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e stochastic nature of pitting corrosion of metallic structures has been widely recognized. It is assumed that this kind of
deterioration retains no memory of the past, so only the current state of the damage in�uences its future development. 
is
characteristic allows pitting corrosion to be categorized as aMarkov process. In this paper, two di�erentmodels of pitting corrosion,
developed using Markov chains, are presented. Firstly, a continuous-time, nonhomogeneous linear growth (pure birth) Markov
process is used tomodel external pitting corrosion in underground pipelines. A closed-form solution of the system of Kolmogorov’s
forward equations is used to describe the transition probability function in a discrete pit depth space. 
e transition probability
function is identied by correlating the stochastic pit depth mean with the empirical deterministic mean. In the second model,
the distribution of maximum pit depths in a pitting experiment is successfully modeled a�er the combination of two stochastic
processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time
is simulated as the realization of aWeibull process. Pit growth is simulated using a nonhomogeneousMarkov process. An analytical
solution of Kolmogorov’s system of equations is also found for the transition probabilities from the rstMarkov state. Extreme value
statistics is employed to nd the distribution of maximum pit depths.

1. Introduction

Localized corrosion, specically pitting corrosion of metals
and alloys, constitutes one of the main failure mechanisms
of corroding structures such as pressurized containers and
pipes. Pits cause failure through perforation of the compo-
nent wall. In other cases, pits become nucleation centers for
cracks [1]. In the oil and gas industry, pitting corrosion is a
major problem, especially for transporting pipelines [2].

Pitting corrosion comprises two main processes: pit ini-
tiation and stable pit growth (pit repassivation is not consid-
ered in this paper). It is accepted that pit initiation can be a
consequence of the breakdown of the passive layer caused by
random �uctuations in local conditions. 
is process takes
some time, usually called induction (nucleation or initiation)
period [3]. Passive layer breakdown, followed by localized
metal dissolution, is the most commonmechanism of pitting
corrosion. However, pitting can also occur as the result of

the active dissolution of certain regions of the material at its
surface, such as nonmetallic inclusions, which are susceptible
and dissolve faster than the rest of the surface [4]; in this case,
the pitting induction time is typically shorter.

A�er a pit has nucleated, it can repassivate (stop growing)
immediately or grow and then repassivate. 
is process is
regarded as metastable pitting. If a pit is able to grow indef-
initely, it becomes a stable growing pit [5]. 
ose pits that
reach the stable growth regime become part of a pit popu-
lation that shows a remarkable stochastic behavior [6, 7].


e time evolution of pit depth due to corrosion is o�en
expressed as a power function of time [7–11]: �(�) = �(� −
�ini)�, where � is the exposure time, � and � are parameters
related to the corrosion process, and �ini stands for pit ini-
tiation time. 
is same function has been found to govern
the pitting corrosion growth in stainless and mild steels and
aluminum alloys [11, 12].
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Pitting corrosion occurs in a wide range of metals and
environments. 
is fact points out to the universality of this
phenomenon and suggests that randomness is an inherent
and unavoidable characteristic of this damage over time, so
that stochastic models are better suited to describe pitting
corrosion than deterministic ones. Localized corrosion can-
not be explained without assuming stochastic points of view
due to the large scatter in the measurable parameters such as
corrosion rate, maximum pit depth, and time to perforation
[13]. Many variables of the metal-environment system such
as alloy composition andmicrostructure, and composition of
the surrounding media and temperature, are all involved in
the pitting process [4]. Such complexity imposes the devel-
opment of theoretical models and simulation tools for a bet-
ter understanding of the outcome of the pitting corrosion
process. 
ese tools help predict more accurately the time
evolution of pit depth in corroding structures as the key factor
in structural reliability assessment.

Another important characteristic of the pitting corrosion
process that is worth noting is the time and pit-depth
dependence of the corrosion rate [6, 7]. It has been established
that, for a given pit, the growth rate decreases with time, while
for pits with equal lifetimes, the corrosion rate is larger for
deeper ones.

Provan and Rodriguez [14] are amongst the rst authors
to use a nonhomogenous Markov process to model pit depth
growth. In their model, the authors divided the space of
possible pit depths into discrete, non overlapping states
and numerically solved the system of Kolmogorov’s forward
equations (1) for the transition probabilities ��,�(�) between
damage states � and �. However, Provan and Rodriguez mod-
eled pitting without taking into account the pit generation
process and proposed an expression for the intensities 	�(�)
of the process that conveyed no physical meaning. 
ey did
not discuss the method used to solve the system of equations
either. 
is has made it impossible to reproduce their results
(deeper discussion on this topic can be found in [15])


��,� (�)

� = {{{

	�−1 (�) ��,�−1 (�) − 	� (�) ��,� (�) , � ≥ � + 1
	� (�) ��,� (�) .

(1)

Other authors who made use of Markov chains to model
corrosionwereMorrison andWorthingham [16].Making use
of a continuous time birth process with linear intensity 	,
they determined the reliability of high-pressure corroding
pipelines. For their purpose, these authors divided the space
of the load-resistance ratio into discrete states and numeri-
cally solved the Kolmogorov’s equations in order to nd the
intensities of transition between damage states. A�erwards,
probability distribution function of the load-resistance ratio
was estimated and compared to the distribution obtained
from eld measurements. Worthingham’s model was further
improved byHong [17], who used an analytical solution to the
systemofKolmogorov’s equations for the same homogeneous
continuous type of Markov process and derived the process

probability transition matrix in order to evaluate the prob-
ability of failure. Hong also investigated the in�uence of pit
depth on the load-resistance ratio.
emerits and limitations
of these two models are discussed in detail in [15, 18].

In recent years, modeling of pitting corrosion with
Markov chains has shown new advances. For example,
Bolzoni et al. [19] have modeled the rst stages of localized
corrosion using a continuous-time, three-state Markov pro-
cess.
eMarkov states of themetal surface are passivity,meta
stability, and stable pit growth. On the other hand, Timashev
and coworkers [20] formulated a model based on the use
of a continuous-time, discrete-state pure birth homogenous
Markov process for stochastically describing the growth of
corrosion-caused metal loss. 
e goal was to assess the
conditional probability of pipeline failure and to optimize
the maintenance of operating pipelines. In their model, the
intensities of the process were calculated by iteratively solving
the proposed system of Kolmogorov’s forward equations.
e
drawbacks of Timashev’smodel are discussed in detail in [18].

In the present paper, a review of the Markov models
developed by the authors in an attempt to describe pitting
corrosion is presented.
e rst model intends to solve a pro-
blem that is crucial in reliability-based pipeline integrity
management: the accurate estimation of future pit depth
and growth rate distributions from a (single) measured or
assumed pit depth distribution. It has been recognized [21]
that such estimation can be carried out only if oversimpli-
cations are made, or if additional information, besides the
pit depth distribution, is available. In the developed model,
it is postulated that in the case of external pitting corrosion
in underground pipelines, this additional information can be
attained from the available predictivemodels for pit growth as
a function of the soil characteristics [8, 22]. A model for pit
growth previously developed by the authors has been used to
performMonte Carlo simulations in order to predict the dis-
tribution of maximum pit depths as a function of the pipeline
age and the physicochemical characteristics of the soil [9].

A nonhomogenous linear growth pure birth Markov
process, with discrete states in continuous time, is used to
model external pitting corrosion in underground pipelines.

e system of forward Kolmogorov’s equations (1) is ana-
lytically solved using the binomial closed-form solution for
the transition probabilities between Markov states in a given
time interval. 
is Markov framework is used to predict the
time evolution of the pitting depth and rate distributions.
e
analytical solution becomes available under the assumption
that Markov-derived stochastic mean of the pit depth distri-
bution is equal to the deterministic mean of the distribution
obtained through Monte Carlo simulations. 
is assumption
is made for di�erent exposure times and di�erent soil classes
dened according to soil physicochemical characteristics that
are easy to measure in the eld. In this way, the transition
probabilities are obtained as a function of soil properties
for a given time point, and the corrosion rate and future
pit depth distributions are predicted. Real-life case studies
are presented to illustrate the proposed Markov model. 
e
main advantage of this model resides in its capability of
correctly predicting the time evolution of pit depth and rate
distributions over time.
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One of the main goals of reliability analysis is to estimate
the risk of perforation of in-service components produced by
the deepest pit. Extreme value statistics is commonly used
together with pit depth growth modeling to predict the risk
of failure of in-service components and structures [23, 24].

It is recognized [6, 7] that the deepest pits grow at higher
rates than the rest of the defects right from the beginning of
the corrosion process, so that the maximum pit depths are
commonly sampled from an exponential parent distribution
that constitutes the right tail of the pit depth distribution of
the whole pit population [7]. Besides that, in the corrosion
literature [13, 14, 24, 25], it is a well-established fact that the
Gumbel extreme value distribution [26, 27] is a good t to
the maximum pit depth distribution obtained by measuring
the maximum pit depth on several areas. 
e cumulative
function of the Gumbel distribution, with location parameter� and scale parameter �, is

� (�) = exp [− exp (−(� − �
� ))] , −∞ < � < ∞. (2)

It is important to underline that the previouslymentioned
Markov model has proved successful in modeling the time
evolution of the entire pit depth population but failed to
correctly describe the evolution of pit-depth extremes. 
e
second model presented in this work focuses on the simula-
tion of the time evolution of extreme pit depths. 
e model
is based on the stochastic description of pitting corrosion,
taking into account pit initiation and growth. A nonho-
mogeneous Poisson process is used to model pit initiation.

e distribution of pit nucleation times is simulated using
a Weibull process. Pit depth growth is also modeled as a
nonhomogeneous Markov process. 
e system of forward
Kolmogorov’s equations (1) is solved analytically for the
transition probability from the rst state to any �th state
during a given time interval [28]. From this solution, the
cumulative distribution function of pit depth for the one-
pit case can be found. 
is distribution function has an
exponential character and corresponds to the parent distri-
bution from which the extremes can be readily drawn. 
e
extreme depths distribution for the�-pit case is obtained by
the multiplication of the � parent cumulative distribution
functions of the pits population.
is stochastic model is able
to predict the time evolution of the probability distribution of
maximum pit depths.

2. Stochastic Models of Pitting Corrosion

In this section, two di�erent Markov chain models are
presented to describe pitting corrosion. 
e rst one is
focused on the description of time evolution of pit depth and
rate distributions in operating underground pipelines. 
e
second model deals with the description of maximum pit
depths when multiple corrosion pits are taken into account
in a laboratory (controlled) pitting corrosion experiment.

In the following, only the denitions relevant to the focus
of the presented models are given. 
e reader is referred to
[28, 29] for the formalism theory of Markov processes.

In both models, the possible pit depths constitute the
Markov space. 
e material thickness (along which pits

propagate) is divided into � discrete Markov states. 
e
corrosion damage (pit) depth, at time �, is represented by a
discrete random variable �(�) such that �{�(�) = �} = ��(�),
with � = 1, 2, . . . , �. Furthermore, it is postulated that the
probability that the damage that is at the �th state at the
moment � increases by one state in a very small interval of
time �� is expressed as 	�(�)�� + �(��). For a continuous-
time, nonhomogenous linear growth Markov process with
intensities 	�(�) = �	(�), the probability��,�(�) that the process
in state � will be in state � (� ≥ �) at some later time obeys the
system of Kolmogorov’s forward equations presented in (1).
In this innitesimal transition scheme,	(�) can be interpreted
as the jump frequency between the �th to the (� + 1)th states
during the time interval [�, �+��].
ismeans that the number
of states transited by the corrosion pit in a short time interval[0, �] can be written as

� (�) = ∫�
0
	 (�) 
�. (3)

It is not di�cult to nd out that the functions 	(�) and�(�) have direct physicalmeaningwhenMarkov processes are
used to model pitting corrosion. 
ey are related to the pit
growth rate and pit depth, respectively.

2.1. Markov Chain Modeling of Pitting Corrosion Depth and
Rate in Underground Pipelines. In [28, page 304], it is shown
that for a Markov process dened by the system of (1), the
conditional probability ��,�(�0, �) = �{�(�) =  | �(�0) = �}
of transition from the�th state to the  th state ( ≥ �) in the
interval (�0, �) can be obtained analytically and has the form

��,� (�0, �)
= ( − 1 − �) %−{�(�)−�(�0)}�(1 − %−{�(�)−�(�0)})�−�, (4)

where �(�) is dened by (3).
Equation (4) shows that the increase in pit depth overΔ� = � − �0 follows a negative binomial distribution

NegBin(-, �) with parameters - = � and � = �	 =
%−{�(�)−�(�0)}. From the transition probability ��,�(�0, �) it is
possible to estimate the probability distribution function/(3)
of the pitting corrosion rate 3 over the time interval Δ�, when
the pit depth is at the�th state as

/ (3;�, �0, �) = �� (�0) ��,�+
Δ� (�0, �) Δ�. (5)

From the distribution function/(3;�, �0, �), it is straight-
forward to derive the pitting rate probability distribution
associated with the entire pit population (all possible depths)
as

/ (3; �0, �) =
�∑
�=1

/ (3;�, �0, �) . (6)

Until this point, we have the transition probabilities
from any state � to the state  in the interval (�0, �), given
by (4). 
e corrosion rate distribution can also be derived
through (6). In principle, if the probability distribution of the
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corrosion depth at �0 is known, that is, �{�(�0) = �} =��(�0), the pit depth distribution at any future moment in
time can be estimated using

�� (�) =
�∑
�=1

�� (�0) ��,� (�0, �) . (7)

For the case of buried pipelines, the initial probability
distribution of pit depths ��(�0) can be obtained if the
corrosion damage in the pipeline is monitored using in-line
inspection (ILI), being �0 the time of the inspection. 
e
values of the probabilities �� can be estimated from the ratio
of the number of corrosion pits with depths in the �th state
to the total number of observed pits.

It is evident from (4) that the transition probabilities��,�(�0, �) depend on the functions 	(�) and �(�). At this
point, physically sound expression for �(�) and 	(�) should be
proposed in order to estimate the evolution of the pit depth
and corrosion rate distributions. For that, the knowledge
about the pitting corrosion process in soils must be used. It
is postulated that the stochastic mean pit depth 5(�) can be
assumed to be equal to the deterministic mean K(�) of the
pitting process, which can be estimated from the observed
evolution of the average pit depth over time as

5(�) = K (�) . (8)


is equality is true under certain simple assumptions
that are explained in [29]. In summary, a su�cient condition
for the equality of the stochastic and deterministic means is
that for any positive integer 6, the structure of the process
starting from  individuals is identical to that of the sum of 6
separated systems each starting from  .

Cox andMiller [29] have shown that if the initial damage
state is  � at � = ��, so that�(��) =  �, then the time-dependent
stochastic mean5(�) = 7[�(�)] of the linear growthMarkov
process can be expressed as

5(�) =  �%�(�−��). (9)

If we consider that a power function is an accurate deter-
ministic representation of the pit growth process, one can
postulate that the deterministic mean pit depth at time � is
[8]

K (�) = 8(� − �sd)], (10)

where 8 and ] are the pitting proportionality and exponent
parameters, respectively, and �sd is the starting time of the pit-
ting corrosion process. In systemswhere passivity breakdown
and/or inclusion dissolution are the prevalent mechanisms
for pit initiation, �sd would represent the initiation time of
stable pit growth. In the case of underground pipelines, this
parameter corresponds to the total elapsed time frompipeline
commissioning to coating damage plus the time period
when the cathodic protection is still e�ective preventing or
attenuating external pitting corrosion a�er coating damage.


e increase of the deterministic mean pit depth in the
time interval Δ� is

ΔK (�) = 9 (�)K (�) Δ�, (11)

where 9 can be interpreted as the deterministic intensity
(rate) of the process. 
e pitting rate, obtained by taking the
time derivative ofK(�) (10), obeys the functional form of (11)
with 9 = ]/� and � = � − �sd as


K (�)

� = ]

�K (�) . (12)

If �� represents the stay time of the corrosion pit in the
rst state of the chain, then  � = 1 during the time interval
between �sd and �sd + ��. If �� is signicantly less than the
simulation time span, it is easy to show from (8)–(10) that the
value of the function �(�) can be approximated as

� (�) = ln [8(� − �sd)]] . (13)

From this, taking into account (3), it follows that

	 (�) = ]

� − �sd . (14)

Note that the intensity of the Markov process 	(�) is
inversely proportional to the exposure time �, as it is the case
of the deterministic intensity 9(�) according to (11) and (12).

One can substitute the expression for �(�) from (13)
into (4) and to show that the probability parameter �	 =
%−{�(�)−�(�0)} can be expressed as

�	 = (�0 − �sd� − �sd )], � ≥ �0 ≥ �sd. (15)

Suppose that a pit is in the state� at �0. Let7[ −�]/Δ� be
the average damage rate in the time interval (�0, �0+Δ�). It can
be shown [19] that the instantaneous pitting rate 3 predicted
by the stochastic model is

3 (�, �0) = 7 [ − �]
Δ� @@@@@→

Δ�→0
]
�
�0 . (16)


e stochastically predicted instantaneous damage rate
agrees with the deterministic rate given by (12). 
is coin-
cidence is a sign of the adequacy of the proposed Markov
pitting-corrosion model.

For the case of underground pipelines, the pitting cor-
rosion damage evolution can be undertaken as follows. 
e
measured or assumed pit depth probability distribution at �0
is used as the initial corrosion damage distribution ��(�0),
where �0 is the time of the pit depth measurement. 
e value
of the probabilities �� is estimated from the ratio of the
number of corrosion pits with depths in the �th state to
the total number of observed pits. 
e transition probability
function ��,�(�0, �) can be identied from (4) and (15) if the
parameters �sd and ] are known.


e estimation of the pitting parameters is possible
thanks to the previously developed [8, 9] predictive model
for localized corrosion in buried pipelines, which relates the
physicochemical conditions of the pipe and soil to parameters�sd, 8 and ]. 
e model is based on a multivariate nonlinear
regression analysis using (10), with the eld-measured maxi-
mumpit depths as the dependent variable to be predicted and
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Table 1: Estimated pit initiation times for underground pipelines
(from [8]).

Soil class �sd (years)
Clay 3.0

Clay loam 3.1

Sandy clay loam 2.6

All 2.9

the pipe age and soil-pipe characteristics as the independent
ones. 
e experimental details and corrosion data used to
produce the model can be found elsewhere [8, 9]. From this
model, the pitting initiation time was estimated to have the
values displayed in Table 1 for di�erent soil classes. In Table 1,
class “All” corresponds to a general class that includes all the
soils found in the eld survey carried out in South Mexico
[8]. 
e pitting parameters 8 and ] in (10) were estimated as
linear combinations of soil and pipe characteristics [8] for the
di�erent soil classes.

Later on, Caleyo et al. [9] used a Monte Carlo simulation
based on (10) and on the obtained linear combinations of
environmental variables for the pitting parameters to predict
the time evolution of the maximum pit depth probability
distribution in underground pipelines. 
e measured dis-
tributions of the considered soil-pipe independent variables
were used as inputs in Monte Carlo simulations of the pitting
process for each soil class to produce the simulated extreme
pit depth distribution for each soil category and exposure
time considered.
e reader is referred to [9] for details about
the used pipe-soil properties distributions and the Monte
Carlo simulation framework. 
e Monte Carlo produced
extreme pit depth values for each soil class at di�erent time
points were tted to the generalized extreme value (GEV)
distribution [30]:

GEV (�) = exp{−[1 + C (� − �
� )]−1/�} , (17)

where C,�, and� are the shape, scale, and location parameters
of the distribution, respectively.

Figure 1(a) shows the time evolution of the GEV distribu-
tion tted to theMonteCarlo predicted extremepit depths for
a general soil class found in southernMexico [8].
e inset of
Figure 1(a) shows the evolution of the mean and variance of
such distributions with time. 
ese average values are used
to estimate the pitting proportionality and exponent factors
(8 and ]) associated with the typical (average) values of the
predictor variables in this soil category.
e time evolution of
the mean of the simulated maximum pit depth distributions
was tted to (10) using the corresponding value of �sd given
in Table 1. Typical values 8Typ and ]Typ, derived following this
method, are displayed in Table 2 for the analyzed soil textural
classes.

From the estimated values of 8 and ] for the general soil
class and the value of �sd shown in the last column of Table 1,
it is possible to obtain the function �(�) (13) and �	 (15) for
typical conditions of the “All” soil category [8, 9].

Figure 1(b) shows the time evolution of �(�) and �	
predicted from the parameters associated with the pitting
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Figure 1: (a) Evolution of the Generalized Extreme Value distri-
bution tted to the extreme pit depths predicted in a Monte Carlo
framework [7] for a general soil class.
e time evolution of themean
value and variance of such distributions are shown in the inset. (b)
Time evolution of the functions�(�) (13) and�	 (15), calculated using
the predicted pitting parameters 8, ], and �sd. 
e two curves of �	
correspond to two di�erent values of �0 in (15).

process in soils. Given that �(�) is completely determined by
the extent of the damage [15], its value is unique for each soil
class. Also, the probability�	 is unique in each soil type.How-
ever, in Figure 1(b), two di�erent curves of �	 are displayed to
illustrate the dependence of �	 on time. 
ey correspond to
two distinct values of �0 (see (15)), the time when the initial
pit depth distribution is measured. 
e value of �	 at a given
moment in time � ≥ �0 increases with increasing �0 and
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Table 2: Estimated pitting parameters (10) associated with the
typical values of the physicochemical pipe-soil variables in each soil
category [9].

Soil class
Typical pitting coe�cient Typical pitting

8Typ (mm/years]Typ )a exponent ]Typ (years)
a

Clay 0.178 0.829

Clay loam 0.163 0.793

Sandy clay
loam

0.144 0.734

All 0.164 0.780
aCorrespond to parameters in (10).

decreases when the length of the interval (�0, �) increases.
e
increase in �	 with �0 indicates that the mean and variance
of the pitting rate decrease as the lifetime of the pitting
damage increases, which is in agreement with experimental
observations. Also, the form of �(�) in Figure 1(b) suggests
that, for pits with equal lifetimes, the deeper the pit, the
smaller the value of �	 and, therefore, the larger themean and
variance of the pitting rate. 
is characteristic of the devel-
oped model will permit accurately predicting the corrosion
rate distribution in a pitting corrosion experiment.

To estimate the evolution of pit depth and pitting rate
distributions using the proposed Markov model one can use
(7) and (6), respectively. As has been already stated, from the
results of an ILI of the pipe and the knowledge of the local
soil characteristics, it would be possible to estimate the pitting
corrosion damage evolution.

To illustrate the application of the proposed Markov
chain model, it is employed in the analysis of an 82 km long
operating pipeline, used to transport sweet gas since its
commissioning in 1981. 
is pipeline is coal-tar coated and
has a wall thickness of 9.52mm (0.375��). It was inspected in
2002 and 2007 using magnetic �ux leakage (MFL) ILI. 
e
pit depth distributions present in the pipeline were obtained
by calibrating the ILI tools using amethodology described by
Caleyo et al. [31].
ese distributions are shown in Figure 2 in
the form of histograms. 
e rst, grey-shadowed histogram
represents the depth distribution of �02 = 3577 pits located
and measured by ILI in 2002, while the hatched histogram
represents the depth distribution of �07 = 3851 pits
measured by ILI in mid-2007.

In order to apply the proposed model, the pipe wall
thickness was divided in 0.1mm thick non overlapping
Markov states, so that the pitting damage is represented
through Markov chains with states ranging from � = 1 to� = � = 100. Unless otherwise specied, this scheme of
discretization of the pipe wall thickness is used herea�er to
represent the pitting damage penetration.


e empirical depth distribution observed in 2002 was
used as the initial distribution so that �0 = 21 years, Δ� =5.5 years, and ��(�0 = 21) = ��/�02, �� being the
number of pits withmeasured depth in the�th state.
e soil
characteristics along the pipeline were taken as those of the
“All” (generic) soil class and the value of �sd was taken equal
to 2.9 years, as indicated in Table 1. From Table 2, a value of
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Figure 2: Histograms of the pipeline pit depth distributions mea-
sured by ILI in 2002 (grey) and in 2007 (hatched). 
e solid line is
the Markov-estimated pit depth distribution for 2007. In the inset,
the Markov-derived pitting rate distribution for the period 2002–
2007 is presented.

0.780 was assigned to ] in order to obtain the predicted pit
depth distribution �� (� = 26 years) for 2007. 
e values of��(�) can be calculated using the following expression, which
is deducted from (4), (7), and (15):

�� (�)
= �∑
�=1

�� (�0) (  − 1 − �)(�0 − �sd�0 − �sd)
]�[1 − (�0 − �sd�0 − �sd)

]]�−�.
(18)

In Figure 2, the Markov chain-predicted pit depth distri-
bution for 2007 is represented with a thick line.

In order to test the degree of coincidence between the
empirical distribution (for 2007) and the Markov-model
predicted distribution, the two-sample Kolmogorov Smirnov
(K-S) and the two-sample Anderson-Darling (A-D) tests
were used. 
is was done by means of a Monte Carlo
simulation in which 1000 samples of 50 depth values were
generated for each one of the distributions under comparison
and then used in pairs for the tests. In the case of theMarkov-
predicted distribution the data samples were generated as
(pseudo) random variates with probability density function
(pdf) as displayed in Figure 2 and given by (18). 
e samples
from the empirical data were produced by sampling the
experimental 2007 dataset with replacement. 
e K-S test
gave an average � value of 0.42, with only 7% of cases where
the test failed at 5% signicance. By its part, the A-D test
produced an average � value of 0.39 with an 11% fraction
of failed tests. 
is is an evidence of the validity of the
null hypothesis about both samples, modeled and empirical,
coming from the same distribution. 
e good agreement
between the empirical pit depth distribution observed in 2007
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and theMarkov chain-modeled distribution also points to the
accuracy of the proposed model.


e corrosion rate distribution /(3; �0, �) associated with
the entire population of pits in the 2002–2007 periodwas also
estimated using (19), whichwas derived from (4), (5), (6), and
(15). Consider

/ (3; �0, �) =
�∑
�=1

�� (�0) (� + 3 (� − �0) − 13 (� − �0) )(�0 − �sd� − �sd )]�

× [1 − (�0 − �sd� − �sd )]]
(�−�0).
(19)


e estimated rate distribution is shown in the inset of
Figure 2; it can be tted to a GEV distribution (17) with
negative shape parameter C, although it is very close to zero.

is means that the Weibull and Gumbel subfamilies [27] of
the GEV distribution are appropriate to describe the pitting
rate in the pipeline over the selected estimation period.

It has to be noticed that the proposed Markov model can
be used to predict the progression of other pitting processes.
For this to be done, the values of the pitting exponent and
starting time must be known for the process. 
ese can
be obtained, for example, from the analysis of repeated in-
line inspections of the pipeline, from the study of corrosion
coupons, or from the analysis of laboratory tests. To show
this capability of the model, another example is given, using
this time a di�erent experimental data set gathered from
two successive MFL-ILIs. 
e analysis involves a 28 km long
pipeline used to transport natural gas since its commissioning
in 1985. 
is pipeline is coal-tar coated, made of API 5L
grade X52 steel [32], with a diameter of 457.2mm (18��) and
a wall thickness of 8.74mm (0.344��). 
e rst inspection
was conducted in 1996 and the other in 2006. 
e ILIs
were calibrated following procedures described elsewhere
[31]. Before using the ILI data, the corrosion defects from
both inspections were matched using the following criteria:
(i) the matched defects should agree in location, and (ii) the
depth of a defect in the second inspection must be equal
to or greater than its depth in the rst inspection. Only
the matched defects were used in the analyses that followed
to ensure that only the actual defect depth progression
with time was considered (one-by-one if necessary) without
including defects that might have nucleated in the interval
between the two inspections. 
e depth distribution of the
matched defects of the 1996 inspectionwas taken as the initial
depth distribution fed into the proposed Markov model. 
e
resulting depth distribution was subsequently compared to
that of the defects observed in the 2006 inspection.

From the knowledge of the mean depth values from both
inspections, an empirical value of the pitting exponent ] was
estimated instead of using the value recommended in Table 2.
It was calculated for the specic type of soil in which the
pipe under analysis was buried by using the ratio between the
empirical pit depth meansK96 andK06, from the ILIs in 1996
and 2006, respectively. Assuming that the pit depth mean
complies with (10) and that parameters 8, ], and �sd (which
depend exclusively on the soil and pipe properties) are the

same at the times of both inspections, it is possible to obtain
the pitting exponential parameter ] from

K06
K96

= 8(�06 − �sd)]
8(�96 − �sd)] , (20)

where �96 = 11 years and �06 = 21 years are the times of the
inspections, and �sd is the incubation time of the corrosion
metal losses in the pipeline. 
e value of �sd was taken equal
to 2.9 years, the average pitting initiation time for a generic
soil class (Table 1).

As in the previous example, the wall thickness was
divided into� (0.1mm thick) equally spaced Markov states.

e observed defect depth was converted to Markov-state
units, and the depth distribution was given in terms of the
probability ��(�) for the depth in a state equal or less than� at time �. 
e proposed Markov model (18) was applied
to estimate the pit depth distribution a�er a time interval�� = � − �0 of 10 years, with �sd = 2.9 years, �0 = 11 years,
and � = 21 years.

In Figure 3, the nal (2006) pit depth distribution of the
by-ILI measured and matched 179 defects in this pipeline
is shown on a probability density scale in the form of a
histogram, together with the pit depth distribution predicted
by the Markov model for 2006. Again, the Monte Carlo
framework described in the previous example was followed
in order to apply the two-sample K-S test. 
e sample size
was 50, and the sampling process was repeated 1000 times.

e resulting average � value was 0.07, which is enough
for not rejecting the null hypothesis that both the empirical
and modeled distributions come from the same distribution.
From the results of the test and from what it is shown in
Figure 3, it can be concluded that the Markov model predicts
a pit depth distribution that is close to the experimental
one. More important, the model is also capable to correctly
describe the form (shape) of the defect depth distribution, as
seen also from this gure.

To further explore the capabilities of themodel in estimat-
ing the time evolution of pit depths, the defects in the initial
(1996) inspection were grouped into 6-state (0.6mm) depth
intervals in order to test the model e�cacy in predicting the
pit depth evolution by depth interval. An example of these
grouping and modeling approach is shown in the inset of
Figure 3. 
e chosen initial depth interval is that between
9 and 15 states (0.9 and 1.5mm). In the inset, a histogram
of the matched defect depths in the second ILI together
with the distribution (solid line) predicted by the Markov
model starting from the chosen initial depth subpopulation
is depicted. Here as well, the model is capable of reproducing
the experimental results. 
e same was proven true for
the rest of depth intervals in the initial (1996) pit depth
population.
erefore, it can be stated that theMarkovmodel
is not only accurate in estimating the time evolution of the
entire defect depth distribution, but also in estimating the
time evolution of defect subpopulations that di�er in depths.

Additionally, to check the ability of the proposed Markov
model to predict the corrosion rate (CR) distribution, an
empirical CR distribution was determined using the data
from both inspections based on the observed change in depth
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Figure 3: Histogram of the 179 matched defect depths, measured in
2006, together with the predicted pit depth distribution. 
e inset
shows the histogram of the observed in the second inspection defect
depths matched to 0.9–1.5mm depths of rst inspection, along with
the Markov chain-predicted distribution (solid line).

of the matched defects over the interval ��. 
e empirical
rate distribution was then compared with the corrosion rate
distribution predicted by the model (19). 
is comparison
can be observed in Figure 4. 
e two-sample K-S test for
1000 pairs of 50-point CR samples yielded an average �
value of 0.27 with only 12% of rejections at 5% signicance
level. Again, the Markov model satisfactorily reproduces the
empirical CR distribution.


e reasons behind the foregoing results lie in the ability
of the Markov chain model to capture the in�uence of
both the depth and age of the corrosion defects on the
deterministic pit depth growth together with its ability to
reproduce the stochastic nature of the process, also as a
function of pit depth and age. 
e inset of Figure 4 is a proof
of this last statement. It shows the experimental corrosion
rate mean and variance dependence on pit depth. To obtain
these results, pit depths were grouped into depth intervals
of ten states (1mm) and the corrosion rate values, derived
from the comparison of the two ILIs, were averaged within
each group. From this inset, it can be concluded that both
the corrosion rate mean and variance increase with defect
depth, as was previously noted from di�erent experimental
evidence [7, 18]. 
is result is critical to support the criteria
that a good corrosion rate model should consider both the
age and depth of the to-be-evolved corrosion defects together
with the actual shape of the function describing the observed
dependence of the corrosion defect depth with time.

2.2. Markov Chain Modeling of Extreme Corrosion Pit Depths.

e novelty in this second stochastic model is the considera-
tion of multiple pits in a given corrosion area (called coupon
herea�er). Pit initiation ismodeled using a nonhomogeneous
Poisson process, while the distribution of pit nucleation times
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Figure 4: Comparison of the empirical corrosion rate (CR) distri-
bution as determined from repeated ILIs (1996 and 2006) with the
CR distribution predicted by the model. 
e inset is a plot of the
experimental CR mean and variance against defect depth.

is simulated using a Weibull process. 
e initiation time of
each one of the � pits produced in a coupon is described
as the time to the rst failure of a part of the system [33].
So, if pit initiation time is understood as the time to rst
failure (passive layer breakdown or inclusion dissolution) of
an individual part [33], one can assume that it follows a
Weibull process with distribution

M (�) = 1 − exp[−( �O)
�] . (21)


e pit initiation times �� are computed as the realizations
of a Weibull probability distribution described by (21) with
both the scale parameter O and the time � expressed in days.

A�er a pit has been generated at time ��, it is assumed
that it starts to grow. 
e time evolution of pit depth �(�) is
thenmodeled using a nonhomogeneousMarkov process.
e
transition probabilities ��,� from state � to state � satisfy the
system of forward Kolmogorov’s equations given in (1).

If it is assumed that the pitting damage (depth) is in state
1 at the initial time �� (a�er initiation), then, for the Markov
process dened by the system of (1), the transition probability
from the rst state to any �th state during the interval (��, �),
that is, �1,�(�) = �{�(�) = � | �(��) = 1}, can be found
analytically [28] as

�1,� (�) = exp [−� (�) + � (��)] {1 − exp [−� (�) + � (��)]}�−1,
(22)

where �(�) is dened by (3).
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From (22) it follows that, for a single pit, the probability
that its depth is equal or less than state �, a�er a time incre-
ment (��, �), is
M (�, �) = �∑

�=1
�1,� (�)

= %−�(�)+�(��)
1 − %−�(�)+�(��)

�∑
�=1

(1 − %−�(�)+�(��))�, � = 1 . . . �,
(23)

where� is the total number of states in the Markov chain.
It is easy to show [15] that expression (23) can be rewritten

as

M (�, �) = 1 − {1 − exp [−� (�) + � (��)]}�. (24)

Equation (24) represents the probability of nding a
single pit in a state less than or equal to state � a�er a time
interval (��, �). It is worth noting that in (22)–(24) the pit
initiation and growth processes are combined by taking into
account the pitting initiation time ��.

As it was stated before, a direct physical meaning can
be given to the functions 	(�) and �(�), which are related to
the pit growth rate and pit depth, respectively. Taking into
account that the dependence of pit depth on time is a power
function (10), the functional dependence of � and 	 on time
was assumed to be

� (�) = U(�)�, (25)

	 (�) = UV(� − ��)�−1, (26)

where U has dimensions of distance over the Vth power of
time and V is less than 1.0.

In order to generalize from the single pit case to the �-
pit case, the probability that the maximum damage state is
less than or equal than a given value for a time interval is
estimated under the assumption that all the pits are described
by parent distributions M(�; ��, �) of the type given in (24).
First, let us consider the simplest situation in which it is
assumed that all the pits are generated at the same time�� = �ini. In this case, function (24) represents the cumulative
distribution function of a parent population of � pits. To
nd the extreme depth value distribution, the distribution of
(24) should be raised to the�th power [27]. It can be shown
[15, 27] that for a large number of pits (� → ∞) and under
a suitable variable transformation, it follows that

Φ (�, �) = [M (�, �)]� ��→∞@@@@@→ � (�, �) . (27)

Substituting (24) and (25) in expression (27), and a�er
some transformations [15], �(�, �) converges to a Gumbel
function given by (2).
e involvedmathematical formalisms
that led to this result can be found in Appendix A of [15].

Summarizing, when the pit initiation times are very short
(smaller than the observation time) and/or when it can be
considered that they are the same for all the pits, the distribu-
tion function for maximum pit depths is obtained by raising

(24) to the power of the number of pits in the area of interest.

e parameters of the model in this case are the number of
pits � and the parameters of the �(�) function: U and V (see
expression (25)).

Consider now an alternative case, when � pits are
generated at di�erent times ��, and expression (24) holds for
each one of them. 
e � cumulative distribution functions,M�(�, � − ��), X = 1, . . . , �, must be combined in order to esti-
mate the distribution of the deepest pit, under the assumption
that pits nucleate and grow independently. In such a case, the
probability that the deepest pit is in a state less than or equal
to state �, at time �, can be estimated using the expression

Y (�, �) = �∏
�=1

{1 − [1 − exp (−� (�) + � (��))]�} . (28)

It can be shown that this cumulative function also follows
a Gumbel distribution for large� [15].

In (28), expression (25) for �(�) must be substituted
together with the initiation times ��, which are assumed to
follow a Weibull distribution (21). 
erefore, function Y(�, �)
in (28) includes the model parameters O, _, and� to simulate
pit initiation, together with parameters U and V to model pit
growth through the function �(�).

At this point, owing to the fact that functionsΦ(�, �) (from
(27)) and Y(�, �) (from (28)) are extreme value distributions of
the Gumbel type, it can be stated that function M(�, �) (24) is
the parent distribution that lies in the domain of attraction
of the Gumbel distribution for maxima [27]. From (24), it
can be observed that M(�, �) is of exponential type; therefore,
the parent distribution for pit depth extremes is actually an
exponential function.
is is in complete agreement with the
ndings in [7], where it was concluded, a�er measuring and
analyzing all the pits in corroded low carbon steel coupons,
that the exponential pit depth distribution tted to the right
tail of the pit depth distribution (of the Normal type, adjusted
to the depths of the whole population of pits) is actually
the extreme’s parent distribution, which lies in the domain
of attraction of the Gumbel extreme value distribution for
maxima.

Following this idea, it is soundly to shi� the initialMarkov
state to the depth value that constitutes the starting point
of the exponential distribution tail. If we consider that this
exponential distribution starts at some depth value `, then
the Markov state � that appears in (24) should be changed to
a new variable

�� = � + `. (29)

Because the pits that contribute to the extreme pit depths
values are only those whose depths exceed the threshold `,
the number� of pits that should be taken into account when
applying (27) or (28) can be equated to the average number
of pits whose depths exceed the threshold value `. A more
detailed justication of this procedure of variable change for
the state � in (24) can be found elsewhere [34].


e empirical average number 	� of exceedances over
threshold ` per coupon (to be compared to themodel param-
eter�) can be estimated using (30), which relates 	� with the
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threshold value ` and the parameters � and � of the Gumbel
distribution tted to the observed extreme pit depths. Con-
sider

	� = exp (� − `
� ) . (30)


is expression is readily obtained from the existing
relation between the Gumbel and exponential parameters, as
has been shown in [7].

To run the proposed Markov model for extremes, (27)
(pits initiate all at the same time) or (28) (pits initiate at dif-
ferent times) is computed and tted to a Gumbel distribution
for several times � (2). 
e model parameters (three for the
instantaneous pit initiation: U, V, and �, and ve for the
generation of pits at di�erent times: O, _, U, V, and �) are
adjusted considering the experimental distributions for the
deepest pits. A series of corrosion experiments is considered,
each one of them consisting in the exposition of  � coupons
of a corrodible material to a corrosion environment for a
given time. A�er exposure, the depth of the deepest pit
in each coupon is measured [6, 7], and the distribution of
maximum depths is tted with a Gumbel distribution (2). If
the experiment is carried out for�� exposure times, and the
observed behavior of depth extremes is to be described with
the proposed model, the model parameters are adjusted by
minimizing a total error function 7� dened as

7� =
��∑
�=1

(√(��� − ���)2 + √(�2�� − �2�� )2) , (31)

where (���, �2�� ) and (���, �2�� ) are the mean and variance values

of the dth experimental and estimated extreme value distribu-
tions, respectively.


e model parameters are adjusted through minimiza-
tion of the average value of the error function 7� computed
during�MC Monte Carlo simulations, with�MC = 1000.
2.2.1. Application of Markov Model for Extremes to Low Car-
bon Steel Corrosion Experiment.
edescribedMarkovmodel
for extreme pit depths was applied to experimental data
obtained in pitting corrosion experiments for low-carbon
steel reported byRivas et al. [7].
edetails of the experiments
can be found elsewhere [7].

In these experiments, groups of 20 coupons of API-5L

X52 [32] pipeline steel, with 1 × 1 cm2 of exposed area, were
immersed in a corroding solution for 1, 3, 7, 15, 21, and 30
days. A�er the immersion, all the pits with depths greater
than 5 �m were measured. 
e maximum pit depth in each
coupon was also recorded. 
e Gumbel distribution (2) was
tted to the resulting maxima data sets using the Maximum
Likelihood Estimator (MLE) [27].


e Gumbel probability density functions tted to the
experimental pit depth maxima for the six exposure times
are displayed in Figure 5. 
ey are represented with red solid
lines. Table 3 shows the values of the Gumbel location (��)
and scale (��) parameters for the tted distributions.

In their work, Rivas et al. [7] concluded that, as has been
previously recognized [4, 35], in low carbon steel pits initiate
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Figure 5: Comparison of the Gumbel probability density functions
tted to the experimental pit depth maxima with the model-
predicted density functions for the six exposure times.

at the site of MnS inclusions. In the present experiment,
the dissolution of these inclusions occurs in a matter of few
hours a�er immersion, and then pits start propagating. 
e
authors also established that the deepest pits of the entire
pit population are the oldest ones, meaning that they are the
defects that initiate rst in time [7]. 
is conclusion leads
to the use of (27) to model the extreme pits using Markov
chains. Since the pit initiation time for this experiment has
been considered to be very short, the nucleation time �� in
(27) was set to zero.

In order to apply the Markov model, the value of the
threshold parameter ` of (29) should be determined from the
empirical corrosion data. Given that ` represents the depth
value from which the exponential tail of the whole pit depth
distribution starts, it should coincide with the previously
determined [7] threshold pit depth value `� for the tail of the
whole pit depth distribution.

When applying the so-called Peak over 
reshold (POT)
approach in pitting corrosion experiments, Rivas et al. pro-
posed [7] a simplied method for determining the threshold
depth value without the need of measuring the entire pit
depth population. 
e method includes a proposition of the
a priori determination of the threshold pit depth value `�
from the ttedGumbel distribution to the pit depth extremes.
It was suggested to take `� as a depth value for which the
Gumbel distribution shows a cumulative probability � in the
range from 0.00005 to 0.005. 
is proposition was based on
the empirical fact that in the analyzed pitting corrosion exper-
iments [7], the Gumbel distribution for maximum depth
starts to rise precisely at the beginning of the exponential tail
of the normal distribution of the entire pit depth population.

erefore, as the starting point of the Gumbel distribution,
it was proposed to use the 0.5%, 0.05%, or even the 0.005%
quantile of the experimental pit depth distributions.

Following this suggestion, and taking into consideration
the determined values of the location and scale from the



Mathematical Problems in Engineering 11

Table 3: Estimated location and scale parameters of the Gumbel distributions tted to the experimental pit depth maxima and to theMarkov
model. 
e fourth and �h columns correspond to the calculated pit depth threshold and average exceedances values, respectively. 
e last
column displays the average � value of 1000 two-sample Kolmogorov-Smirnov tests.

Exp. time (days)
Estimated from the experimental data `0.005a 	�b Estimated from the modeled distribution � value�� (�m) �� (�m) �� (�m) �� (�m)

1 32.8 5.15 21.2 10 32.0 5.15 0.50

3 47.0 7.58 34.49059 5 49.1 7.02 0.36

7 72.9 9.29 50.20122 12 69.7 9.17 0.31

15 94.9 12.75 70.36299 9 95.6 11.94 0.56

21 105.9 13.52 81.67309 6 111.0 13.52 0.29

30 127.9 14.54 95.65344 9 129.4 15.52 0.53
aEstimated from (32).
bEstimated from (30).

0 5 10 15 20 25 30
20

40

60

80

100

120

 Empirical

Exposure time (days)

0.
05

%
-t

h
re

sh
o

ld
 (
�
0.
00
05

)

Best �t: �0.0005 = �(� − �0)
	

� = 22.9; �0 = 0; 	 = 0.4365

Figure 6: Plot of the calculated threshold depth values `0.005 versus
exposure time. 
e solid line is a power function tted to the
determined threshold values.

tted Gumbel distribution, it is possible to determine thee�
quantile, being � = 0.005, 0.0005, or 0.00005. To achieve
this, the following equation, obtained through the inversion
of expression (1), is used:

e� = � − � ln [− ln (�)] . (32)


us, the value of e� can be used as the threshold `�
(`� = e�) [7]. For the analyzed experiment we are xing
the value of � to 0.0005. Substituting this value in (32) and
using the estimated location (��) and scale (��) parameters
for the empirical Gumbel distributions for each one of the
exposure times (Table 3), six values of `0.0005 are obtained.

ese values are plotted in Figure 6 against the exposure
times. In this gure, a power function tted to the empirical
threshold values is also displayed. From this curve, the values
of ` to be substituted in (29) are taken. Amore detailed proof
of the correctness of this choice of ` can be found in [34].

Once the value of the threshold is determined, the func-
tionM(�, �) of (24) is raised to the�th power, and the resulting
function Φ(�, �) (27) is tted to a Gumbel distribution (2).

e tted function is compared with the empirical Gumbel
distribution in order to adjust the model parameters. For
this particular case, the parameters to take into account are
the number of pits �, which should approximately match
the average experimental number of exceedances over the
threshold ` per coupon, and the parameters U and V, which
dene the functionΦ(�, �). 
e model parameters are rened
by minimizing the error function of (31).


e minimization process gives an adjusted parameter� = 7.6. 
is value can be approximated to 8 pits. It
represents the average number of pits per coupon whose
depths exceed the threshold value `. 
is fact can be
conrmed by comparing the adjusted value for � with the
values of the empirical exceedances 	� displayed in the �h
column of Table 3.
e exceedances for each exposure period
were calculated by substituting the corresponding estimated
Gumbel parameters �� and �� and the threshold value `0.0005
(all given in Table 3) into (30). 
e mean value of 	� (from
Table 3) equals 8, which is in good agreement with the model
prediction.


e probability density functions corresponding to the
distributionsΦ(�, �) obtained a�er raising M(�, �) to the power
of the adjusted parameter � = 7.6 are shown in Figure 5 for
the six exposure times. In this gure, the modeled distribu-
tions can be compared with the empirical Gumbel distribu-
tions. One can see a good agreement between the modeled
and experimental Gumbel distributions. Even for this case, in
which the number of pits� is small (see Section 2.1 and (27)),
both the experimental and modeled distributions agree with
the Gumbel model for maxima.


e Gumbel distribution (2) was also tted to the func-
tions predicted by the model using theMaximum Likelihood
Estimator (MLE) [27]. In Table 3, the estimated parameters�� and �� for the tted Gumbel distributions (to the
Markov-predicted functions) are displayed together with the
corresponding parameters of the empirical Gumbel distribu-
tions. 
e di�erences between the empirical and modeled
parameters do not exceed 8%. 
e last column of Table 3
shows the average � values of the two-sample K-S test
performed on 1000 pairs of 50-depth-point samples (one for
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the empirical and one for theMarkov-modeled distributions)
for the six exposure periods.
e smaller� value among them
is 0.29, which leads to not reject the null hypothesis that the
two samples belong to the same distribution.


e good agreement between the modeled and the
empirical Gumbel distributions can also be established from
the inset of Figure 5, where the time evolution of the Gumbel
mean and variance for the observed data and for the result
of the proposed model are compared. 
ese results demon-
strate the suitability of the proposed model to describe the
initiation and evolution of the maximum pit depths in a
pitting corrosion experiment, which is of great importance
in many applications such as reliability assessment and risk
management.


e advantages of the proposed model compared with
previous Markov models (developed by other authors) can
also be established. 
e details regarding this topic can be
found in [15].

3. Concluding Remarks

Two Markov chain models have been presented to simulate
pitting corrosion. 
ey have been developed and validated
using experimental pitting corrosion data. Both models are
attractive due to the existence of analytical solutions of the
system of Kolmogorov’s forward equations.


e rst model describes the time evolution of pit
depths that correspond to the general population of defects
in underground pipelines. It has been developed using a
continuous-time, nonhomogenous linear growth (pure birth)
Markov process, under the assumption that the Markov-
chain-derived stochastic mean of the pitting damage equals
the deterministic, empirical mean of the defect depths. Such
an assumption allows the transition probability function
to be identied only from the pitting starting time and
exponent parameter. Moreover, this assumption requires
that the functional form of the stochastic and deterministic
instantaneous pitting rates also agree. 
is supports the idea
that the intensities of the transitions in theMarkov process are
closely related to the pitting damage rate.
is model permits
predicting the time evolution of pit depth distribution, which
is of paramount importance for reliability estimations. It is
also able to capture the dependence of the pitting rate on the
pit depth and lifetime. 
is is an advantage of the Markov
chain approach over deterministic and other stochastic
models for pitting corrosion. It could also be extended to
investigate pitting corrosion in environments other than soils,
for example, in laboratory experiments.


e second Markov chain pitting corrosion model gives
account for the maximum pit depths. In it, pitting corrosion
is modeled as the combination of two independent nonho-
mogeneous in time physical processes, one for pit initiation
and one for pit growth. Both processes are combined using
well-suited physical and statistical methodologies, such as
extreme value statistics, to produce a unied stochasticmodel
of pitting corrosion.

Pit initiation is described by means of a non-homogene-
ous Poisson process so that a set of multiple pit nucleation

events can be modeled as a Weibull process. Pit growth is
modeled as a nonhomogeneous Markov process. Given that
the intensity of the process is related to the corrosion rate,
its functional form can be proposed from the results of the
experimental tests.

Taking into account the experimental evidence that the
pit depth parent distribution that leads to the distribution for
extremes is the exponential tail of the pit depth population
distribution, the solution of theMarkov chain is shi�ed to the
threshold pit depth value, where the exponential tail of the pit
depth distribution starts. 
e threshold value is determined
from the pit depth value from which the empirical Gumbel
distribution for maximum pit depth becomes signicant.

Extreme value statistics has been used to show the accu-
racy of the model describing the experimental observations.

e model is capable of predicting not only the correct
Gumbel distributions for pitting corrosion maxima in low-
carbon steel, but also of estimating the number of extreme
pits that has physical sense and thatmatches the experimental
ndings.

In order to simulate the whole pitting process, ve model
parameters are necessary. Two parameters are required to
simulate pit initiation as a Weibull process; another two
parameters are required to simulate pit growth with the
nonhomogeneous Markov process; nally, the number of
pits is necessary to combine these two processes. If the
assumption that all pits nucleate instantaneously holds, as
is the case of the presented experimental example, only
three parameters will be necessary to t the model to the
experimental data.

Given the fact that the model parameters and assump-
tions do not depend on the corroded material, nor on the
corrosion environment, the model is suited for di�erent
corrosion systems. 
e model can be easily adapted to
describe situations in which the distribution of pit initiation
times and the functional form of the time dependence for pit
growth di�er from those considered in this work.
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