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Abstract—In free-space optical communication links using in-
tensity modulation and direct detection (IM/DD), atmospheric tur-
bulence-induced intensity fluctuations can significantly impair link
performance. Communication techniques can be applied to miti-
gate turbulence-induced intensity fluctuations (i.e., signal fading)
in the regime in which the receiver aperture 0 is smaller than
the fading correlation length 0 and the observation interval 0

is smaller than the fading correlation time 0. If the receiver has
knowledge of the joint temporal statistics of the fading, maximum-
likelihood sequence detection (MLSD) can be employed, but at the
cost of high computational complexity. In this paper, we introduce
a single-step Markov chain (SMC) model for the fading correla-
tion and use it to derive two low-complexity, suboptimal MLSD al-
gorithms based on per-survivor processing (PSP). Simulations are
presented to verify the SMC model and the performance improve-
ment achieved using these suboptimal PSP algorithms.

Index Terms—Atmospheric turbulence, free-space optical com-
munication, maximum-likelihood sequence detection (MLSD),
per-survivor processing (PSP), single-step Markov chain.

I. INTRODUCTION

FREE-SPACE optical communication has attracted con-
siderable attention recently for a variety of applications

[1]–[4]. Highly directed, coherent laser beams can propagate
through the atmosphere with only moderate spreading and
attenuation. Free-space links using directed beams and imaging
receivers can achieve multigigabit-per-second transmission
over kilometer ranges [1] or retrieve data simultaneously at
kilobit-per-second bit rates from a collection of distributed,
autonomous sensor nodes [2]–[4] using space-division mul-
tiplexing (SDM). Because of the complexity associated with
phase or frequency modulation, current free-space optical
communication systems typically use intensity modulation
with direct detection (IM/DD).
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Atmospheric turbulence can degrade the performance of free-
space optical links, particularly over ranges of the order of 1 km
or longer. Inhomogeneities in the temperature and pressure of
the atmosphere lead to variations of the refractive index along
the transmission path. These index inhomogeneities can cause
fluctuations in both the amplitude and the phase of the received
signal. These effects can lead to an increase in the link error
probability, limiting the performance of the communication sys-
tems.

Atmospheric turbulence has been studied extensively, and
various theoretical models have been proposed to describe tur-
bulence-induced image degradation and intensity fluctuations
(i.e., signal fading) [5]–[8]. Two useful parameters describing
turbulence-induced fading are , the correlation length of
intensity fluctuations, and , the correlation time of intensity
fluctuations. When the receiver aperture can be made larger
than the correlation length , then turbulence-induced fading
can be reduced substantially by aperture averaging [9].

Because it is not always possible to satisfy the condition
, in a previous paper [10], we proposed alternative

techniques for mitigating fading in the regime where .
At the bit rates of interest in most free-space optical systems,
the receiver observation interval during each bit interval is
smaller than the turbulence correlation time. Throughout
this paper, we will assume that and .

In this paper, based on the statistical properties of turbu-
lence-induced signal intensity fading, we propose an optimal
maximum-likelihood sequence detection (MLSD). This MLSD
requires complicated multidimensional integration, and its
computational complexity is exponential in the length of the
transmitted bit sequence. To simplify MLSD, we propose a
single-step Markov chain (SMC) model for the fading temporal
correlation, and we use the SMC model to derive an approx-
imate higher order distribution of bit errors, as well as two
reduced-complexity MLSD algorithms based on suboptimal
per-survivor processing (PSP). We use simulations to investi-
gate the accuracy of the SMC model and the effectiveness of
the suboptimal MLSD techniques.

The remainder of this paper is organized as follows. In
Section II, we first review the correlation of signal fading and
the probability distribution of the light intensity received on
turbulence channels. The MLSD forON-OFF keying (OOK)
in the turbulence channel is then introduced. In Section III,
we propose the SMC model for fading temporal correlation.
To verify its accuracy, simulation of the higher order burst
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error distribution with symbol-by-symbol detection [10] is pre-
sented. In Section IV, we derive two sets of suboptimal MLSD
schemes that make use of PSP and the SMC model. These
techniques only involve two-dimensional (2-D) integration and
their computation complexity is of the order of , where

is the length of the transmitted bit sequence. We present
simulations showing that these two techniques provide a per-
formance improvement over symbol-by-symbol detection. In
Section V, we present our conclusions.

II. PROBABILITY DISTRIBUTION FORTURBULENCE-INDUCED

FADING AND MLSD IN OOK SYSTEMS

In this section, we first review the spatial and temporal coher-
ence of optical signals through atmosphere turbulence and the
probability distribution for turbulence-induced fading. Then we
introduce the model for OOK free-space optical communication
systems and the MLSD for such systems.

A. Spatial and Temporal Coherence of Optical Signals
Through Turbulence

To describe spatial coherence of optical waves, the so-called
mutual coherence function (MCF) is widely used [6]

(1)

where is the complex optical field. Setting in
(1), we obtain the spatial MCF . The Rytov method
is frequently used to expand the optical field , where
denotes the space vector ofas

(2)

where is the field amplitude without air turbulence

(3)

The exponent of the perturbation factor is

(4)

where is the log-amplitude fluctuation and is the phase
fluctuation. We assume and to be homogeneous, isotropic,
and independent Gaussian random variables. This assumption
is valid for long propagation distances through turbulence.

In order to characterize turbulence-induced fluctuations of the
log-amplitude , we use the log-amplitude variance function

(5)
Since the random disturbance is Gaussian-distributed under the
assumption of weak turbulence, we can use the Rytov method to
derive the normalized log-amplitude variance function for two
positions in a receiving plane perpendicular to the direction of
propagation [9], [10]

(6)

where is the distance between and . We define the cor-
relation length of intensity fluctuations such that

. When the propagation path lengthsatisfies the condition
, where is the wavelength and and are

inner and outer length scales, respectively,can be approxi-
mated by [9], [10]

(7)

In most free-space optical communication systems with visible
or infrared lasers and with propagation distance of a few hun-
dred meters to a few kilometers, (7) is valid.

Atmosphere turbulence also varies with time and leads to in-
tensity fluctuations that are temporally correlated. Modeling the
movement of atmospheric eddies is extremely difficult, and a
simplified “frozen air” model is normally employed, which as-
sumes that a collection of eddies will remain frozen in relation to
one another, while the entire collection is translated along some
direction by the wind. Taylor’s frozen-in hypothesis can be ex-
pressed as [8]

(8)

where is the refractive index of the atmosphere.is the ve-
locity of the wind, which has an averageand a fluctuation .
If is negligible and is transverse to the direction of light
propagation, then temporal correlation becomes analogous to
spatial correlation; in particular, the correlation time is

. Assuming a narrow beam propagating over a long dis-
tance, the refractive index fluctuations along the direction of
propagation will be well averaged and will be weaker than those
along the direction transverse to propagation. Therefore, we
need only consider the component of the wind velocity vector
perpendicular to the propagation direction. The turbulence
correlation time is therefore

(9)

B. Probability Distributions of Turbulence-Induced Intensity
Fading

As discussed previously, when the propagation distance is
long, log-amplitude fluctuations can become significant. In this
section, we will derive the statistical properties of the log-am-
plitude fluctuations, which we refer to as “intensity fading” or
simply “fading.” The marginal distribution of fading is derived
in Section I, while the joint spatial and temporal distribution of
fading are derived in Section II.

1) Marginal Distribution of Fading: In this section, we de-
rive the marginal distribution of fading at a single point in space
at a single instant in time.

For propagation distances less than a few kilometers, varia-
tions of the log-amplitude are typically much smaller than vari-
ations of the phase. Over longer propagation distances, where
turbulence becomes more severe, the variation of the log-ampli-
tude can become comparable to that of the phase. Based on the
atmosphere turbulence model adopted here and assuming weak
turbulence, we can obtain the approximate analytic expression
for the variance of the log-amplitude fluctuationof plane and
spherical waves [8]

(10)

(11)
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Fig. 1. Variance of the log-amplitude fluctuation versus propagation distance
for a plane wave.

where is the wavenumber spectrum structure parameter,
which is altitude -dependent. Hufnagel and Stanley gave a
simple model for [7] as

(12)

where is parameter describing the strength of the turbulence
and is effective height of the turbulent atmosphere. For at-
mospheric channels near the ground m ), can
vary from 10 m for strong turbulence to 10 m
for weak turbulence.

Fig. 1 shows the variance of the log-amplitude fluctuation
for a plane wave, computed using (10), as a function of the

propagation distance. In Fig. 1, we again assume a wavelength
of 529 nm and assume to be constant. Fig. 1 shows that,
for propagation distances of a kilometer, varies from 10
to 1 for different values of .

Consider the propagation of light through a large number of
elements of the atmosphere, each causing an independent, iden-
tically distributed phase delay and scattering. By the Central
Limit Theorem, the marginal distribution of the log-amplitude
is Gaussian

(13)

The light intensity is related to the log-amplitude by

(14)

where is the ensemble average of log-amplitude.

From (13) and (14), the average light intensity is

(15)

Hence, the marginal distribution of light intensity fading in-
duced by turbulence is log-normal and is given by

(16)

2) Joint Temporal Distribution for Turbulence-Induced
Fading: In a free-space optical communication system using
OOK, we assume that an-bit sequence
is transmitted. We define the index subset ofON-state
symbols .
We also have the index subset ofOFF-state symbols

. Ignoring in-
tersymbol interference (ISI), the receiver would only receive
signal light when theON-state is transmitted. The joint distribu-
tion of the signal intensity ofON-state symbols is [10]

(17)

where the th ON-state symbol intensity [6], [7]

(18)

Here, can be modeled as a Gaussian random
variable with zero mean and variance . For a string of bits,
the variance matrix ofON-state bits is given in (19), shown at the
bottom of the page, where is the bit interval. The correlation
time is given in (9).

One can also show that the joint distribution of
[10] is

(20)

C. OOK System Model

In this paper, we consider IM/DD links using OOK. In most
practical systems, the receiver signal-to-noise ratio (SNR) is
limited by shot noise caused by ambient light which is much
stronger than the desired signal and/or by thermal noise in
the electronics following the photodetector. In this case, the
noise can usually be modeled to high accuracy as additive,
white Gaussian noise that is statistically independent of the
desired signal. Assume that the receiver integrates the received
photocurrent for an interval during each bit interval and

(19)
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that . Therefore, the light intensity can be viewed as
constant during exposure interval. At the end of the integration
interval, the resulting electrical signal can be expressed as

(21)

where is the received signal light intensity and is the
ambient light intensity. The optical-to-electrical conversion
efficiency is given by

(22)

where is the quantum efficiency of the photodetector,is the
electron charge, is the signal wavelength, is Plank’s con-
stant, and is the speed of light. The additive noise is white
and Gaussian and has zero mean and covariance, indepen-
dent of whether the received bit is off or on. In most applica-
tions, the ambient light intensity remains constant and can be
easily subtracted from the signal light. Therefore, in this paper,
we simply define the received signal as

(23)

D. MLSD of OOK Systems

The MLSD exploits the temporal correlation of turbu-
lence-induced fading and is thus expected to outperform the
symbol-by-symbol ML detector. For a sequence oftrans-
mitted bits, the MLSD computes the likelihood ratio of each of
the possible bit sequences and the received
signal sequence and chooses [11]

(24)

Here, each can take the valueOFF or ON. The complexity of
MLSD is proportional to , because it requires computing
an -dimensional integral for each of bit sequences.

III. SMC MODEL FORFADING CORRELATION

In this section, we propose an SMC model for fading correla-
tion. While we consider only temporal correlation, the model
can be used to treat spatial correlation, provided that the re-
ceivers are located along a line perpendicular to the direction
of propagation. We then validate the SMC model by computing
the burst-error probability for symbol-by-symbol ML detection.

A. SMC Model

Here, we consider the SMC model describing the correlation
of fading at a sequence of equally spaced times. It is straightfor-
ward to extend the treatment to spatial correlation provided that
the receivers are equally spaced along a line perpendicular to
the direction of propagation. Let denote the log-amplitude at
time , and let denote . Assuming the tur-
bulence-induced fading is an SMC, we have

(25)

Define . If follows a joint Gaussian distri-
bution, the conditional distribution of given is

(26)

Comparing the variance term in (19) with that in (26) and from
the simulation results presented later in this paper, we see that
the correlation in the SMC model is stronger than in the exact
correlation model.

Since the SMC model only takes into consideration the prob-
abilistic distribution of the most adjacentON-bits which contain
the turbulence information, its applicability to model general
spatial correlation is restricted to the special case when the mul-
tiple receivers are aligned along a line perpendicular to the di-
rection of propagation. However, since the number of receivers
is typically small, the computational complexity of ML detec-
tion with diversity reception will typically be reasonable, as we
have shown in [10] and [12].

B. Burst-Error Distribution for Symbol-by-Symbol Detection

To test the validity of the SMC model, we compute the burst
error probability for symbol-by-symbol detection of OOK,
which also reveals the higher order statistics of the bit-error
distribution. Assume that a sequence ofON bits are transmitted.
The probability of having consecutive erasures is

Prob
(27)

where denotes the receiver decision threshold. Using the
chain rule, (27) can be written as

(28)

which is upper-bounded by

(29)

To simplify the calculation, let us first ignore additive white
Gaussian noise (AWGN) and focus on errors caused by turbu-
lence-induced fading. In the absence of AWGN, we have

(30)

where can be calculated by as

(31)

Note that, to compute (29) and (30), we need only perform two-
dimensional (2-D) integration, independent of the number of
bits in the sequence.
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Fig. 2. Distribution of consecutive bit errors and its upper bound derived using
the SMC model. For simplicity, AWGN is ignored here.

In Fig. 2, we present the distribution of consecutive bit er-
rors for several different correlation parameters, comparing the
SMC model to the exact correlation model. Fig. 2 has been com-
puted assuming , and a decision threshold

. As we would expect, the prob-
ability of a burst of length increases as we increase the
correlation parameter . We see that the SMC model yields
a fairly tight upper bound on the exact burst-error probability,
validating its use in modeling turbulence-induced fading corre-
lation. Note that, as the correlation increases, the probability
of a single bit error decreases. That is because when
the correlation increases, implying a larger coherence time, the
fading state will vary more slowly. It then becomes more likely
that a burst of more than one bit error will occur during a large
fading state.

Considering AWGN, (30) is modified to

On (32)

(33)

where

(34)

Note that a four-dimensional (4-D) integration is required to
compute (33), independent of the length of the sequence.

In the above, we focused on missed detection ofON bits.
When a sequence ofOFF bits is transmitted, the probability of

consecutive false alarms (falsely detecting a sequence of
ON bits) is simply

(35)

where

Off (36)

Because the correlation of atmosphere turbulence only affects
the detection ofON bits, a burst of missedON bits is much
more likely than a burst of false alarms.

It is obvious that

(37)

(38)

We can modify (29)–(36) to derive the higher order bit-error
probability distribution for a sequence of bits with symbol-by-
symbol detection. Since onlyON-state bits are affected by
atmospheric turbulence, based on the SMC model, theON-state
bit-error probability would depend on the joint probability
distribution of the most recent precedingON-state bit and the
current ON-bit.

IV. SUBOPTIMAL PSPFOR MLSD

The MLSD, as expressed in (26), is optimal for detecting a
sequence of bits that is i.i.d. and uniform on the set {Off, On}.
Detecting a sequence ofbits requires a complexity of order

, because it requires computing an-dimensional integral
for each of bit sequences. To reduce the complexity, we
consider PSP, which was proposed by Polydoros to extend the
Viterbi algorithm to uncertain environments [13]. The key idea is
to use the received intensity of recently detectedONbits to reduce
uncertainty about the state of the turbulence-induced fading.
If we consider AWGN and use the SMC model for the fading
temporal correlation, then knowing the correlation between
two consecutiveON bits is sufficient to perform MLSD. Even
under the SMC assumption, however, the likelihood function
in (24) cannot be decoupled into a sum of per-branch metrics,
which is required for a reduced-complexity implementation.
We will modify the metric function to allow us to implement
a sub-optimal MLSD using PSP. This suboptimal MLSD can
decode an -bit sequence with a complexity of order , as
compared to the optimal MLSD described in Section II-D,
which has a complexity of order .

Assume a transmitted -bit sequence . De-
fine the index subset ofON-state symbols

with , i.e., assume the
first bit is ON. We also have the index subset ofOFF-state
symbols . The exact
likelihood function in (24) is
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(39)

where . Based on the SMC model, we
have

(40)

In order to decouple (40), we modify the weighted integration
of (40) by

(41)

We modify (41) by decoupling the integration as shown in (42),
at the bottom of the page, since the first term in the denomi-
nator is identical in the likelihood function for all codewords.
We can write the modified likelihood function ofas given in

(43), shown at the bottom of the page. From (43), we can define
the metric function of the th branch as

On

(44)

Off (45)

where and denotes the position of the most recent
ON-state bit.

In terms of the branch metrics, the MLSD can be expressed
as

On Off (46)

Since the MLSD considers path metrics that are the product of
branch metrics, it can be implemented using the Viterbi algo-
rithm, with a complexity of the order of . Note that com-
putation of each branch metric of the form (44) requires only
a 2-D integration, independent of. In (44), we see that com-
puting the branch metric for anON bit requires information ob-
tained during the most recently transmittedON bit, so we can
only choose a survivor path when the previous bit is known to
be ON; otherwise, we must keep track of the amplitude of the
most recently receivedON bit, and must also keep track of all
survivor paths whose last bit isOFF. An example of the asym-
metric PSP is shown in Fig. 3. The number on each branch is
the branch metric computed using (44) and (45). The first and
sixth bits correspond to theON state. We see that, in this asym-
metric PSP, we can only eliminate nonsurvivor paths when the
most recent bit corresponds to theON state. As in this example,
to reduce the complexity of this algorithm, we can add anON

bit at the beginning and ending of each-bit sequence. We can

(42)

(43)
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Fig. 3. Viterbi algorithm for MLSD with turbulence-induced fading. Solid
lines denoteOFF bits and dashed lines denoteON bits. The branch metric is
marked on each branch. The decoded bit sequence is indicated at the bottom.

simply employ the startingON bit of the next sequence as the
endingON bit of the previous sequence. The complexity of such
an algorithm would be of order , and the integration is only
2-D. However, we need extra memory to keep track of the sur-
vivor path information. Also, some bit overhead is required for
implementation of this algorithm.

The algorithm described above still requires a large com-
putational load to perform the 2-D integration. To reduce this
complexity, we can estimate using , since

(47)

(48)

Replacing with , we can define the metric
function for branch as

On (49)

Off (50)

(a)

(b)

Fig. 4. Bit-error probability of different decoding schemes versus average
electrical SNR with turbulence-induced fading. The dotted line represents the
bit-error probability using a symbol-by-symbol decoding scheme. The solid
lines consider a PSP algorithm based on the SMC model using branch metric
functions (44) and (45), while the dashed lines represent a similar algorithm
using (49) and (50).

In terms of the branch metrics, the suboptimal MLSD can be
expressed similar to (46) with branch metric functions in (49)
and (50).

To demonstrate the effectiveness of the suboptimal PSP algo-
rithm, we present the simulation results in Fig. 4. In this simula-
tion, we assume there is at most one error between two correctly
decodedON bits, and we set , . In Fig. 4(a)
and (b), we assume and , respectively.
We plot the bit-error probability versus average electrical SNR,
given by . We consider the two choices
of branch metric discussed above; Method 1 uses (44) and (45),
while Method 2 uses (49) and (50), both with a sequence length
of 32. The temporal correlation coefficient is chosen to be
0.15 and 0.95. In Fig. 4, we see that both Methods 1 and 2 can
achieve much better bit-error probability performance than the
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symbol-by-symbol decoding scheme. Method 2 is subject to a
penalty of a few decibels compared to Method 1, but avoids the
2-D integration required by Method 1.

From the discussions above, we see the SMC model can help
to greatly simplify the implementation of MLSD with the sub-
optimal PSP algorithm, leading to a significant improvement in
bit-error performance.

V. CONCLUSION

In free-space optical links through long-range atmospheric
turbulence channels, turbulence-induced log-amplitude fluctua-
tions can degrade link performance when and .
If the temporal correlation of fading is known, we can apply
MLSD, leading to a performance improvement over symbol-by-
symbol detection. To reduce the computational complexity, we
have proposed a simple, single-step Markov channel for fading.
We have verified its accuracy by considering the higher order
bit-error probability distribution and we have used this model
to derive two algorithms for suboptimal, low-complexity MLSD
based on PSP. Simulations have shown that both algorithms pro-
vide a significant performance improvement over symbol-by-
symbol detection.
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