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Abstract

Remanufacturing is a production strategy whose goal is to recover the residual value of used

products. Used products can be remanufactured at a lower cost than the initial production cost,

but remanufactured products are valued less than new products by consumers. The choice of pro-

duction technology influences the value that can be recovered from a used product. In this paper,

we solve the joint pricing and production technology selection problem faced by a manufacturer

who considers introducing a remanufacturable product in a market that consists of heterogeneous

consumers. Our analysis discusses the market and technology drivers of product remanufacturabil-

ity and identifies some phenomena of managerial importance that are typical of a remanufacturing

environment.
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1 Introduction and Literature Review

Remanufacturing is a production strategy whose goal is to recover the residual value of used prod-

ucts by reusing components that are still functioning well. Remanufactured products are obtained

by collecting used products and replacing worn-out components by new ones (Thierry et al. 1995).

The remanufacturing literature focuses mainly on logistics, production planning and inventory con-

trol (Fleischmann et al. 1997), but these considerations constitute only one facet of the managerial

issues surrounding remanufacturing. Consider the tire manufacturing and retreading industry, for

example. The casing (the inner structure of the tire) may be reusable even after the tread (the outer

layer) wears out. The remanufacturing activity consists of “retreading,” a process that replaces

the worn tread by a new one. By law, retreaded tires have to be marked on the side-wall (Com-

mission of The European Communities 2000), which allows consumers to distinguish between new

and retreaded tires. Typically, retreads are perceived to have lower quality than new tires (Préjean

1989). The retreadability of tires can be influenced by the manufacturer (BIPAVER 1998, Bozarth

2000a), via the choice of material and production technology, but increased retreadability requires

a higher production cost. Tire manufacturers face these issues in making production technology

and product pricing decisions.

Similar considerations are relevant in a variety of industries. Klausner et al. (1998) describe the

remanufacturing of electrical motors. Most electrical motors last longer than the product that they

power. Products containing remanufactured electrical motors can be sold to low-end consumers at

a discounted price. Whether a used motor can be remanufactured depends on the usage pattern,

but this is unobservable by the manufacturer. Integrating an Electronic Data Log (EDL) into the

motor at additional cost makes it easier to assess whether the motor is remanufacturable or not, and

may also facilitate the remanufacturing operation. The question is whether it is worth incurring

the extra cost of installing an EDL on new motors.

Xerox has invested in the remanufacturability of its copiers (Vietor 1993) and has been successful

in marketing its remanufactured product line. With the digitalization of the copier, Xerox faces

a new challenge: The cost of software upgrades required in remanufacturing the used copier may

be too high to be recovered given the low willingness-to-pay of consumers for the remanufactured

copier.

In this paper, we address the key managerial issues faced by a manufacturer who considers

producing a remanufacturable product, where consumers are heterogeneous in their willingness to

pay and where they value remanufactured products less than new products. The most fundamen-

tal question is whether producing a remanufacturable product is profitable. A remanufacturable

product is typically more costly to produce than a single-use product. The revenue potential of the
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remanufactured product is questionable when it is valued less than the new product by consumers.

On the other hand, the remanufactured product is cheaper to manufacture and creates the oppor-

tunity to sell to the low-end consumers. In this context, the key questions facing the manufacturer

are the following: Does the opportunity to reach low-end consumers outweigh the high cost of

producing a remanufacturable product? What are the key drivers determining the profitability of

offering a product portfolio consisting of a new and a remanufactured product? How do the costs

and consumer perceptions impact the value proposition of remanufacturability?

The relative size of the low-end and high-end consumer populations differs across markets. An

important issue in this context is understanding the impact of the characteristics of the target

market: Does the decision to remanufacture depend on the consumer profiles? What pricing

strategy and production technology choice best fit the target market?

The combination of new and remanufactured products creates a unique product portfolio in the

sense that the remanufactured product exists only due to previous sales of the new product. Thus,

a decrease in demand for new products results in a decrease in the availability of remanufactured

products. It is useful to understand the implications of this dependence for planning and marketing

purposes. For example, how does the remanufacturing cost impact the desired production volume

and mix? From a marketing perspective, an important managerial question is how to position the

new product: Is it valued for the immediate margin it creates or for the future value stream that it

has the potential to generate? What should be the pricing policy that reflects the role of the new

product?

Producing a remanufacturable product may invite independent remanufacturers to compete

with the manufacturer on the lower end of the market. Since the manufacturer can typically con-

trol the remanufacturability level and therefore control the supply of remanufacturable products

to independent remanufacturers, an important question that arises in this situation is how com-

petition with independent remanufacturers should be taken into account when determining the

remanufacturability level?

Many products that are considered for remanufacturing (e.g. consumer durables, household

appliances) exhibit a well-pronounced product life cycle, i.e. they gradually diffuse through the

market. With a product remanufacturing option, the diffusion of the whole product portfolio with

both new and remanufactured products needs to be considered. We address the following questions:

How does product diffusion impact the value and level of remanufacturability? How is new and

remanufactured product capacity management impacted by diffusion?

The literature on remanufacturing has focused primarily on operational issues that arise in

inventory management and production control as a result of the return flows of used products.

These issues include disassembly (Guide and Srivastava 1998), MRP for product recovery (Inder-
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furth 1998), scheduling and shop floor control (Guide et al. 1997) and inventory management (van

der Laan et al. 1999, Toktay et al. 2000, Inderfurth 2002). Fleischmann (2000) considers reverse

logistics network design. In these papers, price, demand rate, and remanufacturability level are

assumed to be exogenous, and consumers do not differentiate between new and remanufactured

products. The focus is on determining the cost-minimizing operating policy or system design for a

given remanufacturability level and price. Our paper complements this literature by determining

the remanufacturability level and the optimal prices using a market model that reflects how reman-

ufactured products are perceived by consumers. Other researchers modelling market-related issues

in remanufacturing are Savaşkan et al. (2004) who determine the optimal collection channel con-

figuration of a monopolist manufacturer, and Groenevelt and Majumder (2001a,b) who investigate

the impact of competition between a manufacturer who also performs remanufacturing activities,

and a local remanufacturer.

The literature on market segmentation (Mussa and Rosen 1978, Moorthy 1984) studies the opti-

mal pricing of independent products that are differentiated by quality in a market of heterogeneous

consumers whose valuations of quality vary. In a remanufacturing setting, there is a dependence

between the two products: The supply of used products that can be remanufactured depends on

past sales volumes of new products and the level of remanufacturability. Ferrer (2000) solves the

market segmentation problem for a fixed remanufacturability level. He finds that remanufacturing

is not viable if the resulting cost savings are not high enough to price the remanufactured product

above its marginal cost. We consider the simultaneous determination of product prices and the

production technology for a general consumer profile. One of our results complements Ferrer’s

findings by determining under which circumstances his pure cost savings analysis is sufficient to

determine the viability of remanufacturing.

The literature on competition in remanufacturing is quite recent. Goenevelt and Majumder

(2001a, b) study price competition between an OEM and a local remanufacturer, taking the return

fraction of products as exogenously determined. We introduce the level of remanufacturability as

a key variable that can be determined by the OEM. In addition, we allow the price of remanufac-

turable products to be endogenously determined via a market-clearing mechanism.

The literature on product diffusion does not incorporate remanufacturing considerations, in

particular, the joint diffusion of new and remanufactured products, even though many products

that are considered for remanufacturing exhibit diffusion characteristics. In order to study this,

we consider a product with a finite life duration, which triggers a remanufacturing opportunity

and possible repeat purchases, in addition to modelling the consumer choice between new and

remanufactured products and the supply constraint. In Bass (1969), each customer purchases

a product with infinite life duration exactly once. Mesak and Berg (1995) and Kamakura and
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Balasubramanian (1987) analyze the diffusion of a single product with a finite life duration and

consequent repeat sales. Ho et al. (2002) analyze a model where the diffusion of a single product

with infinite life duration is supply-constrained. Kouvelis and Mukhopadhyay (1999) study, in a

competitive setting, the diffusion of a product with infinite life duration that is controlled by price

and quality. In our setting, the sales of remanufactured products are constrained by the supply of

used products, an endogenous constraint on the diffusion of remanufactured products. We develop

a monopoly model that simultaneously incorporates repeat purchases, supply-constrained diffusion

and substitution. Diffusion is controlled by the prices of new and remanufactured products and the

level of remanufacturability.

The remainder of this paper is structured as follows: In §2, we introduce the basic model in

which the monopolist determines the remanufacturability level of the new product and segments

the market between new and remanufactured products. In §3, we solve and interpret the optimal

solution to the manufacturer’s problem to answer the questions raised in the introduction. §4

extends our monopoly model to the case where remanufacturers compete on the remanufactured

product market. In §5, we study product life cycle issues that arise when new and remanufactured

products diffuse gradually through the market. In §6, we discuss the implications of our results for

the integrated management of product lines with new and remanufactured products. We conclude

with directions for future research.

2 The Model

We introduce our assumptions concerning the production technology, the cost structure, the con-

sumer preferences, the industry structure, and the decision-making framework in §2.1 and formulate

the manufacturer’s optimization problem in §2.2.

2.1 Assumptions

Production Technology Choice. Motivated by the examples of §1, we assume that the man-

ufacturer controls the level of remanufacturability through the choice of production technology.

We model the remanufacturability level, denoted by q, as the fraction of products that can be

remanufactured after one period of use. The manufacturer can choose any remanufacturability

level q ∈ [0, 1]. If the remanufacturability level is set to zero, this is a “single-use” product and

cannot be remanufactured. Used remanufacturable products require a remanufacturing operation

before being sold as remanufactured products. We assume that a remanufacturable product can

be remanufactured at most once.
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Cost Structure. The technology choice impacts both up-front costs independent of subsequent

production volume such as R&D expenditure, as well as costs that are a function of the production

volume. We model the impact of technology choice on the former costs by means of a fixed cost k (q)

incurred before production starts. We assume that k (q) is a convex increasing function of q with

k (0) = 0. We model the dependence of the new-product unit manufacturing cost and used-product

unit remanufacturing cost on the technology choice by cn (q) and cr (q), respectively. We assume

that cn (q) is a convex increasing function of q and that cr (q) is a non-increasing function of q: A

higher level of remanufacturability requires a higher new product unit manufacturing cost (due to

the use of better materials, more precise production processes, addition of a data logger, etc.), and

at the same time, can result in a lower unit remanufacturing cost (due to easier disassembly, less

testing etc.).

Consumer preferences. Consumers typically differ in their willingness-to-pay. For this reason,

we associate with each consumer its willingness-to-pay for a new product, θ, also called its ‘type’.

We refer to consumers with a low (high) willingness-to-pay for new products as ‘low-end’ (‘high-

end’) consumers. We assume that θ is distributed on [0, 1] according to a function F, where F (θ)

denotes the volume of consumers with willingness-to-pay in [0, θ] and is a strictly increasing and

continuous function with F (0) = 0 and F (1) = 1. Markets differ in the relative concentration

of consumers with different levels of willingness-to-pay. Introducing a general structure for F

allows us to capture this variety. In particular, we consider a class Fκ of distributions of the form

F (θ) = 1 − (1 − θ)κ, where κ ∈ (0,∞). The uniform distribution frequently used in the market

segmentation literature is a special case of this distribution obtained by setting κ = 1.

Typically, remanufactured products are valued less than new products by consumers. For

example, Xerox studies showed that the presence of used components in a remanufactured product

decreased the consumer’s willingness-to-pay for this product (Vietor). Furthermore, retreaded tires

are typically bought by budget-conscious consumers (Alford 2001). The retread industry has also

been plagued with image problems (Préjean). To model this, we assume that the willingness-to-pay

of consumer type θ for a remanufactured product is η (θ), which is a non-negative monotonically

increasing function, not greater than θ, over [0, 1]. We refer to (F, η) as the ‘consumer profile.’

Let pN and pR denote the prices of new and remanufactured products, respectively. We model

the net utility that a consumer of type θ derives from buying a new product, a remanufactured

product, and no product, by θ − pN , η(θ) − pR, and 0, respectively. In a given period, consumers

choose which product to buy based on the utility that they derive in that period from this purchase.

Industry Structure. Our main analysis and discussion (§3) is for an industry in which the manu-

facturer holds a monopoly in the markets for new and remanufactured products. This assumption

is reasonable if the manufacturer has a proprietary remanufacturing technology (e.g. MRT retread
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technology developed by Michelin) that would limit the formation of a market for used reman-

ufacturable products, and the supply of used but remanufacturable products is controlled by the

manufacturer (e.g., Michelin’s retread company, Pneu Laurent, operates a fleet of over two hundred

vehicles collecting used Michelin tires from dealers). Nevertheless, independent competing reman-

ufacturers abound in this industry, as in other industries (Groenevelt and Majumder 2001a,b). To

capture the impact of competition in the remanufactured product market on the remanufactura-

bility level chosen by the manufacturer, we consider an industry in which the manufacturer holds

a monopoly in the market for new products, and independent remanufacturers compete on the

remanufactured product market. This variant is analyzed in §4.

The Decision-Making Framework. The manufacturer’s goal is to maximize the net present

value of introducing a remanufacturable product, calculated over the life-cycle of this product, by

determining the level of remanufacturability and a sequence of prices for the new and remanufac-

tured products.

To model this, we develop a discrete-time, infinite-horizon, discounted profit optimization prob-

lem. Each period corresponds to a period of use of the product by a consumer, after which the

product needs to be remanufactured for further use. This period may range from several weeks

(e.g. single-use cameras) to several months (e.g. tires). The product life duration is thus exactly

one period. Let β denote the discount factor over this time period. Thus, the longer the time on

the market, the lower the discount factor should be. In §5, we introduce a more general product

life duration to study the diffusion of new and remanufactured products.

We assume that the level of remanufacturability is determined at time 0 since it is the initial

technology choice that determines this value for all subsequent periods. Product prices are allowed

to be time-dependent. Recall that the supply of used products that can be remanufactured in each

period is constrained by the historical sales of new products and the level of remanufacturability.

Starting without a supply of used products induces a transient period during which this supply

is built up. We allow the manufacturer to carry inventory of used remanufacturable products. In

order to keep the focus on the technology selection and market segmentation issues, we do not

consider associated holding costs.

The infinite-horizon assumption is particularly appropriate when the period of use of a product

is short relative to the total life-cycle of the product on the market, as is the case with tires and

electrical motors, for example. Moreover, the infinite horizon analysis provides some insight into

problems with a finite, but sufficiently long, horizon. Finally, the infinite-horizon framework lends

itself to an approximate analysis of the optimal technology choice based on the stationary solution

and allows us to derive a number of comparative statics results.
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2.2 Formulation of the Monopolist’s Optimization Problem

The Single-Period Profit.

Recall that pN and pR denote the prices of new and remanufactured products, respectively,

and define p
.
= (pN , pR), where p ∈ S

.
= {(pN , pR) ∈ R

2
+ : 0 ≤ pN ≤ 1, 0 ≤ pR ≤ η(pN )}. Then

ΩN (p)
.
= {θ ∈ [0, 1] : θ − pN ≥ η(θ) − pR} is the set of consumer types who purchase a new product.

ΩR (p) is defined analogously as the set of consumer types who purchase a remanufactured product.

Let n and r denote the volume of consumers who purchase new and remanufactured products,

respectively, and define ν
.
= (n, r). Then n =

∫
ΩN (p) dF (θ) and r =

∫
ΩR(p) dF (θ). By construction,

ν ∈ D
.
=

{
(n, r) ∈ R

2
+ : n + r ≤ 1

}
. Since F is strictly increasing, the mapping p → ν(p) is one-

to-one. Therefore, the inverse mapping ν ∈ D → p (ν) ∈ S is well defined. We can now define

R (ν)
.
= npN (ν)+rpR (ν), the revenue of the monopolist who prices so as to create demand ν. Some

properties of the revenue function are developed in §1 in the Appendix under mild restrictions on

η(θ). Finally, let π (ν, q)
.
= R (ν) − cn (q) n − cr (q) r; this is the profit obtained in a generic period

under the decision (ν, q).

The Infinite-Horizon Optimization Problem.

Let st
.
= (sN,t, sR,t) be the sales of new and remanufactured products in period t. Let It denote

the supply of used products that can be remanufactured that remain in stock at the beginning

of period t from returns in previous periods. Then, I0 = 0 and sR,0 = 0 since no used products

exist initially and It =
∑t

k=1 qsN,t−k − sR,t−k. If the price in period t, pt, is chosen such that the

resulting demand for remanufactured products is greater than the available inventory (rt > It), the

manufacturer can only sell sR,t = min (rt, It) = It. In this case, the manufacturer can increase both

pR,t and pN,t in such a way that the demand for remanufactured products decreases to It and the

demand for new products remains the same. Since the sales volumes remain identical while both

prices increase, a higher profit can be realized in this manner. Therefore, it will never be optimal

to price such that rt > It; at optimality, rt ≤ It and sR,t = rt. In addition, as a result of our

assumptions on production capacity, production lead times and raw material supply, any volume of

new products can be satisfied, that is, sN,t = nt. Thus, we can formulate our problem in terms of

demand volumes and define the feasible region such that the demand for remanufacturable products

in each period is less than or equal to the available supply of used remanufacturable products. We

define an implementable path P starting with initial remanufacturable product inventory I (denoted

by P ∈ I(I)) as P
.
= {νt, t ≥ 0|νt ∈ D, I0 = I, It = It−1 + qnt−1 − rt−1 ∀t ≥ 1, and rt ≤ It ∀t ≥ 0}.

The analysis in the remainder of this paper will use nt and rt as decision variables.

Let Vβ(I; q) denote the optimal β-discounted infinite-horizon profit of the manufacturer for a

given remanufacturability level q under the initial condition I0 = I, i.e., Vβ (I; q)
.
= max

P∈I(I)

∑∞
t=0 βtπ (νt, q).
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In this paper we analyze this problem for I0 = 0. We define Vβ(q)
.
= Vβ(0; q), that is,

Vβ (q)
.
= max

P∈I(0)

∞∑

t=0

βtπ (νt, q) . (1)

The optimal solution to this problem is the path of new and remanufactured demands ν∗
t , to which

corresponds a unique optimal price path p∗t .

The technology selection problem of a manufacturer with a monopoly position in both markets

for new and remanufactured products is then

max
q∈[0,1]

Vβ (q) − k (q) . (2)

3 Analysis

We characterize the optimal solution of the monopolist’s optimization problem in §3.1. In §3.2, we

derive a sufficient condition under which it is optimal for the manufacturer to invest in the remanu-

facturability of its product. §3.3 focuses on the stationary solution to explore the characteristics of

the optimal portfolio. In particular, we investigate the dependence of the optimal remanufacturabil-

ity level on the consumer profile (§3.3.1), we characterize new and remanufactured product margins

(§3.3.2) and we establish properties of the demand mix as a function of the remanufacturing cost

(§3.3.3).

3.1 A Characterization of the Optimal Solution

Let c (q)
.
= cn (q) + βqcr (q), v (q)

.
= ∂R(0,0)

∂n + qβ
∂R(0,0)

∂r , ν̃
.
= (ñ, r̃)

.
= arg max

ν∈D
π (ν, q) and

nsu
.
= arg max

0≤n≤1
π (n, 0, 0). Here, c (q) and v (q) are the marginal present cost incurred and revenue

realized, respectively, when manufacturing and selling the new product now, and remanufacturing

the resulting used but remanufacturable products and selling them one period later; ν̃ is the opti-

mal single-period demand (sales) volumes unconstrained by availability of used remanufacturable

products, and nsu is the optimal demand (sales) volume of single-use products (products which

have remanufacturability level q = 0). If ν̃ ∈ int (D), then ∂R(ν̃)
∂n = cn (q) and ∂R(ν̃)

∂r = cr (q). If

0 < nsu < 1, then ∂R(nsu,0)
∂n = cn (0).

Some assumptions that are used in the following analysis, but were not discussed in §2 are listed

in §2 of the Appendix. We do not repeat any assumptions in the statement of each result; it is

implicit that they hold throughout the analysis.

Lemma 1 Let q ∈ [0, 1] and I0 = I. Then (i) Vβ (I; q) is concave nondecreasing in I; (ii) There

exists a unique optimal path {ν∗
t , t ≥ 0}; call it P∗

q (I0).
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Let n∗(I) and r∗(I) denote the unique maximizers of the right-hand side in the Bellman Equation

v (I; q) = max
ν∈D,r≤I

π (ν, q) + βv (I + qn − r; q) . (3)

Define the policy function g such that g(I)
.
= I + qn∗(I) − r∗(I). The optimal path starting with

initial condition I0 = 0, denoted by P∗
q , is found by applying g recursively to It starting with I0 = 0.

Then n∗
t = n∗(It), r∗t = r∗(It) and It+1 = g(It) ∀t. We characterize properties of the optimal path

and/or of Vβ(q) as follows: Lemma 2 identifies a necessary and sufficient condition for Vβ(q) > 0.

Subject to this condition, Lemma 3 characterizes the optimal path and V ′
β(q) when qñ ≥ r̃ and

Proposition 1 builds on Lemmas 6 and 7 (in §3 of the Appendix) to characterize the optimal path

and to derive V ′
β(q) when qñ < r̃. In particular, Lemma 6 derives the shape of the policy function

g and Lemma 7 shows that It → I∞ and ν∗
t → ν∞, the stationary solution.

Lemma 2 Vβ (q) > 0 if and only if c (q) < v (q).

Lemma 3 Let q > 0. If c(q) < v (q) and qñ ≥ r̃, then P∗
q = {(ns(q), 0) , (ñ, r̃) , (ñ, r̃) , (ñ, r̃) ...},

where ns
.
= arg max

0≤n≤1
π (n, 0, q). In addition, V ′

β(q) < 0.

Lemmas 2 and 3 imply that q∗ ∈ Q
.
= {q ∈ [0, 1]|c(q) < v (q) and qñ < r̃}. For the remainder of

the paper, we work with q ∈ Q.

Proposition 1 Let P∗
q = {ν∗

t , t ≥ 0} ∈ I(0) be the optimal path found when solving (1) for a fixed

q. Then, it satisfies
∂R (νt)

∂n
+ βq

∂R (νt+1)

∂r
= c (q) ∀t. (4)

In addition,

V ′
β (q) =

∞∑

t=0

βt

(
β

(
∂R

(
ν∗

t+1

)

∂r
− cr (q)

)
n∗

t − c′n (q) n∗
t − c′r (q) r∗t

)
. (5)

Equations (4) and (5) have the following economic interpretation: Increasing the volume of new

products during a single period results in an immediate increase in revenues from new products,
∂R(ν∗

t )
∂n , and an increase in revenues from remanufactured products in the next period on a fraction q

of new products
∂R(ν∗

t+1)
∂r . Equation (4) equates the marginal increase in revenues over two periods

with the marginal increase in cost over two periods (c (q)). Equation (5) calculates the effect of

increasing q by dq. This change has an effect over all periods: An increase in unit manufacturing

and remanufacturing costs in period t by (c′n (q) n∗
t + c′r (q) r∗t ) dq, but also an increase in revenues

in the next period, due to an increase drt+1 = n∗
t dq in available remanufacturable units which

generates an additional profit

(
∂R(ν∗

t+1)
∂r − cr (q)

)
n∗

t dq.

We build on Equations (4) and (5) to derive the results in the next subsections.
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3.2 Whether to Produce a Remanufacturable Product

In this subsection, we discuss the conditions under which the solution q∗ to (2) is strictly positive,

that is, the manufacturer invests in the remanufacturability of his product. Let us define ∆
.
=

V ′
β (0) − k′(0). We call ∆ the ‘remanufacturing potential’: If ∆ is positive, then, it is profitable to

produce a remanufacturable product.

Proposition 2 It is optimal to produce a remanufacturable product (i.e. q∗ > 0) if the following

condition is satisfied:

∆ =
1

1 − β

(
β

{
∂R (nsu, 0)

∂r
− cr (0)

}
− c′n (0)

)
nsu − k′ (0) > 0. (6)

If the consumer profile is linear, i.e. η(θ) = (1 − δ)θ, (6) reduces to:

∆ =
1

1 − β

(
β {(1 − δ)cn(0) − cr (0)} − c′n (0)

)
nsu − k′ (0) > 0. (7)

From now on, we focus on a linear consumer profile represented by (F, δ). We refer to δ as

the “perceived depreciation” of the remanufactured product. We will now discuss the impact of all

technology and market related parameters on the remanufacturing potential.

3.2.1 Factors Directly Influencing the Remanufacturing Potential

From (6), we observe that the remanufacturing potential ∆ increases as the product becomes

cheaper to remanufacture (cr (0) decreases), or the marginal increase in the unit cost c′n (0) de-

creases, or the marginal increase in the fixed cost k′ (0) decreases. These factors all relate to

incremental costs associated with moving from a single-use product to a remanufacturable prod-

uct. Note also that ∆ increases in the discount factor, β, which is influenced by the length of time

the new product stays on the market before it returns to the manufacturer (the length of one period

in our model). Furthermore, from (7), we observe that ∆ increases as δ, the perceived depreciation

factor, decreases. These parameters are direct drivers of the remanufacturing potential.

3.2.2 Factors Indirectly Influencing the Remanufacturing Potential

The manufacturing cost cn(0) has a direct positive impact on ∆. In addition, both cn(0) and the

consumer profile (F, δ) play a role in determining ∆ via the term nsu. In order to gain insight into the

role of the consumer profile, we focus on the class Fκ of distributions of the form F (θ) = 1−(1 − θ)κ,

where κ ∈ (0,∞). Figure 1 plots the density f(θ) for four different values of κ. Observe that as κ

increases, the mass of consumers shifts from high-valuation consumers to low-valuation consumers.
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Figure 1: f (θ) = κ (1 − θ)κ−1 for κ = 0.1, 0.5, 1 and 5

Proposition 3 Let F ∈ Fκ. If β {(1 − δ) cn (0) − cr (0)} > c′n (0), then d∆
dκ < 0 and d∆

dcn(0) ≶ 0.

As expected, when the mass of consumers shifts towards the lower end of the spectrum (κ

increases), the optimal sales volume of single use products, nsu, decreases. Therefore, the remanu-

facturing potential decreases. Note that the distribution of consumer types F (θ) impacts the sign

of the remanufacturing potential only when k′ (0) > 0, and not when k′ (0) = 0.

It is interesting to note that increasing the cost of single-use products impacts the remanufac-

turing potential in two opposing ways. On one hand, through the term (1 − δ)cn(0), the remanu-

facturing potential increases as the unit production cost increases. The intuition is the following:

When q = 0, the optimal path is n∗
t = nsu ∀t. It follows that

∂R(ν∗
t )

∂r = ∂R(nsu,0)
∂r in (5) for q = 0.

For the consumer profile (F, δ), it can be shown that ∂R(n,0)
∂r = (1 − δ) ∂R(n,0)

∂n for any n ∈ [0, 1].

By the definition of nsu, ∂R(nsu,0)
∂n = cn(0), and we obtain the term ∂R(nsu,0)

∂r = (1 − δ) cn (0) in ∆.

It may seem counter-intuitive that the marginal cost cn (0) contributes to the marginal profit (∆).

However, this makes sense in a remanufacturing context since remanufacturing is a strategy that

exploits the reduction in production cost. Therefore, all else being equal, a higher production cost

to start with (without remanufacturing), makes remanufacturing more attractive.

On the other hand, the sales of single-use products, nsu, decrease as cn (0) increases. Therefore,

in the presence of a fixed cost, it may be that expensive single-use products are not profitable

to remanufacture, because the sales of single-use products is too limited to generate a profitable

11



Parameter, Interpretation Impact on

increasing potential

cr (0) remanufacturing cost negative

k′ (0) increase in fixed cost negative

β discount factor/sojourn time on market positive

δ perceived depreciation negative

c′n (0) increase in unit new product costs negative

cn (0) single use production cost pos./neg.

κ consumer profile negative

Table 1: Determinants of profitability of remanufacturing

market for remanufactured products. On the other hand, when k′ (0) = 0, sufficiently expensive

single-use products will have a positive remanufacturing potential.

3.2.3 Summary of Factors Influencing the Remanufacturing Potential.

We summarize the direct and indirect drivers of profitability of remanufacturing in Table 1. A nec-

essary, but not sufficient, condition for a positive remanufacturing potential can be found between

{} in (7): If (1 − δ) cn (0) − cr (0) < 0, then the lowest consumer type to whom a new product can

be sold without a loss (θ = cn (0)) has a willingness-to-pay (1 − δ) cn (0) for the remanufactured

product that is lower than the production cost of the remanufactured product (cr (0)) and reman-

ufacturing is not viable. Therefore, the condition (1 − δ) cn (0) − cr (0) > 0 is necessary (but not

sufficient) to assure a positive remanufacturing potential. In the emerging operations literature on

remanufacturing, pure production cost savings cn(0)− cr (0) are often assumed to drive remanufac-

turing activities (Klausner et al., Savaşkan et al., Ferrer). Condition (7) generalizes this construct

significantly to take into account the characteristics of the consumer profile, discounting, and the

incremental cost of providing remanufacturability.

3.3 Characteristics of the Optimal Product Portfolio

In this section, we answer the questions raised in the introduction about the integrated management

of a product line consisting of new and remanufactured products.

12



3.3.1 Fitting the Level of Remanufacturability to the Consumer Profile

In §3.2, we showed how the remanufacturing potential (which determines whether to invest in

remanufacturability) depends on the production costs and consumer profile F ∈ Fκ. In this

subsection, we wish explore how the optimal level of remanufacturability changes as a function of

the consumer profile, that is, we wish to characterize q∗ as a function of κ. Let q∗κ be the solution

of (2) parametrized by κ. An asymptotic analysis as β → 1− yields a characterization of q∗κ for

β ≈ 1.

Proposition 4 If F ∈ Fκ and β ≈ 1, then for a consumer profile with a higher concentration on

the lower end of the market (κa > κb), the optimal level of remanufacturability is higher: q∗κa
> q∗κb

.

When there is a larger mass of low-end consumers (κ large), there is a higher volume of potential

buyers to be captured by offering a remanufactured product. A bigger supply of remanufactured

products can be generated by building a higher level of remanufacturability into the new product.

This would of course increase the fixed cost k(q), but when the discount factor is very high, the

initial fixed cost is inconsequential. Therefore, q∗κ increases monotonically in κ.

At lower discount factors, k(q) becomes consequential. To explore the impact of k(q), we

approximate the solution to (1) by linearizing (4) around ν∞ and find a closed-form expression

approximating V ′
β (q). Let q̃κ denote the approximately optimal remanufacturability level obtained

using this expression. Figure 2 plots q̃κ for β = 0.7 and for different levels of fixed costs of the

form k(q) = kq. Recall from Proposition 2 that the remanufacturing potential decreases in κ and

k′(0), becoming negative after a threshold value of either factor. This is observed in Figure 2: For

each κ, there is a threshold value of k beyond which q∗ = 0; and for each fixed cost level, there is

a threshold value of κ beyond which q∗ = 0.

Without a fixed cost (k = 0), we observe that q̃κ monotonically increases as a function of κ as

Proposition 4 leads us to expect. For k > 0, q̃κ first increases and then decreases in κ. This can be

explained as follows: As κ increases, reaching the low-end consumers by building a higher level of

remanufacturability becomes more attractive, so the optimal remanufacturability level increases.

However, since the fixed cost also increases in the remanufacturability level, there is a point beyond

which the fixed cost dominates and the optimal remanufacturability level starts to decrease in κ.

We can thus conclude that the optimal remanufacturability level is the highest for medium levels

of market heterogeneity. For markets with high concentrations of customers either on the high end,

or, on the low end, the optimal remanufacturability level is low. This result highlights that building

a high remanufacturability product is particularly suitable when catering to a diverse market.
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0.05 ln (1 − q), cr = 0, and δ = 0.2.

3.3.2 The Role of the New Product

Due to the interdependence of new and remanufactured products, a decrease in demand for new

products results in a decrease in the availability of remanufactured products. We investigate the

implications of this dependence on pricing strategy. Let p∗∞ be the price vector that corresponds

to the optimal stationary demand volumes.

Proposition 5 Let F ∈ Fκ and β ≈ 1. There exists a consumer profile for which p∗N,∞ < cn(q∗)

Remanufactured product margins are always non-negative.

Proposition 5 reveals the dual role of new products: They have the potential of generating

profits in their own right. At the same time, they generate a volume of used products that are

sold at a profit after being remanufactured. In fact, the manufacturer may choose to produce some

new products only for the future value that they generate through their sale as remanufactured

products, although he sells them at a loss.

In numerical experiments, we observe that as κ increases, the optimal prices of both new

and remanufactured products decrease at an increasing rate. Combined with the fact that cn(q)

increases in q, we see that the optimal new product margin erodes rapidly in κ.
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Figure 3 illustrates this phenomenon. We plot the optimal price of new and remanufactured

products against the optimal level of remanufacturability for different values of κ (ranging from 0.1

to 25), with cn (q) = 0.2 − 0.05 ln (1 − q) (on the right) and cn (q) = 0.35 − 0.05 ln (1 − q) (on the

left). Note that the curves are downward sloping: when the market shifts towards the lower end,

the optimal prices of both new and remanufactured products decrease, while the optimal level of

remanufacturability increases. The rate of increase of q∗ decreases and the rates of decrease of p∗N

and p∗R increase as κ increases. In particular, for high values of κ, q∗ increases only marginally,

but optimal prices vary significantly. The optimal price of a new product drops below the unit

production cost for some values of κ. This occurs in markets characterized by a high level of κ,

corresponding to a large enough concentration of low-valuation consumers: To tap into the low-

valuation market, the manufacturer needs to generate a high volume of remanufactured products,

sometimes sacrificing margins on the new product to do so. This effect is enhanced when the cost of

manufacturing is high (compare the plot on the left with the plot on the right of Figure 3) because

pricing above cost significantly limits the demand for new products in this case. We observe that

the range of κ values for which there is a negative margin on new products is larger in this case.

The magnitude of the loss increases in κ. We observed this in other numerical examples: The

negative margin occurs for new products with a high unit production cost and markets with high

concentrations of low-end consumers.
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Figure 3: Graphs of (q∗(κ), p∗N (κ)), (q∗(κ), p∗R(κ)), cn(q) and cr with δ = 0.2, cr = 0.05 and

cn(q) = 0.2 − 0.05ln(1 − q) (left) and cn(q) = 0.35 − 0.05ln(1 − q) (right) for values of κ ranging

from 0.1 to 25.

For a product whose value increases and/or whose cost decreases over time, Dhebar and Oren

(1985), Padmanabhan and Bass (1993), and Whang (1995) investigate the evolution of profit mar-
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gins in a variety of contexts. They show that setting thin or negative margins initially may be

optimal; the low-value product is the “loss leader.” In contrast, in a remanufacturing context, the

loss leader is the high value product.

It is interesting to note that most manufacturer/remanufacturers manage the manufacturing

and remanufacturing operations separately. In particular, these operations are typically part of

separate profit centers. Our analysis reveals that this practice of focusing on the profits obtained

from new and remanufactured products separately can be counterproductive, and that considering

the total product line as part of the same profit center may lead to higher profitability for the firm.

3.3.3 The Impact of the Remanufacturing Cost

We explore the sensitivity of the optimal remanufacturability level and sales volumes to the unit

remanufacturing cost. Let cr(q) = cr0 + cr1(q).

Proposition 6 Let F ∈ Fκ and β ≈ 1. If q∗ > 0, then dq∗

dcr0
< 0, dr∗∞

dcr0
< 0 and dn∗

∞

dcr0
≷ 0.

This result states that if the remanufacturing cost is lower, a higher remanufacturability level

will be provided and a higher volume of remanufacturable products will be sold at optimality,

which is intuitive. In addition, a lower remanufacturing cost may result in either a decrease or

an increase in new product sales, which is less intuitive. Since new and remanufactured products

are substitutes, we would have expected that higher demand for remanufactured products would

go hand in hand with lower demand for new products. However, Proposition 6 shows that a

decrease in the remanufacturing cost may lead to an increase in the optimal sales volume of the

new product. In other words, the two products may exhibit the characteristics of complementary

products, although they are substitutes.

In Figure 4, on the left side, we plot optimal prices and production volumes for cr varying from 0

to 0.08. This is an illustration of the phenomenon of Proposition 6: As cr increases, r∗ and n∗ both

initially decrease, but for higher values of cr, we see that n∗ increases and r∗ continues to decrease

as cr increases. In Figure 4, on the right side, we plot the prices for new and remanufactured

products for the same example. The price of new products decreases as cr decreases. Keeping all

else equal, this would result in less demand for remanufactured products since some people who

previously bought remanufactured would now buy new. However, this is not the case: The price

of remanufactured products also decreases, in such a way that the net effect is a parallel increase

in demand for remanufactured products.

Why does this counterintuitive complementarity phenomenon occur for low values of cr? A

decrease of cr makes a remanufactured product more attractive with respect to a new product.
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Indeed, the optimal (stationary) pricing will be such that the demand for remanufactured products

will increase. However, this requires a larger volume of used, remanufacturable products to be

available due to the supply constraint. There are two levers that the manufacturer can use to

ensure this: The first is to increase the level of remanufacturability. The second is to decrease

the price of both new and remanufactured products in such a way that demand for both new and

remanufactured products increases. If the increase in manufacturing cost due to an increase in the

remanufacturability level is relatively low, the manufacturer will chose to increase the supply of

used, remanufacturable products by increasing the level of remanufacturability (and n∗ decreases).

Otherwise, the supply of used remanufacturable products is generated by pricing such that n∗

increases. Since cn(q) is convex, the former effect is seen at low levels of remanufacturability, and

the latter, at high levels. Since q∗ increases as the remanufacturing cost decreases, the former effect

is seen at high remanufacturing costs, and the latter, at low remanufacturing costs.

Remanufacturing is often touted as a strategy that has positive environmental consequences

(Thierry et al.). According to this logic, improvements in technologies enabling remanufacturing

would be desirable. Consider a situation where the product constitutes an environmental hazard.

Proposition 6 states that there are situations in which improving the efficiency of the remanufac-

turing technology (decreasing the remanufacturing cost) has a perverse environmental impact: The

manufacturer now sells a larger volume of new products than before.
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4 Extension: Competition in the Remanufactured Product Mar-

ket

In our analysis, we assumed so far that the manufacturer is a monopolist in both the market for

new and for remanufactured products. As discussed earlier, it is not uncommon for several inde-

pendent firms to remanufacture another manufacturer’s product. In order to investigate whether

and at what level remanufacturability is provided by the manufacturer in such an environment,

we develop a model where the manufacturer produces only the new product (and has a monopoly

position in that market), and used products are remanufactured by N independent competing re-

manufacturers. These remanufacturers buy used remanufacturable products from consumers on a

perfectly competitive market in the sense that in every period, the price of the used remanufac-

turable product is such that the market clears. We therefore need to analyze an infinite-horizon,

discounted-profit N + 1 player game. From the Folk Theorem (Fudenberg and Tirole 1991), we

know that there may be multiple equilibria for such games. For a clear comparison with the full

monopoly case, we select equilibria in which each player’s action in each period depends only on

the supply of used remanufacturable products available at the beginning of that period, I, and not

on the history of the game. This is similar to a Markov Perfect equilibrium refinement in stochastic

games.

Consumers take the residual value of the new product into account when purchasing it. In

order to keep the game tractable, we assume that the consumers sell their used remanufacturable

product at the end of its useful life at the prevailing market price, pU . In other words, they do

not strategically keep their product in stock in order to sell it at a higher price in a future period.

We assume that the price of used remanufacturable products depends only on the supply of such

products, I, denoted by pU (I). Since a fraction q of all used products will be remanufacturable

in the next period, the discounted residual value to the customer of a new product purchased in

the current period is βqpU (I ′), where I ′ is the supply of used remanufacturable products that will

become available in the next period. If the quoted price for a new product is p̃N , then, the net

discounted acquisition cost of a new product is p̃N − βqpU (I ′) for a consumer. Thus, given prices

(p̃N , p̃R) in the current period and pU in the next period, the market demand ν for the current

period solves p (ν) = (p̃N − βqpU , p̃R), where p
.
= (pN (ν), pR(ν)) is as defined in §2.2.

The manufacturer determines the technology, q, and a sales policy n (I), which depends only

on the supply of remanufacturable products in the beginning of the period. The remanufacturers,

i ∈ N
.
= {1, ..., N}, compete with each other in quantities: For a given r = (ri)i∈N and a fixed n, the

market price of remanufactured products is pR

(
n,

∑
i∈N

ri

)
. In our Markov perfect equilibrium,

each manufacturer determines a policy ri (I).
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Let ν (I)
.
=

(
n (I) ,

∑
i∈N ri (I)

)
. Then, remanufacturer i’s single-period profit is πR,i(ν (I) , ri (I) , I, q)

.
= (pR (ν (I)) − cr (q) − pU (I))ri (I), which includes the cost pU (I) of purchasing used remanufac-

turable products on the market. The manufacturer’s profit in that period is πM (ν (I) , I, q)
.
=

(pN (ν (I)) + βqpU (I ′) − cn(q))n (I), with I ′ = I + qn (I) −
∑

i∈N ri (I).

For a given pU (.), each player chooses in equilibrium a policy that maximizes his discounted

profits over the infinite horizon, given the other players’ policies. We denote this set of policies

by ne
pU (.) (I) and

(
re
pU (.),i (I)

)

i∈N
. The market-clearing price of used remanufacturable products,

pe
U (I), is such that either

∑
i∈N re

pe
U

(.),i (I) < I and pe
U (I) = 0, or,

∑
i∈N re

pe
U

(.),i (I) = I and pe
U (I) >

0. Let ne (I) denote ne
pe

U
(.) (I), re

i (I) denote re
pe

U
(.),i (I), and νe (I) denote

(
ne (I) ,

∑
i∈N re

i (I)
)
.

The discounted profit for the manufacturer and remanufacturers, for a given level of technol-

ogy, q, are V
c,M
β (q)

.
=

∑∞
t=0 βtπM (νe (It) , It, q) and V

c,R,i
β (q)

.
=

∑∞
t=0 βtπR,i (νe (It) , re

i (It) , It, q),

respectively, with I0 = 0 The market clearing price, pe
U (I), assures that the resulting path,

Pc .
= {νe (I0) , νe (I1) , ...}, is implementable; Pc ∈ I(0).

Proposition 7 develops a sufficient condition under which the manufacturer prefers to build a

remanufacturable product.

Proposition 7 In a market with independent competing remanufacturers, it is optimal for the

manufacturer to produce a remanufacturable product (i.e. q∗ > 0) if ∆ > 0.

We show here that ∆ > 0, which is a sufficient condition in the total monopoly scenario, is

also sufficient in this scenario. The economic intuition behind this result is that a market for

remanufactured products increases the residual value to the buyers of new products. This allows

the manufacturer to charge a higher price for new products and make a higher profit than with a

single-use product.

In order to determine the optimal remanufacturability level in presence of competition with

independent remanufacturers, we have to characterize the equilibrium. This task is non-trivial

for a general consumer profile (F, δ), but we are able to analyze the special case of a uniform

distribution of consumer types. In Figure 5, we display the discounted profits for the manufacturer

as a function of the level of remanufacturability, for different levels of competition on the market

for remanufactured products.

Keeping all else equal, a manufacturer is better off without competition on the market for re-

manufactured products. The economic intuition is the following: As the manufacturer does not

make any profit on remanufacturing its products, his incentive to produce a remanufacturable prod-

uct is driven by the residual value of a used remanufacturable product. With increased competition

on the market for remanufactured products, the prices of both remanufactured products and used
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Figure 5: Equilibrium discounted profits for the manufacturer in a market N = 2, ..., 20 remanu-

facturers and optimal discounted profits of a monopolist manufacturer-remanufacturer.

remanufacturable products decrease. This limits the price the manufacturer can charge for the

new product, and his profit net of fixed cost from investing in remanufacturability decreases. As

a result, the remanufacturability level that is optimal for the manufacturer decreases. Therefore,

any legislator encouraging competition for remanufactured products should take into account that

the level of remanufacturability of the new product will decrease with competition. These findings

also help us understand why some manufacturers of printer cartridges have developed a ‘killer chip’

that is inserted in the cartridge and that records the amount of remaining ink. The chip cannot be

reset when it is re-filled with ink, unless a secret code is known. This makes virtually all refilling

by independent remanufacturers impossible. According to environmental activists, ‘bad news for

the environment as re-use is far better than the landfilling or recycling of empty cartridges. It will

also be bad news for consumers because re-filled cartridges are much cheaper than buying new ones’

(Friends of the Earth, 2004).

5 Extension: Progressive Market Penetration of New and Reman-

ufactured Products

In the previous sections, we assumed that the total market size is constant over time. In this section,

we focus on the progressive penetration of a potential market over time and study the integrated
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dynamic management of a portfolio of new and remanufactured products over the product life

cycle. We capture the progressive market penetration of new and remanufactured products using a

variant of the Bass diffusion model, while maintaining the two essential features of our basic model:

(a) substitution between new and remanufactured products and (b) a constraint on the diffusion

of remanufactured products due to the limited supply of used, remanufacturable products. In

addition, we incorporate repeat purchases, which are due to the finite life duration of the product.

As outlined in the literature review, the diffusion literature has dealt with these aspects separately.

Market penetration of new and remanufactured products. We normalize the total potential

market size to 1. We denote the penetrated market size in period t by Mt ∈ [0, 1]. Following the

Bass diffusion model, the potential market size is determined follows:

mt
.
= Mt − Mt−1 = (a + bin,t−1) (1 − Mt−1) , for t ≥ 1 (8)

with M0 = 0. In each period, the fraction of new potential consumers that is added from the

untapped market, mt

1−Mt−1
, is a constant, a > 0, the ‘innovation’ coefficient, plus a term proportional

to the installed base of new products, in,t, with b > 0, the ‘imitation’ coefficient. The word-of-mouth

propagation is driven in this diffusion process by the installed base of new products, which is the

number of consumers that actually own a product in period t. The installed base is smaller than

the cumulative volume of new product sales as some consumers may have repeatedly purchased a

new product. This modification to the Bass diffusion models allows us to capture the impact of

repeat purchases in our analysis.

Product life duration. We assume that each product (new as well as remanufactured) has a

life duration distribution characterized by h = (h1, h2, ..., hL) with
∑L

τ=1 hτ = 1: After τ periods

of use, a fraction hτ of new products require a remanufacturing operation for further use, where

τ = 1, 2, . . . , L. Thus, the average life duration of a product is Λ =
∑L

τ=1 τhτ . Similarly, after τ

periods of use, a fraction hτ of remanufactured products reach the end of their useful life. Due to

the finite life duration of the product, each consumer may make repeat purchases during the life

cycle of the product.

Customer purchasing behavior. In period t, mt potential consumers enter the market. These

consumers have types that are distributed over [0, 1] according to F (θ), with
∫ 1
0 dF (θ) = 1. De-

pending on their type, the newly entered consumers either (i) decide to buy a new product, (ii)

decide to buy a remanufactured product or (iii) decide not to buy a product. For tractability, we

assume that a fraction hτ of consumers who do not buy any product reappear on the market τ

periods later. In this case, we can imagine that the customer buys an ‘outside’ product with a life

duration of h. With this assumption, the contribution of period t’s new potential consumers to

period t + τ ’s ‘repeat’ consumers is hτmt and they are distributed according to F (θ).
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Sales volumes. Letting Rt be total volume of repeat purchasers in period t, we can write the

sales of new and remanufactured product as follows:

nt = (Rt + mt)

∫

ΩN (pt)
dF (θ) and rt = (Rt + mt)

∫

ΩR(pt)
dF (θ) with Rt =

min(L,t)∑

τ=1

hτ (Rt−τ + mt−τ ) ,

(9)

with R0 = m0 = 0. To explain this equation, in period t, there are mt first-time and Rt repeat

potential consumers for a new or remanufactured product. They are distributed according to F (θ).

The prices pt determine which fraction of the total volume Rt + mt of customers purchases a new

or remanufactured product. The volume of repeat consumers is determined by the fraction hτ of

potential and repeat consumers in period t − τ whose new, remanufactured or outside product

reaches the end of its useful life at the beginning of period t.

Installed consumer base. In each period, the installed base of new products is increased by new

product sales of the current period and decreased by the products sold in previous periods that

reach their end of life:

in,t+1 = in,t + nt −

min(L,t)∑

τ=1

hτnt−τ . (10)

Remanufacturing constraint. In each period, remanufactured product sales are constrained by

the availability of remanufacturable products. The supply of remanufacturable products available

depends on any possible leftover supply from the previous period and the volume of used products

that return from the market and are remanufacturable. Let It be the volume of remanufacturable

products that are available at the end of period t. Then

It = It−1 + q

min(L,t−1)∑

τ=1

hτnt−τ − rt−1 with 0 ≤ rt ≤ It. (11)

Similarly as for the base model, we define an implementable diffusion path Pd starting with ini-

tial remanufacturable product inventory I (denoted by Pd ∈ I (I)) as a path that is generated

by means of an underlying diffusion process: Pd
.
= {(νt, pt, mt, Rt, in,t) , t ≥ 0|νt ∈ D, I0 = I,

(8), (9), (10), (11) ∀t ≥ 1, and rt ≤ It ∀t ≥ 0}.

Capacity adjustment costs. We assume that the cost of expanding/contracting manufacturing

or remanufacturing capacity is proportional to the square of the capacity change: K (νt, νt−1) =

Kn (nt − nt−1)
2 + Kr (rt − rt−1)

2. Such a quadratic cost structure is a well-established way of

modelling capacity considerations (e.g. Holt et al. 1955) and allows us to keep the model tractable.

Time varying perceived depreciation. We allow for the possibility of a perceptional change

concerning remanufactured products over time, as the product is sold and used on the market.

We model this by letting the perceived depreciation decrease (relative willingness-to-pay for the

remanufactured product increase) as a function of the cumulative sales of remanufactured products,
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denoted by Sr,t, where Sr,t = Sr,t−1+rt. The initial value of the perceived depreciation is denoted by

δ0. We use the following relationship between perceived depreciation in period t and the cumulative

sales of remanufactured products, Sr,t: δt = δ0 − (1 − exp (−λSr,t)) (δ0 − δ). Note that perceived

depreciation converges to δ. We assume δ > 0. This reflects that there may be inherent concerns

about quality that cannot be fully overcome by customer use, or a perception by customers that

the fair price of a remanufactured product is below that of a new product as it contains used parts.

Also note that this formulation allows the remanufacturability level to influence the convergence

rate: A higher level of remanufacturability allows the manufacturer to sell more remanufactured

products so that Sr,t increases faster, resulting in a faster convergence of perceived depreciation to

δ.

The model. In summary, for a given level of remanufacturability, we find the price path that

maximizes the following objective function:

Vβ (q)
.
= max

Pd∈I(0)

∞∑

t=0

βt (π (νt, q) − K (ν1, νt−1)) ,

with n−1 = r−1 = 0. Then we optimize with respect to the remanufacturability level q ∈ [0, 1], as

in (2). Note that if M0 = 0, a = 1 and b = 0, then Mt = 1 for t ≥ 1, and we have instantaneous

market penetration, which together with L = h1 = 1 and K (νt, νt−1) = 0, was the subject of

previous sections.

5.1 Insights from Numerical Experiments

Recall that our model incorporates repeat sales, a product remanufacturing option and capacity

adjustment costs. In this subsection, we first study diffusion dynamics of new and remanufactured

products (§5.1.1). Sections 5.1.2 to 5.1.4 then investigate the impact of product diffusion, capacity

considerations, and time-varying perceived depreciation on the value and extent of remanufactura-

bility.

Figures are included to facilitate the understanding of the phenomena described, using the

following parameters: δ = 0.2, β = 0.97, cn (q) = 0.5 − 0.05 ln (1 − q), cr = 0, k(q) = 0, a = 0.01

and hτ following a symmetric beta distribution over [1, 20] with parameter 2.5. We report results

from numerical experiments with a time horizon of 200 periods, but show only the first 180 periods,

cutting off the end-of-horizon effect. All figures show the diffusion curves for the optimal price path

and the optimal level of remanufacturing.
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5.1.1 Diffusion Dynamics

The Impact of Repeat Sales. To understand the impact of repeat sales, we first describe diffusion

dynamics with no remanufacturing (q = 0) and a long life duration (Λ ≈ ∞), which precludes repeat

purchases (Bass 1969). The optimal sales pattern of the product is determined by innovators’ and

imitators’ behavior: In the early phase of the product life cycle, the sales are driven by innovators

who purchase the product for the first time. When the imitation effect is sufficiently high, innovators

are joined by imitators early in the product life cycle. This leads to an increase in sales volumes over

the early product life cycle. However, as the product diffuses through the market, the remaining

number of potential purchasers decreases. Therefore, the volume of purchases decreases and drops

to zero when the product is fully diffused through the market. Thus, there exists a period during

which sales peak. This is the familiar diffusion curve obtained in Bass (1969).

If the product life duration is finite, first-time purchases will be followed by repeat purchases,

with Λ periods on average between repeat purchases. Depending on the timing of the first-time

sales peak and the duration of the product life, we observe two situations (see Figure 6): (i) when

the first-time sales peak occurs after the average time to the first repeat purchase, Λ, and (ii)

when the first-time sales peak occurs before the average time to the first repeat purchase, Λ. In

Figure 6(i), observe that the peak occurs after period Λ. Thus, by the first-time sales peak, the

replacement market has already started. When first-time sales drop, repeat sales constitute the

bulk of the sales. Total sales (i.e. first time sales and repeat sales) steadily grow until a steady

regime is reached. In Figure 6(ii), the first-time sales peak occurs before period Λ. This implies

that repeat sales will mostly occur after the first peak, and the first-time sales peak will coincide

with the total sales peak, as observed in this figure. Since there is some spread on the product life

duration (reflected in hτ ), the pattern of repeat sales will have a smoothed peak. In sum, the sales

pattern will oscillate, with an amplitude that dampens until a steady regime is reached.

Joint Diffusion of New and Remanufactured Products. Let us first assume that capacity ad-

justment costs are 0. With remanufacturing as an option (q ≥ 0) (see top row in Figure 7), we

observe that as soon as remanufacturable products are available, the remanufactured product dif-

fuses jointly through the market with the new product. In the left panel (b = 0.2), sales of new

and remanufactured products increase steadily, until a steady regime is reached. Note that at

all times, new and remanufactured products are complementary products, i.e. sales of new and

remanufactured products increase simultaneously. In the right panel (b = 2), sales of remanufac-

tured products, shifted by Λ, also oscillate with an amplitude that dampens until a steady regime

is reached. Note that new and remanufactured products may behave as complements (between

periods 10 and 20) as well as substitutes (around period 20).

Now let us incorporate capacity adjustment costs. The bottom row of Figure 7 shows the
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Figure 6: Optimal sales path of non-remanufacturable new products (q = 0) under diffusion. The

dashed line represents first-time sales and the solid line represents total sales. In (i), b = 0.2 (slow

diffusion); in (ii), b = 2 (fast diffusion).

optimal sales paths of new and remanufactured products in case of expensive capacity adjustment

costs (Kn = Kr = 500). Note that the effect for slowly diffusing products (left panel) is minimal, as

capacity is monotonically built up for both new and remanufactured products even in the absence of

capacity adjustment costs. For fast diffusing products (right panel), the capacity adjustment costs

have a significant impact. Two effects are traded off in determining the optimal capacity investment

path: capacity investment cost and discounted revenues. Following the optimal uncapacitated sales

path would take into account the fast diffusion of the product and maximize sales revenues, but

would entail high capacity adjustment costs, due to the peaks. On the other hand, building capacity

very gradually would forego revenues from innovators and imitators in the early periods, although

it would limit capacity expansion costs. As a result, the optimal rate of capacity expansion may

be faster than in the slow diffusion case, but smoother than the low-cost case.

5.1.2 The Impact of Product Diffusion on Extent and Value of Remanufacturing

Given these sales patterns, we now discuss the impact of product diffusion on the optimal level of

remanufacturability and on discounted profits.

Observation 1 Faster diffusing products lead to a higher optimal remanufacturability level and
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Figure 7: Optimal sales path of a portfolio of new and remanufactured products with q = q∗ > 0

without capacity adjustment costs (top row) and with capacity adjustment costs (bottom row) for

imitation coefficient b = 0.2 (left column) and b = 2 (right column).

are more profitable.

For an example, see the curves in Figure 8. When products diffuse faster through the market

(b higher), the revenues of new and remanufactured products become available earlier. Under a

discounting scheme, this effect will create incentives to make new products more remanufacturable.

Obviously, more (discounted) profits will be made. Note, however, that faster diffusion creates

more oscillations. In the following subsection, we discuss the impact of these oscillations on the

extent and value of remanufacturing when capacity adjustment is expensive.

5.1.3 The Effect of Capacity Adjustment Costs on the Extent and Value of Reman-

ufacturing

Observation 2 Capacity adjustment costs may decrease the remanufacturability of fast-diffusing

products and increase that of slow-diffusing products. Profitability decreases in capacity adjustment

costs.

For an illustration, see the curves in Figure 8. When products diffuse through the markets fast,

the resulting sales oscillations make capacity management expensive, which offsets the positive
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Figure 8: Value (left) and extent (right) of remanufacturability as a function of the imitation

coefficient.

effect of obtaining revenues from new and remanufactured product markets early. The optimal

capacity expansion plan limits the sales volumes to less than what they would have been with low

capacity investment costs. Thus, there is no incentive to invest in remanufacturability because this

would only increase the sales potential of remanufactured products, which the manufacturer cannot

capitalize on. In contrast, when products diffuse slowly, it may be the case that companies invest

in remanufacturability more as capacity costs increase. This can be seen in Figure 8 for b = 0.2 and

0.3. This increase in remanufacturability may seem counter-intuitive, but can be understood as

follows: As new product sales are higher than remanufactured product sales, the total investment

into new product capacity is higher. This makes selling new products relatively more expensive.

In this case, a strategy to increase profits is to increase the remanufacturability level and generate

more revenues from the market for remanufactured products.

5.1.4 The Impact of Time-Varying Depreciation on the Extent and Value of Reman-

ufacturing

In this subsection, we study the impact of time-varying perceived depreciation by letting δ0 = 0.6

and δ = 0.2. In order to separate different effects, we set the capacity costs at Kn = Kr = 0.

Observation 3 An increasing speed of convergence results in a higher optimal remanufacturability

level.
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Figure 9: Value (left) and extent (right) of remanufacturability as a function of the increase rate

in perceived depreciation.

For an illustration, see Figure 9. This can be understood as follows: A higher speed of conver-

gence λ allows capturing earlier profits from remanufactured products. This increases the incentive

to invest in remanufacturability. In turn, a higher level of remanufacturability results in a faster

increase in cumulative sales of remanufactured products Sr,t, which accelerates the convergence

of the perceived depreciation. These two effects, acting in the same direction, incentivize the

manufacturer to choose a higher remanufacturability level.

6 Discussion and Conclusion

In this paper, we develop insights for managers who consider producing a remanufacturable product.

Our model captures some of the key elements driving the decision to introduce a remanufacturable

product, and the subsequent management of the total product line; in particular, we focus on

the market drivers and technology enablers. Motivated by examples from industry, we consider

a market where a remanufactured product is valued less than a new product and is targeted to

the lower end of the market. The proportion of used products that can be remanufactured can be

increased by applying a more expensive production technology.

To our knowledge, this is the first paper to address the integrated market segmentation and

production technology choice problem in a remanufacturing setting. We investigate how these

choices are driven by the characteristics of the market and the cost structure. The existing literature

28



focuses mainly on operational issues or deals with technology selection (Klausner et al.) and market

segmentation (Ferrer) separately. These two dimensions are strongly coupled via the dependence

of the remanufactured product supply on previous new product sales. Our analysis reveals the

implications of this dependence. Our key results are summarized below.

We study which characteristics of the consumer profile and the production technology make

remanufacturing a profitable strategy. We find that high production costs of the single-use product,

low remanufacturing costs and low incremental costs to make a single-use product remanufacturable

are the key technology drivers. The consumer profile plays a role in the determination of the

profitability of remanufacturing: The more consumers are concentrated on the lower end of the

market, the lower the remanufacturing potential. In addition, the consumer profile and the fixed

cost jointly interact to determine the optimal remanufacturability level: If the fixed cost is higher,

the optimal remanufacturability level is lower, and the market at which this level is attained has

more high-valuation consumers. These results highlight that the consumer profile is a crucial

element in determining the potential for remanufacturing and the optimal remanufacturability

level. Therefore, it would be very useful in practice to invest in understanding the market well

before launching a remanufacturable product.

We characterize a specific role of the new product in the portfolio of new and remanufactured

products: New products may be sold in order to generate a supply of remanufactured products,

on which the profit is made. This role is illustrated by the finding that it may be optimal to sell

new products below unit cost. This suggests that manufacturers who also have remanufacturing

operations may benefit from managing both new and remanufactured product lines as part of the

same profit center. Furthermore, a decrease in the unit remanufacturing cost may lead to an

increase in the new product sales volume, in order to supply remanufactured products in response

to increased demand for them. This phenomenon has implications for legislation that provides

subsidies for remanufacturing in order to reduce the total disposal volume.

We analyze two extensions to the basic model. In the first extension, we investigate whether

the manufacturer would produce a remanufacturable product, and if so, what remanufacturability

level he would choose if used products were remanufactured and sold by independent competing

remanufacturers. We find that the same condition as in the monopoly case is sufficient for the

introduction of a remanufacturable product to be profitable, but the optimal level of remanufac-

turability offered by the manufacturer is lower than in the monopoly model and decreases as the

number of competing remanufacturers increases.

In the second extension, we study the value and the extent of remanufacturability when prod-

ucts diffuse gradually through the market. We find interesting product life cycle considerations for

portfolios with both new and remanufactured products: The value and extent of product remanu-
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facturing increases as products penetrate the market faster. Furthermore, due to product life cycle

dynamics, capacity management decisions become critical and interact with technology selection

decisions. We find that the impact of higher capacity adjustment costs on the incentives to invest in

remanufacturability depend on the rate of diffusion. With fast diffusion, higher capacity adjustment

costs reduce the level of remanufacturability. The opposite may occur with slow diffusing products.

Finally, we consider the situation where relative willingness-to-pay for the remanufactured product

increases over the product life cycle to its highest possible level as a function of the cumulative sales

of remanufactured products. We find that the incentive to invest in remanufacturability increases

with the speed of convergence.

We conclude with a discussion of the generality and applicability of our results. We assumed

that there is no cost to dispose of the used products. A unit disposal cost d can be easily accom-

modated in our model. If the manufacturer is responsible for disposal, as the European WEEE

directive (2003) on producer responsibility stipulates for example, since all products will eventually

be disposed of at the manufacturer’s expense, the problem can be reformulated with a modified

production cost that includes the disposal cost. If the manufacturer disposes only of returned unus-

able products, and the consumer disposes of used remanufactured products, a similar reformulation

is obtained where both the manufacturing cost and the remanufacturing cost are modified. This

is because the maximum price the manufacturer can charge for the remanufactured product to

consumer type θ is then (1 − δ)θ − βd; in other words, the disposal cost is implicitly borne by

the manufacturer. The results we obtained are valid if the modified costs satisfy the cost-related

assumptions made in the analysis.

We assumed that the costs of manufacturing and remanufacturing are constant over the life

cycle of the product, but in practice, a new technology may become available for either operation.

The sensitivity analysis of §3.3.3 gives us some insight concerning how the optimal product portfolio

would be impacted by a potential decrease in the remanufacturing cost. In particular, our results

indicate that the manufacturer would choose to build a higher remanufacturability level into the

product if he anticipates that the remanufacturing cost will go down in the future. A complete

model that captures beliefs about how costs may evolve over time could potentially be developed

to rigorously model this phenomenon.

We would like to end with the caveat that although the framework that we developed captures

several important elements that factor into the determination of a remanufacturing strategy, in

practice, the market decisions and technology choices are much more complex. Comprehensive

decision support tools to help managers evaluate various options would therefore be very useful.

We hope that our research stimulates such research and development.
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1 Some properties of the revenue function

Lemma 4 (i) The Hessian H of the revenue function R(·) is of the form H =

[
a + b a

a a

]
. (ii)

If F ∈ Fk and n > 0, then η′(θ)(1 + κ) − η′′(θ) > 0 and (1 − η′(θ))(1 + κ) − η′′(θ) > 0 ∀ θ ∈ [0, 1)

imply a < 0 and b < 0.

Proof. (i) Recall that pN and pR denote the prices of new and remanufactured products, respec-

tively, and that the net utility that a consumer of type θ derives from buying a new product, a

remanufactured product, and no product, is θ − pN , η(θ) − pR, and 0, respectively. In a given

period, consumers choose which product to buy based on the utility that they derive in that period

from this purchase. Without loss of generality, we only consider cases where pR ≤ η(pN ); if pR

were larger than η(pN ), no remanufactured products would be sold, and the price pR could be re-

duced to the level η(pN ) without affecting the demand for either product. Let p denote the vector

(pN , pR). Then ΩN (p)
.
= {θ ∈ [0, 1] : θ − pN ≥ (1 − δ) θ − pR} is the set of consumer types who

purchase a new product. ΩR (p) is defined analogously as the set of consumer types who purchase a

remanufactured product. Define the marginal consumers θl(p) and θh(p) such that θl is indifferent
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between buying no product and buying a remanufactured product, and θh is indifferent between

buying a remanufactured product and a new product. Since η(θ) is a strictly increasing function,

ΩR (p) = [θl(p), θh(p)) and ΩN (p) = [θh(p), 1], where θl(p) and θh(p) satisfy

η(θl) = pR and θh − η(θh) = pN − pR. (A-1)

Taking the derivative of these two equalities with respect to pN and pR gives ∂θl

∂pR
= 1

η′(θl)
, ∂θl

∂pN
= 0,

∂θh

∂pR
= −1

1−η′(θh) and ∂θh

∂pN
= 1

1−η′(θh) .

Let n and r denote the volume of consumers who purchase new and remanufactured products,

respectively, and define ν
.
= (n, r). Then n =

∫
ΩN (p) dF (θ) =

∫ 1
θh

f (θ) dθ = 1 − F (θh) and

r =
∫
ΩR(p) dF (θ) =

∫ θh

θl
f (θ) dθ = F (θh) − F (θl).

Taking the derivative of these two equalities with respect to n and r gives





1 = − 1
1−η′(θh)f (θh) ∂pN

∂n + 1
1−η′(θh)f (θh) ∂pR

∂n

0 = − 1
1−η′(θh)f (θh) ∂pN

∂r + 1
1−η′(θh)f (θh) ∂pR

∂r

0 = 1
1−η′(θh)f (θh) ∂pN

∂n −
(

1
1−η′(θh)f (θh) + 1

η′(θl)
f (θl)

)
∂pR

∂n

1 = 1
1−η′(θh)f (θh) ∂pN

∂r −
(

1
1−η′(θh)f (θh) + 1

η′(θl)
f (θl)

)
∂pR

∂r

The simultaneous solution of these four equations yields ∂pN

∂n = −η′(θl)
f(θl)

− 1−η′(θh)
f(θh) and ∂pN

∂r = ∂pR

∂r =
∂pR

∂n = −η′(θl)
f(θl)

.

Since R(ν) = npN (ν) + rpR(ν), we obtain, using the chain rule, that

[
∂R
∂n , ∂R

∂r

]
=

[
pN + n∂pN

∂n + r ∂pR

∂n , pR + n∂pN

∂r + r ∂pR

∂r

]
=

[
pN −

(
1−η′(θh)

f(θh) + η′(θl)
f(θl)

)
(1 − F (θh)) − η′(θl)

f(θl)
(F (θh) − F (θl)), pR − η′(θl)

f(θl)
(1 − F (θl))

]
.

Define GN (θ)
.
= θ − 1−F (θ)

f(θ) and GR (θ)
.
= η(θ) − η′(θ)1−F (θ)

f(θ) . Using A-1, we find

[
∂R
∂n , ∂R

∂r

]
=

[
GN (θh) − GR(θh) + GR (θl) , GR (θl)

]
. (A-2)

Taking the derivative of ∂R(ν)
∂n and ∂R(ν)

∂r with respect to r and n, and following similar steps, we

obtain the elements of the Hessian H:

∂2R

∂n2
=

(
G′

N (θh) − G′
R (θh)

) ∂θh

∂n
+ G′

R (θl)
∂θl

∂n
and

∂2R

∂r2
=

∂2R

∂r∂n
= G′

R (θl)
∂θl

∂r
. (A-3)

Since ∂θl

∂n = ∂θl

∂r = − 1
f(θl)

, we see that H =

[
a + b a

a a

]
with a = −G′

R (θl)
1

f(θl)
and b =

(G′
N (θh) − G′

R (θh)) ∂θh

∂n .
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(ii) We now specialize this matrix to the case F (θ) = 1 − (1 − θ)κ, or f(θ) = κ(1 − θ)κ−1. For

this distribution,

GN (θ) = θ −
1 − θ

κ
, GR (θ) = η(θ) − η′(θ)

1 − θ

κ
(A-4)

so G′
N (θ) = 1

κ +1 and G′
R (θ) = η′(θ)

(
1
κ + 1

)
−η′′(θ)1−θ

κ . Since n = 1−F (θh), we have θh = 1−n
1
κ .

Therefore, ∂θh

∂n = − 1
κ (1 − θh)1−κ. Substituting, we find

a = −

(
η′(θl)

(
1

κ
+ 1

)
− η′′(θl)

1 − θl

κ

)
1

κ
(1 − θl)

1−κ

b = −

((
1

κ
+ 1

) (
1 − η′(θh)

)
+ η′′(θh)

1 − θh

κ

)
1

κ
(1 − θh)1−κ .

n > 0 ⇔ θh < 1. In this case, the last term in both expressions is positive since θl ≤ θh. When

the conditions η′(θ)(1 + κ) − η′′(θ) > 0 and (1 − η′(θ))(1 + κ) − η′′(θ) > 0 hold ∀ θ ∈ [0, 1), this is

sufficient for the first term in both expressions to be positive. We conclude that a < 0 and b < 0.

In particular, if η(θ) = (1−δ)θ with δ ∈ (0, 1), then η′(θ) = 1−δ and η′′(θ) = 0, so these conditions

are satisfied.

In the remainder of the paper, we will assume η(θ) is such that a < 0 and b < 0 for the family

of distributions F ∈ Fk when n > 0. In this case, H has the following properties:

|H| > 0,
∂2R

∂n2
< 0 (R(·) is strictly concave.) (Property 1)

∂2R

∂n∂r
< 0 (New and remanufactured products are imperfect substitutes.) (Property 2)

∂2R

∂r2
< 0 (Property 3)

∣∣∣∣
∂2R

∂n∂r

∣∣∣∣ <

∣∣∣∣
∂2R

∂n2

∣∣∣∣ (Property 4)

1

2

∂2R

∂r2
>

∂2R

∂n∂r
(Property 5)

2 Assumptions

A useful condition for characterizing the optimal path is that the solution to (3) is interior to

the feasible region. In addition, to characterize q∗ using first order conditions, we need q∗ < 1.

To this end, we introduce Assumption 1 and Assumption 2, and we provide conditions on model

parameters that assure that Assumption 1 holds if F ∈ Fκ (Lemma 5). We will assume throughout

the derivations that in addition to those assumptions already introduced in the text, the following

assumptions hold:
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The maximizer (n∗, r∗) of (3) satisfies n∗ + r∗ < 1. (Assumption 1)

cn (0) < 1, cr (q) < 1 ∀ q and ∃ q < 1 : c (q) < v (q) for q < q. (Assumption 2)

c′′ (q) > 0 and c′n(q) + βqc′r (q) > 0. (Assumption 3)

c′n (q) and c′r (q) are finite for all q ∈ [0, 1]. (Assumption 4)

F ∈ Fκ. (Assumption 5)

η′(θ)(1 + κ) − η′′(θ) > 0, (1 − η′(θ))(1 + κ) − η′′(θ) > 0, η′(θ) < 1 ∀ θ ∈ [0, 1). (Assumption 6)

Lemma 5 For a consumer profile with F ∈ Fκ, there exists κ0 > 0 such that Assumption 1 is

satisfied for all κ ∈ (0, κ0).

Proof. The Lagrangian has the form

L = π(n, r) + βv(I + qn − r) + µnn + µrr + λ (1 − n − r) + τ (I − r) .

(r∗, n∗, λ∗, µ∗
n, µ∗

r , τ
∗) satisfy the K-T conditions:





∂π
∂n + qβv′(I + qn − r) + µn − λ = 0

∂π
∂r − βv′(I + qn − r) + µr − λ − τ = 0

λ (1 − n − r) = 0, µnn = 0, µrr = 0, τ (I − r) = 0

λ ≥ 0, µn ≥ 0, µr ≥ 0, ν ≥ 0

Assume that r∗ + n∗ = 1 and µ∗
n = µ∗

r = 0Then ∂π
∂n(n∗, 1− n∗) + qβv′(I + qn∗ − r∗)− λ = 0, or

λ = GN (θh)−GR(θh)+GR(0)−cn(q)+qβv′(I+qn∗−r∗). Define y(θh)
.
= GN (θh)−GR(θh)+GR(0) =

θh−
1−θh

κ −η(θh)+η′(θh)1−θh

κ +η(0)− η′(0)
κ . Let θ̄ be the maximizer of y. If y(θ̄)−cn(0)+v′(0) < 0,

then λ < 0 for all θh ∈ [0, 1], then λ < 0, which is inconsistent with the K-T conditions. This

condition can be rewritten as κ < a
.
= (1−θ̄)(1−η′(θ̄))+η′(θ̄)

[v′(0)+θ̄+η(0)−η(θ̄)−cn(0)]+
. Since Assumption 2 holds and

η′(θ̄) < 1 with Assumption 6, a exists.

Assume that r∗ + n∗ = 1 and µ∗
n = 0, but µ∗

r > 0. Then n∗ = 1, r∗ = 0, and τ∗ = 0, and
∂π
∂n(1, 0) + qβv′(I + q) − λ = 0, or λ = − 1

κ − cn(q) + qβv′(I + q). If κ < â
.
= 1

[v′(0)−cn(0)]+
, then

λ < 0, which is inconsistent with the K-T conditions. With Assumption 2, â exists.

Assume that r∗ + n∗ = 1 and µ∗
r = 0, but µ∗

n > 0. (i) Assume I ≥ 1. Then n∗ = 0, r∗ = 1,

and τ∗ = 0. In this case, ∂π
∂r (0, 1) − βv′(I − 1) − λ = 0, or λ = η(0) − η′(0)

κ − cr(q) − βv′(I − 1). If

κ < ã
.
= η′(0)

η(0) , then λ < 0, which is inconsistent with the K-T conditions. (ii) Assume I < 1. Then

r∗ = 1 contradicts the K-T condition r∗ ≤ I.
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Assume that r∗ + n∗ = 1 and µ∗
r > 0, µ∗

n > 0. Then n∗ = r∗ = 0, which contradicts the

assumption r∗ + n∗ = 1.

We conclude that if κ < κ0
.
= min(a, â, ã), then r∗ + n∗ < 1.

3 Proofs

Proof of Lemma 1. Smith and McCardle (2002) consider a Markov decision process of the form

v∗k(xk) = supak∈Ak
{rk(ak, xk) + δkE[v∗k−1(x̃k−1(ak, xk))]} for k > 0, v∗0(x0) = 0. Here, ak and

xk ∈ Θ are the decision variable and the state variable, respectively, in period k. The authors

establish conditions under which the properties of the reward functions rk are inherited by the

value function v∗k. In particular, they prove the following:

Proposition 5 (Smith and McCardle 2002). Let U be the set of functions on X satisfying a C3

(closed convex cone) property P and let P ∗ be a joint extension of P on AxΘ. If, for all k, a) the

reward functions rk(ak, xk) satisfy P ∗ and b) the transitions x̃k−1(ak, xk) satisfy P ∗(
Â
∼U ), then each

v∗k satisfies P and limk→∞ v∗k, if it exists, also satisfies P .

The corresponding variables in our problem are the following: a = ν, A = D ∩ {r ≤ I}, x = I,

Θ = [0,∞), δ = β, and x̃ = I + qn − r. We would like to show that the value function is concave.

Concavity is a C3 property. The authors show that for convex action and state spaces A and Θ,

joint concavity on AxΘ is a joint extension of concavity on Θ. In our problem, the reward function

rk(νk, Ik) = π(νk) and is independent of Ik. Since π is concave, condition (a) is satisfied. Since

our recursion is deterministic and the transition function is linear, it trivially satisfies condition

(b). In addition, since we have a discounted-cost formulation with a bounded reward function,

Vβ = limk→∞ vk exists. We conclude that Vβ(I; q) is a concave function of I. Note that if the

path {(nt, rt), t ≥ 0} is feasible for I0 = I, then it is feasible for any I0 > I. Thus, Vβ (I; q) is

non-decreasing in I. This concludes the proof of part (i). The Hessian H̃ of f(ν, I) with respect

to ν satisfies H̃11 < 0 and |H̃| > 0 so f is strictly concave in ν. A unique maximizer of f on A

therefore exists for all t and the optimal path {ν∗
t = (n∗

t , r
∗
t ), t ≥ 0} is unique.

Proof of Lemma 2. Part (i): We want to show that if c (q) < v (q), then there exists a feasible

path with a positive discounted profit. We proceed by constructing such a path. Pick ε > 0 and

consider the path Pε = {(ε, 0) , (ε, qε) , (ε, qε) , ...} ∈ I(0). Using the Taylor series expansion of

R(ν) around the point (0,0), we can write R (ε, 0) = R (0, 0)+ ε
∂R(0,0)

∂n + o (ε) = ε
∂R(0,0)

∂n + o (ε) and

R (ε, qε) = R (0, 0) + ε
∂R(0,0)

∂n + qε
∂R(0,0)

∂r + o (ε) = ε
(

∂R(0,0)
∂n + q

∂R(0,0)
∂r

)
+ o (ε), where we used the
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fact that R(0, 0) = 0. Define Ṽβ(ε; q)
.
=

∑
{νt∈Pε,t≥0} βtπ(νt, q). Then,

Ṽβ(ε; q) = R (ε, 0) − cn (q) ε +
∞∑

t=1

βt (R (ε, qε) − cn (q) ε − qcr (q) ε)

= ε
∂R (0, 0)

∂n
+ o (ε) − cn (q) ε +

∞∑

t=1

βt

(
ε

(
∂R (0, 0)

∂n
+ q

∂R (0, 0)

∂r

)
+ o (ε) − cn (q) ε − qcr (q) ε

)

= ε

(
∂R (0, 0)

∂n
+ βq

∂R (0, 0)

∂r

)
+ ε

∞∑

t=1

βt

(
∂R (0, 0)

∂n
+ βq

∂R (0, 0)

∂r

)

−ε

(
cn (q) + βqcr(q) +

∞∑

t=1

βt (cn(q) + βqcr(q))

)
+ o(ε)

= ε

∞∑

t=0

βt

(
∂R (0, 0)

∂n
+ βq

∂R (0, 0)

∂r

)
−

∞∑

t=0

βt (cn (q) + βqcr (q)) + o(ε)

=
ε

1 − β
(v (q) − c (q)) + o (ε)

To show that Ṽβ(ε; q) > 0 for some ε > 0, consider
∂Ṽβ

∂ε = lim
ε→0+

Ṽβ(ε;q)
ε = 1

1−β (v (q) − c (q)) +

lim
ε→0+

o(ε)
ε = 1

1−β (v (q) − c (q)). Since the latter expression is strictly positive if c(q) < v (q) we

conclude that there exists an ε > 0 such that Ṽβ (ε; q) > 0 if c(q) < v (q).

Part (ii): We now show that if c(q) ≥ v (q), then Vβ (q) = 0 (and it is optimal not to sell

anything). To do this, we first show that there exists a feasible path with zero discounted profit.

Next, we find a non-positive upper bound on the discounted profit on any path under the condition

c(q) ≥ v (q).

The discounted profit on the path {(0, 0) , (0, 0) , (0, 0) , ...} ∈ I(0) is 0. Therefore Vβ (q) ≥ 0.

Take any P ∈ I(0). By the definition of I(0),
∑T

t=0 (qnt − rt+1) ≥ 0 for any T . We will now show

by induction that
∑T

t=0 βt (qnt − rt+1) ≥ 0.

We will first establish that
∑T

t=0 βt (qnt − rt+1) ≥ βT
∑T

t=0 (qnt − rt+1) by induction on T . For

T = 0, this condition holds with equality. For any T ≥ 1, assume that
∑T−1

t=0 βt (qnt − rt+1) ≥

βT−1
∑T−1

t=0 (qnt − rt+1) (induction step). Then

T∑

t=0

βt (qnt − rt+1) =
T−1∑

t=0

βt (qnt − rt+1) + βT (qnt − rt+1)

≥ βT−1
T−1∑

t=0

(qnt − rt+1) + βT (qnt − rt+1)

= βT
T−1∑

t=0

(qnt − rt+1) + βT (qnt − rt+1)

= βT
T∑

t=0

(qnt − rt+1) ,
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where the inequality follows from the induction hypothesis and the next step from the fact that β <

1 multiplies a positive term. This proves the induction hypothesis. Since
∑T

t=0 (qnt − rt+1) ≥ 0, we

conclude that
∑T

t=0 βt (qnt − rt+1) ≥ 0, or q
∑T

t=0 βtnt ≥
∑T

t=1 βt−1rt. Multiplying the inequality

by β and taking the limit for T → ∞, we obtain

∞∑

t=1

βtrt ≤ qβ

∞∑

t=0

βtnt. (A-6)

We can use this property to derive an upper bound on Vβ,P , the discounted profits for path P. The

profits are:

Vβ,P = R (ν0) − cn(q)n0 +
∞∑

t=1

βt (R (νt) − cn (q) nt − cr (q) rt)

≤
∂R (0, 0)

∂n
n0 − cn(q)n0

+
∞∑

t=1

βt

(
∂R (0, 0)

∂n
nt +

∂R (0, 0)

∂r
rt − cn(q)nt − cr(q)rt

)

=

(
∂R (0, 0)

∂n
− cn(q)

)
n0

+
∞∑

t=1

βt

((
∂R (0, 0)

∂n
− cn (q)

)
nt +

(
∂R (0, 0)

∂r
− cr (q)

)
rt

)

≤

(
∂R (0, 0)

∂n
− cn (q)

) ∞∑

t=0

βtnt +

(
∂R (0, 0)

∂r
− cr (q)

)
qβ

∞∑

t=0

βtnt

=

(
∂R (0, 0)

∂n
− cn (q) + qβ

(
∂R (0, 0)

∂r
− cr (q)

)) ∞∑

t=0

βtnt

= (v (q) − c (q))
∞∑

t=0

βtnt.

where the first inequality holds because of the concavity of R (ν) and the second inequality holds

by (A-6). We conclude that c(q) ≥ v (q) implies Vβ (q) = 0, which is achieved on the path

{(0, 0) , (0, 0) , (0, 0) , ...}.

Proof of Lemma 3. Consider the path Pq = {(ns, 0) , (ñ, r̃) , (ñ, r̃) , (ñ, r̃) ...} ∈ I(0) and let

Vβ,P (q) denote corresponding discounted profit on this path. We have that ∂R(ñ,r̃)
∂n = cn (q) and

∂R(ns,0)
∂n = cn (q). Hence, ∂R(ns,0)

∂n = ∂R(ñ,r̃)
∂n . By Property 1 and Property 2, ∂R(n,r)

∂n is a strictly

decreasing function of r and n. Therefore, either ñ = ns and r̃ = 0 or ñ < ns and r̃ > 0. Then,

I1 = qns ≥ qñ ≥ r̃. As qñ ≥ r̃, we have that It+1 = It + qñ − r̃ ≥ It ∀t. Since I1 ≥ r̃, it follows

that It ≥ r̃ ∀t and P ∈ I(0). By the definition of ns and (ñ, r̃), the elements of policy P achieve

the optimal profit over the feasible region in each period starting with the initial condition I0 = 0.

Therefore, P achieves the optimal profit: Vβ,P (q) = Vβ(q).
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We will show that the derivative of Vβ,P (q) with respect to q is negative. V ′
β,P (q) =

∑∞
t=0 βt ∂π(νt,q)

∂q .
∂π(ns,0,q)

∂q = ∂π
∂n

∂ns

∂q + ∂π
∂q = ∂π

∂q = −c′n(q)ns, where we used ∂π(ns,0)
n = 0. ∂π(ν̃t,q)

∂q = ∂π
∂n

∂ñ
∂q + ∂π

∂r
∂r̃
∂q + ∂π

∂q =
∂π
∂q = −c′n(q)ñ−c′r(q)r̃ ∀t ≥ 1 where we used

(
∂π
∂n , ∂π

∂r

)
= (0, 0) by the definition of (ñ, r̃). Summing,

we find that V ′
β,P (q) = −c′n (q)

(
ns + ñ β

1−β

)
− c′r (q) r̃ β

1−β ; Assumption 4 assures that the sum

converges. Since ns ≥ ñ, V ′
P,β (q) ≤ −c′n (q) ñ 1

1−β − c′r (q) r̃ β
1−β . By assumption, c′n (q) > 0. If, in

addition, c′r (q) = 0, then V ′
P,β (q) < 0. If c′r (q) < 0, then V ′

P,β (q) ≤ (−c′n (q) − βqc′r (q)) ñ 1
1−β since

r̃ ≤ qñ. Invoking Assumption 3, we again obtain V ′
P,β (q) < 0.

Lemma 6 Assume c (q) < v (q). Recall that the policy function g (I) = I + qn∗ (I) − r∗ (I) and

consider the interval X = [0, g (0)]. Then, g(I) > 0 for I ∈ X and either

(i) g′ (I) < 0, |g′ (I)| < 1 and r∗ (I) = I for I ∈ X, or

(ii) there exists I ∈ X such that g′ (I) < 0, |g′ (I)| < 1 and r∗ (I) = I for I ∈ [0, I], and g′ (I) ≥ 0,

r∗ (I) < I for I ∈ (I, g (0)]. In addition, if qñ < r̃, g(I) < I on (I, g(0)].

I

g(I)

g(0) I

g(I)

g(0)I I I

Case (i) Case (ii)

Figure 10: Policy function for Lemma 6

Proof In this lemma, we prove that the policy function g has one of the two forms shown in Figure

6 (decreasing or U-shaped on [0, g(0)], which is the relevant interval, as we shall show.

For notational simplicity, we suppress the dependence of π(ν, q) and Vβ(I, q) on q in this proof.

We make the following conjecture concerning (n∗ (I) , r∗ (I)): There exists an interval [0, Ĩ] on

which n∗ (I) > 0 and r∗ (I) = I, i.e. there exists an interval over which the constraint r ≤ I in
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(3) is binding. Assuming that the conjecture is correct, we characterize n∗ (I) and g (I) in Step

1a. We validate the conjecture in Step 1b, and determine whether it holds for the entire interval

[0, g (0)]. If so, then part (i) is proven with Ĩ = g(0); otherwise, we determine the exact interval

[0, I] for which the conjecture holds. We make a second conjecture concerning (n∗ (I) , r∗ (I)): On

(I, g (0)], n∗ (I) > 0 and 0 < r∗ (I) < I . Steps 2a and 2b characterize g′ under these assumptions

and validate this conjecture, respectively, proving part (ii).

Step 1a: Characterization of n∗ (I) and g (I) under the conjecture r∗ (I) = I and n∗ (I) > 0

on [0, Ĩ].

Consider the maximization problem in (3). By Lemma Assumption 1, r∗ (I) + n∗ (I) < 1. In

addition, we conjectured that n∗(I) > 0, so n∗(I) is an interior solution. Finally, we conjectured a

boundary solution r∗(I) = I. Therefore, n∗(I) and r∗(I) jointly satisfy

∂π (n∗(I), I)

∂n
+ βq

∂Vβ (qn∗(I))

∂I
= 0. (A-7)

∂π (n∗ (I) , I)

∂r
− β

∂Vβ (qn∗(I))

∂I
> 0. (A-8)

We now characterize g(I) using A-7: Taking the derivative of (A-7) with respect to I and using

the chain rule, we can calculate n′ .
= dn∗(I)

dI :

∂2π (n∗(I), I)

∂n2
n′ +

∂2π (n∗(I), I)

∂n∂r
+ βq2V ′′

β (qn∗(I)) n′ = 0.

We find n′ = −
∂2π(n∗(I),I)

∂n∂r

∂2π(n∗(I),I)

∂n2 +βq2V ′′
β

(qn∗(I))
< 0 where the inequality follows by Property 1, Property

2 and the concavity of Vβ . Since g(I) = qn∗(I) under the conjecture, g′ (I) = qn′ < 0 and

|n′| =
− ∂2π(n,I)

∂n∂r

− ∂2π(n,I)

∂n2 −βq2V ′′
β

(qn,I)
≤

− ∂2π(n,I)
∂n∂r

− ∂2π(n,I)

∂n2

< 1 (the former step because V ′′
β (qn) ≤ 0 and the latter

step by Property 4). Thus |g′(I)| < 1. To summarize, we have shown that g′(I) < 0, |g′(I)| < 1

and n∗(I) strictly decreases if we assume that r∗(I) = I and n∗(I) > 0.

Step 1b: Validation of the conjecture

We now need to show that there exists a range [0, Ĩ] on which n∗(I) > 0 and A-8 is satisfied.

Let us take the derivative of the two terms in A-8 with respect to I. We find ∂
∂I

(
∂π(n∗(I),I)

∂r

)
=

∂2π
∂n∂rn′ + ∂2π

∂2r
=

|H|+βq ∂2π

∂2r
V ′′

β
(qn∗)

∂2π

∂n2 +βqV ′′
β

(qn∗)
< 0 and ∂

∂I

(
βV ′

β (qn∗ (I))
)

= βqV ′′
β (qn∗ (I)) n′ > 0. A-8 holds at

I = 0. As the first term in (A-8) strictly decreases in I and the second term strictly increases in

I, one of the following two cases is true on [0, g(0)]: either (i) A-8 holds ∀I ∈ [0, g(0)] or (ii) there

exists I ∈ (0, g(0)] for which A-8 is satisfied at equality. Expressing this more precisely, we have

one of the following two cases:

(i) ∂π(n∗(g(0)),g(0))
∂r − βV ′

β (qn∗ (g(0))) > 0. Then g′(I) < 0, |g′(I)| < 1 and n∗(I) strictly decreases
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on X = [0, g(0)]. Since |g′(I)| < 1, we have g (g(0)) > 0, that is, n∗(g(0)) > 0 (since g = qn∗ on

this range) which, together with the fact that n∗(I) strictly decreases on this range, validates the

conjecture that n∗ (I) > 0 over [0, g (0)].

(ii) There exists I
.
= sup

(
I : ∂π(n∗(I),I)

∂r − βV ′
β (qn∗ (I)) > 0

)
< g(0) The conjecture that r∗ (I) = I

on [0, Ĩ] is validated with Ĩ = I since A-8 holds on [0, I), with equality holding only at I = I. Then

g′(I) < 0, |g′(I)| < 1 and n∗(I) strictly decreases on [0, I].

Step 2a: Characterization of g′(I) under the conjecture 0 < r∗ (I) < I and n∗ (I) > 0 on

(I, g (0)]

We now complete case (ii) by characterizing (n∗ (I) , r∗ (I)) over (I, g(0)] We conjecture that

0 < r∗ (I) < I and n∗ (I) > 0 for I ∈ (I, g(0)]. In this case, n∗(I) and r∗(I) satisfy the first order

conditions of the right hand side of (3):

∂π (n∗(I), r∗(I))

∂n
+ βq

∂Vβ (g(I))

∂I
= 0. (A-9)

∂π (n∗ (I) , r∗(I))

∂r
− β

∂Vβ (g(I))

∂I
= 0. (A-10)

We also know that Vβ, n∗, r∗ jointly satisfy Vβ (I) = π (n∗ (I) , r∗ (I)) + βVβ (g (I)) with g(I) =

I + qn∗(I) − r∗(I). Taking the derivative of this expression with respect to I gives V ′
β(I) =

∂π
∂nn′ + ∂π

∂r r′ + βV ′
β(g(I))g′(I) (with r′

.
= dr∗(I)

dI ). Taking the derivative of g(I) and evaluating it at

(n∗(I), r∗(I)) gives g′(I) = 1 + qn′ − r′. Substituting g′(I) in the previous expression, collecting

terms, and simplifying using A-9 and A-10, we find

V ′
β (I) = βV ′

β (g (I)) . (A-11)

V ′′
β (I) = βV ′′

β (g (I)) g′ (I) . (A-12)

By Lemma 1, V ′
β (I) ≥ 0. First consider the case V ′

β (I) = 0. By (A-11), if V ′
β (I) = 0, we have

V ′
β (g (I)) = 0. Then, by A-9 and A-10 and the definition of ν̃, (n∗ (I) , r∗(I)) = (ñ, r̃). Thus,

g (I) = I + qñ − r̃, and g′ (I) = 1 > 0. Note that if qñ < r̃, then g(I) < I.

Next consider the case V ′
β (I) > 0. By (A-11), if V ′

β (I) > 0, then, as β < 1, we must have

that V ′
β (g (I)) > V ′

β (I), and by the concavity of Vβ , g (I) < I. We conclude that if qñ < r̃, then

g(I) < I on (I, g(0)].

To characterize g′(I) when V ′
β (I) > 0, consider the following three subcases:

(a) V ′′
β (g (I)) < 0 and V ′′

β (I) < 0. Since 0 < β < 1, and A-12 must hold, g′(I) > 0.

(b) V ′′
β (g (I)) < 0 and V ′′

β (I) = 0. Since β > 0 and A-12 must hold, g′(I) = 0.

(c) V ′′
β (g (I)) = 0. Taking the derivative of A-9 and A-10 with respect to I and using

V ′′
β (g (I)) = 0 gives a system of two equations in the two unknowns n′(I) and r′(I) whose only

solution is n′(I) = 0 and r′(I) = 0. In this case, g′(I) = 1 > 0.
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Thus, we conclude that g′(I) ≥ 0 on (I, g(0)].

Step 2b: Validation of the conjecture

We will first determine the sign of n′ and r′. Taking the derivative of (A-9) and (A-10) with

respect to I, we obtain
(

∂2π
∂n2 + βq2 ∂2Vβ

∂I2

)
n′ +

(
∂2π
∂n∂r − βq

∂2Vβ

∂I2

)
r′ = −qβ

∂2Vβ

∂I2(
∂2π
∂r∂n − βq

∂2Vβ

∂I2

)
n′ +

(
∂2π
∂r2 + β

∂2Vβ

∂I2

)
r′ = β

∂2Vβ

∂I2

(A-13)

from which we solve for (n′, r′):

[
n′

r′

]
=

β
∂2Vβ

∂I2

|H| + β
(

∂2π
∂n2 + q2 ∂2π

∂r2 + 2q ∂2π
∂n∂r

)
∂2Vβ

∂I2

[
−q ∂2π

∂r2 − ∂2π
∂n∂r

q ∂2π
∂n∂r + ∂2π

∂n2

]
.

The signs of each term can easily be determined:
∂2Vβ

∂I2 ≤ 0, |H|+β
(

∂2π
∂n2 + q2 ∂2π

∂r2 + 2 ∂2π
∂n∂rq

)
∂2Vβ

∂I2 ≥

0, −q ∂2π
∂r2 − ∂2π

∂n∂r > 0 and q ∂2π
∂n∂r + ∂2π

∂n2 < 0 by Lemma 1, Property 2, Property 3 and Property 4.

Therefore, n′ ≤ 0, r′ ≥ 0 and |n′| = −n′. Showing that |n′| < 1 is equivalent to showing that

β

(
q (1 − q)

∂2π

∂r2
+ (1 − 2q)

∂2π

∂n∂r
−

∂2π

∂n2

)
∂2Vβ

∂I2
< |H| . (A-14)

With Property 5 we obtain

q (1 − q)
∂2π

∂r2
+ (1 − 2q)

∂2π

∂n∂r
>

∂2π

∂n∂r
,

and with Property 4, we obtain further that

q (1 − q)
∂2π

∂r2
+ (1 − 2q)

∂2π

∂n∂r
>

∂2π

∂n2
.

Together with
∂2Vβ

∂I2 < 0 and |H| > 0, we have that (A-14) is satisfied. We conclude that |n′| < 1.

Since r∗ (I) = I > 0 and we have proven that r′ ≥ 0 on (I, g(0)], we conclude that r∗ (I) > 0 on

(I, g(0)]. However, since we have proven that n′ < 0, it is not as immediate that n∗ (I) > 0 ∀I ∈

(I, g(0)]. On the other hand, as |n′| < 1 both on (I, g(0)] and on [0, I] (by part i), we have that

n∗ (g(0)) > 0. Because n′ < 0 on [0,g(0)], we conclude that n∗(I) > 0 on (I, g(0)] is also verified.

Lemma 7 Define ν∞
.
= (n∞, r∞) ∈ D simultaneously satisfying ∂R(ν∞)

∂n + qβ
∂R(ν∞)

∂r = c (q) and

qn∞ = r∞. If c (q) < v (q) and qñ < r̃, then,

(i) There exists a unique I∞ ∈ [0, g(0)] such that I∞ solves g (I) = I. In addition, g′(I∞) < 0 and

|g′(I∞)| < 1. Moreover, r∞ = I∞.

(ii) The region [g(I), I] is a capture region, that is, It ∈ [g(I), I] implies that It+1 = g(It) ∈ [g(I), I].

(iii) Starting with I0 = 0, there exists a Tq ≥ 0 such that r∗t = It ∀t ≥ Tq. Moreover, limt→∞It =

I∞.
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Proof Part (i): We start by conjecturing that there exists I∞ such that g (I∞) = I∞, g′(I∞) < 0

and |g′(I∞)| < 1. Then, I∞ = g(I∞) = I∞ + qn∗(I∞) − r∗(I∞), implying that

qn∗(I∞) = r∗(I∞). (A-15)

By Lemma 6, we know that g′(I∞) ≤ 0 and |g′(I∞)| < 1 if and only if r∗(I∞) = I∞, so under the

above conjecture, I∞ satisfies A-7:

∂π (n∗(I∞), I∞)

∂n
+ βq

∂Vβ (qn∗(I∞))

∂I
= 0. (A-16)

Also recall from Lemma 6 that Vβ(I) = π (n∗(I), I) + βVβ (qn∗(I))) for any I such that r∗(I) = I.

Using the chain rule, V ′
β(I) = ∂π

∂n
∂n∗

∂I + ∂π
∂r + βqV ′

β(qn∗(I))∂n∗

∂I = ∂n∗

∂I (∂π
∂n + βqV ′

β(qn∗(I))) + ∂π
∂r = ∂π

∂r

where the last equality follows by substituting A-7. In particular, under the above conjecture, this

equality holds for I = I∞, yielding

V ′
β(I∞) =

∂π(n∗(I∞), I∞)

∂r
(A-17)

In addition, since I∞ = r∗(I∞) = qn∗(I∞),

V ′
β(qn∗(I∞)) =

∂π(n∗(I∞), qn∗(I∞))

∂r
. (A-18)

Substituting this equation in A-16, we find:

∂π (n∗(I∞), qn∗(I∞))

∂n
+ qβ

∂π (n∗(I∞), qn∗(I∞))

∂r
= 0. (A-19)

Consider N (n)
.
= ∂π(n,qn)

∂n +qβ
∂π(n,qn)

∂r . As N ′ (n) = ∂2π(n,qn)
∂n2 +q

∂2π(n,qn)
∂n∂r +qβ

(
∂2π(n,qn)

∂n∂r + q
∂2π(n,qn)

∂r2

)
<

0 since all terms are negative, the solution to (A-19), if it exists, is unique. Now, we show that such

a solution exists. N (0) = v (q) − c(q) by definition. Since v (q) > c(q) we have N(0) > 0. Note

that n ∈ [0, 1
1+q ], as n + qn ≤ 1. Thus, if we show that N( 1

1+q ) < 0, then, we will have proven that

N (n) = 0 has a unique solution n̄ such that n̄ > 0 and n̄+ qn̄ < 1. The proof of Lemma 5 develops

conditions on κ that satisfy ∂π(n,1−n)
∂n + qβ

∂π(n,1−n)
∂r < 0. Noting that at n = 1

1+q , r = 1 − n, we

conclude that
∂π( 1

1+q
, q

1+q
)

∂n + qβ
∂π( 1

1+q
, q

1+q
)

∂r < 0, which can be rewritten as N( 1
1+q ) < 0. We further

conclude that n∗(I∞) solving A-19 is unique and that (n∗(I∞), qn∗(I∞)) ∈ int(D). In addition,

since dn∗(I)
dI < 0 in this range (as shown in the proof of part (i) in Lemma 6), I∞ is unique.

Recall that ν∞
.
= (n∞, r∞) satisfying ∂π(ν∞)

∂n + qβ
∂π(ν∞)

∂r = 0, qn∞ = r∞ and ν∞ ∈ D simulta-

neously. Comparing A-15 and A-19 with the definition of ν∞, and noting that (n∗(I∞), qn∗(I∞)) ∈

int(D), we conclude that n∞ = n∗(I∞) and r∞ = r∗(I∞) under the conjecture. In addition, since

I∞ = r∗(I∞) under the conjecture, we have that r∞ = I∞.

We now need to show that the conjecture is true. By Lemma 6, I∞ satisfies the conjecture if
∂π(n∗(I∞),I∞)

∂r −βV ′
β (qn∗ (I∞)) > 0, or, using A-15 and substituting A-18, if (1 − β) ∂π(n∗(I∞),qn∗(I∞))

∂r >
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0, or, since β > 0,
∂π (n∗ (I∞) , qn∗ (I∞))

∂r
> 0. (A-20)

Let the functions r (n) and r (n) be defined by ∂π(n,r(n))
∂n = 0 and ∂π(n,r(n))

∂r = 0. Consider Figure 11.

We will show that if qñ < r̃, then the solution to (A-19) lies on the segment determined by r = qn,

r < r (n), and r > r(n) (marked in bold in Figure 11), and that on this segment, ∂π(n,qn)
∂r > 0. In

this case, I∞ satisfies the conjecture.

n

r

10

1

** ,rn

su
n

)(nr

)(nr

rqn

)(),(, nrrnrrrqn

Figure 11: r < r (n), and r > r(n) for Lemma 7

Since R (ν) is concave, (ñ, r̃) is the unique intersection point of r (n) and r (n). Note that by

differentiating ∂π(n,r(n))
∂n = 0 and ∂π(n,r(n))

∂r = 0, we obtain ∂2π(n,r(n))
∂n2 + ∂2π(n,r(n))

∂n∂r
∂r(n)

∂n = 0 and
∂2π(n,r(n))

∂n∂r + ∂2π(n,r(n))
∂r2

∂r(n)
∂n = 0. Evaluating these expressions at n = ñ and using the fact that

r(ñ) = r(ñ) = r̃, we find ∂r(ñ)
∂n = −

∂2π(ñ,r̃)
∂n∂r

∂2π(ñ,r̃)

∂r2

and ∂r(ñ)
∂n = −

∂2π(ñ,r̃)

∂n2

∂2π(ñ,r̃)
∂n∂r

. It follows that

∣∣r′ (ñ)
∣∣ <

∣∣r′ (ñ)
∣∣ ⇔

∂2π(ñ,r̃)
∂n∂r

∂2π(ñ,r̃)
∂r2

<

∂2π(ñ,r̃)
∂n2

∂2π(ñ,r̃)
∂n∂r

⇔ 0 <
∂2π∗

∂n2

∂2π∗

∂r2
−

∂2π∗

∂n∂r

∂2π∗

∂n∂r
= |H|

which is true by Property 1. Therefore, r (n) crosses r (n) from above, validating Figure 11. Thus,

for n > ñ, we have r (n) < r (n). As r̃ > qñ, it follows that the line r = qn lies below the point

(ñ, r̃), further validating Figure 11. Furthermore, as ∂2π
∂n∂r < 0 we have that ∂π(n,r)

∂n < 0 for r > r (n)

and ∂π(n,r)
∂r > 0 for r < r (n). Therefore, on the segment determined by r = qn, r < r (n), and

r > r(n), marked in bold in Figure 11, we have that ∂π(n,r)
∂n < 0 and ∂π(n,r)

∂r > 0. A-19 and A-20

being simultaneously satisfied means that the first term of (A-19) must be negative and the second
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term must be positive. Therefore, the solution (n∞, qn∞) to (A-19) lies on the segment determined

by r = qn, r < r (n), and r > r(n). Thus, from (A-20), it follows that I∞ satisfies the conjecture.

We have shown that there exists a unique solution to g(I) = I on [0, I]. To complete the proof,

we need to show that g(I) = I has a unique solution on [0, g(0)]. When qñ < r̃, Lemma 6 shows

that g(I) < I for I ∈ (I, g(0)]. In addition, g′(I) < 0 for I ∈ [I∞, I] ⊂ [0, I]. So g(I) < I for

I ∈ (I∞, g(0)] under the condition qñ < r̃ and the equality g(I) = I admits only one solution on

[0, g(0)].

Part (ii): Let {It} be the sequence obtained by starting with I0 = 0 and applying g successively,

i.e., It = g(It−1). Define L
.
= [g(I), I] ⊂ [0, g(0)]. L = [g(I), I∞) ∪ {I∞} ∪ (I∞, I]. Pick It ∈ L. If

g(I) ≤ It < I∞, It+1 = g(It) ≤ g(g(I)) < g(I) + (I − g(I)) = I where the first inequality follows

because g is strictly decreasing in this region, and the second inequality follows because, in addition,

|g′| < 1 in this region. If It = I∞, then It+1 = I∞ by the definition of I∞. If I∞ < It ≤ I, then

g(I) ≤ It+1 = g(It) < It where the first inequality follows because g(I) is the minimum value that

the function g attains on [0, g(0)], and the second inequality follows since g(I) < I in this region.

Putting it all together, we conclude that g(I) ≤ It+1 < I. In other words, It ∈ [g(I), I] implies that

It+1 ∈ [g(I), I). Therefore, if there exists a finite time Tq such that ITq ∈ L, then It ∈ L ∀t ≥ Tq.

Part (iii): We will prove this result separately for cases (i) and (ii) in Lemma 6. For case (i), consider

g(g(0)). Because |g′| < 1, g(g(0)) < g(0). If 0 ≤ It ≤ g(0), then 0 < g(g(0)) ≤ It+1 = g(It) ≤ g(0),

where the first inequality follows because g > 0 and the last two inequalities follow because g is

strictly decreasing. The interval [0, g(0)] is therefore a capture region and It ∈ [0, g(0)] ∀t starting

with I0 = 0. By the properties of r(I) in case (i), r∗t = It ∀t ≥ 0 and Tq = 0. In case (ii),

g(I0) = g(0) > I. We need to prove that there exists a Tq such that It > I if 1 ≤ t ≤ Tq − 1,

and ITq ∈ [g(I), I]. To prove this, let us start by supposing that no such Tq exists. Then I < It ≤

g(0) ∀t ≥ 1. In this region, It+1 = g(It) < It, so {It} is a strictly decreasing sequence. Because

this sequence is in the bounded interval I < It ≤ g(0), it must converge to I, that is, limt→∞It = I.

However, I cannot be a limit point of this sequence since g(I) < I. By contradiction, it cannot

be true that I < It ≤ g(0) ∀t ≥ 1, and there exists a finite Tq such that ITq ≤ I. In addition,

since g increasing on (I, g(0)], g(I) ≥ g(I) ∀I ∈ (I, g(0)], so ITq = g(ITq−1) ≥ g(I). We therefore

conclude that there exists a finite Tq such that ITq ∈ [g(I), I]. By (ii), It ∈ [g(I), I] ∀t ≥ Tq and

r∗t = It by the properties of r∗(I) on [0, I] in case (ii) of Lemma 6. Finally, since I∞ ≤ min(g(0), I)

is the unique point such that g(I) = I, limt→∞It = I∞.

Proof of Proposition 1: The proof of this proposition draws on Lemma 6 which characterizes

the policy function g when c(q) < v(q) and on Lemma 7 that characterizes the optimal path when

c(q) < v(q) and qñ < r̃.
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Derivation of (4). From Lemmas 2 and 3, it follows that we can restrict our attention to cases

where q ∈ Q and from Lemma 7, it follows that we can split problem (1) in two parts when

qñ < r̃. In particular, for t ≥ Tq, we can focus on solutions of the form rt = It and It+1 = g(It) =

It + qnt − rt = qnt. For simplicity, the feasible region is suppressed in the maximization problems

below.

Vβ (q)
.
= max

Tq−1∑

t=0

βtπ (nt, rt, q) + βTqVβ

(
ITq , q

)
, (A-21)

where

Vβ

(
ITq , q

) .
= max

∞∑

τ=0

βτπ
(
nTq+τ , ITq+τ , q

)

= max

(
π

(
nTq , ITq , q

)
+

∞∑

τ=0

βτ+1π
(
nTq+τ+1, qnTq+τ , q

)
)

(A-22)

and

ITq = qn0 +

Tq−1∑

t=1

(qnt − rt) (A-23)

We now establish (4) in two steps, first for the case where t ≥ Tq and then for the case 0 ≤ t < Tq.

In the case that Tq = 0, the part 0 ≤ t < Tq can be omitted.

Taking the derivative of Vβ (I, q) with respect to I and evaluating it at I = ITq , we obtain:

∂

∂I
Vβ

(
ITq , q

)
=

∂π
(
n∗

Tq
, ITq , q

)

∂r
(A-24)

Taking the derivative of the sum in the right-hand side of (A-22) with respect to nTq+τ and

using the chain rule for τ ≥ 0, we obtain first order conditions that are satisfied by the optimal

sequence ν∗
t , t ≥ Tq:

βτ
∂π

(
n∗

Tq+τ , r
∗
Tq+τ

)

∂n
+ βτ+1q

∂π
(
n∗

Tq+τ+1, r
∗
Tq+τ+1

)

∂r
= 0, for τ = 0, 1, ... (A-25)

or, equivalently,

∂R
(
n∗

T+τ , r
∗
T+τ

)

∂n
+ βq

∂R
(
n∗

T+τ+1, r
∗
T+τ+1

)

∂r
= c (q) , for τ = 0, 1, ... (A-26)

We have thus established (4) for t ≥ Tq. Let us now turn to t < Tq. Taking the derivative of

the sum in A-21 with respect to nt, t = 0, 1, ..Tq − 1, we obtain βt ∂π(nt,rt)
∂n + βTq

∂Vβ(ITq ,q)
∂I

∂ITq

∂nt
=

βt ∂π(nt,rt)
∂n + qβTq

∂Vβ(ITq ,q)
∂I , t = 0, 1, ..Tq−1, where the equality follows because

∂ITq

∂nt
= q by the

definition of ITq in A-23.

Similarly, taking the derivative of the sum in A-21 with respect to rt, t = 1, 2, ..Tq−1, we obtain

βt ∂π(nt,rt)
∂r + βTq

∂Vβ(ITq ,q)
∂I

∂ITq

∂rt
= βt ∂π(nt,rt)

∂r − βTq
∂Vβ(ITq ,q)

∂I , t = 1, 2, ..Tq−1.
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The optimal sequence {ν∗
t , t = 0, 1, . . . , Tq − 1} satisfies the first order conditions obtained by

equating these expressions to 0. Using r∗0 = 0, A-24 and dividing through by βt, we can write:





∂π(n∗
t ,r∗t ,q)
∂n + qβTq−t

∂π
(
n∗

Tq
,r∗Tq

,q
)

∂r = 0, t = 0, 1, ..., Tq − 1

∂π(n∗
t ,r∗t ,q)
∂r − βTq−t

∂π
(
n∗

Tq
,r∗Tq

,q
)

∂r = 0, t = 1, 2, ..., Tq − 1

Substituting the second set of equalities into the first set, we find

∂π (n∗
t , r

∗
t , q)

∂n
+ q

∂π (n∗
t , r

∗
t , q)

∂r
, t = 0, 1, 2, . . . , Tq − 1. (A-27)

From the second set of equalities, we find that

βTq−t
∂π

(
n∗

Tq
, ITq , q

)

∂r
=

∂π (n∗
t , r

∗
t , q)

∂r
= β

∂π
(
n∗

t+1, r
∗
t+1, q

)

∂r
, t = 1, ..., Tq − 1 (A-28)

Substituting in (A-27), we obtain

∂π (n∗
t , r

∗
t , q)

∂n
+ qβ

∂π
(
n∗

t+1, r
∗
t+1, q

)

∂r
, t = 0, 1, 2, . . . , Tq − 1

Thus, we have

∂R (n∗
t , r

∗
t )

∂n
+ βq

∂R
(
n∗

t+1, r
∗
t+1

)

∂r
= c (q) for t = 0, 1, ..., Tq − 1, (A-29)

Together with (A-26), we obtain (4).

Derivation of (5). We again proceed in two parts. For t ≥ Tq, we focus on solutions of the

form rt = It and It+1 = g(It) = It + qnt − rt = qnt. It is convenient to define the following

recursive relationship for t ≥ Tq: Vβ (It, q) = max
0≤nt+It≤1

[π (nt, It, q) + βVβ (qnt, q)]. Let n∗(It) =

argmax
0≤nt+It≤1

[π (nt, It, q) + βVβ (qnt, q)]. By Assumption 1, we are assured that n∗ is an interior solution

and satisfies the first-order condition
∂[π(nt,It,q)+βVβ(qnt,q)]

∂n = 0. We can further write Vβ (It, q) =

π (n∗
t , It, q) + βVβ (qn∗

t , q) ∀t ≥ Tq.

Taking the derivative of this expression with respect to q for each t ≥ Tq, and simplifying using

the first order conditions satisfied by n∗
t , we obtain

βτ ∂Vβ

(
ITq+τ , q

)

∂q
− βτ+1 ∂Vβ

(
ITq+τ+1, q

)

∂q
= βτ

∂π
(
n∗

Tq+τ , ITq+τ , q
)

∂q
+ βτ+1 ∂Vβ

(
ITq+τ+1, q

)

∂I
n∗

Tq+τ

for τ ≥ 0. Adding these equalities over τ ≥ 0 and taking the limit as τ → ∞, we obtain

∂Vβ

(
ITq , q

)

∂q
=

∞∑

τ=0

βτ




∂π
(
n∗

Tq+τ , ITq+τ , q
)

∂q
+ β

∂Vβ

(
ITq+τ+1, q

)

∂I
n∗

Tq+τ


 .
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By definition, π(n∗
Tq+τ , ITq+τ , q) = R(n∗

Tq+τ , ITq+τ ) − cn(q)n∗
t+τ − cr(q)r

∗
t+τ , so

∂π(n∗
T+τ ,IT+τ ,q)

∂q =

−c′n(q)n∗
t+τ − c′r(q)r

∗
t+τ . In addition,

∂π(n∗
T+τ ,IT+τ ,q)

∂r =
∂R(n∗

T+τ ,IT+τ )

∂r − cr(q). Using (A-24),

∂

∂I
Vβ

(
ITq+τ+1, q

)
=

∂π
(
n∗

Tq+τ+1, ITq+τ+1, q
)

∂r
. (A-30)

Putting these two together, we find

∂Vβ

(
ITq , q

)

∂q
=

∞∑

τ=0

βτ





β

∂R
(
n∗

Tq+τ+1, r
∗
Tq+τ+1, q

)

∂r
− βcr (q) − c′n (q)


 n∗

Tq+τ − c′r (q) r∗Tq+τ




(A-31)

We now turn to t < Tq. Let us first rewrite A-21: Vβ (q) =
∑Tq−1

t=0 βtπ (n∗
t , r

∗
t , q)+βTqVβ

(
ITq , q

)
=

∑Tq−1
t=0 βtπ (n∗

t , r
∗
t , q) + βTqVβ

(
qn∗

0 +
∑Tq−1

t=1 (qn∗
t − r∗t ) , q

)
. We find

∂Vβ (q)

∂q
=

Tq−1∑

t=0

βt ∂π (n∗
t , r

∗
t , q)

∂q
+ βTq

∂Vβ(ITq , q)

∂I

Tq−1∑

t=0

n∗
t + βTq

∂Vβ(ITq , q)

∂q

where we used
d
(
I0+

∑Tq−1
t=0 (qn∗

t−r∗t ),q
)

dq =
∑Tq−1

t=0 n∗
t . Collecting terms, and using A-24 and A-31, we

obtain

∂Vβ (q)

∂q
=

Tq−1∑

t=0

βt





βTq−t

∂π
(
n∗

Tq
, ITq , q

)

∂r
− c′n (q)


 n∗

t − c′r (q) r∗t




+βTq

∞∑

τ=0

βτ





β

∂π
(
n∗

Tq+τ+1, ITq+τ+1, q
)

∂r
− c′n (q)


 n∗

Tq+τ − c′r (q) r∗Tq+τ




or with (A-28) we obtain:

∂Vβ (q)

∂q
=

Tq−1∑

t=0

βt

((
β

∂π
(
n∗

t+1, r
∗
t+1, q

)

∂r
− c′n (q)

)
n∗

t − c′r (q) r∗t

)

+βTq

∞∑

τ=0

βτ





β

∂π
(
n∗

Tq+τ+1, ITq+τ+1, q
)

∂r
− c′n (q)


 n∗

Tq+τ − c′r (q) r∗Tq+τ




Finally, we can rewrite the previous expression using the definition π (n, r, q) = R (n, r)− cn (q) n−

cr (q) r:

∂Vβ (q)

∂q
=

Tq−1∑

t=0

βt

((
β

∂R
(
n∗

t+1, r
∗
t+1

)

∂r
− βcr (q) − c′n (q)

)
n∗

t − c′r (q) r∗t

)

+βTq

∞∑

τ=0

βτ





β

∂R
(
n∗

Tq+τ+1, ITq+τ+1

)

∂r
− βcr (q) − c′n (q)


n∗

Tq+τ − c′r (q) r∗Tq+τ


 .
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Note that the terms in the latter expression have the same structure for 0 ≤ t < Tq as well as for

Tq ≤ t. Thus, we have obtained (5):

∂Vβ (q)

∂q
=

∞∑

t=0

βt

((
β

∂R
(
n∗

t+1, r
∗
t+1

)

∂r
− βcr (q) − c′n (q)

)
n∗

t − c′r (q) r∗t

)
.

Proof of Proposition 2:

The function Vβ(q) was defined exclusive of the initial fixed investment cost k(q); the discounted

profit at time 0 equals Vβ(q)− k(q). A sufficient condition for the existence of a q∗ > 0 is therefore

V ′
β(0) − k′(0) > 0.

Let us evaluate V ′
β(0). As q = 0, and I0 = 0, we have that r∗t = 0 ∀t ≥ 0. Evaluating (4) at

q = 0 gives
∂R(ν∗

t )
∂n = c (0) ∀t ≥ 0. By the definition of nsu, ν∗

t = (nsu, 0) ∀t ≥ 0. Evaluating (5) at

q = 0 and ν∗
t = (nsu, 0) ∀t ≥ 0, we find

V ′
β (0) =

1

1 − β

(
β

(
∂R (nsu, 0)

∂r
− cr (0)

)
− c′n (0)

)
nsu.

For a linear consumer profile with η (θ) = (1 − δ) θ, it can easily be shown that ∂R(n,0)
∂r = (1 − δ) ∂R(n,0)

∂n

(see (A-2) and (A-4)). As by definition ∂R(nsu,0)
∂n = cn (0), we obtain (7).

Proof of Proposition 3. We first derive dnsu

dκ . If β {(1 − δ) cn (0) − cr (0)} > c′n (0), the sign

of d∆
dκ is identical to the sign of dnsu

dκ . By definition, nsu is determined by ∂R(nsu,0)
∂n = cn (0).

For F (θ) = 1 − (1 − θ)κ ∈ Fκ, the marginal consumer, θsu, is defined by nsu = (1 − θsu)κ.

From A-2, we know that ∂R(nsu,0)
∂n = GN (θsu). Using A-4, we obtain θsu − 1−θsu

κ = cn (0)

or θsu = 1+cn(0)κ
1+κ . Plugging θsu into nsu = (1 − θsu)κ, we obtain nsu =

(
(1−cn(0))κ

1+κ

)κ
. Fi-

nally, dnsu

dκ =
(

(1−cn(0))κ
1+κ

)κ (
ln

(
(1−cn(0))κ

1+κ

)
+ 1

1+κ

)
. Since the first term is non-negative, we ob-

tain that dnsu

dκ < 0 if and only if cn (0) > 1 − 1+κ
κ e−1/(1+κ). As 0 > 1 − 1+κ

κ e−1/(1+κ) and

cn (0) ≥ 0, the latter condition is always satisfied. This completes our proof that dnsu

dκ < 0,

or, that d∆
dκ < 0 if β {(1 − δ) cn (0) − cr (0)} > c′n (0). We now consider d∆

dcn(0) .
d∆

dcn(0) = β(1 −

δ)nsu(cn(0)) + (β {(1 − δ) cn (0) − cr (0)} − c′n (0)) dnsu

dcn(0) . The first term is positive. dnsu

dcn(0) =

−κ( (1−cn(0))κ
1+κ )κ−1 κ

1+κ < 0. We conclude that depending on the magnitude of dnsu

dcn(0) ,
d∆

dcn(0) could

be either positive or negative.

Proof of Proposition 4. This proof is done in two steps. First, we characterize an approximation

of q∗ for β ≈ 1. Second, we show how this approximation depends on κ. In previous results

developed for a given remanufacturability level q, ν∗
t was determined for q, but this dependence

was suppressed in the notation. From now on, we work with q∗, so ν∗
t is determined for q∗. We

again suppress this dependence in the notation.
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Step 1a. Approximate characterization of q∗:

Since r∗0 = 0, we can rewrite (5), evaluated at q∗, as

∂Vβ (q∗)

∂q
= (1 − β)

∞∑

t=0

βt

((
β

∂R
(
n∗

t+1, r
∗
t+1

)

∂r
− βcr (q∗) − c′n (q∗)

)
n∗

t − βc′r (q∗) r∗t+1

)
.

Multiplying this equation by 1 − β, and separating it into two parts, we obtain

(1 − β)
∂Vβ (q∗)

∂q
= (1 − β)

Tq−1∑

t=0

βt

((
β

∂R
(
n∗

t+1, r
∗
t+1

)

∂r
− βcr (q∗) − c′n (q∗)

)
n∗

t − βc′r (q∗) r∗t+1

)

+ (1 − β)
∞∑

t=Tq

βt

((
β

∂R
(
n∗

t+1, q
∗n∗

t

)

∂r
− βcr (q∗) − c′n (q∗)

)
n∗

t − βq∗c′r (q∗)n∗
t

)
.

We find that limβ→1− (1 − β)
∂Vβ(q∗)

∂q

= limβ→1− (1 − β)
∞∑

t=Tq

βt

((
β

∂R
(
n∗

t+1, q
∗n∗

t

)

∂r
− βcr (q∗) − c′n (q∗)

)
n∗

t − βq∗c′r (q∗) n∗
t

)

since the first term above is finite. q∗ satisfies the first-order condition
∂Vβ(q)

∂q = k′ (q), or,

(1 − β)
∂Vβ(q∗)

∂q = (1 − β) k′ (q∗). Then limβ→1− (1 − β)
∂Vβ(q∗)

∂q = 0. From the previous expres-

sion, we have

limβ→1− (1 − β)
∞∑

t=Tq

βt

((
β

∂R
(
n∗

t+1, q
∗n∗

t

)

∂r
− βcr (q∗) − c′n (q∗)

)
n∗

t − βq∗c′r (q∗) n∗
t

)
= 0, or,

limβ→1− (1 − β)
∞∑

t=Tq

βt

(
β

∂R
(
n∗

t+1, q
∗n∗

t

)

∂r
− c′ (q∗)

)
n∗

t = 0. (A-32)

We approximate
∂R(n∗

t+1,q∗n∗
t )

∂r around ν∗
∞ = (n∗

∞, q∗n∗
∞)

.
= ν∗(I∞(q∗)) using Taylor series expan-

sion:

∂R
(
n∗

t+1, q
∗n∗

t

)

∂r
=

∂R∞

∂r
+

∂2R∞

∂r∂n

(
n∗

t+1 − n∞

)
+ q∗

∂2R∞

∂r2
(n∗

t − n∗
∞) + o(||ν∗

t+1 − ν∗
∞||), (A-33)

where R∞
.
= R(ν∗

∞). Substituting into A-32 and collecting terms, we find

0 = limβ→1−(1 − β)

(
β

∂R∞

∂r
− c′ (q∗)

) ∞∑

t=Tq

βtn∗
t

+limβ→1− (1 − β)
∞∑

t=Tq

βt+1

(
∂2R∞

∂r∂n

(
n∗

t+1 − n∗
∞

)
+ q∗

∂2R∞

∂r2
(n∗

t − n∗
∞) + o(||ν∗

t+1 − ν∗
∞||)

)
n∗

t .

From Lemma 6, we have that at I, (A-7) is satisfied and (A-8) is satisfied with equality, therefore
∂π(n∗(I),I)

∂n +q
∂π(n∗(I),I)

∂r = 0. Remember from Lemma 7 that ∂π(n∗(I∞),I∞)
∂n +qβ

∂π(n∗(I∞),I∞)
∂r = 0 with
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I∞ = qn∗(I∞) (A-19). Therefore, as β → 1−, I → I∞. Thus for t ≥ Tq,
(
n∗

t+1, q
∗n∗

t

)
→ (n∗

∞, q∗n∗
∞)

as β → 1− and the second term in parentheses converges to 0 in the last equality. Since n∗
t > 0 ∀t,

expressing the dependence of q∗ on the parameter β with the expression q∗β, we conclude that the

following must hold for the first term to also be equal to 0:

lim
β→1−

β
∂R∞

(
n∗
∞, q∗βn∗

∞

)

∂r
− c′

(
q∗β

)
= 0.

Therefore, for β ≈ 1, β
∂R∞(n∗

∞,q∗
β
n∗
∞)

∂r ≈ c′(q∗β). Let q̃∗ be such that

β
∂R∞ (n∗

∞, q̃∗n∗
∞)

∂r
= c′(q̃∗). (A-34)

q̃∗ approximates the optimal remanufacturability level q∗. With (A-19) evaluated at q̃∗, we obtain

∂R∞ (n∗
∞, q̃∗n∗

∞)

∂n
+ q̃∗β

∂R∞ (n∗
∞, q̃∗n∗

∞)

∂r
= c (q̃∗) ,

which, with (A-34) gives
∂R∞ (n∗

∞, q̃∗n∗
∞)

∂n
= c (q̃∗) − q̃∗c′ (q̃∗) . (A-35)

In conclusion, (A-34) and (A-35) approximately determine (q∗, n∗
∞). This completes our approxi-

mate characterization of q∗.

We will now specialize this characterization to F ∈ F κ. The marginal consumers
(
θ
∞,∗
l , θ

∞,∗
h

)

are defined by n∗
∞ =

(
1 − θ

∞,∗
h

)κ
and r∗∞ =

(
1 − θ

∞,∗
l

)κ
−

(
1 − θ

∞,∗
h

)κ
for F ∈ Fκ. We can rewrite

(A-34) and (A-35) as a function of
(
θ
∞,∗
l , θ

∞,∗
h , q∗

)
:

βGR

(
θ
∞,∗
l

)
= c′ (q∗) and δGN

(
θ
∞,∗
h

)
+ GR

(
θ
∞,∗
l

)
= c (q∗) − q∗c′ (q∗) .

Furthermore, we can write A-15 as a function of
(
θ
∞,∗
l , θ

∞,∗
h , q∗

)
:

(1−θ∞,∗
l

)κ

(1−θ∞,∗
h

)κ = 1 + q∗. Defining

cl (q)
.
= c′(q)

β and ch (q)
.
= c (q) − (1 + βq) c′(q)

β , we obtain that the triple
(
θ
∞,∗
l , θ

∞,∗
h , q∗

)
satisfies

the following conditions:

(1 − δ)GN (θl) = cl (q) and δGN (θh) = ch (q) (A-36)

1 − θl

1 − θh
= (1 + q)

1
κ . (A-37)

With Lemma 4, we have that GN (θ) = θ − 1−θ
κ . Substituting in (A-36), solving for (θl, θh) and

substituting these expressions into A-37, we find that the following condition that must be satisfied

by q∗:

1 − cl(q)
1−δ

1 − ch(q)
δ

= (1 + q)
1
κ . (A-38)

This completes our approximate characterization of q∗ for F ∈ Fκ and β ≈ 1.
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Step 2. Characterizing q∗ as a function of κ.

If ∆ > 0, then q∗ ∈ (0, q̄). It can easily established that cl (q) strictly increases in q. This follows

from c′l (q) = c′′(q)
β and from c′′ (q) > 0 (Assumption 3). Similarly, it can easily be established that

ch (q) strictly decreases in q. This follows from c′h (q) = − (1 + βq) c′′(q)
β and from c′′ (q) > 0. As

cl (q) strictly increases and ch (q) strictly decreases in q, the left hand side of A-38 strictly decreases

in q. The right hand side strictly increases with q. Therefore, q∗ solving A-38 is unique.

Let us denote the dependence of q∗ on κ explicitly with the notation q∗κ. Note that increasing κ

decreases the right-hand side of A-38 but does not affect its left-hand side. Therefore, q∗κ increases

in κ.

Proof of Proposition 5. In this proof, we use the approximate characterization of q∗ developed

in the proof of Proposition 4 for β ≈ 1. In particular, we use that q∗ solves (A-38). Remember

from (A-1) that we can write pN and pR as a function of θl and θh: pR = (1 − δ) θl and pN =

(1 − δ) θl + δθh. The profit margin on the remanufactured product at the solution (n∗
∞, q∗n∗

∞) is

thus M∗
r

.
= (1 − δ) θ

∞,∗
l − cr (q∗). By A-36, θ

∞,∗
l = G−1

N

(
c′(q∗)
(1−δ)β

)
. For F ∈ Fκ, we have G−1

N (c) =
1
κ
+c

1
κ
+1

> c for c < 1. As from A-38, it follows that c′(q∗)
(1−δ)β < 1, we obtain that G−1

N

(
c′(q∗)
(1−δ)β

)
>

c′(q∗)
(1−δ)β ,

which yields (1 − δ) θ∗l − cr (q∗) >
c′n(q∗)

β + q∗c′r (q∗) > 0, where the last inequality follows from

Assumption 3.

The profit margin on the new product at the solution (n∗
∞, q∗n∗

∞) is M∗
n

.
= (1 − δ) θ

∞,∗
l +

δθ
∞,∗
h − cn (q∗). With (A-36) and for F ∈ Fκ, we obtain θ

∞,∗
l = G−1

N

(
c′(q∗)
(1−δ)β

)
=

c′(q∗)
(1−δ)β

+ 1
κ

1+ 1
κ

and

θ
∞,∗
h = G−1

N

(
c(q∗)−

(
1
β

+q∗
)
c′(q∗)

δ

)
=

c(q∗)−( 1
β

+q∗)c′(q∗)
δ

+ 1
κ

1+ 1
κ

. We can rewrite M∗
n as

M∗
n =

c′(q∗κ)
β + c (q∗κ) −

(
1
β + q∗κ

)
c′ (q∗κ) + 1

κ

1 + 1
κ

− cn (q∗κ)

=
1 − κq∗κ (c′n (q∗κ) + q∗κβc′r (q∗κ)) − cn (q∗κ)

1 + κ

From this equation, we see that the margin on the new product becomes negative for large enough

values of κ, and that an increase in the cost of the new product works in the same direction as an

increase in κ.

Proof of Proposition 6. In this proof, we use the approximate characterization of q∗ developed

in the proof of Proposition 4 for β ≈ 1. Let cr (q) = cr0 + cr1 (q), with cr1 (0) = 0. We calculate
dq∗

dcr0
(step 1), dn∗

∞

dcr0
and dr∗∞

dcr0
(step 2).

Step 1: Calculation of dq∗

dcr0
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Let us first introduce some notation: c1 (q)
.
= cn (q) + βqcr1 (q), cl1 (q)

.
=

c′1(q)
β and ch1 (q)

.
=

c1 (q)−(1 + βq)
c′1(q)

β . Recall c (q)
.
= cn (q)+βqcr (q), cl (q)

.
= c′(q)

β and ch (q)
.
= c (q)−(1 + βq) c′(q)

β .

Some algebraic manipulation yields

c (q) = c1(q) + βqcr0, cl (q) = cr0 + cl1 (q) and ch (q) = −cr0 + ch1 (q) .

Plugging in these expressions for cl (q) and ch (q) in condition (A-38), we obtain that q∗ satisfies

1 − cr0+cl1(q
∗)

1−δ

1 − −cr0+ch1(q∗)
δ

= (1 + q∗)
1
κ . (A-39)

Differentiation of both sides of A-39 with respect to cr0 gives:

−
1+c′

l1(q∗) dq∗

dcr0
1−δ

(
1 − −cr0+ch1(q∗)

δ

)
+

−1+c′
h1(q∗) dq∗

dcr0
δ

(
1 − cr0+cl1(q∗)

1−δ

)

(
1 − −cr0+ch1(q∗)

δ

)2 =
1

κ
(1 + q∗)

1
κ
−1 dq∗

dcr0

From the latter equation, we can solve for dq∗

dcr0
:

dq∗

dcr0
= −

1
1−δ

(
1 − −cr0+ch1(q∗)

δ

)
+ 1

δ

(
1 − cr0+cl1(q

∗)
1−δ

)

1
κ (1 + q∗)

1
κ
−1

(
1 − −cr0+ch1(q∗)

δ

)2
+

c′
l1(q∗)

1−δ

(
1 − −cr0+ch1(q∗)

δ

)
−

c′
h1(q∗)

δ

(
1 − cr0+cl1(q∗)

1−δ

)

or, making use of (A-39):

dq∗

dcr0
= −

1
1−δ + 1

δ (1 + q∗)
1
κ

1
κ

1−
cr0+cl1(q∗)

1−δ

1+q +
c′
l1(q∗)

1−δ −
c′
h1(q∗)

δ (1 + q∗)
1
κ

. (A-40)

Since c (q) is convex by Assumption 3, c1(q) is convex. Taking the derivative of cl1 (q) and ch (q)

with respect to q we obtain

c′l1 (q) =
c′′1 (q)

β
> 0 and c′h1 (q) = − (1 + βq)

c′′1 (q)

β
< 0. (A-41)

With A-39 and A-41, we observe that the sign of each of the terms in the previous expression is

positive. We conclude that dq∗

dcr0
< 0.

Step 2: Calculation of dn∗
∞

dcr0
and dr∗∞

dcr0
.

Define the marginal consumers (θ∗l , θ
∗
h) such that n∗

∞ = (1 − θ∗h)κ, r∗∞ = (1 − θ∗l )
κ − (1 − θ∗h)κ

and r∗∞ = q∗n∗
∞. Then, we need to calculate dn∗

∞

dcr0
= κ (1 − θ∗h)κ−1 dθ∗

h

dcr0
and dr∗∞

dcr0
= κ (1 − θ∗h)κ−1 dθ∗

h

dcr0
−

κ (1 − θ∗l )
κ−1 dθ∗

l

dcr0
= κ (1 − θ∗h)κ−1

(
dθ∗

h

dcr0
− (1 + q)

κ−1
κ

dθ∗
l

dcr0

)
where the last equality follows from A-

38.

Using A-36, we can solve for θ∗l , θ
∗
h:

θ∗h =
−cr0

δ + ch1(q
∗)

δ + 1
κ

1 + 1
κ

⇒
dθ∗h
dcr0

=
−1
δ +

c′
h1(q∗)

δ
dq∗

dcr0

1 + 1
κ

(A-42)

and θ∗l =

cr0
1−δ + cl1(q∗)

(1−δ) + 1
κ

1 + 1
κ

⇒
dθ∗l
dcr0

=
1

1−δ +
c′
l1(q)
1−δ

dq∗

dcr0

1 + 1
κ

(A-43)
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Note that −1
δ < 0 and

c′
h1(q)

δ
dq∗

dcr0
> 0, therefore, the sign of

dθ∗
h

dcr0
is indeterminate. As the sign of

dn∗
∞

dcr0
is the same as the sign of

dθ∗
h

dcr0
, we find that dn∗

∞

dcr0
≶ 0. One can easily find examples of both

cases.

Using (A-42) and (A-43) we find

dθ∗h
dcr0

− (1 + q)
κ−1

κ
dθ∗l
dcr0

=
−1
δ +

c′
h1(q

∗)
δ

dq∗

dcr0
− (1 + q∗)

κ−1
κ 1

1−δ − (1 + q∗)
κ−1

κ
c′
l1(q∗)
1−δ

dq∗

dcr0

1 + 1
κ

.

The sign of this expression determines the sign of dr∗∞
dcr0

. We can substitute (A-40) in the previous

expression and obtain

dθ∗h
dcr0

− (1 + q)
κ−1

κ
dθ∗l
dcr0

=
−

(
1 − δ + δ (1 + q∗)

κ−1
κ

)
1−

cr0+cl1(q∗)
1−δ

1+q∗ + q∗κ (c′h1 (q∗) + c′l1 (q∗))

(
1 + 1

κ

)
δ (1 − δ)

(
1−

cr0+cl1(q∗)

1−δ

1+q∗ −
c′
h1(q∗)

δ (1 + q∗)
1
κ κ +

c′
l1(q∗)

1−δ κ

) .

Recall that cl1 (q)
.
=

c′1(q)
β and ch1 (q)

.
= c1 (q) − (1 + βq)

c′1(q)
β . Substituting the following equality

c′h1 (q∗)+ c′l1 (q∗) = c′1 (q∗)−β
c′1(q

∗)
β − (1 + βq∗)

c′′1 (q∗)
β +

c′′1 (q∗)
β = −q∗c′′1 (q∗) in the latter expression,

we obtain

dθ∗h
dcr0

− (1 + q)
κ−1

κ
dθ∗l
dcr0

= −

(
1 − δ + δ (1 + q∗)

κ−1
κ

)
1−

cr0+cl1(q∗)
1−δ

1+q∗ + q∗2κc′′1 (q∗)

(
1 + 1

κ

)
δ (1 − δ)

(
1−

cr0+cl1(q∗)

1−δ

1+q −
c′
h1(q∗)

δ (1 + q∗)
1
κ κ +

c′
l1(q

∗)

1−δ κ

) < 0.

Noting that c′h1 (q∗) < 0, c′l1 (q∗) > 0 (by A-41), we conclude by inspection of all terms that dr∗∞
dcr0

< 0.

Proof of Proposition 7.

This proof is structured as follows: First, we fix pU (I) and calculate the dynamic Cournot

competition between the manufacturer and remanufacturers by determining
(
re
pU (.),i (I)

)

i∈N
and

ne
pU (.) (I). As the remanufacturers are symmetric, we have that re

pU (.),i (I) = re
pU (.) (I) ∀i ∈ N

(step 1). Second, we determine the ‘market clearing’ price, pe
U (I), such that the obtained Cournot

equilibrium satisfies Nre
pe

U
(.) (I) = I for pe

U (.) > 0, or Nre
pe

U
(.) (I) < I for pe

U (.) = 0 (step 2). In step

3, we take the derivative of the equilibrium value function of the manufacturer with respect to q,

at q = 0. In this way, we obtain ∆e and note that it is exactly the same as ∆.

Step 1: Cournot competition between the manufacturer and N remanufacturers.

Fixing pU (I) and (ri (I))i∈N , the manufacturer’s problem can be written as the following DP:

VpU (.),N (I) = max
0≤n≤1

n

(
pN

(
n,

N∑

i=1

ri (I)

)
+ βqpU

(
I + qn −

N∑

i=1

ri (I)

)
− cn (q)

)

+βVpU (.),N

(
I + qn −

N∑

i=1

ri (I)

)
(A-44)
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i.e. the manufacturer chooses for every I a new product quantity of n. Fixing pU (I), n (I) and

(rj (I))j∈N ,j 6=i, the remanufacturer’s problem can be written as the following DP:

VpU (.),R,i (I) = max
ri

ri


pR


n (I) , ri +

N∑

j=1,j 6=i

rj (I)


 − pU (I) − cr (q)




+βVpU (.),R,i


I + qn (I) − ri −

N∑

j=1,j 6=i

rj (I)


 (A-45)

i.e. each remanufacturer chooses for every I a remanufacturing quantity ri. For a fixed pU (I),

let ne
pU (.) (I) be the maximizer of (A-44), with (ri (I))i∈N =

(
re
pU (.),i (I)

)

i∈N
and let be re

pU (.),i (I)

the maximizer of (A-45), for n (I) = ne
pU (.) (I) and (rj (I))j∈N ,j 6=i =

(
re
pU (.),j (I)

)

j∈N ,j 6=i
. Then,

(
ne

pU (.) (I) ,
(
re
pU (.),i (I)

)

i∈N

)
determine the dynamic Cournot equilibrium for a fixed pU (I). ne

pU (.) (I)

satisfies the FOC of (A-44) with respect to n:

0 = pN

(
n,

N∑

i=1

re
pU (.),i (I)

)
− cn (q) + βqpU

(
I + qn −

N∑

i=1

re
pU (.),i (I)

)

+n




∂pN

(
n,

∑N
i=1 re

pU (.),i (I)
)

∂n
+ βq2p′U

(
I + qn −

N∑

i=1

re
pU (.),i (I)

)


+βq
d

dI
VpU (.),N

(
I + qn −

N∑

i=1

re
pU (.),i (I)

)

and re
pU (.),i (I) satisfies the FOC of (A-45) with respect to r:

0 = pR


ne

pU (.) (I) , r +
N∑

j=1,j 6=i

re
pU (.),j (I)


 − cr (q) − pU (I)

+r
∂pR

(
ne

pU (.) (I) , r +
∑N

j=1,j 6=i r
e
pU (.),j (I)

)

∂r

−β
d

dI
VpU (.),R


I + qne

pU (.) (I) − r −
N∑

j=1,j 6=i

re
pU (.),j (I)




Using the symmetry of (A-45), let us suppress the index i and use re
pU (.) (I) instead. The previous

equations reduce then to:

0 = pN

(
ne

pU (.) (I) , Nre
pU (.) (I)

)
− cn (q) + βqpU

(
I + qne

pU (.) (I) − Nre
pU (.) (I)

)

+n




∂pN

(
ne

pU (.) (I) , Nre
pU (.) (I)

)

∂n
+ βq2p′U

(
I + qne

pU (.) (I) − Nre
pU (.) (I)

)



+βq
d

dI
VpU (.),N

(
I + qne

pU (.) (I) − Nre
pU (.) (I)

)
(A-46)
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and

0 = pR

(
ne

pU (.) (I) , Nre
pU (.),j (I)

)
− cr (q) − pU (I)

+r
∂pR

(
ne

pU (.) (I) , Nre
pU (.),j (I)

)

∂r
− β

d

dI
VpU (.),R

(
I + qne

pU (.) (I) − Nre
pU (.),j (I)

)
(A-47)

Let V e
pU (.),N (I) and V e

pU (.),R,i (I) denote the value functions in A-44 and A-45 evaluated at(
ne

pU (.) (I) ,
(
re
pU (.),i (I)

)

i∈N

)
. Taking the derivative of these functions with respect to I, we find

d

dI
V e

pU (.),N (I) = ne
pU (.) (I)

∂pN

(
ne

pU (.) (I) ,
∑N

i=1 re
pU (.),i (I)

)

∂r

N∑

i=1

d

dI
re
pU (.),i (I)

+βqne
pU (.) (I) p′U

(
I + qne

pU (.) (I) −
N∑

i=1

re
pU (.),i (I)

) (
1 −

N∑

i=1

d

dI
re
pU (.),i (I)

)

+β
d

dI
VpU (.),N

(
I + qne

pU (.),i (I) −
N∑

i=1

re
pU (.),i (I)

) (
1 −

N∑

i=1

d

dI
re
pU (.),i (I)

)
;

and

d

dI
V e

pU (.),R,i (I) = re
pU (.),i (I) {

∂pR

(
ne

pU (.) (I) , re
pU (.),i (I) +

∑
j 6=i r

e
pU (.),j (I)

)

∂n

d

dI
ne

pU (.) (I)

+
∂pR

(
ne

pU (.) (I) , re
pU (.),i (I) +

∑
j 6=i r

e
pU (.),j (I)

)

∂r

∑

j 6=i

d

dI
re
pU (.),j (I) − p′U (I)}

+β
d

dI
VpU (.),R,i


I + qne

pU (.) (I) − re
pU (.),i (I) −

∑

j 6=i

re
pU (.),j (I)


 ∗


1 + q

d

dI
ne

pU (.) (I) −
∑

j 6=i

d

dI
re
pU (.),j (I)




Again, with symmetry with respect to i ∈ N , we obtain:

d

dI
V e

pU (.),N (I) = ne
pU (.) (I)

∂pN

(
ne

pU (.) (I) , Nre
pU (.) (I)

)

∂r
Nre

p
′ (I)

+β{qne
pU (.) (I) p′U

(
I + qne

pU (.) (I) − Nre
pU (.) (I)

)

+
d

dI
VpU (.),N

(
I + qne

pU (.) (I) − Nre
pU (.) (I)

) (
1 − N

d

dI
re
pU (.) (I)

)
}(A-48)

d

dI
V e

pU (.),R (I) = re
pU (.) (I) {

∂pR

(
ne

pU (.) (I) , Nre
pU (.) (I)

)

∂n

d

dI
ne

pU (.) (I)

+
∂pR

(
ne

pU (.) (I) , Nre
pU (.) (I)

)

∂r
(N − 1)

d

dI
re
pU (.) (I) − p′U (I)}

+β
d

dI
VpU (.),R

(
I + qne

pU (.) (I) − Nre
pU (.) (I)

)(
1 + q

d

dI
ne

pU (.) (I) − (N − 1)
d

dI
re
pU (.) (I)

)
(A-49)
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We thus have four equations (A-44), (A-45), (A-48) and (A-49) determining the four unknowns

ne
pU (.) (I), re

pU (.) (I), d
dI V e

N (I) and d
dI V e

R (I), for a given pU (I).

Step 2: Equilibrium pe
U (I).

As mentioned above, the ‘market clearing’ price, pe
U (I) is such that the obtained Cournot

equilibrium satisfies Nre
pe

U
(.) (I) = I for pe

U (.) > 0, or Nre
pe

U
(.) (I) < I for pe

U (.) = 0. Let (ne(I), re(I))

denote (ne
pU (.) (I) , re

pU (.) (I)) and (V e′
R (I) , V e′

N (I)) denote
(

d
dI V e

pe
U

(.),R (I) , d
dI V e

pe
U

(.),N (I)
)
.

Consider pe
U (I) > 0 and Nre (I) = I. Substituting these in (A-44), (A-45), (A-48) and (A-49),

we obtain:




pN (ne(I), I) − cn (q) + βqpe
U (qne(I)) + ne(I)

(
∂pN (ne(I),I)

∂n + βq2pe′
U (qne(I))

)
+ βqV e′

N (qne(I)) = 0

pR (ne(I), I) − cr (q) − pe
U (I) + I

N
∂pR(ne(I),I)

∂r − βV e′
R (qne(I)) = 0

V e′
N (I) = ne(I)∂pN (ne(I),I)

∂r

V e′
R (I) = I

N

(
∂pR(ne(I),I)

∂n ne′(I) + ∂pR(ne(I),I)
∂r

N−1
N − pe′

U (I)
)

+ βV e′
R (qne(I))

(
1
N + qne′(I)

)

(A-50)

The solution to this set of four equations determines the four unknowns ne (I) , pe
U (I), V e′

N (I) and

V e′
R (I). In the next step, we study the case of I = 0 and q = 0. Under these conditions, we have

that
∑N

i=1 re
i (0) = 0. We will use (A-50), and validate that pe

U (0) > 0.

Step 3: Derivative of V e
N (I, q) with respect to q evaluated at q = 0.

In this step, we reintroduce the dependence of all previous expressions with respect to q. Taking

the partial derivative of V e
N (I, q) with respect to q yields

∂V e
N (I, q)

∂q
= ne (I)

(
−c′n (q) + βpe

U (qne (I)) + βqne (I) pe′
U (qne (I))

)

+βne (I)
∂V e

N (I + qne (I) − Nre (I) , q)

∂I
+ β

∂V e
N (I + qne (I) − Nre (I) , q)

∂q
.

Evaluated for I = 0 and q = 0, can write the previous expression as

(1 − β)
∂V e

N (0, 0)

∂q
= ne(0)

(
βpe

U (0) − c′n (q)
)

+ βne(0)
∂V e

N (0, 0)

∂I
. (A-51)

Substituting I = 0 and q = 0 in the first equation of (A-50), we obtain pN (ne(0), 0) − cn (0) +

ne(0)∂pN (ne(0),0)
∂n = 0, which can be rewritten as ∂R(ne(0),0)

∂n = cn (0), and is solved by nsu (see

definition of nsu). Substituting I = 0 and q = 0 in the fourth equation of (A-50), we obtain

V e′
R (0) = βV e′

R (0) 1
N , from which it follows that V e′

R (0) = 0. Plugging the latter result in the

second equation of (A-50), we obtain pR (nsu, 0) − cr (0) = pe
U (0).

Using the proof of Lemma 4, we see that pR (nsu, 0) = (1 − δ) pN (nsu, 0) and that pN (nsu, 0) >
∂R(nsu,0)

∂n . Therefore, pe
U (0) = (1 − δ) pN (nsu, 0)−cr (0) > (1 − δ) ∂R(nsu,0)

∂n −cr (0) = (1 − δ) cn (0)−

cr (0). Thus, if (1 − δ) cn (0) > cr (0), then pe
U (0) > 0, which validates our assumption in step 2.
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Finally, from the third equation of (A-50), we obtain V e′
N (0) = nsu

∂pN (nsu,0)
∂r . These relationships

can be substituted back in (A-51):

(1 − β)
∂V e

N (0, 0)

∂q
= nsu

(
β

(
pR (nsu, 0) − cr (0) + nsu

∂pN (nsu, 0)

∂r

)
− c′n (0)

)

or
∂V e

N (0, 0)

∂q
=

1

1 − β
nsu

(
β

(
∂R (nsu, 0)

∂r
− cr (0)

)
− c′n (0)

)

Thus, taking the fixed investment costs into account, we obtain

∆e .
=

∂V e
N (0, 0)

∂q
− k′ (0) =

1

1 − β
nsu

(
β

(
∂R (nsu, 0)

∂r
− cr (0)

)
− c′n (0)

)
− k′ (0)

and we observe that ∆e = ∆.

27


