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ABSTRACT

Under variable amplitude loading the fatigue crack growth rate to the load cycles

following an overload is reduced. Under stochastic loading the retardation phases

occur randomly with random intensity and duration depending on the last ran-

dom overload. In the paper the load process is assumed to be stationary and its

extremes are modelled as a Markov sequence. The fatigue crack growth appears

to form a random sequence of retardation and post- retardation phases. The

drift and diffusion parameters of a Markov approximation for the whole crack

growth process are evaluated from a numerical simulation within retardation and

post-retardation blocks. This mixed, numerical and analytical, approach allows

us to efficiently investigate the effect of different load and retardation model

assumptions on fatigue structural lifetime.

INTRODUCTION

Load sequence effects are observed in fatigue experiments under variable ampli-

tude loading where the time to reach a given critical length by a macro crack,

called the lifetime, strongly depends on the arrangement of sequence of load max-

ima, e.g. Schijve [1]. The usual change observed in the Mode I of fatigue crack

growth is a transient diminution of the crack propagation rate after an overload.

The duration of this phenomenon, called retardation of the crack growth, and

the magnitude of the retardation effect depend on many factor including spec-

imen geometry, enviromental effects, material properties, the magnitude of the

overload and of subsequent extremes. The physical nature of this phenomenon

has not been completely explained, yet. Most of the models that are proposed

in the literature to predict the fatigue crack growth with regard to the load se-

quence effects refer to the overload-inducted plastic zone and a diminution of the

effective stress intensity factor range after an overload, see e.g. Wanhill & Schijve
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[2]. They also assume the plasticity-inducted fatigue crack closure as a dominant

cause of fatigue crack growth retardation in Mode I, e.g Shin & Fleck [3]. Such an

approach originated also some previous attempts, see e.g Dolinski [4], Winterstein

& Veers [5], to model stochastic fatigue crack growth under stochastic loading

and to assess some probabilistic characteristics of the structural lifetime when

the critical length of a fatigue macro crack determines the structural failure.

FATIGUE CRACK GROWTH LAW

Very wide class of fatigue crack growth laws can be written in a general form

^ = F[a;S»,S-(n)] (1)

where a denotes the crack length and n is the number of load cycles representing

the time in cycle units. The function S*(n) and S~(n) denote, respectively, the

stress maximum and minimum in the n-th cycle of the far-field stress applied

to a cracked element. Since Elber [6] noticed the crack growth closure phe-

nomenon and pointed out its significance for fatigue crack growth, the effective

stress cycle amplitude, ASe// = S+ — Sop, is usually considered in fatigue crack

equations instead of AS = S+ - S~ if Sop > S~. In the literature there is no

universal formula relating Sop to the other load cycle parameters. Most of the

proposal are based on experimental data, see e.g. Bulloch [7]. The bilinear form,

q(R) = Sop/S+ = min{% • (1 + R/\Ro\), #}, proposed by Veers [8], is used in the

paper with % and RQ as material parameters. The ratio, R — S~/'S+, defines

the stress cycle asymmetry coefficient.

It is observed in fatigue experiments under constatnt amplitude loading with

a single overload that the crack opening stress increase transitorily after the

overload application and then return to its pre-overload value, e.g Reynolds [9].

It lessens the effective stress amplitude, ASe//, and the fatigue crack growth,

eventually. In some retardation models, Wheeler [10], Willenborg et al. [11],

the retarded growth of fatigue crack after an overload is assumed to continue as

long as the plastic zones, ry(&, S+), due to the current maxima following the

overload are contained in the plastic zone, ry(a^/, So/), produced by the overload.

In order to specify the retardation intensity Veers [8] introduced the so-called

reset stress, Sr- It determines the stress levels that is necessary to reset the

maximum extend of the overload plastic zone, ry(a^, So/). Applying the equality,

Oo/ + ry(&o/, Sol) = a+ry(a, Sr), where a is the current crack length, and assuming

Irwin's [12] estimate of the plastic zone range the reset stress can be calculated

as follows

/ y o i , o i -
- (2)

where cry is the yield stress of material and Y(a) denotes a dimensionless function

depending on the crack and specimen geometry.
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Generalising the concept of the crack opening stress, Sop = q-S+, at constant

amplitude loading for variable amplitude loading where Sop = q - Sr the effective

minimum of a cycle, 5e//~(n), can be explicitly written as

//"(%) = &/rK̂ ,̂ ;̂ -(7i),̂ (?%)) = (3)

• 6"+(%) if 3+ > & and 6"" < 9 • 6"+

^, ̂ /) if & > 6"+ > 9 • 6"r and ̂ " < 9 • ̂

M) if & > 6"+ > 9 • & and ̂ " > 9 • ̂

if ̂ + < • &

Substituting the real cycle minimum, 5~(n), with the effective minimum, Eq.

(3), in Eq. (1) we obtain the fatigue crack growth equation

, ̂(a, â , ̂/; ̂(/z), ̂+(̂ ))] (4)

which involves some load sequence effect due to the presence of parameters, a<>/

and 5o/, associated with the last overload. Eq. (4) requires a cycle- by-cycle

summation in calculation of the fatigue crack length for deterministic variable

amplitude loading.

STOCHASTIC LOADING AND RETARDATION

For stochastic loading every maximum can likely be an averload. For the re-

tardation model described in the previous section the necessary and sufficient

condition for a maximum, 6& + , to be an overload, £<,/, is the inequality

and &+i+<&(^ = ao/,^+i;^+) (5)

with cii correspond whit a maximum Si and so on. The maximum Soi starts a

retardation phase which continues as long as

6\+<&(ao,,a,;6'o,) for z>& (6)

If the condition given in Eq. (6) for continuation of the retardation phase is not

satisfied for a maximum, 5j+ say, this maximum can be the next overload or it

can start a post-retardation phase which will continue as long as

Sj-i+ < S* < Sj+S (7)

If the contition of continuation of the post-retardation phase is not satisfied for

a maximum, S/+ say, this maximum is assumed to start the next retardation

phase. This scheme can be extended on the whole fatigue crack propagation

process which appear to alternately consist of retardation and post retardation

phases. Every both successive phases, retardation and post-retardation ones, will

be consider as block starting and terminating with overloads.

The stress extremes are the only load parameters involved in fatigue crack

growth equations. Therefore, just their probabilistic characteristics are desired to
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predict the structural lifetime due to the macro crack propagation. Unfortunately,

a full stochastic description of sequence of extremes can be obtained in very

specific cases of stochastic process only. Recently, Frendahl & Rychlik [13] have

shown on a very wide numerical simulation basis that a homogeneous Markov

chain is a good approximation of the random sequence of extremes of stationary

Gaussian and some non-Gaussian processes with various spectral characteristics.

In practical application the length of correlation, n^rr — a dozen of cycles or so, of

the sequence of extremes appears much shorter than the length of the blocks, NB

— several dozen of cycles, consisting of retardation and post-retardation phases.

Then the number of cycles to failure, NF = several thousands cycles or more,

is much longer than NB'S- This property, n^rr 4C NB <C NF, suggest to apply

the Markov approximation for the fatigue crack growth equation, Eq. 4, see e.g.

Tichonov & Mironov [14]. A very great lifetime cycle number makes justifiable a

continuous approximation to find the statistical moments of Np from the sequence

of recurrent differential equations

with JVo(ao) = 1 (8)

where TV^(ao) = Â (0,ao,aF) = E[Np™\ denotes the n-th statistical moment of

the lifetime for a crack starting at a = ao and terminating at a = ap. The

absorbing boundary condition are assumed as Â (0,0,â ) = 7V̂ (0, ap, ap) =

0. For continuous Markov process the parameters rj(a) and 0̂ (0), denote the

drift and diffusion coefficients. For Markov sequence they are considered as the

the mean and the second moments of the crack length increment in a cycle:

77(0) = E[A(i +1) - /l(z)M(2) = a] and f^) = E[(A(i + 1) - ̂(2)̂ (̂2) = a].

The following section deals with an approach to determine these parameters.

SIMULATION PROCEDURE

Following the procedure proposed in Frendahl & Rychlik [13] we discretize the

extremes into a finite number of levels, 1/1,1^2 < ••• < UH- Samples of stochastic

process obtained from numerical simulation or given as records from observations

are statistically analysed to estimate the transition probability matrices from a

maximum to a subsequent minimum, P, and from a minimum to a subsequent

maximum, P. The assumption of Markovian character and the transition prob-

ability matrices define completly the random sequence of extremes. They suffice

to propose a simple numerical procedure that allows us to follow all probabilistic

characteristics associated with fatigue crack propagation after a given overload,

Sol = %&, applied to the specimen with a crack of length a = a<,/. Simulation be-

gins with assumption of a crack length, a<,/, and an overload, Sol — %&• We than

discretize the crack length, a; = a<,/ + i • Aa, with an appropriate discretization

parameter Aa. Successive calculation (cycle after cycle) of the transition proba-

bilities from the initial state, a = a<,/, to any state, a = a;, involves an appropriate

multiplication of the transition probability matrices, P and P, with accounting

for the inequality condition given by Eqs. (5), (6) and (7) and using Eq. (4) for

the crack length increment due to a current stress cycle. The calculation directly

provides the joint probability distribution, P[Ak(a,oi) — a, n/t(cw) = i\Sol — %k],
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of the crack length, /U(â ), at the end of the retardation and post-retardation

block, which has started at a = a^/, and the number of cycles, 40o/), within the

block given the overload, 6'̂ / = %/,, applied to the structural element with a crack

of length, a = a^. Repeating the calculation for all value of maxima as overloads

we release the overload condition as follow

k=l

(9)
The calculation shows that the length of a block A/lt(fW) = ̂ (̂«o/) - (W < a^

for most cases of practical engineering interest. It justifies the following averaging
procedure

<_V LAU / 771
-r~%m \-^ v—> (a, — a,-,/
AA (a,,) =2^2^ ^~ ' n-lk(aoi) = «/ n h(aoi) = n] for m = 1, 2

i = l n=l

(10)
which leads to the mean (?a = l) and the second (m=2) moment of the crack

length increment per cycle averaged over the retardation and post-retardation

block starting at a = w^. Repeating the computation for several a</s we release

the start condition due to the summation

Now, ?;(a) = //,(o;l) and (7̂ (a) = //(rz;2). They are considered, respectively, as

empirical drift and diffusion parameters in Eq. (S) enabling the calculation of
lifetime moments.

NUMERICAL EXAMPLE

This numerical example deals with an infinite metal sheet where a central part-

through crack of initial size, r/o=U.127 mm is present. The crack propagates up

to a final length, a/ = 3.810 mm, where failure is assumed to take place. A Paris-

Erdogan law, a special case of Eq. (1), is adopted to describe the fatigue crack

growth, da/dyi = C-[(6'+ - 6',//-) • y(w) • \/F̂ "\ Eor the simple structural situ-

ation under investigation we have y(") = 1 while C = 4.13 -lO'^ MPa units and

m=3.5. The parameters involved in the definition of the reset stress (Eq. (2))

and the effective minimum (Eq. (3)) are: <7y = 137.G MPa; #o=-5 and % = .49G.

Zero mean stationary Gaussian load ,S'(Z) are selected to show the applicability

of the proposed approach. Each loads has a rectangular one-side power spectra

density function in the frequency interval [a,/3] and constant standard deviation

equal to 30.76 MPa. The lower limit a of the power spectrum density function

is keep costant to 10 Hz Eor /jf -^ % , the bandwidth parameter (m, are the

spectral moments) c = ^1 - ̂ /(/"o'?̂ ) tends to O.GG7.

Realizations of the load process were performed for the following set of the upper
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limit ft: 11, 13, 20, 40, 50, 100 (Hz.) by using the sequential simulation method

due to Veers [8], which simulates the sequential random variable which make up

successive peaks and valley. It means that only the significant peaks and ranges

are generated.

Given a realization of the stress process the extremes are discretized into 51

equally spaced levels and the transition matrices P and P are generated by

statistical analysis. The simulation procedure outlined in the previous section

produces then the joint probability distribution function of the crack length after

the end of the retardation and post-retardation phase and the number of cycles

to the next overloading. This result is shown in Fig. (1) for /3=40 Hz. The drift

and diffusion coefficients are then numerically evaluated and finally the first and

second moment of the mean number of the duty cycles to failure is computed

by solving the recurrent differential equation given in Eq. (8) applying the ap-

propriate boundary conditions. The results for the mean value of the number of

cycles to failure is given in Fig. (2) as a function of e in order to shown the effect

of the bandwidth parameter on the structural lifetime. In the same picture it

is also reported the structural lifetime without sequence effects to illustrate the

importance of retardation phenomenon on fatigue crack growth.

CONCLUSIONS

This paper deals with the problem of fatigue crack growth retardation due to

load sequence effect.

An original simulation procedure is introduced to evaluate the drift and diffusion

coefficient of the Markov approximation of the fatigue crack growth.

It avoids the solution of a complicated system of stochastic differential equations

for the probabilistic description of the structural lifetime.

The proposed method is very flexible since it allows us to consider a very wide

class of Gaussian and non-Gaussian processes with different spectral characteris-

tics.

Further research is in progress to insert the effect of randomness of material and

geometrial parameters in the proposed simulation scheme.
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Fig. 1. Joint probability distribution function of the crack length at the end of

the retardation and post retardation phase and the number of cycle within the

block (P = 40 Hz.).
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Fig. 2. Mean value of the lifetime as function of the bandwidth parameter c for

the retardated and unretarded fatigue crack growth.

                                                             Transactions on Engineering Sciences vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3533 


