surprising results produced by the BELLE process is the limit

tent map shape of source functions before market crash. To the best of our knowledge, this

paper is the first to establish a connection between probabilistic risk attitudes in financial

markets and limiting tent map shapes popularized in the literature on nonlinear dynamics

in financial markets. Thus, we provide new tools for identifying early warning signals for

market instability.

We also provide closed form solutions for time dependent transition probability that

a seemingly stable financial market will become unstable. In fact, model simulation produces

the rather fatalistic result that financial market crashes are inevitable in finite time as long as

they are driven by investors’ sentiment. It is left to be seen whether the transition probability

relationship can be extended to stochastic volatility in the BELLE process.
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5 APPENDIX

A Proof of invariant manifold Proposition 2

In nonlinear dynamics the stable manifold theorem (stated in Appendix G.1.2) plays a key
role in identifying stable and unstable fixed points. It essentially decomposes an invariant
manifold into stable and unstable components (Chicone, 1999, Ch. 4). Here we apply the
stable manifold theorem in the context of pwfs.

Proposition 2 (Invariant manifold for probability weighting functions).
Let F be a cumulative probability distribution, and w(F ) be a probability weighting functional.
Define the set

C(F ) = {F | − w(F ) ln(w(F )) = F, 0 ≤ F ≤ 1} (A.1)

Then C(F ) is an invariant set of fixed point functions for probability weighting. Moreover,
in the restricted case when w(F ) = F we get C(F ) = {0, e−1, 1} where F = p⋆ = e−1.

Remark A.1. McLennan (2018, Fig. 1.2) identified sets like C(F ) as an essential set of fixed
points. Alternatively, C(F ) is an invariant subspace of [0, 1]. That is, w : C(F ) → C(F ) ⊂
[0, 1] and C(F ) is an invariant manifold.

Proof. By construction we can rewrite w(F ) = exp(− F
w(F )

). The distribution function(s) F

which solves that nonlinear equation represents fixed probability distributions that satisfy
the equation. By definition, F represents a continuum of probabilities. Specifically,

1. let ξp be the p-quantile of F . Define the set of probabilities X(p) = {p| −
w(p) ln(w(p)) = p, F (ξp) = P (X ≤ ξp) = p, F ∈ C(F )}. By construction X(p)
is a cluster set of probabilities since it contains the accumulation or fixed points p that
satisfy the entropy equation, and by construction X(p) ⊆ C(F ). Hence C(F ) is a
hereditary cluster set.

2. Suppose F ∈ C(F ), and p /∈ X(p). The latter relation implies that
−w(F (ξp)) ln(w(F (ξp))) 6= F (ξp) and F (ξp) /∈ C(F ). This contradicts our incipient
hypothesis F ∈ C(F ). In which case F (ξp) = p ∈ X(p) and C(F ) ⊆ X(p).

The results of 1. and 2. imply that C(F ) = X(p). In which case C(F ) is a cluster set
of probabilities. The restriction W (F (ξp)) = F (ξp) = p produces the fixed point solution
W (F ) = F = exp(−1).

Corollary 1 (Invariant manifold decomposition). C(F ) is decomposable into stable (S) and
unstable (U) submanifolds such that U ⊕ S = C(F ).

Proof. Apply the stable manifold theorem in Appendix G.1 to C(F ) in Proposition 2.

Remark A.2. Since w is defined on C(F ) the invariance decomposition property implies
w(S(F )) ⊂ S(F ) and w(U(F )) ⊂ U(F ). Refer to Appendix G.1 for further details.
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B Proof of representation theorem for behavioural Lyapunov ex-

ponent random field Theorem 2.1

Proof. By hypothesis, F is the σ-field of Borel measurable subsets of the sample space Ω. So
our analysis takes place in an open ball or disk Bδ(p

⋆) that support the measurement error
ǫ(t, ω) for ω ∈ Ω. Recall that a(p;α, β) = ln(αβ) + (α− 1) ln(− ln(p))− ln(p)− β(− ln(p))α

and that aj(t, p;α, β) = a(p;α, β) + ǫj(t, ω). The aggregate change in pwf for heterogeneous
DMs in the sample size N is given by

N∑

j=1

∆ ln[w′j(t, p;α, β)] =
N∑

j=1

a(p;α, β)∆t+ σ
N∑

j=1

∆W j
n(t, ω) (B.1)

Substituting ∆ ln[w′j(t; p, α, β)] for ln |w′(pj)| in (2.7), and by virtue of the continuous map-
ping theorem (White, 2001, Thm. 7.20, p. 178) replacing ∆t and ∆Wn with dt and dWn,
respectively, we get in the limit23

1

m

N∑

j=1

m∑

r=1

dλj(t; p, α, β) =
1

m

N∑

j=1

m∑

r=1

a(pr;α, β)dt+
1

m

N∑

j=1

m∑

r=1

dW j
n(t, ω) (B.2)

Dividing left hand side (LHS) and right hand side (RHS) by N and using “bar” to represent
sample average, for a discretized probability distribution p = (p1, p2, . . . , pm),

∑m
j=1 pr = 1,

we get the behavioural Lyapunov exponent random field

dλ̄N(t, p, ω;α, β) = ām,N(p;α, β)dt+ σdW n,N(t, ω), (B.3)

λ̄N(·) =
1

N

N∑

j=1

λj(·), ām,N(·) =
1

N

1

m

N∑

j=1

m∑

r=1

aj(pr;α, β), W n,N(t, ω) =
1

N

N∑

j=1

W j
n(t, ω)

(B.4)

C Stochastic stability condition for source functions and option
traders’ sentiment

Definition C.1 (Stochastic stability). (Gihman and Skorohod, 1972, p. 145). A stationary
point p⋆ will be called stable if for any ǫ > 0, there exist δ > 0 such that for Bδ(p

⋆) = {p :
|p− p⋆| < δ}

Pr{ lim
t→∞

ξp(t) = p⋆| ξp(t) ∈ Bδ(p
⋆)} ≥ 1− ǫ (C.1)

where ξp(t) is a process (possibly stochastic) starting at p.

Remark C.1. In our model, the fixed point probability p⋆ is a stationary point. (C.1) im-

23There is no pr term on the LHS by definition.
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ply that initial values for ξp(t) converge uniformly to p⋆ over time (Arnold, 1984, p. 210).
Specifically, Bδ(p

⋆) is a basin of attraction of p⋆ and p⋆ is Lyapunov stable (e.g. Medio and
Lines, 2003, pp. 67-68).

After integrating the stochastic differential equation in Theorem 2.1 we get the behavioural
Brownian functional

λ̄N(t; p, α, β) =

∫ t

0

ām,N(p;α, β)du+ σ

∫ t

0

dW n,N(u) (C.2)

= ām,N(p;α, β)t+ σ
(
W n,N(t)−W n,N(0)

)
(C.3)

Recall that Mn,N(t) = sup0≤s≤tW n,N(t). The stochastic Lyapunov exponent stability condi-
tion implies that the exponent is negative (e.g. (Leonov and Kuznetsov, 2007; Hommes and
Manzan, 2006), and Wiggins (2003, p. 7)) and it is given by the folowing

Lemma 1 (Stochastic Lyapunov exponent stability condition). The BELLE process is stable
when

sup
t

λ̄N(t; p, α, β) < 0 =⇒ Mn,N(t) < W n,N(0)−
1

σ
ām,N(p;α, β)t (C.4)

=⇒ Mn,N(t) < −1

σ
ām,N (p;α, β)t (C.5)

where W n,N(0) = 0, and Mn,N(t) is a Brownian motion.

Thus, in the context of Definition C.1 the stochastic stability condition for pwfs is charac-
terized by (C.5).

D Proof of Large Deviation Theorem 2.2 for transition from sta-
ble to unstable market states

Proof. By hypothesis, Mn,N(t) = sup0≤s≤tW n,N(s). So, Mn,N(t) is also a Brownian mo-
tion (e.g. Gikhman and Skorokhod (1969, pg. 286) and Karatzas and Shreve (1991,
pg. 96, Prob. 8.2)). According to the Cramer-Chernoff Theorem (Olivieri and Vares, 2005,
Thm 1.1, pp. 5-6), given a sequence of iid random variables (X1, X2, . . . , Xn) with mean
0, and variance 1, Sn =

∑n

i=1Xi and sample mean X̄n = Sn/n, with moment generating
function is M(θ) = E[exp(θX)] and rate function Iµ(x) = sup

θ∈R
(θx− logM(θ)), the large

deviation probability for lower bounds is given by

lim inf
n→∞

1

n
log Pr

{
X̄n ≤ x

}
≥ −Iµ(x) (D.1)

Since Mn,N(t) is a Brownian motion, it is normally distributed with mean 0, and variance t.

So the moment generating function is of type M(θ) = exp( tθ
2

2
). Iµ(x) attains its maximum
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when x = θt = argmax
θ

(
θx− tθ2

2

)
, i.e. Imax

µ = tθ2/2. However, of interest to us in (2.19) is

Mn,N(t) = sup
0≤s≤t

W n,N(s) < − ām,N (p;α, β)

σ
t (D.2)

By virtue of (B.4) and the scaling property of Brownian motion (Karatzas and Shreve, 1991,

p. 104), W n,N(t) =
√
t

N

∑N
j=1W

j
n(1). So, we rewrite an equivalent probability statement

Pr

{
sup
0≤s≤t

W n,N(s) < − ām,N (p;α, β)

σ
t

}
(D.3)

Thus, the effective x from (D.3) for substitution in the rate function in (D.1) is xeff = θeff =

− ām,N (p;α,β)
√
t

σ
and Imax

µ = θ2eff =
ā2
m,N

(p;α,β)t

2σ2 . By virtue of the Cramer-Chernoff bound in
(D.1), (2.18) and θeff we get the large deviation probability for being in a stable state

lim inf
N→∞

1

N
log Pr

{
Mn,N(t) = sup

0≤s≤t

W n,N(s) ≤ xeff

}
≥ −Iµ(x) = −

ā2m,∞(p;α, β)

2σ2
t (D.4)

Assuming an initial stable state with probability π0 = 1 at time t0, and stationary transition
probability, as N → ∞ we get the large deviation conditional probability of being in an
unstable state as the complement of (D.3) or (D.4)

Pr(unstable at t+ t0| stable at t0) = Pus(t, p) = 1− exp

(
−
ā2m,∞(p;α, β)

2σ2
t

)
(D.5)

E The Polkovnichenko-Zhao estimator for Prelec’s 2-factor pwf

The probability weighting function in Polkovnichenko and Zhao (2013) was estimated as
follows. Further details are in their paper. Let

w(P0) = c

[
Q(R0)

u′(R0)
+

∫ R0

0

Q(R)
u′′(R)

u′(R)2
dR

]
(E.1)

where

w(P ) = exp
(
−(− ln(P β))α

)
, Z(P ) = w′(P ), u(R) = R1−γ/(1− γ) (E.2)

c =

(∫ ∞

0

(q(R)/u′(R)) dR

)−1

, q(R) =
R−aZ(P )p

E[R−γZ(P )]
(E.3)

where P is a cdf and p is the corresponding pdf, and Q is the distribution function for q,
and R is gross return on investor wealth W . For specific P0 with corresponding R0 we have
P (R0) = P0. In general, Z(P ) was estimated nonparametrically in a first stage by signal
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extraction from

E[m(Rk − R0)] = 0, m = u′(W )Z(P )

for k = 0, 1, . . . , N assets in a portfolio with wealth W invested in it. Z(P ) is extracted
by specifying several different utility functions for u(•) (Polkovnichenko and Zhao, 2013,
p. 588). In a second stage, w′(P ) for Prelec (1998) 2-parameters pwf was fitted to get
estimates for α, β. The probabilistic risk attitude factors α curvature (discriminating
among probabilities associates with securities), and β elevation (attractiveness of bet on
securities) characterize w(P ) (Gonzalez and Wu, 1999).
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F Figures

Tail weights for P-ranks: Pessimists vs. Optimists–S&P 500 index option

Figure 3: Likelihood insensitivity over
P-ranks

Figure 4: Likelihood insensitivity over
time

According to bounded subadditivity arguments in Tversky and Wakker (1995, p. 1260), the
weighting density (plotted separately over space and time above) induced by subadditivity
is w(P + ∆P ) − w(P ) ≈ w′(P )∆P (we suppress the t in w(t, P )). Here, ∆P = 0.1 is the
“True Weight” increment, and w′(P ) = 1 represents the slope of the diagonal w(P ) = P
for linear probability. w′(P ) > 1 for small probabilities in the concave-convex pwf that
connotes overweighting small probabilities. This is pessimism. So, the weighting density
w′(P )∆P > ∆P = 0.1 at low ranks. Likelihood insensitivity for mid-ranks implies w′(P ) < 1.
So, w′(P )∆P < 0.1 and we have a dip below 0.1 as seen in the plots. However, at high P-
ranks, i.e., P > 0.9, we have w′(P ) > 1 again–this time approaching the diagonal from
below. So, it underweights the probability of high ranks. And w′(P )∆P > 0.1. What we just
described is the locus of the U-shaped pattern or smile that characterizes pessimists. Note
that the opposite slope patterns are observed for optimists, and this generates an inverted
U-shaped pattern or frown. Thus, the plot is interpreted as follows:

U-shape pattern: Pessimists overweigh probabilities for low ranks and underweigh prob-
abilities for high ranks. This is a probability smile.

Inverted U-shape: Optimists underweight probabilities for low ranks and overweigh prob-
abilities for high ranks. This is a probability frown.

Crash weight The estimated crash weight boundary is given by w(P+∆P )−w(P ) ≈ 0.03.
So, there is almost no likelihood insensitivity, i.e. the middle portion of the pwf is flat.
This is captured by the line below the crash weight boundary in Figure 3 and the dip
below same in Figure 4 above.
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Stable and unstable fix points for source functions in index option market

Figure 5: Stable source function fixed
points

Figure 6: Unstable source function
fixed points

Figure 5 depicts stable fixed points for Prelec’s 2-factor pwf calibrated to α = 0.56, β = 0.93 for
monthly index option prices data for 1996-2008 in Polkovnichenko and Zhao (2013). The orbit
generated by the iterated functions p,w(p), w(w(p)), . . . , wn(p) for that plot converges to the fixed
point probability p = 0.43 (cf. Prelec, 1998, p. 506). This is a stable attractor because all starting
points for the isoclines converge to p⋆ = 0.43 which is close to p⋆ = e−1 ≈ 0.37. It is an empirical
realization of the phase portrait in Figure 23. By contrast, Figure 6 depicts an unstable fixed
point for α = 1.6, β = 1. This is an unstable attractor because all the isoclines diverge from
p⋆ = e−1. This is an empirical realization of the phase portrait in Figure 24. Thus, iterative pwf
dynamics is dispositive of pwf [in]stability.
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BELLE sample paths with coffin states and explosion

Figure 7: BELLE process sample paths with coffin states
and market implosion

The BELLE process (Theorem 2.1) for 33 sample paths λ(t, ·, ω) attain a “coffin state”, i.e. attain
a constant value c ∈ [−0.5, 0] at random times T (ω). The process remains stable in those states
where it is “killed” at some random time T (ω) ≥ ζ when λ(T (ω), ·, ) = c. For example, just before
1998 some sample functions were killed, and just before 2006 another sample function was killed.
There are other states that exhibit instability but they are eventually absorbed at the coffin state
over time. For example, if the process is stopped at t = 2006, then there are two sample paths that
exhibit instability because they are above 0 and they are not killed. However, one of those sample
paths is absorbed by a coffin state after 2008 while the other path, i.e. sup{0<t<∞} λ(t, ·, ω), is
explosive over the entire sample period. That is the path which characterizes market crash.
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Probability phase shift in decision makers sentiment

Figure 8: Probability phase shift in decision makers
sentiment
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The BELLE process (Theorem 2.1) in the basin of attraction Bδ(p
⋆) characterizes local stochastic

stability of the pwfs induced by shifts in DMs sentiment. In the case of a single interior fixed
point like that depicted here the BELLE process can be used to obtained closed form expressions
for probability of instability arising from large deviations as shown in Theorem 2.2.
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Average probability of tail event instability for a seemingly stable behavioural
dynamical system

Figure 9: Average probability of tail event instability for a seemingly stable
behavioural dynamical system

Source: Author’s computation from pwf calibrated with data from Polkovnichenko and
Zhao (2013, Fig. 6) for CRRA index γ = 0. Sample function for average stationary
transition probability of market instability based on T = 156 simulations, under uniform
distribution assumption σ ∼

√
2 ∗ U(0.02, 0.1) (cf., Majumdar et al., 2018) for closed

form formula in Theorem 2.2. The averages for stationary transition probabilities of
instability, across probability ranks, has an upward trend over time as expected.
T = 156 is the length of the underlying monthly series.
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Large deviation probability field

Figure 10: Probability of instability over time across p-rank space

Figure 11: Probability of instability over p-rank space and across time

Cross section of simulated random field of stationary transition probability of instability Pus(t, p) for tail
events, over windowed time t and probability (p) ranks. In Figure 10 for ∆t = 1/T ≈ 0.006 for T = 156

months of data and σ ∼
√
2 ∗ U(0.02, 0.1) we take snap shots at 2∆t, 10∆t, 50∆t, 144∆t, across probability

ranks (p-rank space) over [0, 1] for ranks in increments of 0.1. In Figure 11 we take snapshots of transition
probabilities for p-ranks atk = 2, 4, 6, 8 for p ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, . . . , 1.0} where p(1) = 0 and
p(11) = 1. The effective ranks for the 10 probabilities are p(2) . . . , p(11). The range for Pus(t, p) is on the
vertical axis. As the time window in Figure 10 gets larger, market volatility also increase, and the
probability of a crash increases. In Figure 11 the probability of a crash increases over time across all
probability ranks.
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CBOE VIX Monthly Index: 1/1/1996-12/1/2008

Figure 12: CBOE VIX Monthly Index: 1/1/1996-12/1/2008
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Data source: Yahoo
VIX volatility index as a measure of implied risk aversion in the index option
market.
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Sample functions over probability ranks for stable and unstable source functions

Figure 13: Sample source functions
implied by S&P index option prices
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Figure 14: β(p)-instability ∈
distribution with tipping points at

p=0.4
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Figure 15: β(p) instability ∈ (0.6, 0.2)
for 1997 Asia and 2005 US risk sources
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Figure 16: β(p)-instability ∈ (0.7, 0.5)
for 1997 Asia and 2005 US risk sources
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Figure 13 is calibrated with Polkovnichenko and Zhao (2013) estimates for Prelec (1998)
2-parameter source functions for 1997 Asian currency crisis (α = 0.56, β = 0.93) and 2005 US real
estate and CDO bubble (α = 1.6, β = 1) for CRRA parameter γ = 2. Figure 14 depicts the
distribution of critical values for early warning and tipping point for market crash when p=0.4 for
each source function. Figure 15 depicts superimposed market instability source functions for
market crash for 2005 US real estate and CDO bubble, and for 1997 Asian currency crisis for for
β(p) = 0.6, 0.2 respectively, and Figure 16 depicts same for β(p) = 0.7, 0.5 respectively.
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Time series plot for α discrimination and β attractiveness of bets in index option
market

Figure 17: Time series plot for α discrimination and β
attractiveness of bets in S&P index option market

The time series plot is produced from eye balling data in Polkovnichenko and Zhao (2013,
Fig. 6, p. 593) for Prelec (1998) α curvature (discrimination), and β elevation (attractiveness)
parameters for bets in the S&P index option market when CRRA parameters γ = 0, i.e. risk
neutral utility function. The critical β⋆(t, p) series (right axis) is computed from the BELLE
process. The β⋆(t, p) series indicates much greater uncertainty and unattractiveness of bets about
market crash overtime compared to the α and β series measures on the left axis.
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Critical β(p) attractiveness of bet sentiment index for market instability and
toxic assets with market crash tent maps

Figure 18: Critical β(p) sentiment for
market instability and toxic assets

Figure 19: Market crash source
functions morph into tent maps

Figure 18 depicts the β(p) instability plots for fixed t over the probability distribution for ranked
but unattractive index option prices. Figure 19 shows the orientation of the source functions
generated by the β(p) instability. In every case, the orientation is concave with trapezoid shape
and unstable. The limit tent-map, symbolic of chaos, depicts market crash at the critical point
p = 0.5.
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AAII weekly sentiment survey: July 1987–December 2021

Figure 20: AAII weekly sentiment survey: July 1987–April 2021
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“The AAII Investor Sentiment Survey measures the percentage of individual investors who are
bullish, bearish, and neutral on the stock market for the next six months; individuals are polled
from the ranks of the AAII membership on a weekly basis. Only one vote per member is accepted
in each weekly voting period.” Source: AAII Investor Sentiment Survey. A 5th-degree polynomial
smoother was used to generate sentiment waves. The Japan Real Estate market crash of 1990 and
the COVID-19 induced crash of 2019 are characterized by Bulls, Bears and Neutral sentiment
agreement in a circle of agreement. The Great Recession of 2008 is characterized by Bulls and
Bears sentiment agreement in a circle of agreement. Each crisis is characterized by different

sentiment dynamics:

1990 Japan Real Estate Crisis Bear peak meets Bull trough. Market neutral trough higher
than both.

2008 US Real Estate Crisis Bear peak meets Bull trough. Market neutral trough lower than
both but trending upwards.

2019 US COVID19 Crisis Bears cut Bulls from below and Bulls beginning to rise from low.
Market neutral trending downwards below Bears and Bulls.

39

http://www.aaii.com/SentimentSurvey?adv=yes


Market Crash Dynamics–Snapshots of a crash

Figure 21: Market Crash Dynamics–Snapshots of a crash

Snap shots of S&P index option market dynamics leading up to and including Lehman
Brothers bankruptcy and market crash in 2008. The critical source function plots
wcrit(p) with circles signal when the market is about to flip. Tent map signifies chaotic
market crash at critical point p = 0.5.

40



G INTERNET APPENDIX

G.1 The stable manifold theorem and preliminaries

This appendix provides some preliminaries and an elementary statement of the stable man-
ifold theorem.

G.1.1 Preliminaries

Definition G.1 (Manifold). “Informally, a manifold is a subset of Rn such that, for some
fixed integer k ≥ 0, each point in the subset has a neighborhood that is essentially the same
as the Euclidean space R

k . . . Points, lines, planes, arcs, spheres, and tori are examples of
manifolds.” (Chicone, 1999, p. 28). Alternatively, a manifold implies that every point x in
an abstract space X can be mapped into a small ball in R

m. The small ball is a m-manifold
(McLennan, 2018). Put another way, each point of the m-manifold has a neighbourhood
that is homeomorphic to an Euclidean space X .

Definition G.2 (Qualities of a dynamical system). A dynamical system is a system that
evolves in time through the iterated application of an underlying dynamical rule. That
transition rule describes the change of the actual state in terms of itself and possibly also
previous states. The dependence of the state transitions on the states of the system itself
means that the dynamics is recursive. In particular, a dynamical system is not a simple
input-output transformation, but the actual states depend on the system’s own history. In
fact, an input need not even be given to the system continuously, but rather it may be entirely
sufficient if the input is only given as an initial state and the system is then allowed to evolve
according only to its internal dynamical rule. This will represent the typical paradigm of a
dynamical system. (Jost, 2005, p. 1).

Definition G.3 (Dynamical system). (Rebaza, 2012, p. 327).
Let E be an open set in Rn, i.e. E ⊂ Rn. The function φ : R × E → E defined by
φ(t,x) = exp(At)x defines a dynamical system on E. Specifically, if ẋ = Ax with initial
value x(t0) = x0, then its solution x(t) = exp(At)x0 defines how a state x ∈ E evolves
over time. If x = f(x) is a nonlinear system, then A = Df(x) is the Jacobian for a local
linearization.

Definition G.4 (Invariant subspace). (Rebaza, 2012, p. 338).
A subset S ⊂ Rn is called invariant with respect to the system ẋ = Ax if exp(At)S ⊂ S.
For instance, for any initial value x(t0) = x ∈ S, the solution x(t) = exp(At)x0 stays in S
for all t ≥ 0.

Definition G.5 (Eigenvalue criterion for stability). (Rebaza, 2012, p. 338).
Let λj = aj + ibj , j = 1, . . . , n be a complex valued eigenvalue of A in Definition G.3 with
eigenvectors uj = vj + iwj . Then we define

Es = span{vj,wj : aj < 0} (stable subspace)

Eu = span{vj,wj : aj > 0} (unstable subspace)

Ec = span{vj,wj : aj = 0} (center subspace)
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All three subspaces are invariant with respect to the system. Furthermore, they induce the
identity

Es ⊕ Eu ⊕ Ec = R
n (G.1)

The ⊕ symbol means that for any x ∈ Rn we have the decomposition x = u+ v +w with
u ∈ Es, v ∈ Eu, w ∈ Ec.

Definition G.6 (Homeomorphism). A homeomorphism is a function h : A → B that is a
bijection, is continuous and whose inverse is also continuous.

Definition G.7 (Differentiable manifold). A differentiable manifold of dimension n as a set
that is locally homeomorphic to the usual Euclidean space Rn. A differentiable manifold is
in fact a topological space that generalizes the intuitive and geometric notion of a curve or a
surface. Consider for example the one-dimensional space R. (say, the usual x axis). Then a
differentiable manifold homeomorphic to it, is the cubic parabola y = x3: It is a continuous
deformation of the x axis.

G.1.2 Statement of stable manifold theorem

In the case of pwfs in this paper the fixed point probability p⋆ is an equilibrium point and
the neighbourhood Bδ(p

⋆) is differentiable manifold. Without loss of generality, we consider
the equilibrium point to be the origin in the following.

Theorem G.1 (Stable manifold theorem). (Rebaza, 2012, p. 343).
Let E ⊂ Rn be open containing the origin, let f ∈ C1(E), and let φt be the flow ẋ = f(x).
Suppose the origin is a hyperbolic equilibrium point and that A = Df(0) has k eigenvalues
with negative real part and the remaining n− k eigenvalues have positive real part. Then,

(a) There exists a k-dimensional differentiable manifold S tangent to Es at the origin, such
that φt(S) ⊂ S, ∀t ≥ 0 and limt→∞ = 0, ∀x ∈ S.

(b) There exists a (n−k)-dimensional differentiable manifold S tangent to Eu at the origin,
such that φt(U) ⊂ U, ∀t ≤ 0 and limt→∞ = 0, ∀x ∈ U .

G.2 Positioning the paper in the literature

Active research on financial market instability is conducted under rubric of several gen-
res: market microstructure,24 econophysics,25 macrofinance,26 agent based models,27 experi-

24(Easley et al., 2011; Aldridge, 2014)
25Johnson et al. (2000); Zhou and Sornette (2006); Quax et al. (2013)
26Abreu and Brunnermeier (2003); Grasselli and Costa Lima (2012); Angeletos and La’O (2013); Keen (2013);

Wigniolle (2014)
27Thurner et al. (2012); Hommes (2013); Poledna et al. (2014)
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mental finance,28 financial networks,29 bank runs,30 debt-deflation cycles,31 revolving doors,32

and creative destruction in financial markets.33 However, none of the papers in those genres
use probability weighting functions (pwfs) to characterize financial market instability–even
though pwfs reflect sentiments like pessimism and optimism in the presence of risk and
uncertainty–common cores of all financial crises (Fisher, 1933; Kindleberger and Aliber,
2011). Bhattacharya et al. (2015) model Minsky’s financial instability hypothesis in the
context of financial institutions’ optimism, leverage, and portfolio risk as part of a debt-
deflation cycle.34 A series of papers by P.C.B Phillips and his co-workers devise econometric
tests for market bubbles that take investor mood swings into account. See e.g. Phillips and
Yu (2011); Phillips et al. (2011); Phillips (2016); Phillips and Shi (2017). Again, none of the
aforementioned authors used pwfs to characterize market sentiment or states of the economy.

*** Insert Figure 22 about here ***

This paper’s contribution lies in a novel behavioural empirical local Lyapunov expo-
nent35 (BELLE) process that characterizes financial market instability with probabilistic
risk attitudes implied by index option prices. The latter allow natural experiments on prob-
abilistic risk attitudes because they involve bets on future price movements. Figure 22
depicts the shape of investor sentiment about S&P credit rating for convertible bonds for a
sample of firms. The shape resembles a source function for ranked outcomes of lotteries, see
e.g. Lopes (1981, 1990), and it also resembles a harmonic tangent function that is periodic
in letter ranks. Cf., harmonic source function in Charles-Cadogan (2018). The sinusoidal
pattern is employed in Andersson and Vanini (2010) to model credit rating migration in
concert with business cycles.

Time dependent behavioural error in the orbit of source functions induce a local em-
pirical process36 for Lyapunov exponents in fixed point probability neighbourhoods as shown
infra. This facilitates estimation of critical values for investor probabilistic risk attitude fac-
tors from closed form expressions for the probability that a stable source function becomes
unstable and vice versa. We calibrate the model with data from Polkovnichenko and Zhao
(2013), and illustrate its robustness in a natural experiment across risk sources for the 1997
Asian currency crisis, 2005 US real estate and CDO bubble, and Great Recession of 2008.
We prove that risk source functions implied by index option prices provide early warning of
financial market instability, and that they are sufficient statistics for a behavioural version
of Minsky’s financial instability hypothesis: An economy has stable and unstable regimes,
and it transits from financial relations that make it stable to those that make it unstable
(Minsky (1986, pp. 173-174) and Minsky (1994)).

28Smith et al. (1988); Ackert et al. (2009); Ashparouva et al. (2016)
29Allen and Gale (2000); Acemoglu et al. (2015)
30Diamond and Dybvig (1983)
31Fisher (1933); Bhattacharya et al. (2015)
32Charles-Cadogan and Cole (2014); Shive and Forster (2017); Lucca et al. (2014); Lambert (2017)
33Minsky (1986)
34Shefrin (2016) provides a qualitative model that deals with similar issues.
35A Lyapunov exponent (λ) is a measure of the rate of convergence or divergence of a trajectory over time relative

to two nearby starting points
36A classic empirical process is one comprised of sums of independent and identically distributed (iid) random

variables (in our case noise) that converge to a limit process (Shorack and Wellner, 1986, pp. 1, 24).
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*** Insert Figure 23 and Figure 24 about here ***

Figure 23 and Figure 24 depict the topology of our model. For example, the phase
portrait in Figure 23 depicts the concave-convex shape of a stable source function associate
with probabilistic risk aversion.37 Whereas Figure 24 depicts the convex-concave shape of
an unstable source function associated with probabilistic risk seeking or “irrational exuber-
ance”. Each curve is characterized by curvature (α) and elevation (β) parameters that reflect
DMs sentiment in Prelec’s (1998) 2-parameter source function w(p) = exp(−β(− ln(p))α).
According to Gonzalez and Wu (1999), α is a measure of discrimination among bets, while
β measures the attractiveness of a bet. This psychological probabilistic measure of attrac-
tiveness is distinguished from the utility based approach in Dierkes et al. (2010).

Figure 1 depicts a field of stable and unstable source functions over time in the S&P
500 index option market, i.e. w(t, p) = exp(−βt(− ln(p))αt) for t ∈ {t1, . . . , tn} in an index
set for data over time (in months), and p ∈ {p1, . . . , pm} in a set of probability ranks. Be-
havioural dynamics in fixed point probability neighourhoods Bδ(p

⋆) centered at fixed-point
p⋆ with radius δ, control the shape of source functions, and determine phase transition of
stable and unstable source functions shapes.38 We endow Bδ(p

⋆) with a canonical probability
measure space (Ω,F , P ), and construct a behavioural local Lyapunov exponent (BELLE)
process {λ(t, p, ω); t ≥ 0} in Bδ(p

⋆), accordingly. The latter is a random field that character-
izes stochastic stability of source functions over time and probability ranks, and we calibrate
it to risk source functions implied by index option prices over time as shown in Figure 1. The
outlier function depicts likelihood insensitivity in November 2008. See Figure 21, infra. The
sign of {λ(t, p, ω); t ≥ 0} determines stability (negative sign) or instability (positive sign) of
the underlying source function.

37The stability of risk aversion is rooted in evolutionary biology (See e.g. Zhang et al., 2014; Hintze et al., 2015).
38Bδ(p

⋆) is also called the domain or basin of attraction of p⋆. Refer to Medio and Lines (2003, Ch. 3) for details
on stable and unstable fixed points.
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G.3 Figures

Ratio of Stock Price to Exercise Price (S/X) sorted by S&P Ratings

Figure 22: Ratio of Stock Price to Exercise Price (S/X) sorted by S&P
Ratings

Source: Ogden et al. (2003). The plot depicts the ratio of stock price to exercise price (S/X) for
convertible bonds sorted by S&P Ratings and S/X within ratings for a sample of US nonfinancial
firms in 1996. The shapes reflect decision makers’ (DMs) probabilistic risk attitudes about the
ranked ratings. Even within the same S&P ratings DMs tend to distort probabilities.
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Stable and unstable pwfs

Figure 23: Stable pwf
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Figure 24: Unstable pwf
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Phase diagrams for stable and unstable pwfs w(p). The BELLE process
{λ(t, p, ω); t ≥ 0} in fixed point (p⋆) probability neighbourhood Bδ(p

⋆)
characterizes the dynamics of pwfs. If λ(t, p, ω) < 0 in Bδ(p

⋆) the process
is stable and unstable otherwise. The stable pwf is in-phase, i.e. the
isoclines are moving in the same direction towards the stable fixed point.
While the unstable pwf is anti-phase, i.e. isoclines are moving away from
the fixed point.
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