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Abstract—Many important network design problems can be
formulated as a combinatorial optimization problem. A large
number of such problems, however, cannot readily be tackled by
distributed algorithms. The Markov approximation framework
studied in this paper is a general technique for synthesizing
distributed algorithms. We show that when using the log-sum-exp
function to approximate the optimal value of any combinatorial
problem, we end up with a solution that can be interpreted
as the stationary probability distribution of a class of time-
reversible Markov chains. Certain carefully designed Markov
chains among this class yield distributed algorithms that solve the
log-sum-exp approximated combinatorial network optimization
problem. By three case studies, we illustrate that Markov
approximation technique not only can provide fresh perspective
to existing distributed solutions, but also can help us generate
new distributed algorithms in various domains with provable
performance. We believe the Markov approximation framework
will find applications in many network optimization problems,
and this paper serves as a call for participation.

I. Introduction

Many important network design and resource allocation
problems can be formulated as a combinatorial network opti-
mization problem. Two well-studied examples are

• The Maximum Weighted Independent Set (MWIS) prob-
lem of finding the independent set with the maximum
weight. MWIS problem is known to be a bottleneck of
the wireless utility maximization problem [1].

• The optimal path selection problem in traffic engineering
of finding the “best” set of paths for every user to
maximize the overall network throughput [2].

These formulations, while elegant, often suffer from two short-
comings: (i) the optimization problem could be intractable
when the network size is large (i.e., it is NP-complete); (ii)
the optimization problem could be amenable to centralized
implementation only.

This paper attempts to tackle issue (ii). Specifically, we
propose a general Markov approximation technique that allows
us to solve many combinatorial network optimization problems
in a distributed manner. This also addresses issue (i) to a
certain extent because the distributed implementation often
allows parallel processing by different network elements in the
network. Moreover, systems running distributed algorithms,
compared with those running centralized algorithms, are more
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adaptable to users joining and leaving the systems (e.g., peer
churn in Peer-to-peer systems) and are more robust to system
dynamics (e.g., channel fading in wireless networks).

Historically, our investigation of the Markov approximation
framework was inspired by the recent progress in carrier-
sense multiple-access (CSMA) network design. In [3] [4], it
was shown that the throughput of links in a CSMA network
can be computed from a time-reversible Markov chain. [5]
[6] reverse-engineered to show that CSMA solves the com-
binatorial MWIS problem asymptotically, off by an entropy
term. With this observation, [5] [6] made a significant contri-
bution showing that a standard wireless utility maximization
problem [1] can be solved by running distributed algorithms
on top of CSMA, with an entropy term added to the utility
function. The appearance of the entropy term is a consequence
of solving the utility maximization problem on top of CSMA.
It turns out that similar entropy term also arises in several
other existing communication systems [7], [8].

These observations naturally lead to several interesting
forward-engineering questions. What is the fundamental cause
of the appearance of the entropy term in all these problems?
By adding an entropy term to the objective function of a
combinatorial optimization problem, can we get a distributed
solution out of it? If yes, how to do so systematically?

This work answers the above questions, and advocates
to use the entropy term as a forward-engineering device to
stimulate new algorithms for various network combinatorial
problems. This expands the usefulness of the approach origi-
nally expounded in the series of work in [3]–[7], [9] to many
other domains beyond CSMA networks. In particular, this
paper makes the following contributions:
• it shows that an entropy term appears as a direct con-

sequence of our approximating the optimal value of any
combinatorial problem using a log-sum-exp function.

• it shows that as a result of the log-sum-exp approxima-
tion, the optimal solution can be realized by the stationary
distribution of a class of time-reversible Markov chains
(all with the same stationary distribution).

• it shows that certain carefully designed time-reversible
Markov chains among this class yield distributed algo-
rithms that solve the log-sum-exp approximated problem.

• it demonstrates the usage of the Markov approximation
technique by considering two specific problems that are
of much practical interest. The first is the optimal path se-
lection problem in multipath transmission. The second is
the problem of frequency channel assignment to Wireless
LANs located in the vicinity of each other.

Due to space limit, all proofs and pseudo-codes are in [10].
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II. Markov Approximation

A. Settings

Consider a network with a set of users R, and a set of
configuration F . A network configuration f ∈ F consists of
individual users using one of its local configurations. When
the system operates under f , each user obtains certain perfor-
mance, denoted by xr( f ) (r ∈ R)1. The problem of maximizing
the system performance, i.e., aggregate user performance,
by choosing the best configuration can then be cast as the
following combinatorial optimization problem: 2

MWC : max f∈F
∑
r∈R

xr( f ). (1)

An equivalent formulation is

MWC − EQ : max
p≥0

∑
f∈F

p f

∑
r∈R

xr( f ) (2)

s.t.
∑
f∈F

p f = 1,

where pf is the percentage of time the configuration f is
in use. Treating

∑
r∈R xr( f ) in (1) as the “weight” of f , the

problem MWC is to find a maximum weighted configuration.
For many problems, formulation in (1) could be very chal-

lenging to solve, even in a centralized manner. For example,
the MWIS problem is known to be NP-hard. In practice, it is
often acceptable to solve the problem approximately, but in a
distributed manner. Systems running distributed algorithms are
more robust to user and system dynamics than those running
centralized algorithms.

In the following, we describe a framework, which we call
Markov approximation, to approach problem in (1). It often
leads to distributed algorithms that can be implemented in
practice with limited or no message passing among users, as
demonstrated in Section III, IV, and V.

B. Log-sum-exp Approximation

To gain insights into the structure of the problem MWC,
we approximate the max function in (1) by a differentiable
function as follows:

max
f∈F

∑
r∈R

xr( f ) ≈ 1
β

log

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑
f∈F

exp

⎛⎜⎜⎜⎜⎜⎝β
∑
r∈R

xr( f )

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠ � gβ (x) , (3)

where β is a positive constant and x �
[∑

r∈R xi( f ), f ∈ F ].
This approximation is known as the convex log-sum-exp
approximation to the max function. Its accuracy is as follows.

Proposition 1: For a positive constant β and n non-negative
real variables y1, y2, . . . , yn, we have

max(y1, . . . , yn) ≤ 1
β

log
(
exp(βy1) + · · · + exp(βyn)

)

≤ max(y1, . . . , yn) +
1
β

log n. (4)

1Note xr( f ) can be some direct system measurement, e.g., throughput, under
configuration f , or a function of the measurement.

2There could be other forms of combinatorial optimization problem. In this
paper we focus on the standard form given in (1).

Hence, max(y1, . . . , yn) = lim
β→∞

1
β

log
(
exp(βy1) + · · · + exp(βyn)

)
.

We summarize several important observations of gβ (x) in
the following theorem. Some of these observations were also
found relevant in the context of Geometric Programming [11].

Theorem 1: For the log-sum-exp function gβ (x), we have

• its conjugate function3 is given by

g∗β (p) =

⎧⎪⎪⎨⎪⎪⎩
1
β

∑
f∈F p f log pf if p ≥ 0 and 1T p = 1

∞ otherwise.
(5)

• it is a convex and closed function; hence, the conjugate
of its conjugate g∗β (p) is itself, i.e., gβ (x) = g∗∗β (x).
Specifically,

gβ (x) = max
p≥0

∑
f∈F

p f

∑
r∈R

xr( f ) − 1
β

∑
f∈F

p f log pf (6)

s.t.
∑
f∈F

p f = 1.

Remark: Several observations can be made. First, by the
log-sum-exp approximation in (3), we are implicitly solving
an approximated version of the problem MWC − EQ, off by
an entropy term − 1

β

∑
f∈F p f log pf

4. The optimality gap is
thus bounded by 1

β
log |F |, where |F | represents the size of

F . We emphasize that this is a direct consequence of we
theoretically approximating the max function by a log-sum-
exp function in (3). Practically, we argue in this paper that
adding this additional entropy term in fact opens new design
space for exploration. Second, the approximation becomes
exact as β approaches infinity. However, as we will see in case
studies later, usually there are practical constraints or overhead
concerns on using large β. Third, we can derive a close-form
of the optimal solution of the problem in (6). Let λ be the
Lagrange multiplier associated with the equality constraint in
(6) and p∗f (x), f ∈ F be the optimal solution of the problem
in (6). By solving the Karush-Kuhn-Tucker (KKT) conditions
[12] of the problem in (6):

∑
r∈R

xr( f ) − 1
β

log p∗f (x) − 1
β
+ λ = 0, ∀ f ∈ F , (7)

∑
f∈F

p∗f (x) = 1, λ ≥ 0, (8)

we have

p∗f (x) =
exp (β

∑
r∈R xr( f ))∑

f ′∈F exp (β
∑

r∈R xr( f ′))
,∀ f ∈ F . (9)

By time-sharing among different configurations f according to
their portions p∗f (x), we solve the problem MWC − EQ, and
hence the problem MWC, approximately. We remark that the
optimality gap is bounded by 1

β
log |F |, which can be made

small by choosing large β.

3Definition of conjugate function is as follows: let g(y) be a R-value
function with domain domg ∈ Rn, its conjugate function is defined as
g∗(z) = supy∈domg

(
zT y − g(y)

)
[12].

4Under the context of CSMA scheduling, Jiang and Walrand [5] arrive a
similar observation using a different approach. We will discuss more details
when we come to CSMA utility maximization in Section III.
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C. Algorithm Design via Markov Chain

A key to creating new algorithm designs is to treat
p∗f (x) ( f ∈ F ) as the stationary distribution of a time-
reversible Markov chain. Time-reversible Markov chains usu-
ally have structures that allow distributed implementation. As
the Markov chain converges to its stationary distribution, we
approach p∗f (x) in a distributed manner.

Lemma 1: For any probability distribution of the product
form p∗f (x) in (9), there exists at least one continuous-
time time-reversible ergodic Markov chain whose stationary
distribution is p∗f (x). Further, for any continuous-time time-
reversible ergodic Markov chain, its stationary distribution can
be expressed by the product form p∗f (x) in (9).

To construct a time-reversible Markov chain with its sta-
tionary distribution p∗f (x) ( f ∈ F ), we let f ∈ F be the state
of the Markov chain, and denote qf , f ′ as the transition rate
between two states f and f ′. It suffices to design qf , f ′ so that

• the resulting Markov chain is irreducible, i.e., any two
states are reachable from each other,

• and the detailed balance equation is satisfied: for all f
and f ′ in F and f � f ′, p∗f (x) q f , f ′ = p∗f ′ (x) q f ′, f , i.e.,

exp

⎛⎜⎜⎜⎜⎜⎝β
∑
r∈R

xr( f )

⎞⎟⎟⎟⎟⎟⎠ q f , f ′ = exp

⎛⎜⎜⎜⎜⎜⎝β
∑
r∈R

xr( f ′)
⎞⎟⎟⎟⎟⎟⎠ q f ′, f . (10)

We remark that the above two sufficient requirements allow a
large degree of freedom in design.

First, it allows us to cut off direct transition between any
two states, given that they are still reachable from other
states. The modified Markov chain is still time-reversible
and its stationary distribution is still p∗f (x) ( f ∈ F ). For
example, assume the 4-states Markov chain in Fig. 1.(a) is
time-reversible. The “sparse” Markov chains in Fig. 1.(b)-(d),
modified from the one in Fig. 1.(a), are also time-reversible.
Furthermore, all Markov chains share the same stationary
distribution.

f

f ′′′

f ′

f ′′

(a)

f

f ′′′

f ′

f ′′

(b)

f

f ′′′

f ′

f ′′

(c)

f

f ′′′

f ′

f ′′

(d)

Fig. 1. The Markov chains in (b), (c), (d), by adding/removing transition
edge-pair between two states in the time-reversible Markov chain in (a), are
also time-reversible. All Markov chains have the same stationary distribution.

Second, for two states f and f ′ that have direct transitions,
there are many options in designing qf , f ′ and qf ′, f . These
options include, but are not limited to, the following ones:
let α be a positive constant,

OPT1: let q f , f ′ be negative correlated to the system perfor-
mance

∑
r∈R xr ( f ) under configuration f , specifically,

qf , f ′ = α

⎡⎢⎢⎢⎢⎢⎣exp

⎛⎜⎜⎜⎜⎜⎝β
∑
r∈R

xr ( f )

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
−1

. (11)

q f ′, f is defined in a symmetric way.

OPT2: let q f , f ′ be positive correlated to the system perfor-
mance under the targeting configuration f ′:

q f , f ′ = α exp

⎛⎜⎜⎜⎜⎜⎝β
∑
r∈R

xr
(
f ′
)⎞⎟⎟⎟⎟⎟⎠ . (12)

q f ′, f is defined in a symmetric way.
OPT3: let qf , f ′ be positive correlated to the difference of

system performance under configurations f and f ′:

qf , f ′ = α exp

⎛⎜⎜⎜⎜⎜⎝12β
∑
r∈R

(
xr
(
f ′
) − xr ( f )

)⎞⎟⎟⎟⎟⎟⎠ . (13)

q f ′, f is defined in a symmetric way.
OPT4: let qf ′, f = α, and q f , f ′ be positive correlated to the

difference of system performance under configura-
tions f and f ′, i.e.,

qf , f ′ = α exp

⎛⎜⎜⎜⎜⎜⎝β
∑
r∈R

(
xr
(
f ′
) − xr ( f )

)⎞⎟⎟⎟⎟⎟⎠ . (14)

Design option OPT1 implies the transition rate from f to f ′,
i.e., qf , f ′ , is independent of the performance under targeting
configuration f ′. In contrast, qf , f ′ in OPT2 depends only on the
performance of targeting configuration f ′. Design of q f , f ′ in
OPT3 combines flavors from previous two options, where the
system is more likely to switch to a configuration with better
performance. In practice, both OPT2 and OPT3 require the
system to know the performance under targeting configuration
f ′ a priori, or through a probing phase. Option OPT4 is similar
to OPT3, but q f , f ′ and q f ′, f are no longer symmetric. As
will be argued in Section III, the CSMA protocol in fact
implements a Markov chain with transition rates fitting into
option OPT4.

Recall that in our setting, a configuration f consists of
each individual user using one of its local configurations.
Transitions between f and f ′ are done via users switching their
local configurations accordingly. By users running individual
continuous-time clock and wait for a random amount of
time before switching local configurations, we can design
transitions to happen only between two configurations f and f ′
that differ by one user’s local configuration. If individual users
can measure the system performance required for determining
the configuration-switching rates in a distributed manner, then
the Markov chain can be implemented distributedly.

Note that Simulated Annealing [13] also uses Markov
chains for algorithm design. The difference between Simulated
Annealing and our work is that Simulated Annealing in general
focuses on solving the problem exactly using centralized
algorithms, while we focus on designing distributed algorithm
to solve the optimization problem approximately.

III. Case 1: UtilityMaximization in CSMA Networks

In this section, we apply the Markov approximation frame-
work to the wireless utility maximization problem. We derive
solutions similar to those in [5] [6]. By doing so, we wish to
provide new perspectives to the design of those solutions.
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A. Settings

Consider a hidden-node-free5 and collision-free CSMA
wireless network, denoted by G = (N, L) where N is the set of
nodes and L is the set of links, each having unit capacity. Note
that the results can be readily extended to the case where links
have heterogeneous capacities. Let its corresponding conflict
graph be Gc = (L, A), where A is the set of arcs in Gc. Let F
be the set of all independent sets over Gc.

Let S be the set of all users, where a user s ∈ S is associated
with the single route connecting its source and destination
nodes. Let z = [zs, s ∈ S ]T be the vector of user rates. Let
p = [p f , f ∈ F ]T be the vector of percentages of time an
independent set is active. Let Us(zs) be the utility function of
user s upon sending at rate zs. We assume the utility functions
to be twice differentiable, increasing and strictly concave.

B. Wireless Utility Maximization Problem

Consider the following utility maximization problem over
Gc. Note here no wireless protocol is assumed.

MP : max
z≥0,p≥0

∑
s∈S

Us(zs) (15)

s.t.
∑

s:l∈s,s∈S
zs ≤

∑
f :l∈ f

p f , ∀l ∈ L

∑
f∈F

p f = 1

where
∑

s:l∈s,s∈S zs is the aggregate rate passing through link
l, and the first set of constraints says aggregate incoming rate
of every link can not exceed the average link throughput. By
relaxing the first set of inequality constraints, we get its partial
Lagrangian as follows

L(z, p, λ) =
∑
s∈S

Us(zs) −
∑
l∈L
λl

⎛⎜⎜⎜⎜⎜⎜⎝
∑

s:l∈s,s∈S
zs −
∑
f :l∈ f

p f

⎞⎟⎟⎟⎟⎟⎟⎠ , (16)

where λ = [λl, l ∈ L]T is the vector of Lagrange multipliers.
We notice

∑
l∈L λl

∑
f :l∈ f p f =

∑
f∈F p f

∑
l∈ f λl.

Since the optimization problem MP is concave and the
Slater’s condition holds, the strong duality holds. Conse-
quently, the optimal solution of problem MP can be found
by solving the following problem successively in p, z, and λ:

min
λ≥0

max
z≥0
p≥0

∑
s∈S

Us(zs) −
∑
l∈L
λl

∑
s:l∈s,
s∈S

zs +
∑
f∈F

p f

∑
l∈ f

λl (17)

s.t.
∑
f∈F

p f = 1.

5In CSMA networks, two links are allowed to transmit simultaneously
if they are considered to be feasible under CSMA protocol. However,
CSMA protocol schedules transmissions based on carrier sensing mechanism,
independent of the underlying interference model. Consequently, simultaneous
transmissions allowed by CSMA may still interfere with each other, resulting
in the infamous hidden-node problem. As compared to CSMA networks
with hidden nodes, hidden-node-free CSMA networks are attractive not only
because they are more fair, but also because its throughput analysis is more
tractable. As studied in [14], a CSMA network can always be made hidden-
node-free, by setting the carrier sensing threshold properly. Hence, we focus
on hidden-node free CSMA networks in our analysis.

The key challenge lies in solving the combinatorial sub-
problem in p, which is the NP-hard MWIS problem [1]:

MWIS : maxp≥0

∑
f∈F

p f

∑
l∈ f

λl (18)

s.t.
∑
f∈F

p f = 1.

The optimal value of the problem MWIS is given by comput-
ing the max function: max f∈F

∑
l∈ f λl.

C. Approach by Markov Approximation

Observing the problem MWIS is a combinatorial optimiza-
tion problem, we apply the Markov Approximation. First, we
apply the log-sum-exp approximation

max
f∈F

∑
l∈ f

λl ≈ 1
β

log

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑
f∈F

exp

⎛⎜⎜⎜⎜⎜⎜⎝β
∑
l∈ f

λl

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (19)

where β is a positive constant. According to Theorem 1, we
are implicitly solving an approximated version of the problem
MWIS, off by an entropy term − 1

β

∑
f∈F p f log pf , as follows

maxp≥0

∑
f∈F

p f

∑
l∈ f

λl − 1
β

∑
f∈F

p f log pf (20)

s.t.
∑
f∈F

p f = 1,

and the corresponding (unique) optimal solution is

p f (λ) =
exp
(
β
∑

l∈ f λl

)
∑

f ′∈F exp
(
β
∑

l∈ f ′ λl

) ,∀ f ∈ F . (21)

We first study the impact of solving the subproblem MWIS
approximately by (19).

1) Entropy Term as A Consequence of Log-sum-exp Ap-
proximation: After we approximate problem MWIS by the
one in (20), the partial Lagrangian problem in (17) turns into

min
λ≥0

max
z≥0,p≥0

∑
s∈S

Us(zs) − 1
β

∑
f∈F

p f log pf (22)

−
∑
l∈L
λl

⎛⎜⎜⎜⎜⎜⎜⎝
∑

s:l∈s,s∈R
zs −
∑
f :l∈ f

p f

⎞⎟⎟⎟⎟⎟⎟⎠
s.t.

∑
f∈F

p f = 1. (23)

It can be verified to be the partial Lagrangian problem of the
following primal problem:

MP −MA : max
z≥0,p≥0

∑
s∈S

Us(zs) − 1
β

∑
f∈F

p f log pf (24)

s.t.
∑
f :l∈ f

p f ≥
∑

s:l∈s,s∈R
zs, ∀l ∈ L

∑
f∈F

p f = 1.

Comparing problems MP −MA and MP, we observe that
when we approximate the subproblem MWIS by the one
in (20), we are in effect approximating the problem MP by
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problem MP −MA, which has an additional entropy term in
its objective function. We remark that the entropy term appears
as a direct consequence of our approximating the max function
with the log-sum-exp function in (19), independent of any
wireless protocol, e.g., CSMA, to be used.

Historically, by modeling and studying the carrier sensing
behavior, the authors of [3], [4] showed that the percentage
of the active time of independent sets, under the CSMA
scheduling with transmission aggressive vector λ, is given by
p f (λ) in (21). The authors of [5], [6] then reverse-engineered
p f (λ) in (21) to be the optimal solution to the problem in (20).
With this observation, the authors of [5], [6] design distributed
algorithms on top of CSMA to solve problem MP −MA, an
entropy term away from problem MP.

2) CSMA as Distributed Implementation of Markov Chain:
From a forward engineering perspective, imagine that the
CSMA protocol was not invented and did not exist yet.
Then following the Markov approximation technique, we
now design a time-reversible Markov chain whose stationary
distribution is given by (21) and work out its distributed
implementation.

The states of the Markov chain are the independent sets
over Gc. To make sure the network operates over only the
independent sets, any two mutually interfering links (in par-
ticular their transmitters) must be able to sense each other so
one will keep silence while the other is transmitting. This can
be done distributedly by each transmitter sensing its receiving
power and only starting its transmission if the power is below
a properly selected threshold [14].

We follow OPT4 (discussed in Section II-C) to design the
transition rates. We start by only allowing direct transitions
between two “adjacent” states (independent sets) f and f ′ that
differ by one and only link. That is,

a) we set q f , f ′ to zero, if one of f or f ′ is not a subset
of the other (i.e., | f |− | f ′| = ±1 is not satisfied). Here
| · | represents the size of a set.

By this design, the transition from f to f ′ = f∪{l′} corresponds
to link l′ starting its transmission. Similarly, the transition
from f ′ to f corresponds to link l′ finishing its on-going
transmission.

Now, consider two states f and f ′ where f ′ = f ∪ {l′},
b) we set q f ′, f to 1, and

q f , f ′ = exp

⎛⎜⎜⎜⎜⎜⎜⎝β
⎛⎜⎜⎜⎜⎜⎜⎝
∑
l∈ f ′
λl −
∑
l∈ f

λl

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ = exp (βλl′ ) . (25)

To achieve transition rate qf , f ′ , the transmitter of link l′ waits
for a back-off time that follows exponential distribution with
rate exp (βλl′ ) before it starts to transmit. During the count-
down, if the link l′ (in particular its transmitter) senses another
interfering link is in transmission, link l′ will freeze its count-
down process. When the transmission is over, link l′ count-
down according to the residual back-off time, which is still
exponential distributed with the same rate exp (βλl′ ) because
of the memoryless property of exponential distribution.

The transition rate only depends on the lagrange multiplier
λl′ (called transmission aggressiveness in [5]) and is propor-

tional to the local queue length of link l′, as discussed in [5]
[6] and in Section III-C4.

Similarly, the transition rate q f ′, f can be achieved by link l′
setting its transmission time to follow exponential distribution
with unit rate.

In the end, this distributed implementation leads to the
discovery of the CSMA protocol, with adjustable transmission
aggressiveness. This thought exercise raises a significant point.
Namely, had the CSMA protocol not been invented previously,
the Markov Approximation technique might have led us to
it, starting with the premise that we wanted to find an
approximate distributed algorithm to problem MP. A similar
exercise on other problem domains may help us to discover
new distributed algorithms. That is, the Markov approximation
technique is a general framework for synthesizing distributed
algorithms. .

3) Approximation Accuracy Limited by Physical Con-
straints: Mathematically, as β approaches infinity, we should
be able to solve MWIS exactly. However, there are certain
physical constraints limiting the size of β. In particular, the
backoff rate of link l (l ∈ L) is exp (βλl), which cannot go
beyond 53 according to our analysis for a 10Mbps Wireless
LAN under typical setting. We will not delve into the details
of the analysis since it is not the focus on this paper. We refer
interested readers to our technical report [10].

4) Solving Problem MP −MA by CSMA and Primal-dual
Algorithm: With the approximated optimal value to problem
MWIS in (19), we can solve the following problem to get the
optimal solution z∗ and λ∗ (and thus p∗):

∑
s∈S

Us(zs) −
∑
l∈L
λl

∑
s:l∈s,s∈S

zs +
1
β

log

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑
f∈F

exp

⎛⎜⎜⎜⎜⎜⎜⎝β
∑
l∈ f

λl

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (26)

This problem can be solved by either a dual algorithm or a
primal-dual algorithm. Dual algorithms has been studied for a
slightly different formulation in [5], [6]. We study a primal-
dual algorithm as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ̇l = kl

[∑
s:l∈s,s∈S zs −∑l∈ f p f (βλ)

]+
λl

żs = αs

[
U
′
s(zs) −∑l∈s λl

]+
zs

, (27)

where kl(l ∈ L) and αs(s ∈ S ) are positive constants and
function [b]+a = max(0, b) if a ≤ 0 and equals b otherwise. The
advantage of the primal-dual algorithm is that the changes in
sending rate zs (and correspondingly λl) is smoother than that
in the dual algorithm.

Note
∑

l∈s ps(βλ) is the stationary throughput of link l, by
running CSMA protocol network-widely with transmission
aggressive vector βλ. This is a key observation made in [3]
[5] [6]. The Lagrange dual variable λl can then be updated
based on information of the local queue at link l.

Given the Markov chain converges to its stationary distribu-
tion instantaneously, proving the convergence of the algorithm
in (27) can be done by a standard technique using Lyapunov
function [15].

In practice, however, the Markov chain may not converge
before the primal-dual algorithm (27) evolves. the algorithm
then turns into a stochastic primal-dual algorithm, given as
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follows:

λl(m + 1) =

⎡⎢⎢⎢⎢⎢⎢⎣λl(m) + ε(m)

⎛⎜⎜⎜⎜⎜⎜⎝
∑

s:l∈s,s∈S
zs(m) − θ̄l(m)

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
+

∀l ∈ L,

zs(m + 1) =

⎡⎢⎢⎢⎢⎢⎣zs(m) + ε(m)

⎛⎜⎜⎜⎜⎜⎝U ′
s(zs(m)) −

∑
l:l∈s

λl(m)

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
+

∀s ∈ S ,

(28)

where ε(m) is the step size, θ̄l(m) is the average link rate mea-
sured by link l within the update interval Tm, and Tm is the time
interval between the system updating (λ(m − 1), z(m − 1)) and
(λ(m), z(m)). The primal-dual algorithm (27) can be considered
a continuous time approximation of (28) with small ε(m) and
Tm.

Under suitable choices of step sizes and update intervals,
we establish the convergence of the stochastic primal-dual
algorithm (28) with probability one in the following theorem.

Theorem 2: Assume that U
′
s(0) < ∞,∀s ∈ S ,

maxs,m zs(m) < ∞ and maxl,m λl(m) < ∞. The stochastic
primal-dual algorithm in (28) converges to the optimal solu-
tions of MP −MA asymptotically with probability one under
the following conditions on step sizes and update intervals:

{Tm} is non-decreasing with m, (29)

ε(m) > 0 ∀m,
∑∞

m=1
ε(m) = ∞,

∑∞
m=1
ε2(m) < ∞, (30)∑∞

m=1

ε(m)
Tm
< ∞. (31)

Further, the setting ε(1) = T (1) = 1, ε(m) = 1
m , Tm = m, m ≥ 2

is one specific choice satisfying conditions (29)-(31).
Inspired by and similar to [16], we also adopt the standard

methods of stochastic approximation [17] and Markov chain
[18], [19]. The difference between our work and [16] is that,
our work studies the saddle points of Lagrangian function,
while [16] studies the optimal dual solutions directly.

IV. Case 2: Path Selection inWireline Networks

A. Settings

Consider a wireline network G=(V, L), the capacity of link
l ∈ L is denoted by Cl. Let Js denote the set of paths available
for user s ∈ S . For each path a user s selects from Js, it opens a
connection to transfer data. Maintaining connections and paths
consume users’ resources and incur overhead. Due to limited
system resource or overhead concern, each user s ∈ S operates
at most Ds connections over Ds paths.

Let F denote the set of all possible configurations of paths
used by users. A configuration f ∈ F represents the set of
paths used by all s ∈ S . Given an f ∈ F , we denote those
used by user s to be Js, f ⊆ Js, where |Js, f | = Ds.

Similar to [2], we assume that there exists at most one
bottleneck link along each path, where “bottleneck” is defined
as the link shared among multiple paths. Therefore, at most
one link of a path will be shared with other paths. While
a limited assumption that may not hold in practice, it is
a reasonable model for some realistic scenarios [20]. Even
under this assumption, path selection is still a challenging
problem [2]. We also assume the utility functions to be twice
differentiable, increasing and strictly concave.

B. Joint Path Selection and Multipath Utility Maximization

Consider the following utility maximization problem based
on path selection, where we time-share among a set of
configurations to maximize the aggregate user utility of the
long-term throughput:

PS : maxz≥0,p≥0

∑
s∈S

Us(zs) (32)

s.t. zs ≤
∑
f∈F

Rs, f p f ∀s ∈ S

∑
f∈F

p f = 1,

where zs is the long-term throughput of user s ∈ S , p f is the
probability (or time fraction) of the configuration f, and Rs, f is
named the “equilibrium rate” for user s in configuration f. It
is the aggregate rate source s obtained at the optimal solution
to the following multipath utility maximization problem with
uncoordinated congestion control [2]:

MP − UCC : maxy≥0

∑
s∈S

∑
j∈Js, f

Us(y j) (33)

s.t.
∑
j:l∈ j

y j ≤ Cl, ∀l ∈ Lf

where Lf is the set of links used by all users under config-
uration f, y j is the path rate for path j ∈ Js, f , s ∈ S , and
y = [y j,∀ j ∈ Js, f , s ∈ S ]T is the vector of rates of all paths. Let
the optimal solutions of the problem MP − UCC be denoted
by ŷ j, j ∈ Js, f , s ∈ S . The equilibrium capacity is given by

Rs, f =
∑
j∈Js, f

ŷ j. (34)

By (34), we implicitly assume a timescale separation be-
tween solving the problems MP − UCC and PS [2]. Such
assumption is justified to some extend by the following obser-
vations. Given the configuration f ∈ F , problem MP − UCC
can be solved by standard distributed flow control algorithms
[2], in a timescale on the order of round trip time. On the
other hand, the path selection is likely to operate at a much
slower timescale due to the overhead involved in configuring
paths and setting up connections.

With the two timescale separation in place, we focus on
solving the combinatorial problem PS in the slow timescale.

C. Approach by Markov Approximation

Following similar procedure in Section III, we apply
Markov approximation and at the end turn to solve an ap-
proximated version of problem PS as follows:

PS −MA : maxz≥0,p≥0

∑
s∈S

Us(zs) − 1
β

∑
f∈F

p f log pf (35)

s.t. zs ≤
∑
f∈F

Rs, f p f ∀s ∈ S

∑
f∈F

p f = 1.

To proceed, we relax the first set of constraints and denote
λ = [λs, s ∈ S ] as the vector of Lagrange multipliers. Follow-
ing a similar analysis as in Section III, the optimal solution of
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the problem in (35) can be obtained by searching the saddle
point of the following function

∑
s∈S

Us(zs) −
∑
s∈S
λszs +

1
β

log

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑
f∈F

exp

⎛⎜⎜⎜⎜⎜⎝β
∑
s∈S

Rs, f λs

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (36)

and at the same time setting

p f (βλ) =
exp
(
β
∑

s∈S Rs, f λs

)
∑

f∈F exp
(
β
∑

s∈S Rs, f λs

) ,∀ f ∈ F . (37)

We explore algorithm design based on this observation in the
following subsections. The p f (βλ) in (37) can be interpreted as
the stationary distribution of a time reversible Markov chain,
whose states are the configurations in F . We first discuss how
to design and implement such a Markov chain in a distributed
manner, and then design stochastic algorithms to pursue the
saddle point of the function in (36).

D. Design and Implementation of Markov Chain

First, we set the transition rate qf , f ′ between two configu-
rations f and f ′ to be zero, unless f and f ′ satisfy that

C1: | f ∪ f ′ − f ∩ f ′| = 2;
C2: there exists a user, denoted by s( f , f ′), so that f ∪

f ′ − f ∩ f ′ ∈ Js( f , f ′).
This way, the transition from f to f ′ corresponds to a single
user s( f , f ′) switching a single path.

Second, for f and f ′ that satisfy C1 and C2, we follow
OPT1 discussed in Section II-C to design their transition
rate q f , f ′ . Direct implementation of OPT1, however, usually
requires user s( f , f ′) to know global information

∑
s∈S Rs, fλs,

a term difficult to acquire in practice. To this extend, we
find that a unique structure of our problem can simplify the
implementation.

First, we introduce a new concept. Given a path j, its
neighboring path set N( j) is defined as the set of paths that
share links with j, i.e., N( j) = { j′ : j′ ∩ j � ∅}. Since there is
at most one bottleneck link per path, we have 1) only one link
of path j is shared with other paths in N( j); 2) this particular
link must be the only bottleneck link of any path j′ ∈ N( j).
Consequently, all paths in N( j) have identical neighboring set,
i.e., N( j′) = N( j) for all j′ in N( j). For any path j′ � N( j),
N( j′) ∩ N( j) = ∅.

Then we have the following observation:
Lemma 2: Under the setting of uncoordinated congestion

control and the one bottleneck link per path assumption, the
equilibrium rates of a user s′ under f and f ′ are the same if
s′ does not change paths, and for any path j′ ∈ f ∪ f ′ − f ∩ f ′,
all paths of user s′ do not belong to its neighboring set, i.e.,

Rs′, f = Rs′, f ′ , if Js′, f = Js′, f ′ and Js′, f ∩ N( j′) = ∅,
∀ j′ ∈ ( f ∪ f ′ − f ∩ f ′

)
.

Let H( f , f ′) be the set of such “invariant” users under
configurations f and f ′. Then to satisfy the detailed balance
equation q f , f ′ p f (βλ) = q f ′, f p f ′ (βλ) for f and f ′ that satisfy
C1 and C2, it is sufficient to let⎧⎪⎪⎪⎨⎪⎪⎪⎩

q f , f ′ =
[
exp
(
β
∑

s∈S−H( f , f ′) Rs, fλs

)]−1
,

qf ′, f =
[
exp
(
β
∑

s∈S−H( f , f ′) Rs, f ′λs

)]−1
.

(38)

The common part exp
(
β
∑

s∈H( f , f ′) Rs, fλs

)
appears on both

sides of the detailed balance equation and gets canceled. Now,
to implement transition rate q f , f ′ in (38), the user s( f , f ) needs
to collect the information Rs, fλs from s in S − H( f , f ′).

Noticed that S − H( f , f ′) is the set of users whose paths
share links with s( f , f ′), users s in S −H( f , f ′) can then leave
the information Rs, fλs at each router, and user s( f , f ′) can
fetch them from the routers when its own packets pass by.
The shared routers can be thought as shared memory between
s( f , f ′) and s in S − H( f , f ′). In this way, s( f , f ′) acquires
the needed information to compute qf , f ′ and q f ′, f in (38) in a
distributed manner.

We briefly describe the distributed implementation as fol-
lows. Its complete description are in [10].

Stag0: Initially, every user s randomly selects Ds paths from
its path set Js.

Stag1: User s randomly selects one path out of its not-
in-use |Js| − Ds paths, and randomly selects one
path out of its Ds in-use path. User s then counts
down according to a random number and swaps these
two paths when the count-down expires. Denote the
current configuration as f and the targeting con-
figuration as f ′. The random number is generated
following an exponential distribution with parameter

Ds (|Js| − Ds)
[
exp
(
β
∑

s′∈S−H( f , f ′) Rs′, fλs′
)]−1

, where∑
s′∈S−H( f , f ′) Rs′, fλs′ can be acquired in the following

way. For all s′ in S and j ∈ Js′, f , user s′ adds
a header containing Rs′, fλs′ to data packets before
sending them out along path j. Every router on path j
records the information of Rs′, fλs′ for every s′ whose
traffic passing through them. Assuming the reverse
direction traffic (e.g., ACK packets) uses the same
paths as forward direction traffic, the ACK packets
can collect the Rs′, fλs′ (s ∈ S − H( f , f ′)) information
from the routers on their way to user s.

Stag2: During the count-down, each user s also continu-
ously senses whether other users sharing links with
them undertake a path swapping. This can be done by
the users who swap paths leave a one-bit of informa-
tion at the routers, and all users whose traffic passing
by this router can collect this bit of information. If a
user s senses a path swapping, it will reset its counter
and jump to Stag1.

Stag3: When user s’s count-down expires, it will swap the
selected two paths, and jump to Stag1.

In [10], we establish that the above distributed procedure
indeed implements a time-reversible Markov chain with sta-
tionary distribution in (37).

E. Solving Problem PS −MA by Running An Primal-dual
Algorithm over Markov Chain

We design a distributed stochastic primal-dual algorithm to
pursue the saddle points of the function in (36), on top of
the Markov chain implemented in the previous subsection.
Under mild assumptions, we also prove its convergence to
the optimal solution of problem PS −MA with probability
one under probably selected step sizes and update intervals.
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The algorithm and the proof are very similar to those in
Section III-C4. Details are provided in [10].

V. Case 3: Channel Assignment inWireless LANs

A. Settings

Consider a wireless 802.11 LAN with N access points (AP).
Each AP is associated with a set of clients that access the Inter-
net via this AP. In our setting, APs are connected via wireline
backbone, e.g., Ethernet, so that they can communicate with
each other with negligible cost. This corresponds to the case
where APs belong to the same administrative zone and can
coordinate. Each AP can choose one channel to operate from a
set of M available channels, denoted by C = {c1, c2, . . . cM}. We
define a channel-assignment configuration as the vector indi-
cating the channel choice of every APs, i.e., f �

[
f1, f2, . . . , fN

]
,

where fi ∈ C denotes the channel choice of the i-th AP. Let
F be the set of all feasible f .

Given a configuration f , the wireless stations compete to
access the wireless channels according to standard 802.11
protocol. We denote the downlink throughput observed by
AP i under configuration f by Rf

i . Upon observing Rf
i , AP

i obtains a utility of Ui

(
Rf

i

)
. We assume function Ui to be

strictly increasing and concave, and twice differentiable. The
problem of finding the best channel assignment to maximize
system-wide utility is as follows:

CA : max f∈F
N∑

i=1

Ui

(
Rf

i

)
. (39)

This problem is a combinatorial problem, and the size of
feasible set F is very large even for a network of modest
size, making the problem hard to solve. Furthermore, even if
we could handle problems of this size, we may not know Rf

i
a priori because they can only be measured in real time in the
field, and accurate analytical estimates of them are lacking.
Thus, we assume a measurement-based approach in which Rf

i
is obtained from real-time measurements. We also assume that
the measurement interval is much smaller than the timescale
on which the APs perform channel assignments.

Let p f be the percentage of the time that configuration f
is activated, i.e., AP i chooses channel fi. We reformulate
problem CA as follows:

CA − AVG : maxp≥0

∑
f∈F

p f

N∑
i=1

Ui

(
Rf

i

)
(40)

s.t.
∑
f∈F

p f = 1.

We remark that the problem CA − AVG is still hard to solve
as the number of variables is still combinatorial.

B. Approach by Markov Approximation
We apply Markov approximation and turn CA − AVG to the

following problem:

CA −MA : maxp≥0

∑
f∈F

pf

N∑
i=1

Ui

(
Rf

i

)
− 1
β

∑
f∈F

pf log pf (41)

s.t.
∑
f∈F

pf = 1.

Its optimal solution is given by

p∗f =
exp
(
β
∑N

i=1 Ui

(
Rf

i

))
∑

f ′∈F exp
(
β
∑N

i=1 Ui

(
Rf ′

i

)) ,∀ f ∈ F (42)

We consider a time-reversible Markov chain that has the
stationary distribution given by p∗f ( f ∈ F ). We call it a
channel-hopping Markov chain. Its states are the feasible con-
figurations. Let qf , f ′ and qf ′, f be the transition rates between
states f and f ′. To achieve the desired stationary distribution,
we follow OPT1 discussed in Section II-C, and set

qf , f ′ =

⎡⎢⎢⎢⎢⎢⎣exp

⎛⎜⎜⎜⎜⎜⎝β
N∑

i=1

Ui

(
Rf

i

)⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
−1

. (43)

We do not consider OPT2-4 because they all involve probing
the performance of the target configuration before making the
channel hopping decision, complicating the system design.

C. Implementation

We implement a channel-hopping Markov chain with tran-
sition rate in (43) as follows. Initially, the APs randomly pick
their channels. Each AP keeps track of its own Ui(R

f
i ) based

on the measurement of Rf
i under current configuration f , and

periodically broadcasts it to all the other APs. This broadcast
can be done using the backbone Ethernet connecting the APs.

Each AP also generates an exponentially distributed random
number with mean equal to

exp

⎛⎜⎜⎜⎜⎜⎝β
N∑

i=1

Ui

(
Rf

i

)⎞⎟⎟⎟⎟⎟⎠ /(M − 1) (44)

and counts down according to this number. When the count
down of an AP expires, this AP randomly switches to one of its
(M−1) not-in-use channels. This AP also informs the rest APs
to terminate their current count down processes and start fresh
ones using new measurements under the new configuration
f ′. We name this implementation “Wait-and-Hop” algorithm
for ease of reference. In [10], we present the pseudo-code of
the “Wait-and-Hop” algorithm, and verify that it realizes a
channel-hopping Markov chain with transition rate in (43).

TABLE I
“Wait-and-Hop” algorithm in a six-AP full clique network.

Link No. 1 2 3 4 5 6 ΔU
Wait-and-Hop 0.543 0.543 0.543 0.543 0.542 0.541 -0.001

D. Evaluation

We evaluate the performance of the proposed “Wait-and-
Hop” algorithm through extensive simulations. We set Ui(·) =
log(·) and β = 10. As the benchmark, the optimal channel
assignment state is obtained by exhaustively searching the
feasible channel assignment states.

We use typical 802.11b parameter settings and M = 3 in
the simulation. Each AP tries to access the channel accord-
ing to the standard 802.11 protocol. In the simulations, we
evaluate the proposed “Wait-and-Hop” algorithm in networks
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TABLE II
“Wait-and-Hop” algorithm in ten eight-AP random networks

Network Number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average
ΔU -0.001 -0.002 -0.001 -0.001 -0.002 -0.003 -0.001 -0.002 -0.003 -0.002 -0.002
ΔT 99.87% 99.85% 99.90% 99.88% 99.84% 99.80% 99.78% 99.85% 99.85% 99.89% 99.85%

with different contention graphs. We consider two metrics: i)
normalized aggregate throughput; ii) system utility. We define
ΔT as the ratio between the achieved normalized aggregate
throughput and the optimal normalized aggregate throughput.
We also define the utility gap ΔU as the difference between
the system utility achieved and the optimal utility.

a) Six-AP full clique network: In a network in which
six APs form a clique, it is easy to see that the optimal
configuration should be the one in which two APs share a
channel. In this way, each AP obtains half of the normalized
throughput. The normalized throughput of each AP and the
utility gap of “Wait-and-Hop” are presented in Table I. As
shown in Table I, “Wait-and-Hop” can achieve roughly 99%
of the optimal throughput and near optimal utility.

b) Eight-AP random networks: We generate ten eight-
AP random networks, in which each AP has on average
three neighbors in the contention graph. ΔT and ΔU of
“Wait-and-Hop” are presented in Table II. Averaging over
ten networks, we find that the “Wait-and-Hop” algorithm can
achieve 99.85% of the optimal aggregate throughput and an
average utility gap of 0.002.

Optimality Gap: According to (4), the Log-sum-exp ap-
proximation can incur an optimality gap of at most 1

β
log n,

where n is the number of feasible configurations. Specific to
our simulations, the utility loss is bounded by

1
β

log n =

{
0.6592, for Six − AP clique network.
0.8789, for Eight − AP random network.

Simulation results presented in Tables I and II show that
the “Wait-and-Hop” algorithm in fact achieves a utility loss
of 0.001 and 0.002 for the Six-AP full clique network and
Eight-AP random networks, respectively. This indicates that
the utility loss observed in practice can be much smaller than
the theoretically guaranteed bound.

VI. Conclusions

This paper has presented a Markov approximation frame-
work for solving combinatorial network optimization prob-
lems. In particular, we show that the log-sum-exp approxima-
tion of the optimal value of a combinatorial problem gives rise
to a solution that can be realized by time-reversible Markov
chains. Certain carefully designed Markov chains among this
class can yield distributed algorithms for solving the network
optimization problem approximately.

To illustrate our approach, we first apply the Markov
approximation technique to the utility maximization problem
in the domain of CSMA networks. This example offers a fresh
perspective to a known distributed algorithm. Going beyond,
we then show that the Markov approximation technique can
help us synthesize new distributed algorithms in new problem
domains. We illustrate this by applying the technique to design
new distributed algorithms with provable performance for two

important practical problems: 1) optimal path selection in
multipath communications; 2) frequency channel assignment
in WLANs. Based on the promising results out of our investi-
gation, we believe the Markov approximation framework will
find applications in many optimization problems in various
domains.
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