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ABSTRACT. - This paper contains an attempt to carry out for diffusions
corresponding to divergence form operators the sort of approximation via
Markov chains which is familiar in the non-divergence form context. At
the heart of the our procedure are an extension to the discrete setting of
the famous De Giorgi-Moser-Nash theory.

RESUME. - Cet article contient une tentative pour etablir dans le cas
of le generateur donne sous forme de divergence, les approximations par
des chaines de Markov qui sont bien connues pour des diffusions dont
le generateur est donne sous une forme de non-divergence. L’essentiel de
notre methode repose sur une extension de la celebre theorie de De Giorgi,
Moser, et Nash au cas discret.
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620 D. W. STROOCK AND W. ZHENG

0. INTRODUCTION

Given a continuous, symmetric matrix a : [R~ - [f~ 0 ~d satisfying
a(x)  for some A E (0,1] and a bounded continuous

b : f~d - the martingale problem for the operator

is well-posed (cf. Theorem 7.2.1 in [ 11 ] ). As a consequence, one can use

any one of a large variety of procedures to approximate the associated
diffusion by Markov chains (cf. Section 11.2 in [ 11 ] ). Indeed, aside from

checking a uniform infinitesimality condition, all that one has to do is make
sure that the action on f E C~(!f~; [R) of the approximating generators is
tending, in a reasonable way, to If, on the other hand, one replaces
the /~ in (0.1) by the divergence form operator

then, unless a is sufficiently smooth to allow one to re-write La as with

then the theory alluded to above does not apply. Nonetheless, the

magnificent analytic theory of De Giorgi, Nash, Moser, and Aronson (cf. [9])
tells us that the operator L~ not only determines a diffusion, it does so

via transition probability functions which are, in general, better than those
determined by Thus, one should hope that probability theory should
be able to provide a scheme for approximating these diffusions via Markov
chains, and in the present article we attempt to do just that.

In order to understand the issues involved, it may be helpful to keep in
mind the essential difference between the theories for the non-divergence
form operators and the divergence form operators La. Namely, all

the operators share C~(R~; R) as a large subset of their domain. By
contrast, when a is not smooth, finding non-trivial functions in the domain
of La becomes a highly delicate matter. In particular, as a changes by even
a little bit, the domains of the corresponding La’s may undergo radical
change. For this reason, one has to approach La via the quadratic form
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621MARKOV CHAIN APPROXIMATIONS TO SYMMETRIC DIFFUSIONS

which it determines in Namely, if f E then one

can interpret La f as a distribution (in the sense of L. Schwartz) and one
finds that

where we have introduced the notation ( . , . )0 to denote the inner product on
the usual Lebesgue space R). For historical reasons, the quadratic
form ?~ is called a Dirichlet form. Clearly, for any a satisfying our
hypotheses, f is well-defined on In fact, one finds that

each ~ ~ [ R) admits a closure, which we continue to denote

by ~a, and that coincides with the Sobolev space W2 IR)
of f E L2(lRd; IR) having one (distributional) derivative in 

Furthermore (cf. Theorem 11.3.1 in [9]), there is a unique, strongly Feller
continuous, Markov semigroup (P) : t > 0} with the property that,
for each f E Pt f is the unique continuous map
t E [0,oo) such that

On the basis of the characterization in (0.4), one might think that

convergence of the semigroups should follow from convergence of the
associated Dirichlet forms. That is, one might hope that - Pt f
for all f E should follow from ~(/~) 2014~ ~(.A/) for all
f E R). However, this is not the case, not even when d = 1. To
wit, given a measurable a : I~ - [1, 3], set

At least when a is differentiable, it is easy to check that

and therefore, if, for A > 0, R~ is the resolvent operator given by
e-Àt Pt dt, then an elementary’ application of the Feynman-Kac formula

leads to

Vol. 33, n° 5-1997.



622 D. W. STROOCK AND W. ZHENG

where denotes the standard Wiener measure for 1-dimensional Brownian
motion starting at y. In fact, (0.5) holds whether or not a is differentiable.
Now suppose is a sequence of [1,3]-valued measurable
functions. Then [an (y, f) - ~a:( f, f) for all f E C°° (U~; 0~) is equivalent
to saying that an - a weakly in the sense that

On the other hand, (0.5) shows that it is weak convergence of the reciprocals
1 an to 1 a which determines whether the associated semigroups converge.
Indeed, it is clear that ~- 2014~ a implies first that u~n 2014~ ~ and therefore
that (u~‘n ) -1 - .(~u°~ ) i 1 uniformly on compacts. In particular, since

( u~ ) ~ ~ ( y) = ~ ~ o (~~)’~(~) this means that ~ o (?.Gan )-1 - a o
(u~ ) -1 weakly. Hence, after representing ~o c~ o (ua ) -1 (~(r)) dT in terms of
the local time of Brownian motion., one sees from (0.5) that - 

follows from a n W~ ~ . Finally, take an (x) = 2 + and observe

that an - 2 weakly while

As the preceding .discussion indicates, even in the context of diffusions,
identification of limits via Dirichlet forms is a delicate matter. Thus, it

should come as no surprise that the difficulti-es become only worse when
one is .trying to approximate diffusions by Markov chains. In order to handle
these problems, we devote the next section to a derivation of a number of
a priori estimates. These estimates are extensions to the discrete setting of
estimates which are familiar in the diffusion setting, and our proof of them
mimics that of their diffusion analogs. In §2 we use the results in §1 to
find general criteria which tell us when our Markov chains are converging
to a diffusion, and in §3 we construct Markov chain approximations to the
diffusion corresponding to a’s satisfying (0.1), first in the case when a is
continuous (cf. Theorem 3.9) and then in the general (cf. Theorem 3.14).
Finally, in §4 we describe a possible application.

1. THE BASIC ESTIMATES

Our purpose in this section is to derive the a priori estimates (especially
( 1.11 ) and ( 1.32)) on which our whole program rests. The general setting in
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623MARKOV CHAIN APPROXIMATIONS TO SYMMETRIC DIFFUSIONS

which we will be working is described as follows. We are given a function
p : Z~ x Z~ - ,[0, oo) satisfyingl

For a E (0,oo), we set 03B1Zd = {ak : k E Zd}, introduce the spaces
of f : 03B1Zd - R with

and define the symmetric quadratic forms ( . , . )0152 on L~ R)
by

By the elementary theory of Markov chains., it is an easy matter to

check that, for each rx E (0,oo), there is a unique symmetric, Markov
> 0} on with the property that, for

each f E .~2 (c~7Ld; l~), t E (0,oo) ~--~ E L~ (cx7~d; I~) is the unique
differentiable t E (0,oo) E L2 satisfying

for all g E L2 R) . Moreover, if p03B1,03C1 : (0, (0) x 03B1Zd x - [0, 00 )
is determined by

then

1 for v we use ]]v]] = maxi as distinguished from which reserved for

the Euclidean length of v.

Vol. 33, n° 5-1997.



624 D. W. STROOCK AND W. ZHENG

The symmetry assertion in ( 1.5) comes from the symmetry of the operator
in To see the second assertion, for f E L°° 

define f, E L°° R) so that = f(ak). Next, take

Then ut - f pointwise as t B 0 and

Hence, ut = and so we are done. Note that, as a consequence of
the symmetry and Jensen’s inequality, we know that

We turn next to the derivation of pointwise estimates on 
and for this purpose we will need the following Nash inequality (cf. [ 1 ] ).

1.7 LEMMA. - There is a constant C E [1, 00), depending only on d, with
the property that

Proof: - We begin by noticing that, since  we may and
will assume that 0  El P( f, f )  Next, set

By Parseval’s identity, for each r E (0,1]:

where I(r) = Jy and J(r) = f 
with r(r) being the set of ~ E ~0, 1~~ with the property that, for each
1  i ~ d, either 03BEi G 2 or 03BEi > 1 - r 2. Clearly, I(r)  At
the same time,

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



625MARKOV CHAIN APPROXIMATIONS TO SYMMETRIC DIFFUSIONS

where

Hence, we know that

In particular, since we are assuming that 0  ~1°P( f, f )  we

can take

and thereby obtain our result. D

1.9 LEMMA. - Assume that,

Then there exists a C E [1, oo), depending only on d, such that

where

Proof. - Observe that

Thus, we need only prove ( 1.11 ) with Ya ( t 2 ) replaced by In addition,
by the second part of ( 1.5), it suffices for us to handle the case when 0152 = 1.

Because of (1.8), we can apply Theorem 3.25 in [1] to see that there is
a C, depending only on d, such that

where

Vol. 33, n° 5-1997.



626 D. W. STROOCK AND W. ZHENG

Thus, when t > 1, we get (1.11) by considering

and using (e/rI-l) 2  e (0,1], we have to argue somewhat
differently. Namely, by (3.19) in [1], we know that, for any ~ e R~,

Hence, since   

and so

Thus, we can now complete the proof by taking £ = y =X ~ . D

1. 13 LEMMA. - There is a C ~ [[1, 00), depending only on d, such that
(cf ( 1.10))

Proof. - Again, by (1.5), we need only look at a = 1. When t > 1,
(1.14) with a = 1 is an obvious consequence of ( 1.11 ) with a = 1. When
t E (0,1], we use the description of the right continuous Markov process
X(t) corresponding to > 0} starting at k. Namely, because this
is a pure jump process, we know that

Thus, if n denotes the time of the nth jump and 0394n = ~X(n) -
then

Annales de l’Institut Henri Poincaré - Probabílités et Statistiques
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But, by the standard theory of jump Markov processes (cf. Chapter 3 of [5]),
the number of jumps is a Poisson-like process with rate dominated by

form which it is easy to estimate the preceding by, respectively,

Hence, because t  1, we are done. D

From ( 1.14) it is immediate that there is an R, depending only on d and

K(p), with the property that

In particular, by the Chapman-Kolmogorov equation, symmetry, and

Schwarz’s inequality: .

Thus, there is an E E (0,1], depending only on d and K(p), such that
(cf. ( 1.12))

Our next goal is to show that the on diagonal estimate in ( 1.15) extends
to a neighborhood of the diagonal. Namely, we want to show that there is
an E > 0, depending only on d and K(p), such that

Vol. 33, n° 5-1997.



628 D. W. STROOCK AND W. ZHENG

Our derivation is based on the ideas of Nash, as interpreted in [4]. We
begin with a number of observations.

1.17 LEMMA. - ( 1.16) will follow from the existence of an E, depending
only on d and K( p), such that

Proof - In the first place, notice that our hypotheses are translation
invariant. Hence, there is no loss in generality when we take k = 0.

Further, if we know ( 1.18) and ~03B11~  2t, then either 1 = 0 and ( 1.15)
applies, or 2t 2 . In the latter case, take j3 = t- 2 , note that c~/3  2,
and apply the second part of (1.5) and ( 1.12) to see that ( 1.16) follows
from ( 1.18) with a replaced by D
The proof of ( 1.18) depends on the following Poincare inequality.
1.19 LEMMA. - Let U E CCXJ [0, oo)) have the properties that

f e-2U~~~ d~ = 1 and U(~) _ for all sufficiently large IÇ-I. For a E (0, 2],
define

Then there exists a ~ > 0 such that

where

and e2 is the whose j th componeat is 1 if i = j and 0 otherwise.

Proof - Because of the product structure, we may and will restrict our
attention to the case when d = 1.

We begin by showing that

for some ,u > 0. To this end, note that (1.21) is equivalent to

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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where V m ( U’ ) 2 - U" . Thus, if H - - d 2 + Y, then ( 1.21 ) is equivalent to

But, because V - 1 has compact support, H is a compact perturbation
of - £ + 1, and therefore the essential spectrum of H coincides with

the essential spectrum of - £ + 1. On the other hand, e-u is

an eigenfunction of H with eigenvalue 0. Hence, 0 must be an isolated
eigenvalue of H, and so (1.22) will follow once we show that it is a simple
eigenvalue. However, because it lies at the bottom of spec(H), a familiar
argument, based on the variational characterization of the bottom of the

spectrum, shows that 0 is indeed simple.
Given (1.21), we proceed as follows. For f on extend f to R by

linear interpolation. Thus,

Hence,

Vol. 33, n° 5-1997.
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The proof of the following lemma depends on the inequality

for all positive numbers a, , b, c and d. To verify this, first note that, by
homogeneity, it suffices to treat the case when a = 1 = c A d. In addition,
by using the transformation b ~ b , one can reduce to the case when c  d.
In other words, (1.23) comes down to checking that

for all x E (0, oo) and d > 1. Finally, observe that, by Schwarz’s inequality,

and so it suffices to see that

When x E (0,1], this is trivial. When x > 1,

1.24 LEMMA. - There is an ~ E (0, 1 ), depending only on d and K(p),
such that

Proof - Set = 0152I) and

and note that, by Jensen’s inequality, G(t)  0. Moreover, by (1.2),

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Hence,

where, in the passage from the first line, we have used (1.23).
Because U’ is bounded and a e (0,2], we can find 1 E (0,1] such that

and

Hence, there is an M ~ [l,oo), depending only on d and K(p), such
that (cf. (1.20))

Next, for cr > 0, set

Then, for each a > 0,

Vol. 33, n° 5-1997.



632 D. W. STROOCK AND W. ZHENG

Thus, we now know that

Finally, we use ( 1.14) to find an r e [l,oo) such that

In particular, if  is the smallest value e-2U takes on [-r, r], then

Thus, by taking a = log 4rd and using (1.11), we conclude first that

)At(a) )~ > and then that there exists a b E (0, 1), depending
only on d and K(p), such that

To complete the proof starting from (1.26), suppose that G*(~) ~ -2014.
By (1.26),

and so, again by (1.26),

But this means that

and therefore G( 2 ) > -8b-1. In other words, we can take E 2 =
~exp(-8~-~). D

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques
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The passage from (1.25) to ( 1.18), and therefore ( 1.16), is easy. Namely,
by the Chapman-Kolmogorov equation and symmetry,

Hence, by Jensen’s inequality, if  2, then (1.25) gives ( 1.18).
In the following statement, {P03B1,03C103B1k : k E denotes the Markov family

of measures on Oa == D([0,oo);o;Z~) for which transition probability
function has ak, al) as its density. Also, for each r > 0 and k E 7~d,

~,r ~ : Oa - [0, oo] is given by

Finally, for f C denotes ad times the number of k E 7~d with

ak E f.

1 .27 LEMMA. - There is a () E (0, )), depending only on d and K(p),
such that

for all

Proof - First suppose that t 2  CL Then 1 = k and either F is empty,
and there is nothing to do, or = In the latter case,

Thus, we need only worry about t > a. But then, for Ilak - ajll  t!:

Vol. 33, n° 5-1997.
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Hence (cf. (1.12)) we can choose 6’ E (0, ~) to achieve

and (1.28) follows immediately after summing over oj E r. D

Our main interest in ( 1.28) is that it allows us to derive a Nash continuity
estimate (cf. Theorem 1.31 below). However, in order to do so, we will
have to replace (1.10) by the much more stringent condition:

where R(p) E 
In the following lemma,

Also, given a function u on a set S, define

1.30 LEMMA. - Set (cf Lemma 1.27 and (1.29») r~ == (1 + I-~( p) ~ 18 and
determine 03C3 E (0,00) by == (1 - 2-d-303B8). Then, for all 03B1 E (0, 1] and
bounded functions f on 

.) == 
Without loss in generality, we will assume that k == o. Moreover,

because there is nothing to do when ~r  0152, we will assume that ~r 2: 0152.

For {3 E [0,r~], set

Then Osc(u"; Q" ((T, 0);,6)) = M(,~) - rrz(~3). Next, set

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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and

Obviously, either > or If > 

take w = u" - m(r). Given T - {r~~)2  s  T, set t = (27/r)~ - T + s E
~(r~r)2, (~r~r)2~ , and note that, because w > 0 on Qa: ((T, 0); r) and

P~ 2014 almost surely when ~1~  7~r,

(1.28) implies that

for  7]r. Thus, m(r) > 2’~’~9(M(r) - m(r)), which
means that

When  one takes w = M(r) - u‘~ and proceeds as above
to get first that M(r) -  (1 - 2-d-3r~) (M(r) - and then

the same estimate as we just arrived at. D

1 .3 1 THEOREM. - Assume that ( 1.29) holds for some R(p) E 1, 00), and
define o- as in Lemma 1.30. Then there is a B E (0, oo), depending only on
d and R(p), such that, for all r~ E (0, 1] and f E 

Vol. 33, n° 5-1997.
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In particular, there is a C, depending only on d and R(p), such that

Proof. - Clearly (1.33) follows from (1.32) together with ( 1.11 ) and

To prove (1.32), set T = t A s and r = (1 - If

then (1.32) is easy. Otherwise, determine n > 0 so that

Then, by repeated application of (1.30), one finds that

2. PRELIMINARY APPLICATIONS

Throughout this section we will be dealing with the following situation.
For each 0152 E (0,1], we are given pe, : Z~ x Z~ 2014~ [0,oo). Our basic
assumption is that the pa’s satisfy ( 1.1 ). In addition, we will assume that
there is 1, oo ) with the properties that

2.2 LEMMA. - Set (cf 1.4)) p‘~ == and, for x E use to denote

the element of obtained by replacing each coordinate x2 with c~ times

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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the integer part of Then, for any sequence ~~n~1° C (0, l~ which
decreases to 0 there is a decreasing subsequence ~~xn~ ~ and a continuous
q : (0, oo) x IRd x ~0, oo) such that

where ,~ E (0, oo) depends only on d and the number R in (2.1). In

particular,

Proof - Because of ( 1.11 ) and (1.32), there is essentially nothing to do
except comment that the existence of a locally uniform limit is guaranteed
by (1.32) and the Arzela-Ascoli compactness criterion and that the other
statements in (2.3) and (2.4) follows from this combined with ( 1.11 ). D

From (2.4), it is clear that if Qt is determined by

then (Qt : t > 0} determines both a Markov semigroup on and

a strongly continuous semigroup of self-adjoint contractions on L2 
Our goal now is to give criteria which will enable us to identify the

semigroup {Qt : t > 0}. Notice that if (Qt : t > 0} is uniquely determined,
in the sense that it is independent of the subsequence selected, then there
will be no need to pass to a subsequence in the statement of (2.3).

In order to carry out our program, we first impose the regularity condition
that (cf. (2.1)), for each r E 

Second, we define ~ : by

Vol. 33, n° 5-1997.
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Finally, we suppose that there exists a Borel measurable a : R~ - R~ 0 ff~
with the property that, for each r > 0:

As a consequence of (1.1), (2.1 ), and (2.8), it is an easy matter to check
that, without loss in generality, we may assume that 21  a(x)  RI for all
x E In particular, the general theory (cf. either [3] or [8]) of Dirichlet
forms applies and says that there is a unique strongly continuous, Markov
semigroup {Pt : t > 0~ self-adjoint contractions on L2 (R~; R) with the
properties that, for each f E E (0,oo) ~ Pt f is the unique
continuous function t E ( 0, oo ) - ~ct E R) (the Sobolev space of
square integrable functions with one square integrable derivative) such that

In fact (cf. [9]) there is a unique p~ E C ((0,00) x IRd x (0, oo)) with
the properties that

and,. for each f E 

What we want to show is that, after the addition of (2.6) and (2.8), we can
show that the q in (2.3) must be pa, and for this purpose we will need a few
preparations. Namely, given 1/J0152 : a7Ld - R, let {;0152 denote the function
on f~d obtained by baricentric extension. That is, for each k E set

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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and define on Q 0152 (k) to be the multilinear extension restricted

to the extreme points of The crux of our argument is contained
in the following lemma.

2.13 LEMMA. - For each a E (0,1], i a7Ld -~ I~ be given, and
assume that

If 03C803B1 converges to 03C8 in then 03C8 E and

where we have taken (cf (1.2)) [a. == 

P~oof. - We begin by observing that, for x E Qa (k),

In particular, this means that

and so, by (2.14), the L2-norm of is bounded uniformly in c~ e (0,1].
Hence, from the elementary functional analysis of the space W2 IR),
we know that ~ E W2 R) and that tends weakly in IRd)
to and, after combining this observation with (2.8), we see that it

suffices for us to check that

Moreover, because (/? E IR), it is clear from (2.14) that the preceding
can be replaced by

Vol. 33, n° 5-1997.



640 D. W. STROOCK AND W. ZHENG

where

and we have introduced the notation bv 1/J (x) == v) - 1/J (x). ,
To prove (2.16), we define a rectilinear, nearest-neighbor path from k to

k + e. Namely, for (k, e) E Zd x Zd and 1  j  d, let

Then,

where

and so

Thus, because of (2.6), (2.14), and the fact that 03C6 E we see

that (2.16) reduces to

Finally, to prove (2.17), observe that

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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where

Hence, after elementary manipulation, we see that

Thus, because of (2.6), all that remains is to note that

By combining Lemma 2.2 and 2.13, we get the our main result.

2. 1 8 THEOREM. - Let a : IRd -~ be a Borel measurable, symmetric
matrix valued function which satisfies

for some R E and determine pa : (0, oo) x x IRd --~ (0, oo)
accordingly, as in (2.11). Also, for each c~ E (0, l~, let pa : x 7~d -

[0, (0) be a function which satisfies the conditions in ( 1.1 ) and (2.1 ). If, in
addition, (2.6) and (2.8) hold, then

where {3 E (0, oo) depends only on d and R (cf (2.1) and (2.6)).

Proof - In view of Lemma 2.2 and the discussion which follows its

proof, we need only check that (cf. (2.3)) q = pa. Moreover, starting from
the characterization of {Pt : t > 0} given in (2.9) and using the continuity

Vol. 33, n° 5-1997.
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of pa, one can apply standard soft arguments to see that it suffices for us
to prove that, for each f E C~c(Rd; IR) and 03BB E (0, oo),

and

when

To this end, define a7Ld - I~ by

From the spectral theorem, it is clear that

Hence, because of ( 1.1 ), we know that (2.14) holds with = 

Moreover, from (2.3), it is an easy step to - ux in R). Thus,
by Lemma 2.13, ua E R) and

3. CONSTRUCTION OF MARKOV CHAIN APPROXIMATIONS

Theorem 2.18 provides us with a criterion on which to base the.
construction of Markov chain approximation schemes. The only ingredient
which is still missing is a procedure for going from a given coefficient
matrix a to a family (pa : a e (0, 1]} which satisfies the hypotheses of
that theorem. Thus, let a Borel measurable a : - symmetric
matrix-valued function satisfying

A.nnales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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be given. We want to construct an associated family {~~ : 0152 E [0,1]} which
satisfies ( 1.1 ), (2.1 ), (2.6), (2.8), and therefore, by Theorem 2.18, (2.20).
An important role in our construction will be played by the following

simple application of elementary linear algebra. Here, and elsewhere,
elements of f~d will be thought of as column vectors. In particular,
if el , ... , ed are given elements of then ... , ed] will be the

d x d-matrix whose j th column is e~ .

3.2 LEMMA. - Given a symmetric S E there exist linearly
independent el , ... , ed E ~d such that ] S V 1 )
(~ - stands for the operator norm), and 

J

[eB...,e~].
Proof. - Set R = 32~ (~~p V 1? . Choose an orthogonal matrix O so

that A = OTSO is diagonal, determine ej 6 Zd so that, for 1 ~ z  d,

ei is the integer part of and set B = l~~ 1 [e~ ..., e~]. We
must show that B is invertible and

For this purpose, set A = 0 - B.  R  2 and

B = (I - Thus, B is invertible and

In particular,

Hence, on the one hand,

while, on the other hand,
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At this point it is useful to make a distinction between the cases when
a is assumed to be continuous and when no continuity is assumed. The
next statement is a more or less immediate consequence of Lemma 3.2 plus
elementary point-set topology. Indeed, when a is continuous, Lemma 3.2
makes it clear that each x E IRd admits a neighborhood U and a choice of
basis el, ... , ed E 7Ld such that  32d2M and

for all 1 ~ i  d and y E U. Hence, the following statement comes from
the preceding and the fact that O~d is a-compact.

3.5 LEMMA. - If a is continuous, then there is a countable, locally
finite, open cover {Un}~0 of Rd such that, for each n E N, a I Un
is uniformly continuous and there exists a basis e1 n, ... , ed,n such that

 32d2M and, for each 1 ~ i  d and x E Un,

when En = B .
Next, choose {7]n : n E N} ç C° [0, 1]) to be a partition of unity

which is subordinate set

and, for each n, define x 7l d - [0, oo) by

Finally, set
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3.9 THEOREM. - If a : ~d ---+ ~d x ~d is a continuous, symmetric matrix
valued function which satisfies (3.1) and if ~p~ : a E (0,1]} is determined
by the prescription in (3.8), then Theorem 2.18 applies and so (2.20) holds.

Proof. - There is nearly nothing to do. Indeed, since each of the an ( . , el ’ s
is continuous and vanishes identically when > 04d2 M, it suffices to

observe that, by construction, ¿e an (x, e) = a(x) - 21 for all x E 0

The situation when a is not continuous is hardly different. The only
substantive change is that one must begin by doing a little smoothing. For
example, choose some ~ E C~ ~0, oo)) with total integral 1, and set

Then

Hence, by Lemma 3.2, one can find an ao E (0, l~ such that, for each
a E (0, ao] and 1 e there is a basis {e~~B ..., in ~~ with
(cf. (2.12))

Next, choose an ~ E C~c((-1, 1); [0, 1]) so that q == 1 on [- 3 4, 3 4], take

and define IRd x 7Ld - [0, oo) so that, when x E (1),
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and ~ i(x, -) = 0 when x ~ Finally, set

3.14 THEOREM. - Given a Borel measurable, symmetric a : Rd -
[Rd 0 (0,1]} as in (3.13). Then Theorem 2.18 applies
and so (2.20) holds.

4. CONVERGENCE OF PROCESSES AND AN
APPLICATION TO THE DIRICHLET PROBLEM

As a more or less immediate dividend of Theorems 3.9 or Theorem 3.14,
we get an accompanying statement about the associated stochastic processes.
Namely, for each a E (0,1], let SZa denote the Skorohod space
D ( [0, oo); of right continuous, 03B1Zd-valued paths on [0, (0) with

left limits, and note that each SZa is a closed subspace of D ([0, oo); 
Next, k E be the Markov family of probability measures
on SZa with transition density Also, x E be the Markov

family of probability measures on for which p~ is the

transition density. Because of ( 1.14) and standard compactness criteria

(e.g., Chencov’s in Theorem 8.8 on page 139 of [2]) for the Skorohod
topology, it is clear that, as a subset of probability measures on Ho.

At the same time, by (2.14), if 0 and ankn -~ x E then the only
limit { can have is Px . Hence, we have now proved the following.

4.1 COROLLARY. - Under the conditions described in either Theorem 3.9
or Theorem 3.14, for any bounded F : no -~ (~ which is continuous and
any r E (0, oo),

In fact, (4.2) continues to hold for bounded F’s on 03A90 which, for each
x E Rd, are Pax-almost surely continuous with respect to the topology of
uniform convergence on finite intervals.

Proof. - The only point not already covered is the final one. However,
because {Px : x (  r} is compact as probability measures on
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C([0, oo) ; IRd), it follows from standard facts about the Skorohod topology
that the preceding weak convergence result self-improves to cover functions
which are continuous with respect to the topology of uniform convergence
on finite intervals. D

We conclude with an application of the preceding to the Dirichlet

problem for La in a bounded, connected region Q5 ç That is, given an

/ ~ C(90; we seek a function ~ E C(~9; R) . with the properties that:

Set

and

Because C is bounded, ( 1.16) can be applied to check that there are

T E (0, oo ) and E E (0,1) with the property that

Hence, by a familiar argument, there exists another E > 0 such that

Similarly, from the lower bound in (1.0.10) of [9], one knows that

for a suitable choice of E > 0.

Obviously ~~ ~ ("(5 always. In addition, (o and ("(5 are, respectively,
lower and upper semicontinuous with respect to the topology of uniform

convergence on finite intervals. Finally, the lower bound from (1.1.10) in

[9] leads (cf. part (iii) of Exercise 3.2.38 in [10]) to

whenever 90 is Lebesgue regular in 61 in the sense that
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4.6 THEOREM. - Assume that (4.4) holds. Given f E R), choose
f E R) so that f = f. Then (cf (4.1))

In fact, the convergence in (4.4) takes place uniformly on compact subsets
of l!5.

Proof - In view of Corollary 4.1 and the preceding discussion, the
derivation of (4.4) comes down to checking that

Indeed, (4.4) guarantees that /(~(~)) is Px-almost surely continuous in
a topology with respect to which we know that is converging weakly
to Px . 

" 

’

To prove (4.8), one needs to use three facts. First, (4.8) is essentially
trivial when a is smooth. Second, the convergence result in Theorem 11.3.1
together with the tightness which comes from the upper bound in (1.1.10)
of [9] and the continuity discussion just given, show that

uniformly on compacts in (5
is a sequence of coefficients matrices satisfying (3 .1 ) and tending

to a in measure. Third, one must know that, under the same conditions,
~ uniformly on compacts, a conclusion which can be easily
drawn from the facts in [9] and is explicitly contained in results of [7] or
§5 of Chapter II in [6]. D

Remark. - For actual computation, it may be useful to observe that

where {Q~ ~ k E is the discrete-time parameter Markov family on
with transition probability

when

Indeed, one can construct Qak from P::k by simply recording the size of
the jumps and taking the time between successive jumps to be 1. Hence,
the distribution of unparameterized trajectories is the same under P::k and
Q~k. In particular, the distribution of ((o) is the same under

Q~ as it is under P~.
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