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Abstract In this paper we study the computation of Markov bases for contingency
tables whose cell entries have an upper bound. It is known that in this case one has
to compute universal Gröbner bases, and this is often infeasible also in small- and
medium-sized problems. Here we focus on bounded two-way contingency tables under
independence model. We show that when these bounds on cells are positive the set of
basic moves of all 2 × 2 minors connects all tables with given margins. We also give
some results about bounded incomplete table and we conclude with an open problem
on the necessary and sufficient condition on the set of structural zeros so that the set
of basic moves of all 2 × 2 minors connects all incomplete contingency tables with
given positive margins.

Keywords Structural zeros · Markov basis · Universal Gröbner basis

1 Introduction

The study of statistical models to detect complex structures in contingency tables has
received great attention in the last decades (see Agresti 2002 for an overview of such
models). Among the main research themes in this field, here we consider incomplete
contingency tables (or equivalently, tables with structural zeros) and models to go
beyond independence in two-way tables, such as quasi-independence models.
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786 F. Rapallo, R. Yoshida

Contingency tables with upper bounds on the cell counts have recently been consid-
ered in, e.g., Cryan et al. (2005). Bounded contingency tables can come, for instance,
in the analysis of designed experiments with multinomial response, as in Aoki and
Takemura (2010), and in logistic regression models, as in e.g. Chen et al. (2005). We
will use some examples from these applications later in the paper.

In recent years, the use of algebraic and geometric techniques in statistics has pro-
duced at least two relevant advances. One is a better understanding of statistical models
in terms of varieties and polynomial equations, through the notion of toric models, as
described in Chapter 6 of Pistone et al. (2001). Moreover, algebraic statistics has intro-
duced a non-asymptotic method for goodness-of-fit tests following a Markov Chain
Monte Carlo approach (see Diaconis and Sturmfels 1998). Such an algorithm is based
on the notion of Markov basis. In the last years the computation of Markov bases for
special statistical models has involved both statisticians and algebraists.

In this paper, we consider the computation of Markov bases for bounded contin-
gency tables. A general algorithm to compute Markov bases for this case was described
in Rapallo and Rogantin (2007), using the notions of Lawrence lifting and Universal
Gröbner basis of a polynomial ideal. When a Markov basis is computed through a
Universal Gröbner basis, we say that it is Universal Markov basis. The Markov bases
for these kind of tables are in general very large, and we will show some explicit
computations later in the paper. Therefore the computation of smaller Markov bases
or subbases for special tables is a problem of major interest.

In practice, computing the Markov basis for the bounded contingency tables is
infeasible because the number of elements in the Markov basis is very large. How-
ever, for some cases, if we know that the given margins are positive then the number
of moves connecting all tables is smaller than the number of elements in a Markov
basis for tables under the model. Such connecting sets were formalized in Chen et
al. (2006) with the terminology Markov subbases. In this paper we consider bounded
I × J tables under independence model. These tables are equivalent to I × J × 2
tables under the models of no-3-way interaction. Using this fact and the result from
Chen et al. (2010), in this paper, we show that if we know the bounds of cells are all
positive, that is, there are no structural zeros, then the set of basic moves of all 2 × 2
minors connects all bounded two-way contingency tables with given margins.

To summarize, we classify the bounds of cells into the following patterns:

(i) all cells are unbounded,
(ii) all cells are bounded by positive integers,

(iii) some cells are unbounded and the others are bounded by positive integers,
(iv) some cells are unbounded and the others are structural zeros,
(v) some cells are bounded by positive integers and the others are structural zeros,

(vi) all types of bounds appear.

Case (i) is the standard case, already studied in Diaconis and Sturmfels (1998). In the
past, Aoki and Takemura (2005) dealt with the case (iv). In this paper Theorem 1 deals
with the case (v), Theorem 3 deals with the case (ii), Sect. 4 deals with the case (iii).

The organization of this paper is as follows. In Sect. 2 we recall the basic facts
about Markov bases and bounded contingency tables. In Sect. 3 we present a char-
acterization of Universal Markov bases for incomplete tables, showing that there is a

123



Markov bases and subbases for bounded contingency tables 787

simple connection between the Universal Markov basis for an incomplete table and
the corresponding complete table. We present some explicit examples, focusing in
particular on quasi-independence models for two-way tables. In Sect. 4 we show how
to compute Markov bases when the bounds involve only a subset of cell counts. In
Sect. 5 we show our main theorem, that is, we consider bounded two-way contingency
tables under independence model. If we know all bounds are positive (equivalently
there are no structural zeros), then the set of basic moves of all 2 × 2 minors connects
all bounded two-way contingency tables with given margins. We end this paper with
an open problem for incomplete contingency tables with positive margins.

2 Bounded contingency tables and Markov bases

Let n be a contingency table with k cells. In order to simplify the notation, we denote
by X = {1, . . . , k} the sample space of the contingency table. In the special case of
two-way tables with I rows and J columns, we will also denote the sample space with
X = {1, . . . , I } × {1, . . . , J }.

Let N be the set of nonnegative integers, i.e., N = {0, 1, 2, . . .} and let Z be the set
of all integers, i.e., Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Without loss of generality, in this
paper, we represent a table by a vector of counts n = (n1, . . . , nk). Under this point
of view, a contingency table n can be regarded as a function n : X −→ N, but it can
also be viewed as a vector n ∈ N

k .
The fiber of an observed table nobs with respect to a function T : N

k −→ N
s is the

set

FT (nobs) =
{

n | n ∈ N
k, T (n) = T (nobs)

}
. (1)

When the dependence on the specific observed table is irrelevant, we will write simply
FT instead of FT (nobs).

In mathematical statistics framework, the function T is usually the minimal suffi-
cient statistic of some statistical model and the usefulness of enumeration of the fiber
FT (nobs) follows from classical theorems such as the Rao–Blackwell theorem, see
e.g. Shao (1998).

When the function T is linear, it can be extended in a natural way to an homomor-
phism from R

n in R
s , T is represented by an s × k-matrix AT , and its generic element

AT (�, h) is

AT (�, h) = T�(h), (2)

where T� is the �th component of the function T . In terms of the matrix AT , the fiber
FT can be easily rewritten in the form:

FT =
{

n | n ∈ N
k, AT (n) = AT (nobs)

}
. (3)

To navigate inside the fiber FT , i.e., to connect any two tables of the fiber FT with
a path of nonnegative tables, algebraic statistics suggests an approach based on the
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notion of Markov moves and Markov bases. A Markov move is any table m with
integer entries that preserves the linear function T , i.e. T (n ± m) = T (n) for all
n ∈ FT .

A finite set of moves M = {m1, . . . , mr } is called a Markov basis if it is possible
to connect any two tables of FT with moves in M. More formally, for all n1 and
n2 in FT , there exist a sequence of moves {mi1 , . . . , mi A } and a sequence of signs
{εi1, . . . , εi A } such that

n2 = n1 +
A∑

a=1

εia mia (4)

and

n1 +
a∑

j=1

εi j mi j ≥ 0 for all a = 1, . . . , A. (5)

See Diaconis and Sturmfels (1998) for further details on Markov bases. Given a
Markov basis, the Diaconis–Sturmfels algorithm for sampling from a distribution
σ on FT starts from a table n ∈ FT and proceeds at each step as follows:

– Choose a move m ∈ M and a sign ε = ±1 with probability 1/2 each independently
on m;

– Generate a random number u from the uniform distribution U[0, 1];
– If n + εm ∈ FT and min{σ(n + εm)/σ (n), 1} > u, then the Markov chain moves

from the current table n to n + εm; otherwise, it stays at n.

To actually compute Markov bases, we associate to the problem two distinct polyno-
mial rings. First, we define R[x] = R[x1, . . . , xk], i.e., we associate an indeterminate
xh to any cell of the table; then, we define R[y] = R[y1, . . . , ys], with an indetermi-
nate y� for any component of the linear function T . In the following we will use some
facts from commutative algebra, to be found in, e.g., Cox et al. (1992).

The simplest method to compute Markov bases uses the elimination algorithm:

– For each column of the matrix AT , define the polynomial

fh = xh −
s∏

�=1

y AT (�,h)
� for h = 1, . . . , k; (6)

Then, consider the ideal generated by the polynomials f1, . . . , fk :

I = 〈 f1, . . . , fk〉 (7)

in the polynomial ring R[x, y];
– Eliminate the y’s indeterminates, and obtain the ideal

IAT = Elim(y, I) (8)
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Markov bases and subbases for bounded contingency tables 789

in the polynomial ring R[x]. The ideal IAT in Eq. (8) is by definition the toric ideal
associated to AT ;

– A Gröbner basis of IAT is formed by binomials. Each binomial defines a move
of a Markov basis taking the exponents. Namely, the correspondence between the
binomials and the moves is given by the log-transformation

log
(

xa − xb
)

= a − b ∈ R
k . (9)

Although faster algorithms have been implemented to compute toric ideals, the
elimination-based algorithm is the simplest one and we will use this technique in
some of the proofs. For details on computational methods for toric ideals, see Bigatti
et al. (1999) and the implementation in 4ti2 (4ti2 team 2008).

As noted in e.g. Rapallo and Rogantin (2007) and Chen et al. (2005), when the
entries of table have an upper bound, the classical notion of Markov basis is not
sufficient to connect all the tables in a fiber. In fact, the fiber in the bounded case:

Fb
T =

{
n | n ∈ N

k, T (n) = T (nobs), n ≤ b
}

(10)

is in general smaller than the unrestricted one.
As shown in Sects. 3 and 4 as well as Rapallo and Rogantin (2007), the constraint

n ≤ b translates into a linear system by introducing dummy counts n1, . . . , nk with
nh + nh = bh for all h = 1, . . . , k. Therefore, in the presence of upper bounds of the
cell counts, the Markov basis must be computed through a Universal Gröbner basis of
the ideal IAT .

The procedure to compute a Universal Gröbner basis of the ideal IAT is fully
described in Chapter 7 of Sturmfels (1996). Here we summarize the main steps of
the algorithm. Given the matrix AT , its Lawrence lifting is a matrix �(AT ) with
dimensions (s + k) × (2k) and with block representation

�(AT ) =
(

AT 0
Ik Ik

)
, (11)

where 0 is a null matrix with dimensions s × k and Ik is the identity matrix with
dimension k × k.

The Universal Gröbner basis of AT is then computed with the algorithm below:

– Define k new indeterminates x1, . . . , xk ;
– Compute a Gröbner basis of the toric ideal I�(AT ) in the polynomial ring R[x, x],

the toric ideal associated to the Lawrence lifting �(AT ) of AT ;
– Substitute xh = 1 for all h = 1, . . . , k.

The interested reader can find all details and the proof of the correctness of this algo-
rithm in Sturmfels (1996, Chapter 7). In terms of Markov bases, we state the following
definition.

Definition 1 A Markov basis computed through a Universal Gröbner basis is a
Universal Markov basis.
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Recall that a Universal Gröbner basis of the toric ideal IAT is formed by binomials,
while the corresponding Universal Markov basis is formed by moves, that is tables
with integer entries. A Gröbner basis is a polynomial object, while a Markov basis
is a combinatorial object. As mentioned above, the connection between Gröbner and
Markov bases is given in Eq. (9).

The following section is devoted to the computation of Universal Markov bases
in special settings, such as incomplete tables, bounds acting on a subset of the full
sample space, or strictly positive bounds.

3 Universal Markov bases and incomplete tables

The computation of Universal Markov bases is not easy in practice, especially for two
distinct circumstances:

– The computation of a Universal Markov basis is based on twice the number of
indeterminates than the standard Markov basis;

– The number of moves of a Universal Markov basis increases quickly with the
dimension of the contingency table.

Example 1 Let us consider I × J contingency tables under independence model. With
fixed marginal totals, and without upper bounds, a Gröbner basis is formed by all 2×2
minors (see Diaconis and Sturmfels 1998). This fact can be proved theoretically and
does not need symbolic computations.

In this special case, we are also able to characterize the Universal Gröbner basis.
Combining Algorithm 7.2 and Corollary 14.12 in Sturmfels (1996), the Universal
Gröbner basis is formed by all the binomials:

xi1 j1 xi2 j2 . . . xis js − xi2 j1 xi3 j2 . . . xi1 js , (12)

where (i1, j1), ( j1, i2), . . . , ( js, i1) is a circuit in the complete bipartite graph with I
and J vertices.

This implies that the number of moves needed for the Universal Markov basis
increases much faster with respect to the Markov basis for the unbounded problem.
Just to give the idea of such increase, we present in the following table the number of
moves of the Gröbner bases for square I × I tables for the first I ’s.

2 3 4 5 6 7
Standard Markov basis 1 9 36 100 225 441
Universal Markov basis 1 15 204 3,940 113,865 4,027,161

To overcome this difficulty it is of major interest to have some results for the the-
oretical computation of Universal Markov bases. The first result in this direction that
we present in this section is related to tables with structural zeros (or incomplete
tables).

Let X0 ⊂ X be the set of structural zeros of the table, let T ′ be the function T
restricted to X ′ = X \ X0 and let I ′

AT
be the toric ideal associated with AT ′
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Theorem 1 Let n be a contingency table and let Fb
T be its bounded fiber under the

bound n ≤ b. Let X0 be the set of structural zeros. Then a Universal Gröbner basis
for the ideal I ′

AT
is obtained from the Universal Gröbner basis of IAT by removing

the binomials involving indeterminates in X0.

Proof Using Theorem 7.1 in Sturmfels (1996), the Universal Gröbner basis has the
following two properties: (a) it is unique; (b) it is a Gröbner basis with respect to all
term orderings on R[x].

Without loss of generality, let us suppose that the structural zeros are the first cells,
i.e., X0 = {1, . . . , k′}. The unique Universal Gröbner basis is, from property (b) above,
a basis with respect to the elimination term ordering for the first k′ indeterminates.
Then, we apply Theorem 4 in Rapallo (2006) and the elimination algorithm.

Following the scheme in Eqs. (6) through (7) with the matrix �(AT ), we define the
polynomials

fh = xh − yh

s∏
�=1

y AT (�,h)
� for h = 1, . . . , k

and

fk+h = xh − yh for h = 1, . . . , k.

The ideal in Eq. (7) becomes

I = 〈 f1, . . . , fk, fk+1, . . . , f2k〉

in the polynomial ring R[x, x, y, y]. Therefore, the toric ideal I�(AT ) as in Eq. (8) is

I�(AT ) = Elim({y, y}, I). (13)

When x1, . . . , xk′ are indeterminates associated to structural zeros, the relevant ideal
is

I ′ = Elim({x1, . . . , xk′ }, I)

and the Universal Gröbner basis of I ′
AT

is computed through

Elim
({y, y}, I ′) = Elim ({y, y}, Elim({x1, . . . , xk′ }, I))

= Elim ({x1, . . . , xk′ }, Elim({y, y}, I))

= Elim
({x1, . . . , xk′ }, I�(AT )

)

and then substituting xh = 1 for all h. As the Universal Gröbner basis is in particular a
basis with respect to the elimination term ordering for the indeterminates x1, . . . , xk′ ,
this proves that to remove the binomials involving x1, . . . , xk′ from I�(AT ) is equiva-
lent to compute the Universal Gröbner basis for the incomplete table. 
�
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If one has the Universal Markov basis for the complete configuration, Theorem 1
applies easily. In fact, using the correspondence between moves and binomials, the
theorem above is clearly equivalent to the following:

Corollary 1 Let n be a contingency table and let Fb
T be its bounded fiber under the

bound n ≤ b. Let X0 be the set of structural zeros. Then a Universal Markov basis
for Fb

T ′ is obtained from a Universal Markov basis for Fb
T by removing the moves

involving the cells in X0.

Example 2 Let us consider 4 × 4 contingency tables with fixed marginal totals, as in
Example 1. Without structural zeros, the Universal Markov basis is formed by 204
binomials: 36 moves involving 4 cells: 96 moves involving 6 cells: and 72 moves
involving 8 cells.

Suppose that the cell (1, 1) is a structural zero. This kind of table is depicted below,
where 0 means a structural zero, while the symbol • denotes a non-zero cell.

⎛
⎜⎜⎝

0 • • •
• • • •
• • • •
• • • •

⎞
⎟⎟⎠

From the complete Universal Markov basis we can remove all moves involving the
structural zero. Applying Corollary 1, we remove: 9 moves involving 4 cells: 36 moves
involving 6 cells: and 36 moves involving 8 cells. The Universal Markov basis in this
case has 123 moves.

Suppose now that the whole main diagonal contains structural zeros, as in the figure
below.

⎛
⎜⎜⎝

0 • • •
• 0 • •
• • 0 •
• • • 0

⎞
⎟⎟⎠

In this situation we remove: 30 moves involving 4 cells: 80 moves involving 6 cells:
and 66 moves involving 8 cells. Finally, the Universal Markov basis has only 28 moves.

The last example is a prototype for the quasi-independence models. Now consider
I × J contingency tables with structural zeros under quasi-independence model. Aoki
and Takemura (2005) computed a unique minimum Markov basis for I × J contin-
gency tables with structural zeros under quasi-independence model.

Definition 2 (Aoki and Takemura 2005) Let X = {(i, j) | 1 ≤ i ≤ I, 1 ≤ j ≤ J } be
the sample space and let X ′ = X \ X0 be the set of cells that are not structural zeros.
Also let

F0(S) =
⎧⎨
⎩m

J∑
j=1

mi j =
I∑

i=1

mi j = 0, and mi j = 0 for (i, j) �∈ X0

⎫⎬
⎭ .
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A loop (or loop move) of degree r on X ′ is an I ×J integer array Mr (i1, . . . , ir ; j1, . . . ,
jr ) ∈ F0(S), for 1 ≤ i1, . . . , ir ≤ I, 1 ≤ j1, . . . , jr ≤ J , where Mr (i1, . . . , ir ;
j1, . . . , jr ) has the elements

mi1 j1 = mi2 j2 = · · · = mir−1 jr−1 = mir jr = 1,

mi1 j2 = mi2 j3 = · · · = mir−1 jr = mir j1 = −1,

and all other elements are zero. Also the level indices i1, i2, . . ., and j1, j2, . . . are all
distinct, i.e.

im �= in and jm �= jn for all m �= n.

Specifically, a degree 2 loop M2(i1, i2; j1, j2) is called a basic move.
The support of a loop Mr (i1, . . . , ir ; j1, . . . , jr ) is the set of its non-zero cells. A

loop Mr (i1, . . . , ir ; j1, . . . , jr ) is called df 1 if R(i1, . . . , ir ; j1, . . . , jr ) does not con-
tain support of any loop on S of degree 2, . . . , r −1, where R(i1, . . . , ir ; j1, . . . , jr ) =
{(i, j)|i ∈ {i1, . . . , ir }, j ∈ { j1, . . . , jr }}.
Corollary 2 (Aoki and Takemura 2005) The set of df 1 loops of degree 2, . . . , min
{I, J } constitutes a unique minimal Markov basis for I × J contingency tables with
structural zeros under quasi-independence model.

The examples above show that in many cases the computation of Universal Markov
bases for incomplete tables inherits benefit from complete tables. In terms of compu-
tations, an incomplete table has less cells than the corresponding complete table and
therefore an incomplete table implies the use of a smaller number of indeterminates.
Nevertheless, in a complete table with symmetric constraints the Markov bases can
be characterized theoretically (e.g., independence model presented here), and in many
cases the symmetry of the combinatorial problem can lead to substantial simplifications
in the symbolic computation (see in particular Aoki and Takemura 2008). Moreover,
following Theorem 1, in the computation of Universal Markov bases through elimi-
nation we do not introduce new polynomials and, therefore, we do not increase the
degree of the moves, as usual in the unbounded problems (see Rapallo 2006).

Example 3 As a different example, where Markov bases are much simpler, we present
a computation for a 23−1 fraction of a factorial design. The use of Markov bases for
fractions are useful for experiments with Poisson-distributed response variable and
the upper bounds are needed when the response variable is Binomial (see Aoki and
Takemura (2010)). Here we consider the lattice {−1, 1}3 for an experiment with 3
factors A, B, and C . The fraction defined by the aliasing equation AB = 1 consists
of 4 cells:

(−1,−1,−1), (−1,−1, 1), (1, 1,−1), (1, 1, 1). (14)

These four points can be viewed as an incomplete three-way table. Computing with
CoCoA (CoCoATeam 2007), the standard Markov basis for this incomplete table under
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the complete independence model (i.e., with the one-way marginal totals fixed), we
obtain only one move, represented by the binomial:

x−1−1−1x111 − x−1−11x11−1. (15)

From this computation we note that:

– In this example the standard Markov basis has only one polynomial and therefore
it is by definition a Universal Markov basis;

– The standard Markov basis for the corresponding complete table with eight cells is
formed by nine quadratic square-free binomials, and the corresponding Universal
Markov basis for the bounded problem has 20 binomials:

-x[-1,1,-1]x[1,-1,1] + x[-1,-1,-1]x[1,1,1],
-x[-1,1,1]x[1,-1,-1] + x[-1,-1,-1]x[1,1,1],
-x[-1,1,-1]x[1,-1,-1] + x[-1,-1,-1]x[1,1,-1],
x[-1,1,1]x[1,1,-1] - x[-1,1,-1]x[1,1,1],
-x[-1,-1,1]x[-1,1,-1] + x[-1,-1,-1]x[-1,1,1],
-x[-1,1,1]x[1,-1,-1] + x[-1,-1,1]x[1,1,-1],
x[-1,1,1]x[1,-1,-1] - x[-1,1,-1]x[1,-1,1],
x[-1,-1,1]x[1,-1,-1] - x[-1,-1,-1]x[1,-1,1],
-x[1,-1,1]x[1,1,-1] + x[1,-1,-1]x[1,1,1],
-x[-1,1,1]x[1,-1,1] + x[-1,-1,1]x[1,1,1],
-x[-1,1,-1]x[1,-1,1] + x[-1,-1,1]x[1,1,-1],
-x[-1,-1,1]x[1,1,-1] + x[-1,-1,-1]x[1,1,1],
-x[-1,1,1]x[1,-1,1]x[1,1,-1] + x[-1,-1,-1]x[1,1,1]ˆ2,
-x[-1,-1,1]x[-1,1,-1]x[1,-1,-1] + x[-1,-1,-1]ˆ2x[1,1,1],
x[-1,-1,1]x[1,1,-1]ˆ2 - x[-1,1,-1]x[1,-1,-1]x[1,1,1],
x[-1,1,1]x[1,-1,-1]ˆ2 - x[-1,-1,-1]x[1,-1,1]x[1,1,-1],
-x[-1,-1,-1]x[-1,1,1]x[1,-1,1] + x[-1,-1,1]ˆ2x[1,1,-1],
x[-1,1,1]ˆ2x[1,-1,-1] - x[-1,-1,1]x[-1,1,-1]x[1,1,1],
-x[-1,1,-1]ˆ2x[1,-1,1] + x[-1,-1,-1]x[-1,1,1]x[1,1,-1],
-x[-1,1,-1]x[1,-1,1]ˆ2 + x[-1,-1,1]x[1,-1,-1]x[1,1,1]

Notice that in a Metropolis–Hastings algorithm one can also make use of the complete
Markov basis and then discard the chosen move at a given step if it modifies a cell
with a structural zero. But the computations for this example show that the use of
such a strategy leads to a slower convergence of the Markov chain to the stationary
distribution. The use of the Markov basis with the unique applicable move is essential
for a correct use of the Metropolis–Hastings algorithm.

4 Markov bases for partially bounded tables

While the problem in the previous section has a positive answer, in this section we
present a problem without a theoretical solution. Nevertheless, we show how to write
the relevant symbolic computations and we describe explicitly some special examples.

When working with bounded contingency tables, it is a common situation to have
some cell counts bounded and other counts unbounded. Moreover, some bounds can
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be treated as unessential. In this section, we consider two-way contingency tables
under independence model.

It is well known that under the marginal totals each cell count ni j can not exceed
min{ni+, n+ j }, where ni+ is the i th row total and n+ j is the j th column total. Thus,
any bound exceeding such value can be ignored. Now, we know that:

– With no upper bounds, we need a Markov basis formed by the basic moves of the

form
(+1 −1

−1 +1

)
for all 2 × 2 minors of the table;

– With an upper bound for each cell count, we need the Universal Markov basis
formed by all the closed circuits in the complete bipartite graph with I and J
vertices, as discussed in the previous section.

Example 1 shows that the differences between such two situations are noticeable in
terms of number of moves. We can conjecture that with some cells bounded and other
cells without bounds we will fall into an intermediate situation, with a Gröbner basis
formed by all the degree two by two minors and some other square-free binomials.

As pointed out in the previous section, the bounds on the cell counts are repre-
sented as linear constraints through the two identity matrices Ik in the Lawrence lifting
�(AT ), see Eq. (11). Thus, for the computation of Markov bases for partially bounded
table, we have to remove from the block [Ik, Ik] of �(AT ) the rows corresponding to
cells without upper bound.

To show the behavior of Universal Markov bases with partial bounds, we present
here some numerical examples of Markov bases computed with CoCoA.

Example 4 Consider a 3 × 3 contingency table under independence model. With a
bound on all the cells, the Universal Markov basis has 15 moves: 9 moves of the form(+1 −1

−1 +1

)
for all 2 × 2 minors of the table plus the 6 moves of degree 3 below:

m1 =
⎛
⎜⎝

0 −1 +1

−1 +1 0

+1 0 −1

⎞
⎟⎠ ,

m2 =
⎛
⎜⎝

0 −1 +1

+1 0 −1

−1 +1 0

⎞
⎟⎠ ,

m3 =
⎛
⎜⎝

−1 0 +1

+1 −1 0

0 +1 −1

⎞
⎟⎠ ,

m4 =
⎛
⎜⎝

−1 0 +1

0 +1 −1

+1 −1 0

⎞
⎟⎠ ,

123



796 F. Rapallo, R. Yoshida

m5 =
⎛
⎜⎝

−1 +1 0

0 −1 +1

+1 0 −1

⎞
⎟⎠ ,

m6 =
⎛
⎜⎝

−1 +1 0

+1 0 −1

0 −1 +1

⎞
⎟⎠ .

Now we have computed the Universal Markov basis in three different situations, with
different types of bounds:

– with a bound only on the cell (1, 1), the Universal Markov basis has 10 moves: the
9 basic moves and m2;

– with a bound on the three cells on the main diagonal, the Universal Markov basis
has 13 moves: the 9 basic moves, plus m1, m2, m4 and m6;

– with a bound on the five block-diagonal cells: (1, 1), (2, 2), (2, 3), (3, 2) and (3, 3),
the Universal Markov basis has 12 moves: the 9 basic moves, plus m1, m2 and m4;

– with a bound on all cells but the (1, 1), the Universal Markov basis has 13 moves:
the 9 basic moves, plus m3, m4, m5 and m6.

Example 5 (Aoki and Takemura 2005) Consider 6 × 6 contingency tables of the fol-
lowing form:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 • • 0 0 •
• 0 • • 0 0
• • 0 0 • 0
0 0 • 0 • •
• 0 0 • 0 •
0 • 0 • • 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The reduced Gröbner basis with the degree reverse lexicographical ordering consists
of three basic moves, 20 degree 3 loops, 10 degree 4 loops, and 3 degree 5 loops. Note
that the loops of degree 4 and 5 are not df 1. On the other hand, all the 20 loops of
degree 3 are df 1. Hence by Corollary 2, the above three basic moves and 20 degree 3
loops constitute the unique minimal Markov basis.

5 Markov subbases for bounded and incomplete two-way contingency tables

Despite the computational advances presented in the previous sections, there are
applied problems where one may never be able to compute a Markov basis. Mod-
els of no-3-way interaction and constraint matrices of Lawrence type seem to be
arbitrarily difficult, namely if we vary I and J for (I, J, K )—tables, the degree and
support of elements in a minimal Markov bases can be arbitrarily large (De Loera
and Onn 2005). In general, the number of elements in a minimal Markov basis for a
model can be exponentially many. Thus, it is important to compute a reduced number
of moves which connect all tables instead of computing a Markov basis. Chen et al.
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(2010) discussed that in some cases, such as logistic regression, positive margins are
shown to allow a set of Markov connecting moves that are much simpler than the full
Markov basis. One such example is shown in Hara et al. (2010) where a Markov basis
for a multiple logistic regression is computed by the Lawrence lifting of this basis.
In the case of bivariate logistic regression, Hara et al. (2010) showed a simple subset
of the Markov basis which connects all fibers with a positive sample size for each
combination of levels of covariates. Such connecting sets were formalized in Chen et
al. (2006) with the terminology Markov subbasis.

In this section, we use a sample space indexed as {1, . . . , k} instead of {1, . . . , I }×
{1, . . . J } whenever possible, in order to make the formulae easier to read.

Definition 3 (Chen et al. 2006) A Markov subbasis MAT ,nobs for nobs ∈ N
k and inte-

ger matrix AT is a finite subset of ker(AT ) ∩ Z
k such that, for each pair of vectors

u, v ∈ FT , there is a sequence of vectors mi ∈ MAT ,nobs , i = 1, . . . , l, such that

u = v +
l∑

i=1

mi ,

0 ≤ v +
j∑

i=1

mi , j = 1, . . . , l.

The connectivity through nonnegative lattice points only is required to hold for this
specific nobs.

Note that MAT ,nobs for every nobs ∈ N
k and for a given AT is a Markov basis MAT

for AT .
In this section, we first study Markov subbases Mb

AT ,nobs
for any bounded two-way

contingency tables nobs ∈ N
k with positive bounds, i.e., no structural zeros, under

independence model. Then we study Markov subbases Mb
AT ,nobs

for any incomplete

I × J contingency tables nobs ∈ N
k with positive margins, i.e., AT (nobs) > 0, under

independence model.
To analyze these cases we recall some definitions from commutative algebra:

– An ideal I ⊂ R[x] is radical if

{
f ∈ R[x] | f n ∈ I for some n

} = I;

– Let I, J ⊂ R[x] be ideals. The quotient ideal (I : J ) is defined by:

(I : J ) = { f ∈ R[x] | f · J ⊂ I} ;

– Let Z = {z1, . . . , zs} ⊂ R
k . A lattice L generated by Z is defined:

L = ZZ .

M ⊂ R
k is called a lattice basis of L if each element in L can be written as a

linear integer combination of elements in M . Now a lattice basis for ker(AT ) has
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the property that any two tables can be connected by its vector increments if one
is allowed to swing negative in the connecting path (see Chapter 12 of Sturmfels
(1996) for definitions and properties of a lattice basis).

The reader can find in Cox et al. (1992) more details on the definitions above.

Theorem 2 (Chen et al. 2010) Suppose IM is a radical ideal, and suppose M is a
lattice basis. Let p = x1 · · · xk , let t = AT (nobs), and let t� be the �th coordinate of
the vector t. For each index � with t� > 0, let I� = 〈xh〉AT (�,h)>0 be the monomial
ideal generated by indeterminates for cells that contribute to margin �. Let L be the
collection of indices � with t� > 0. Define

IL =
(

IM :
∏
�∈L

I�

)
.

If

(IL : (IL : p)) = 〈1〉 (16)

then the moves in M connect all the tables in FT .

For computing the following examples we have used the software Singular
(Greuel et al. 2009).

Example 6 (Continue from Example 4) Consider again 3 × 3 tables with fixed row
and column sums, which are the constraints from fixing sufficient statistics in inde-
pendence model, and with all bounded cells. This is equivalent with 3 × 3 × 2 tables
with constraints [A, C], [B, C], [A, B] for factors A, B, C , which would arise for
example in case–control data with two factors A and B at three levels each.

The constraint matrix that fixes row and column sums in a 3 × 3 table gives a toric
ideal with a

(3
2

)× (3
2

)
element Gröbner basis. Each of these moves can be paired with

its signed opposite to get 9 moves of 3×3×2 tables that preserve sufficient statistics.

This is equivalent to 9 moves of the form
(+1 −1

−1 +1

)
for all 2 × 2 minors of the table

for 3 × 3 tables under independence model (see Example 4). These elements make an
ideal with a Gröbner basis that is square-free in the initial terms, and hence the ideal
is radical (Proposition 5.3 of Sturmfels (2002)). Then applying Theorem 2 with nine
margins of case-control counts, i.e., this is equivalent to having the positive constraints
on bounds, namely we have non-zero bounds for all cells, shows that these 9 moves do
connect tables with positive case-control sums. The full Markov basis has 15 moves.
Therefore, the Markov subbasis for this table is the standard Markov basis for a 3 × 3
table under independence model.

Example 7 (Chen et al. 2010) Consider now 4 × 4 tables with fixed row and col-
umn sums as in Example 6, and with all bounded cells. Again, this is equivalent with
4 × 4 × 2 tables with constraints [A, C], [B, C], [A, B] for factors A, B and C , with
factors A and B at four levels each.
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The constraint matrix that fixes row and column sums in a 4 × 4 table gives a
toric ideal with a

(4
2

)× (4
2

)
element Gröbner basis. Each of these moves can be paired

with its signed opposite to get 36 moves of 4 × 4 × 2 tables that preserve sufficient
statistics:

⎛
⎜⎜⎜⎜⎝

0 0 0 0

+ 0 − 0

0 0 0 0

− 0 + 0

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

0 0 0 0

− 0 + 0

0 0 0 0

+ 0 − 0

⎞
⎟⎟⎟⎟⎠

.

These elements make an ideal with a Gröbner basis that is square-free in the initial
terms, and hence the ideal is radical (Proposition 5.3 of Sturmfels (2002)). Then apply-
ing Theorem 2 with sixteen margins of case-control counts, i.e., this is equivalent to
having the positive conditions on bounds, namely we have non-zero bounds for all
cells, shows that these 36 moves do connect tables with positive case-control sums.
The full Markov basis has 204 moves. Therefore, the Markov subbasis for this table
is the standard Markov basis for a 4 × 4 table with fixed row and column sums fixed
without bounds.

In practice, the algorithm in Theorem 2 is not feasible for a large number of cells
in a table.

From Examples 6 and 7 it seems that for bounded two-way tables with row and
column sums fixed we only need a standard Markov basis for two-way tables with row
and column sums fixed if these bounds are positive. In fact, by the following theorem,
additional elements in a Universal Markov basis are needed for incomplete tables, i.e.,
structural zeros.

Theorem 3 Consider I × J tables with row and column sums fixed and with all cells
bounded. If these bounds are positive, then a Markov subbasis for the tables is the
standard Markov basis for I × J tables with row and column sums fixed without
bounds, i.e., the set of basic moves of all 2 × 2 minors.

In order to prove Theorem 3 we need the following proposition.

Proposition 1 Let Ih = 〈xh, xh〉 for h = 1, . . . , k = I J . Then we have:

k∏
h=1

Ih = 〈z1 · · · zk | z j = x j or x j for j = 1, . . . , k〉.

Proof One can prove this proposition by induction on k. For k = 2, one can ver-
ify that using Singular (Greuel et al. 2009). Assume

∏k
h=1 Ih = 〈z1 · · · zk | z j =

x j or x j for j = 1, . . . , k〉 holds. We want to prove that
∏k+1

h=1 Ih = 〈z1 · · · zk+1 | z j =
x j or x j for j = 1, . . . , k + 1〉. We have:
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k+1∏
h=1

Ih =
(

k∏
h=1

Ih

)
· 〈xk+1, xk+1〉

= 〈z1 · · · zk | z j = x j or x j for j = 1, . . . , k〉 · 〈xk+1, xk+1〉
= 〈z1 · · · zk+1 | z j = x j or x j for j = 1, . . . , k + 1〉.


�
Let M be the set of vectors such that

M = {± (
ei1 j1 + ei2 j2 − ei1 j2 − ei2 j1

)}
,

where ei j = ei jk is defined as an integral array with 1 at the cell (i, j, 1) and −1 at
the cell (i, j, 2) and 0 every other cells. Also let

IM = 〈
xi1 j1 xi2 j2 xi1 j2 xi2 j1 − xi1 j2 xi2 j1 xi1 j1 xi2 j2 | i1 �= i2, j1 �= j2

〉
. (17)

Proof of Theorem 3 Consider the ideal IM in Eq. (17). Its Gröbner basis is square-free
in the initial terms, and hence the ideal is radical (Proposition 5.3 of Sturmfels (2002)).
Since IM in Equation (17) is radical, we use Theorem 2. Let IAT be the toric ideal
associated with the constraint matrix of the tables I × J × 2 with constraints [A, C],
[B, C], [A, B] for factors A, B, and C . We want to show

⎛
⎝IM :

∏
i=1,...I, j=1...J

Ii j

⎞
⎠ = IAT ,

where Ii j = 〈xi j , xi j 〉 for i = 1, . . . , I, j = 1, . . . , J . Clearly (IM :∏
i=1,...I, j=1...J Ii j ) ⊂ IAT . Thus we want to showIAT ⊂ (IM : ∏i=1,...I, j=1...J Ii j ).
By Proposition 1, and Equation (5) on page 193 in Cox et al. (1992), we only have

to show

IAT ⊂ (IM : z11 · · · zI J )

where zi j = xi j or xi j for i = 1, . . . , I and j = 1, . . . , J .
Let f ∈ IAT . Then by the definition of the quotient ideal, we only have to show

(z11 · · · zI J ) · f ∈ IM .

Assume I ≤ J without loss of generality. Also if I < J , we can reduce all moves
written in the form of (12) to I × I × 2 tables and other columns are zeros. Thus
we consider I × I × 2 tables. We will prove this by induction on I . For I = 3,
one can verify that the statement holds using Singular (Greuel et al. 2009). Assume
that the statement holds for some I − 1 ≥ 3. We want to show the statement holds
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for I . By the inductive assumption we can assume that s = I in Eq. (12). Let
f = xi1 j1 xi2 j2 · · · xiI jI x i2 j1 xi3 j2 · · · xi1 jI − xi2 j1 xi3 j2 · · · xi1 jI x i1 j1 xi2 j2 · · · xiI jI . By
the symmetry on the row and column operations on the table I × I ×2, without loss of
generality we assume f = x11x22 · · · xI I x21x32 · · · x1I −x21x32 · · · x1I x11x22 · · · x I I .
This is a binomial representation of a move on I × I × 2 tables

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 −1

−1 1 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . −1 1 0

0 0 . . . 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . 0 0 1

1 −1 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 1 −1 0

0 0 . . . 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 0

0 1 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 0 1 0

0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 1

1 0 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 1 0 0

0 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 1

1 0 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 1 0 0

0 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 0

0 1 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 0 1 0

0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the first I × I table is the first level of the table and the second table is the
second level. We claim that

(z11 · · · zI I ) · f =
∑

(i, j)=(1, 2)...,(I−1, I )

xU (i, j)xV (i, j) (x1i x j j x1 j x ji − x1 j x ji x1i x j j
)
,

(18)

where

U (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

2 1 . . . 1

1 2 . . . 1
...

...
...

...

1 1 . . . 2

⎞
⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

0 1 0 . . . 0

0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

− w if i = 1, j = 2

�(i ′, j ′)=(1,2),...,(i−1, j−1)U (i ′, j ′) + (e1, j−1 + e j−1,i−1) − (e1,i + e j, j ) else
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and

V (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1

1 0 . . . 0 0

0 1 . . . 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎝

0 . . . 0 1

0 . . . 0 0
.
.
.

.

.

.
.
.
.

.

.

.

0 . . . 1 0

⎞
⎟⎟⎟⎟⎠

+ w if i = I − 1, j = I

�(i ′, j ′)=(i+1, j+1),...,(I−1,I )V (i ′, j ′) + (e1,i+1 + e j+1, j+1) − (e1, j + e j,i ) else

,

where w ∈ {0, 1}I×J such that

wi j =
{

1 if zi j = xi j

0 else.

By the construction of each coefficient, each monomial in each term cancels out except
the monomial with a negative sign in the first term of the sum and the monomial with
a positive sign in the last term of the sum. Also simple calculations show that

u1 :=

⎛
⎜⎜⎜⎝

0 . . . 1 0
0 . . . 0 0
...

...
...

...

0 . . . 0 1

⎞
⎟⎟⎟⎠+ U (I − 1, I ) =

⎛
⎜⎜⎜⎝

2 1 . . . 1
1 2 . . . 1
...

...
...

...

1 1 . . . 2

⎞
⎟⎟⎟⎠− w

and

v1 :=

⎛
⎜⎜⎜⎝

0 . . . 0 1
0 . . . 0 0
...

...
...

...

0 . . . 1 0

⎞
⎟⎟⎟⎠+ V (I − 1, I ) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

+ w

and

u2 :=

⎛
⎜⎜⎜⎜⎜⎝

0 1 . . . 0 0
1 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠

+ U (1, 2) =

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1 2
2 1 . . . 1 1
1 2 . . . 1 1
...

...
...

...
...

1 1 . . . 2 1

⎞
⎟⎟⎟⎟⎟⎠

− w
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and

v2 :=

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 1 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠

+ V (1, 2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 1 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0
0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ w.

Then we notice that
⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1 1
1 1 . . . 1 1 1
...

...
...

...
...

...

1 1 . . . 1 1 1
1 1 . . . 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

− w

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 0
0 0 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 0 0 0
0 0 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

+ w

⎤
⎥⎥⎥⎥⎥⎦

+

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 0 1 0
0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 1
1 0 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 1 0 0
0 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

= (u1) (v1)

and
⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1 1
1 1 . . . 1 1 1
...

...
...

...
...

...

1 1 . . . 1 1 1
1 1 . . . 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

− w

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 0
0 0 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 0 0 0
0 0 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

+ w

⎤
⎥⎥⎥⎥⎥⎦

+

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 1
1 0 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 1 0 0
0 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
...

...
...

...

0 0 . . . 0 1 0
0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

= (u2) (v2) .

Thus, xu1 xv1 − xu2 xv2 equals to the left hand side in Eq. (18). 
�
Now we assume that the given margins are positive for bounded I × J tables, i.e.,

we assume that all row and column sums are positive. Without loss of generality, we
can assume that all margins are positive because cell counts in rows and/or columns
with zero marginals are necessary zeros and such rows and/or columns can be ignored
in the conditional analysis.

Let X = {(i, j) | 1 ≤ i ≤ I, 1 ≤ j ≤ J } and let X0 be a non-trivial subset of X .
Recall that X0 is the set of structural zeros of the table. For Examples 8 and 9, we used
Theorem 2.
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Example 8 We consider 3×3 tables under independence model with all cells bounded.
We assume row and column sums are positive. We have studied in which X0 the stan-

dard Markov basis for 3×3 tables, i.e., the set of the 9 moves of the form
(+1 −1

−1 +1

)
for

all 2 × 2 minors of the table, connects these bounded tables with positive conditions.
If |X0| = 1 or |X0| = 2 then Equation in (16) holds. Thus, these 9 moves connect
bounded tables. For |X0| = 3, if X0 = {(1, 1), (2, 2), (3, 3)} after an appropriate inter-
change of rows and columns, i.e. there are 6 patterns of X0, then Equation in (16) does
not hold. Otherwise for other patterns of X0, Equation in (16) holds. Thus, 9 moves
connect bounded tables. For |X0| > 3, if X0 contains {(1, 1), (2, 2), (3, 3)} after appro-
priate interchange of rows and columns, then equation in (16) does not hold. Otherwise
for other patterns of S, equation in (16) holds. Thus, these 9 moves connect bounded
tables. Even with the positive margin assumption, if X0 = {(1, 1), (2, 2), (3, 3)},
then the basic moves do not connect incomplete contingency tables, i.e., we need the
Universal Markov basis.

Example 9 We also consider 4 × 4 tables under independence model with all cells
bounded. We assume row and column sums are positive. After an appropriate inter-
change of rows and columns, if we have structural zero constraints on all diagonal
cells (i.e., cells with indices in X0 = {(i, j) : i = j for i = 1, . . . , I }), then Equation
in (16) does not hold.

Now we consider I × J contingency tables with only diagonal elements being
structural zeros under assumption of positive conditions on row and column sums.
Aoki and Takemura (2005) showed the following propositions.

Proposition 2 Suppose we have I × J tables with fixed row and column sums. A set
of basic moves is a Markov subbasis for I × J contingency tables, I, J ≥ 4, with
structural zeros in only diagonal elements under the assumption of positive marginals.

From Examples 8, 9, and Proposition 2, we have the following open problem.

Problem 1 Suppose we have I × J tables with fixed row and column sums. What is
the necessary and sufficient condition on X0 so that a set of basic moves is a Markov
subbasis for I × J contingency tables with structural zeros in X0 under the assumption
of positive marginals.

6 Discussions

In this paper we have studied Markov bases and Markov subbases for bounded con-
tingency tables, showing many ways to compute them. While Theorem 1 applies to
incomplete tables, Theorem 3 considers bounded tables with positive bounds. In par-
ticular, Theorem 3 shows that considering two-way tables under independence model
for bounded tables with strictly positive bounds, then the set of basic moves, which is
much smaller than the Universal Markov basis, connects the fibers with given margins.
Thus, in practice we do not need to compute the Universal Markov basis.

In order to prove Problem 1 we may be able to apply Theorem 2 and mimic the
proof for Theorem 3. If we can solve Problem 1 this would be very useful in practice
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because we know exactly when we only need the set of basic moves of all 2×2 minors
for two-way incomplete contingency tables.
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