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Abstract

In recent research on extreme value statistics, there has been an extensive development of thresh-
old methods, first in the univariate case but subsequently in the multivariate case as well. In
this paper, we develop an alternative methodology for extreme values of univariate time series,
by assuming that the time series is Markovian and using bivariate extreme value theory to sug-
gest appropriate models for the transition distributions. We develop an alternative form of the
likelihood representation for threshold methods, and then show how this can be applied to a
Markovian time series. A major motivation for developing this kind of theory, in comparison
with existing methods based on cluster maxima, is the possibility of calculating probability dis-
tributions for extremal functionals more complicated than the maxima or extreme quantiles of
the series. In the latter part of the paper, we develop this theme, showing how a theory of
compound Poisson limits for additive functionals can be combined with simulation to obtain

numerical solutions for problems of practical interest.

1 Introduction

Davison and Smith (1990) proposed a method for extreme value analysis of time series which
depends on three essential features. The first is stationarity of the time series. The second is
the imposition of a threshold, u, for distributional modelling. The third feature is the focus on
the peak value within each cluster of exceedances over the threshold, as a means of handling
dependence in the time series. The broad idea is that peak values usually are of prime concern
and that these are approximately independent from cluster to cluster, thus avoiding the need
for explicit modelling of the temporal structure within clusters.

Within this framework, the process of clusters of exceedances of u is modelled by a Poisson
process of rate A, and the peak excesses are modelled by a generalized Pareto distribution,
GPD(o,§), with density

(14 €afo) (1.1)
(z > 0,0 + &z > 0), in which £ is a real-valued shape parameter and o > 0 is a scale parameter.

With ) as the mean number of clusters per year, the process of clusters which exceed the level



u + z (z > 0) is then a Poisson process with rate
M1+ &2/0)35,

where y, = max(y,0). Consequently, the probability that the level u + z is not exceeded during
a year is given by
exp{~A(1 + £z/a);'/¢}. (1.2)

Thus, equation (1.2) is the basis for the modelling and prediction of quantiles of the distribution
of the annual maximum. This approach, together with covariate model extensions to handle
aspects of non-stationarity (Smith, 1989), is now widely applied in the analysis of extreme
values of environmental time series.

This whole procedure is justified by probabilistic theory (Pickands, 1971; Hsing, 1987), which
shows that the two dimensional point process, consisting of the times and magnitudes of cluster
peaks, converges to a non-homogeneous Poisson process as both the threshold and the length
of the series tend to the distributional upper endpoint and infinity respectively.

This paper is concerned with removing the third of the above mentioned features, namely
the restriction to peaks as a way of avoiding having to model temporal structure. The existing
method has one great advantage — simplicity — but three substantial disadvantages. First there
is the problem of identifying independent clusters: misclassified observations lead to biased pa-
rameter and standard error estimates. Second, efficiency is lost by discarding non—peak values
from the cluster, since the distribution of arbitrary exceedances is also GPD with exactly the
same parameters as for the cluster maxima, (Hsing, 1987; Anderson, 1990). Finally, no tempo-
ral characteristics of exceedances within a cluster are identified. The latter feature has received
some independent attention in the form of estimation of the extremal index (Leadbetter, 1983;
O’Brien, 1987), which can be regarded as the reciprocal of the mean number of threshold ex-
ceedances per cluster. However, all current estimation procedures for the extremal index also
depend on ad hoc methods for identifying clusters (Leadbetter et al., 1989; Hsing, 1991; Smith
and Weissman, 1994). ;

Our approach uses a Markov chain to model the temporal dependence of exceedances. This
has some similarities with the time series threshold methods of Tong (1990), in particular the
feature that different models are assumed for different portions of the sample space, but in
constrast to Tong we only attempt to model the behaviour of the process above a high threshold.
Much simplicity of the dependence structure then results. For example, for a stationary first
order Markov series, {Y,}, if Pr{Yn41 > u | ¥, > u} — 0, as u tends to the distributional upper
endpoint, then exceedances of u will occur independently and so the approach would be identical
to the cluster maxima method in this case. As this condition, and higher order extensions of it,
apply for all Gaussian series (Leadbetter et al., 1983), the use of Gaussian time series models is

ruled out if clustering of extreme levels is observed.



To model the dependence of successive extreme observations, we use multivariate extreme
value theory. Threshold methods for multivariate extremes have previously been developed by
Coles and Tawn (1991) and by Joe et al. (1992). Our approach extends these methods to
the temporal dependence case, but in so doing a new version of the associated multivariate
threshold likelihood model is proposed. The fitted model is then used to calculate quantities of
interest, including quantiles of the annual maximum distribution, the extremal index and the
distribution of aggregate excesses. The main technique for this is simulation, using a random

walk approximation developed by Smith (1992).

- 2 Approximate likelihoods for multivariate threshold and Markov
models

2.1 A multivariate threshold model

Suppose (Y1,...,Yy) is a typical d-variate data point but that, in the spirit of threshold methods,
for each j between 1 and d, we observe not Y; but (§;, X;), where §; = I{Y; > u;}, with I the
indicator function, and X; = §;(Y; —u;) in relation to a fixed threshold u;. We want to derive an
approximation for the joint distribution of {(6;,X;), j =1,...,d}. The underlying assumption
is that (Y3,...,Yy) lies in the domain of attraction of a multivariate extreme value distribution.
Suitable conditions, given by Resnick (1987), are as follows:

Let F denote the joint distribution function of (Y3,...,Yy), let F; denote the j’th marginal
distribution function, and with Z; = 1/(1 — F}) let Z;~ denote the inverse function of Z;. Now

define a multivariate distribution F, by
F.(v1,y...,v) = F[Z{7 (v1), ..., 27 (v4)).

Note that if F; is continuous, then Z; has the reciprocal of a uniform distribution, so that F, is
the joint distribution function of the transformed vector (Zy,...,Z;).

Resnick (1987, Prop. 5.15) showed that F is in the domain of attraction of a multivariate
extreme value distribution if and only if, for all v= (vy,...,v4) > 0,

lim 1= F.(tvy,...,tvg)  —logG.(vy,...,vq)
tmoo 1= Fu(t,...,t) ~ —logG.(1,...,1)"’

(2.1)

where G, is a multivariate extreme value distribution function with unit Fréchet margins (i.e.

distribution function exp(—1/z) for 0 < z < o). A general characterization of G, is the formula

Ge(v1,...,vq) = exp{=V(v1,...,v4)}, (2.2)

with
V(viyeo.yvq) = s, jgfaid(wj/vj)dH(w),



where Sy is the unit simplex in R% and H is a non-negative dependence measure on Sy satisfying
/ widH(w)=1, for j=1,...,d
Sa

(Pickands, 1981, and Coles and Tawn, 1991). An example which we shall use in much of this
paper (when d = 2) is the logistic model

Ga(v1,v2) = exp{—(vy/* + v 1/*)2} (2.3)

where 0 < a < 1, which is discussed in Tawn (1988) and Shi et al. (1992).

We want to turn these asymptotic results into an explicit approximation for the joint dis-
tribution of {(6;, X;), j = 1,...,d}. A suitable analogy here is the method of Davison and
Smith (1990) in the univariate case. Motivated by results which give the GPD as an asymptotic
distribution for exceedances over a high threshold, they proceeded as if the GPD were ezact over
a specified threshold. Initially, we make the same assumption for each marginal component, so
that for sufficiently large u;, the marginal distribution of Y; —u; given Y; > u; is taken as GPD.
Thus

Fi(9) = 1= M{1+ 6 - w)/o}3/%, for y2u,
where A; = 1 — F;(u;).

By analogy, we also take the limiting result (2.1) as an identity for sufficiently large t. In
fact it is more convenient to treat (2.1) as an identity for some fixed ¢ = tc, provided the v;
are sufficiently large; this is clearly an equivalent interpretation. Specifically, taking ¢, = 1 and
v > Aj‘l; J =1,...,d ensures that the GPD approximation is applicable for each marginal
component. Our additional assumption is that these levels are also sufficiently high for the
asymptotic dependence structure to be a valid approximation through (2.1).

Suppose now, that §; = 1; j = 1,...,d, so that by the marginal assumptions,

Zi(0) = L+ G = w)/o} Y%, for y 2w,
and hence
Zi (2) = uj — ;67 {1 — (\j2)4}, for z> Aj—l.
Thus for t. = 1 and v; > /\J-'l; i=1,...,d,
Fu(tevr,. .. teva) = Flup — 016711 = (M)8), ... ug — 02671 (1 = (Aqva)é9)].
Treating (2.1) as an identity in this case then gives
1= Flug — o167 (1 = (Mo1)®),. .. ug — 0a€7 (1 = (Aqua)d)] = KV (vy,..., Vd) (2.4)
where 1-FQ1 1
vy
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The constant K is determined by the marginal distributions: setting v; = A\{? and vz = ... =

vg = 00, we get from (2.4)
A = KV(A7l00,...,00) = KX, ie. K=1

since V(A;1,00,...,00) = —-logG,.(/\i'l,oo, ...,00) = Ay, from the fact that the margins of G.
are unit Fréchet. Translated back into the original coordinates, expression (2.4) gives the desired

approximation:

F(y1,..e0a) = 1= VL + &1(31 — w) o} AT+ Eu(ya — wa)[oa} %), (2.5)

valid for y; > u1,...,Y¥q 2 Uu4-
For example, in the d = 2 case with the logistic model given by expression (2.3), equation

(2.5) becomes, for y; > u1,y2 > uz,
Fly,92) = 1= [\/*{1+ &0 - w)/od 37 + 05/ (1 4 &2 — w)/02} 1], (2.6)

To obtain the joint density of {(é;,X;), 7 = 1,...,d} we use (2.5) directly in the case
61 = ... = 64 = 1, and proceed by inclusion—exclusion relations in other cases. For example,

with d = 2 we have

PI‘{J] =0,60=1,X2> :L’g}

F(uy,00) — F(u1,u2 + z2)

= VIATLATU(L+ &a22/02) %) = M, (2.7)
Pr{fy = 1,6, = 0, X1 > 21} = VATI(1 + &1 /1) Y1, 051} = A, (2.8)
Pr{‘sl =0,6; = 0} = F(ul’u'b’) =1- V(’\l-l”\i-l) (29)

. g 0 0?
Hence if we define ‘/l(xv y) = _'a—x{v(za y)}’ V2(z’ y) = _a_y{v(x’ y)}’ and I/1‘2(1:’ y) = —B—JE—a_y{V(x’ y)},
the joint density of (41, X1, 82, X2) is given by

(/\1/\20'10'2)—1[t1(271)]1_€1 [tz(zg)]l—&Vlg{/\;ltl(zl),A;ltz(zg)} if 51 = 62 =1,

(A202) 2 (z2)] 62 Vo{ATT, AF 2 (22)} if 61=0,6,=1, (2.10)
(Mo1) [t (z ) Vi {AT 1 (21), AT 1) if 6, =1,6,=0,
1-V(TLAYH if 6, =62=0,

where
ti(z;) = (1 + &z; /o), j=1,2.

The procedure for d > 2 is similar, with each possible combination of (&,...,84) resulting in
a different form of contribution to the likelihood function, constructed by taking suitable sums
and differences of (2.5). We do not go into the details of this here, but return to this topic in

Section 5.



2.2 Removing the marginal constraints

In some circumstances it may be over-restrictive to require that v; > /\;-'1; j=1,...,d for the
validity of (2.1) to be used as an identity since if (2.1) provides a good approximation over a larger
region of the upper joint tail the proposed likelihood procedure will be inefficient. In principle,
the functional form (2.5) could still hold over the larger region, but there is a complication:
(2.5) assumes that the GPD holds for each marginal distribution within the range of validity of
(2.5). This is only reasonable when we impose a threshold on each Y;. However, the formula

corresponding to (2.5) without assuming the GPD tail approximation is easily derived as

Fy,...,9a) = 1=-V{[1- R(n)]™,...,[1 - Fa(ya)] ™'} (2.11)

The asymptotic nature of (2.1) means we still require some threshold restriction on the vector
(y15---,9a4). Suitable conditions to ensure the observation (¥, ..., ¥q) is sufficiently far into the
joint tail could be max(y; — u;) > 0 or 3(y; — u;) > 0.

In practice, to exploit (2.11), a hybrid approach to the marginal modelling is needed: the
GPD model is appropriate for the j’th component when y; > u;, but some alternative dis-
tribution is needed when y; < u;. For example, it would be possible to assume a different
parametric model for the marginal distribution in the range y; < u;, or alternatively to use the
empirical distribution function and treat this as known in all subsequent inferences. This leads
to an alternative form of the likelihood function. The advantage of this approach is that the
approximation extends to a larger portion of the sample space, thus in principle making possible
more sensitive inferences, and avoiding the inclusion—exclusion arguments which could become
very restrictive when d is large. The disadvantage of this method, compared with that based on
(2.5), is that some modelling of the marginal distribution below the threshold is needed.

Thus we have two forms of approximate likelihood, one using (2.5) and based only on ob-
servations which exceed the threshold, the other using (2.11) and requiring some assumptions
about the marginal distributions below thresholds. The second method is in fact much closer to
the previous multivariate threshold methods proposed by Coles and Tawn (1991), and by Joe
et al. (1992). In those papers an approximation of the form (2.11) was made with 1 — Fj(u;)
replaced by —log Fj(y;), j = 1,...,d and the region of validity of the approximation taken as
max;(y; — u;) > 0. Furthermore, if the contribution to the likelihood, [1 — V(A7 A71)]™, by
the ny; observations with §; = §; = 0 is approximated by exp{~nV(A;1,2;1)}, the likelihood
is exactly that of Coles and Tawn (1991, equation 5.4) which was based on a non-homogeneous
Poisson process approximation. For the remainder of this paper we confine attention to the

likelihood approximation (2.5).

2.3 Markov chain models

We now apply these ideas, in the case d = 2, to the model which is the central theme of the

present paper; namely a stationary Markov chain, {Y,}, with continuous state space. Such a



chain is characterized by the joint distribution of (Y;,Yn4+1), and we assume this to be in the
domain of attraction of a bivariate extreme value distribution function. The joint density of
(Yh,...,YN) is given by N
p(w) IT p(y5 | 9j-1) (2.12)
F=2
where p(.) denotes the marginal (stationary) density and p(y; | yj—1) is the conditional density,
evaluated at y;, of Y; given Y;_; = y;_1.

Suppose, now, we want an approximation to (2.12) based only on the high threshold ex-
ceedances. Because of stationarity, we can assume that the threshold u, the exceedance prob-
ability A, and the GPD parameters (o,k), are common to all observations. We therefore
write §; = I{Y; > u},X; = 6;(Y; — u) and consider a likelihood function based only on
{(8;,X;),7 =1,...,N}. By rewriting (2.12) as

N N-1

II 2(wi-1,9)/ 11 p(vs), (2.13)

j=2 j=2
where p(y;-1,y;) is the joint density of two consecutive observations, the problem reduces to
that considered in Section 2.1. Specifically, the numerator of (2.13) is approximated as a product
of terms of the form (2.10), while the denominator is replaced by the corresponding univariate
approximation: p(y;) = o~ A{1 + &(y; — u)/o} V€1 if y; > u and by p(y;) = 1 — A otherwise.
Once again, it is also possible to consider a more general approximation based on (2.11) if we
make some assumptions about the marginal distribution below the threshold, and this leads to
a second form of approximate likelihood function. The two methods differ only in the way the
numerator of (2.13) is modelled, not the denominator.

In principle, it might be possible to justify any of these approximate likelihoods by establish-
ing standard properties such as consistency and asymptotic normality of the resulting estimators.
Such a theory would, however, require detailed assumptions on the convergence rates to the sep-
arate marginal and dependence components of the bivariate extreme limit. This seems certain
to involve considerable technical complications, and therefore we avoid further discussion of it

here.

3 Examples of functionals of extreme events

In Section 1 it was indicated that there are many functionals of the values within each inde-
pendent extreme event, other than the cluster maximum, which are of interest in applications.
Here we present a general class of functional forms which is broad enough to include examples
which address both general and problem-specific issues. Furthermore, this functional class is

amenable to asymptotic treatment.



For the process {Y,} and the threshold «u, the class of functionals we consider have the form

n—m+<1

Wa(w)= 3 g{(Yi = w4y s (Viam-1 — )4} (3.1)
j=1

where g : R? — R is a real-valued function for a fixed m > 1, and g(0,...,0) = 0. The
structure of (3.1) confines attention to quantities that depend on the high-level exceedances of
the process. Some examples are given as follows

(i) Let m = 1 and, for some z > 0, let g(z) = 1 if z > 2; g(z) = 0 otherwise. Then W (u) counts
the number of exceedances of u+ 2 over the time period 1 < j < n. In particular, Pr{W,(u) = 0}
is the probability that the maximum of the process up to time n does not exceed u + z.

(ii) Let m = 2 and, for some z > 0, let g(z;,2;41) = 1 if zj4; > z and z; < 2, 9(.)=0
otherwise. Then W;(u) is the number of upcrossings by the process of the level u + z in the
period 1 < j < n.

(iii) Let m = 3 and g(z;, 241, 42) = 1 if, for some z > 0, Tjy1 > z and zj41 > max(z;,z;4+2);
9(.) = 0 otherwise. Then W,(u) is the number of local maxima of the process which exceed
% + z in the period 1 < j < n.

(iv) Let m > 1, and for some z > 0, let 9(Zjyee s Tjpm—1) = 1if 25 > 2,...,Zj4m-1 > 2;
9(.) = 0 otherwise. Then W,(u) is the number of times, in the period 1 < J £ n, that there are
m consecutive exceedances of u + z, counting overlaps. For example, a ‘heatwave day’ might
be defined as a day on which the temperature is above u + z and the previous m — 1 days
have also had temperatures above u + z. Then W,(u) is the number of heatwave days that
occur between day m and day n. Clearly, more complicated definitions of a heatwave, analogous

to those discussed by Barnett and Lewis (1967), could also be incorporated within this structure.

(v) Let m = 1 and, for some z > 0, g(z) = z -z if ¢ > z; g(z) = 0 otherwise. Then
Wa(u) is the cumulative total of all excesses over u + z. In the hydrological context, this is a
measure of the volume of overflow, which is sometimes taken directly as the main variable of

interest (Anderson and Dancy, 1992).

(vi) The sea level at time ¢ is the sum of a deterministic tidal component, T}, and a stationary
stochastic surge component, Y;. The tidal series is periodic, so we take Tj,...,T, to be the
values within a cycle. For simplicity, we take the surge to be independent of the tidal level,
the dependent case following immediately. Tawn (1992) proposed obtaining the distribution of
extreme sea levels by first obtaining the distribution of extreme surge levels and then modifying



this to incorporate the tidal series. Given the upper tail of the marginal surge distribution, the
dependence structure within extreme surge events, and the tidal series, the probability that the
extreme sea level is less than some level, u* say, can be calculated directly.
Specifically, we take the surge threshold to be u and consider only the case when u* > u +
n
max(Ty, ..., Tw). In this case let g*(z;,i) = I{utz;+Tipj—1 > v*} and Wa(u,i) = D _g*(z;,i).

i=1
Then W, (u,1) is the total number of exceedances of u* given that the first tide was T;. Now

the expected number, with respect to the timing of the first tide, of sea level exceedances of u*
nl

is given by Wy(u) = EW,,(u,i)/n’, so Pr{W,(u) = 0} is the probability that the maximum
=
of the sea level proces's at time n is less than u*. Provided the temporal dependence model is

suitable, this removes the requirement to estimate an additional parameter in Tawn’s approach.

4 Extreme event theory for Markov chains

In this section we discuss how to calculate the limiting distribution of the class of functionals,
given by (3.1), of the high-level exceedances of a Markov chain. First, we prove a limit theo-
rem which shows that such functionals, under suitable asymptotic conditions, have a limiting
compound Poisson distribution. Then we describe a simulation technique to evaluate the com-
pounding distribution of the compound Poisson limit. The methods rely heavily on previous
results for extreme value theory in Markov chains (O’Brien, 1987; Smith, 1992) as well as gen-
eral theory leading to compound Poisson limits for extreme events (e.g. Hsing et al., 1988).
Throughout we assume the process {Y,} is a stationary aperiodic Harris chain with marginal
distribution function F. Loosely, a Harris chain in continuous state space corresponds to an
irreducible chain in discrete state space. Asmussen (1987) has precise definitions and a good

discussion.

4.1 Asymptotic theory for functionals

For a functional W,(u), in the class defined by (3.1), we develop a limit theorem for the distribu-
tion of W, (u) when n and u are both large. The basic idea is that the high-level exceedances form
clusters, and that the distribution in time of the clusters can be represented asymptotically as a
Poisson process. Thus the limiting behaviour of W, (u) is that there are a Poisson-distributed
number of independent clusters, and Wy,(u) is a sum of contributions from individual clusters.

Any aperiodic Harris chain is strong mixing (O’Brien, 1987) so, by a small extension of
the usual definition of strong mixing, we can find a function #(p) such that, if Z; and Z, are
complex—valued random variables satisfying | Z; |[<1 (i = 1,2), and such that Z; is a function
of {Y;, —o0 < j < n} and Z; a function of {Y;, n+ p < j < 0o}, then

| E(Z122) - E(Z1)E(Z,) |< 6(p), (4.1)



and ¢(p) | 0 as p — oo.
Given such a function ¢, we can always define a sequence {p,, » > 1} such that

Pn n¢(pn) _ o

-0, (4.2)
n Pn
Let {un, n > 1} denote an increasing sequence of threshold values such that
Jim n{l - F(uz)} =7  (0< T < 0). (4.3)
We also assume »
Jim_ lim Zpr{Y.- > un | Y4 > u,} =0. (4.4)
t=p

Condition (4.4) was also assumed in Smith (1992) where, following O’Brien (1974, 1987), it was
used to justify defining the extremal index as

6= plirgo 0p, with 6, = ulir& Op(u) = JLI& Pr{Y;i<u, 2<i<pl|Y; >u} (4.5)

and 6;(u) = 1. Finally, we define

p—m-+1

Wap = Z HY —un)gs ooy (Yigmo1 — ua)4 ). (4.6)
1=1

We assume

E{W;, | max(Yy,...,¥,) > u} < M < oo, (4.7)

and that there exists a random variable W*, which we term the cluster functional, such that
forallw > 0,as n — o0

y

Pr{W,,. <w | max(i,...,Y;.) > us} = Pr{W"* < w}. (4.8)

We then have:-
K

Theorem 1: As n — oo, the distribution of W,,(uy,) converges to that of EVV;‘, where K is a
=1

Poisson random variable of mean 67, and Wi, W3,... are independent (of each other and of K)

random variables with the same distribution as W* in (4.8). Thus,

Pr{max(W7,...,Wg) < w} = exp{-7[1 - Pr(W* < w)]}.

This result is proved in the Appendix.

To apply Theorem 1, it therefore remains to estimate both @ and the distribution of W™,
using the model as fitted by the methods of Section 2. Our methodology for this is simulation.

10



The extremal index # may be defined by (4.5), and it also follows under condition (4.4) that
(4.8) is equivalent to
Pr{W* < w} = lim lim Pr{W,,<w | max(Vs,...,Y;) > u}. (4.9)

P—+00 U—+00
The proof of (4.9) is also given in the Appendix.
Two other results are needed before we can define our simulation scheme. First, from (4.5),
it follows that

I

Pr{max(Y3,...,Y;) > u} EPr{Yj >u, max Y; <u}

= =341,...,r
,
= {1- F)} Y b jia(w).
1=1
Furthermore, since 8,(u) — 8, by (4.5), we have
. Pr{max(Y3,...,Y;)>u} <,
lim T F ) = 29,, (4.10)

the real point being that the limit exists. Hence, for fixed r, the conditional limiting distribution
of max(Yi,...Y:) — u, given that this quantity is positive, is the same as that for a single value
X; = (Y; — u)4, given X; is positive. This is because, from (4.10) and (1.1), for large u, and

z>0
Pr{max(Y1,...,Y;) > z + u} N 1- F(u+z)

Pr{max(Yi,...,Y;) > u} 1- F(u)
which is independent of r. This result is known (Hsing, 1987; Anderson, 1990), but is repeated

here to make clear the connections with our other results.

~ (14 &xfo);* (4.11)

The second result we need is the property that, under the assumptions we have made, a
Markov chain in the tails ‘looks like’ a transformed random walk. Initially suppose 1 — F(y) ~
C exp(—y) as y — oo. Under the assumption that (¥7,Y3) lies in the domain of attraction of a

bivariate extreme value distribution, the limiting distribution function
Hp(z) = zlinoloPr{Yz <z4+z | =2}

exists (Smith, 1992). Thus if we are given Y; = y;, for some known y; > u, and want to simulate
the distribution of Yj41,...,Y;, then it suffices to treat this as a random walk with step length
having the distribution function Hp. By a trivial extension of the same result, if we want to
simulate Vj,...,Yj_1, from this same Y; value, we can also use a random walk approximation,

with step length having distribution function, Hp, given by
Hp(z) = ul_i_’r{.xoPr{Yl <u+z | Yo=u}l.

Here Hg # Hp unless the Markov chain is time-reversible; that is unless in (2.2) V(z,y) =
V(y,z) for all z and y.

11



More generally, if the marginal distribution function is of the form
1-Flu+z)~[1- F)1+€2/0)7¢ (z>0)

for large u then it is possible to proceed by pointwise transformation to obtain, for given Y,
that

§ 1og{[E(Ynt1 ~u) +0)/[E(Ya~u)+0]} and &' log{[£(Ya1~u)+0]/[E(Yn—u)+0]} (4.12)

are independent random variables from distributions Hr and Hp respectively. The ¢ = 1 and
§ = 0 case for (4.12), taken as the limit as £ — 0, is the random walk described above. An
alternative to transformation is to use a scheme described by Perfekt (1991) which effectively
adapts the random walk approximation to any of the three domains of attraction of univariate
extreme value theory. ,

The proposed simulation scheme for extreme events which exceed a high threshold is therefore
as follows:—
1. Choose the function g, with the associated m, of interest. Select r, the simulation event
length.
2. Generate the cluster maximum M, = max(Ys,...,Y;) given M, > u. By (4.10), the limiting
conditional distribution is GPD, so this step involves simulating a realization from a GPD with
the required parameters.
3. Let J denote the index for which Y; = M,. By stationarity of the process, J is uniformly
distributed over {1,2,...,7}.
4. Given Y; = y; > u, generate (Y741,...,Y;) from the limiting conditional distribution given
max(Y7,...,Y;) = ys. This may be done by using the random walk approximation (4.12) to
generate a realization of (YJ41,...,Y;), rejecting and resampling this whole vector (not Yy) if
max(Ys41,...,Y:) > ys, and so on until the vector is not rejected. That this gives the correct
limiting conditional distribution is a trivial application of the rejection method of simulation
theory.
5. Similarly, use the backward random walk to generate (1h,...,Y;_1) given Y; = y; and
max(Yy,...,Ys) = ;.
6. Calculate Wy ., with u, = u, and also the total number of exceedances of the level u among
Y3,...Y; (i-e. functional (iv) in Section 3); call this latter quantity T,.
7. Repeat steps 2-6 L times to generate L independent event simulations. The parameter 6, is
estimated as the reciproca:l of the sample mean of the L values of T,.

8. Increase r until stability of the estimates is achieved.

5 Higher order models and model selection

In this section we discuss the constraints on, and selection of, parametric models for the depen-

dence structure of extreme values from Markov chains of order d > 2.
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First consider the extension of the first—order Markov inodel, described in Section 2.3, to a

general d**—order Markov chain, {Y;}. The corresponding joint density of (Y¥3,...,Yn) can be

written as
N N-1
I pa(wi-asrs-- -9}/ T1 Pa-1(¥i-ds2s--->95) (5.1)
y=d j=d

where p; is the joint density of j consecutive observations. Using the same arguments as in
Section 2, both the numerator and denominator of (5.1) may be approximated by multiplying
together contributions similar in form to (2.10), derived from (2.5). Clearly, the exponent
measures V; and V;_,, associated with the d** and (d — 1)** dimensional joint densities, see
(2.2), are related by

Vd—l(zla'--axd—l) = Vd(zl,...,zd_l,oo) ' (5.2)

Y(z1,...,%4-1) € RE1\{0}. Therefore, given a d-dimensional parametric model for Vj, the
joint density (5.1) can be calculated. Some models, though, are not given explicitly in terms
of the exponent measure, but instead are defined by the associated dependence measure Hy
(see (2.2)). In order to evaluate (5.1) directly for such models, it is necessary to obtain an
analogous relationship to (5.2), which relates the dependence measure of lower-dimensional
‘marginal models to the dependence measure of the d-dimensional model. Denoting by hq and
hq—1 the d and (d — 1)-dimensional densities of Hy and H4—;, where Hy_; is the dependence
measure of the (d — 1)-dimensional marginal model of Hy, it can be shown from (5.2) and (2.2)
that

1

ha—1(wi,y ..., wy—1) = /0 Q- q)d‘lhd{(l - q)wy,...,(1 - @)wy_1,q}dg, (5.3)
with wy + ...+ wq-1 = 1. The proof of this result is similar to the proof of Theorem 2 in Coles
and Tawn (1991). As an illustration of (5.3) consider the Dirichlet model, with parameters

(a1y...,04),

d d a;—1
_ a; I'(al141) (a,-wj) = ' .
hd(w) - {H I‘(aJ)} (a.w)d+1 JI;.E a.w i WE Sd’aJ > O’ J= 11-- "d° (54)

j=1

then hy_; has a Dirichlet model with parameters (ay,...,aq4-1).

As with standard time series modelling, the selection of the order of the process is difficult.
In our temporally dependent extreme value problem testing between orders d — 1 and d is
equivalent to testing for conditional independence of variables within a unit simplex domain,
subject to normalization constraints. Standard likelihood procedures can be used for such tests;
however, typically models will be non-nested, in which case we suggest the use of a combination
of the usual time series procedures, such as AIC and BIC, and informal model goodness—of-fit
assessment based on comparisons of predicted and observed functionals of interest (see Section
3). The same procedures will be used to select a model for the dependence structure given the

order of the process.
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Thus it is clear that the estimation procedure discussed in Section 2.1 extends to higher
order Markov chains. The extension of the limit theory of Section 4 and the calculations via the
simulation step are not presented here, however these follow as a consequence of the formulation
of Section 4 applied to results given by Yun (1993). Here though we concentrate on models for
Hp and Hp in the d = 2 case.

By the definition of Hr and Hp, from property (2.2) it is easily shown that

Hr(z) = /: wdH(w) and Hp(z)= /Oa(_z)(l—w)dH(w) (5.5)

a\z

with a(z) = exp(—z)/[1 + exp(-z)]. Thus the models for H, or equivalently V, estimated
using the procedure of Section 2, provide models for Hr and Hg. In this paper we will restrict
attention to four specific models, others being given by Coles and Tawn (1991), Smith (1993),
and Coles and Walshaw (1993).

1. Bilogistic model:
h(w) = (1 - e1)(1 = 8)s' ™1 /{(1 - w)w?[a1(1 - 8) + 28]}, 0< ;<1 i = 1,2, (5.6)
where s = s(w) is the root of
(1= a)(1 —w)(1 = 8)* = (1 - ag)ws™, (5.7

(Joe et al., 1992). Thus, Hr(z) = s~ and Hp(z) = (1 — 54)'7%2, where s, = s(a(z))
and s4 = s(a(—z)), with a(.) and s(.) defined by (5.5) and (5.7).

2. Negative Bilogistic model: As (5.6), but with —co < a; < 0,i = 1,2, (Coles and Tawn,
1994), so Hp(z) =1 —s."** and Hp(z) =1 — (1 — s4 )12,

3. Dirichlet model: Defined by the measure density (5.4), so H F(z) and Hp(z) must be
evaluated numerically from (5.5).

4. Asymmetric Logistic model: V(z,y) = (1 - 8)/z + (1 - ¢)/y + [(6/=)/* + (¢/y)"/*]*,
0<0<1,05¢<1,0<ac<1,(Tawn, 1988). Unlike models 1-3 neither Hp(z) nor
Hp(z) — 0 as z | —oo, since there is positive probability of an infinite step out of the
upper tail of the random walk. Thus Hp(—-00) = 1—-6, Hp(-0) = 1—¢ with Hp(z)=1-
0+ /(81> 4 g/ exp{~z/a})*~! and Hp(z) = 1- ¢+ ¢!/ (¢! 401/ 2 exp{—z/a})*-1
for 2 > —co.

6 Applicétion to Temperature Data

Our data are daily minimum temperatures, recorded to the nearest degree Fahrenheit, at
Wooster, Ohio. Wooster is one of 138 high—quality stations reported in the U.S. Historical
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Climatology Network (Quinlan et al., 1987) for which long-term daily data are available. Our
reasons for the selection of this particular site are due to it being representative of the network
with a long and good quality data series (June 1893 — December 1987 with only 45 missing
values). Furthermore, some exploratory analysis of this series is already available (Grady, 1992).
Restriction to daily minimum temperatures does not greatly inhibit the scientific usefulness of
the study, since most practical issues relating to cold weather focus on this quantity, whilst
trends in global average surface temperature have also been primarily attributed to increases in
minimum temperatures (Karl et al., 1992).

Findings in Coles et al. (1993) suggest that there is evidence for a quadratic trend in the
Wooster series and that the series is approximately stationary over the winter months December
to February, during which all the yearly extreme minimum temperatures occur. To simplify
presentation we focus here on the winter months only and assume stationarity throughout this
season and over years. A detailed analysis of the complete yearly series, accounting for season-
ality, is deferred to a companion paper (Coles et al., 1993).

We denote by Y7,Yz,... the negated series of daily minimum temperatures. Negating the
series in this way means that attention is turned to maxima rather than minima. As with most
contemporary extreme value analysis, a primary step is the evaluation of a threshold above
which the asymptotic model is treated as exact. For this analysis we need a threshold which
satisfies both marginal and joint requirements of the model. That is, all exceedances should
follow a GPD with the dependence of successive exceedances being Markov with dependence
determined by a multivariate extreme value model. If the asymptotic model is applicable above
a given threshold each model component should be invariant to a higher threshold selection.
Thus, to maximize efficiency, we need to find the lowest threshold above which model stability
is achieved.

By use of a mean residual life plot (Davison and Smith, 1990) a range of candidate thresholds
based on marginal stability is identified. Then, for a series of thresholds within this range, a
first-order Markov model with logistic dependence model (2.3) is repeatedly fitted. The resulting
parameter estimates appear stable with respect to thresholds above 5.5 (i.e. —5.5°F), yielding
232 exceedances — an average of less than one per month. We illustrate here the stability of
the dependence parameter, a, as viewed by the variation in the corresponding extremal index
with threshold level shown in Figure 1. After allowing for sampling variability it is evident
that @ decreases for thresholds below 5.5 corresponding to stronger dependence, whereas higher
thresholds yield similar estimates with poorer precision. Thus we take u = 5.5 and A =232 /8485.

Under the assumption of a first—order process and with the stated threshold choice, each of
the dependence models discussed in Section 5 is considered within the context of the Markov
model. The resulting model fits are given in Table 1.

Based on the marginal parameter estimates and the AIC or BIC criteria, there are only small

differences between the models. Each model exhibits slight asymmetry corresponding to extreme
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Model c £ dependence NLLH 0 m, my,
parameters

bilogistic 5.85 -0.190 a =0.785(0.035) | 1475.77 | 0.62 1.06 0.77
(0.57) (0.068) A = 0.651(0.061)
negative 5.80 -0.175 a = —1.089(0.195) | 1476.46 | 0.61 1.07 0.81
bilogistic | (0.58) (0.068) 8 = —2.119(0.362)
Dirichlet 5.88.  -0.186 a=0.689(0.178) | 1476.14 { 0.62 1.07 0.80
(0.55) (0.069) A = 0.349(0.060)
asymmetric | 5.83 -0.186 «a = 0.694(0.064)
logistic | (0.58) (0.075) 8 = 0.796(0.175) | 1476.40 | 0.63 1.05 0.73
¢ = 1.000(0.171)
logistic 5.85 -0.191 a =0.730(0.026) | 1477.17 | 0.62 1.06 0.76
(0.58) (0.070)

Table 1: Summary of Markov model fits based on various choices for bivariate extreme value
limit. NLLH is the negative log-likelihood of the fitted model, 6 is the corresponding extremal
index estimate and m, and m, are the mean number of threshold upcrossings and mean intra-
cluster standard deviation respectively.

events rising at a faster rate than they decline, although the asymmetry is not significant when
judged by a formal likelihood ratio test for the logistic model within the bilogistic family. One
way of comparing the impact of the different dependence models is to examine summary statistics
of extreme events generated from the fitted models using the simulation procedure described in
Section 4, with the random walk step lengths given in Section 5. To illustrate, Table 1 gives,
for each dependence model, the simulated values of the extremal index (6), the mean number
of threshold upcrossings (m,) and the mean standard deviation of excesses within a cluster of
exceedances (m;). The similarity of these values across models confirms that dependence model
selection is a relatively unimportant aspect of the modelling procedure here; hence we restrict
further analysis to the logistic model only.

We now examine the suitability of the assumption that extremes of the process are first—order
Markov by looking for conditional independence between observations of lag 2 within extreme
events. One approach is to consider the trivariate distribution of consecutive triples of extremes;
under the first—order Markov model this distribution should lie in the domain of attraction of
a trivariate extreme value distribution with special structure as follows. First transform the
observations as

Y = AT 14 6(Yi —u)/o]Y; i=1,...,N, (6.1)

so that the Y;* have a unit Frechet distribution. In fact, because we need to look at triples
where perhaps only one or two of the observations has exceeded the threshold, equation (6.1) is
applied with the fitted tail model extrapolated back below the threshold u (see Coles and Tawn,
1994). Now, under the first—order Markov assumption with logistic model for transitions, the
distribution of (Y*,Y;},,Y};) is in the domain of attraction of the time-series logistic model
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(Coles and Tawn, 1991) with parameters r; = r; = 1/c. In particular, this means that if we
set B; = Y* + Y, + Y3, and W;; = Y3, {/Ri; j = 1,2,3 then the density of the angular
components (W; 1, W;3) is of known form. We can therefore compare contours of the fitted
density model with the empirically obtained points for which at least one component exceeds
the threshold; this is done in Figure 2, with contours drawn at heights 1,2,...10. The data
appear consistent with the model contours though of course more formal goodness of fit tests
based on this plot could be developed to further assess this.

A simpler and somewhat more ad hoc procedure is to look for serial correlation in the
differences of the successive random walk steps during extreme events. The first lag auto-
correlation is 0.12 which is not significantly different from zero. Our conclusion is that there
is no reason to doubt the assumption of a first—order Markov process in the extremes. Further
examination of this assumption is obtained below by comparing the model-based estimates of

various quantities of interest with their empirical counterparts.

6.1 The Mean Cluster Size

This functional is just #~! (Leadbetter, 1983); equivalently, we therefore focus on estimation of
6. Using the random walk, 6 can be calculated using the Weiner-Hopf method of Smith (1992)
or the simulation—based method discussed here. Generally the latter will be adequate, although
here we have used the former to produce the smooth curve shown in Figure 3, which illustrates
for the logistic model the near-linear relationship between 6 and the extremal coefficient, V'(1,1),
over most of the range of 6.

For a given threshold, an empirical estimate of § can be obtained simply as the reciprocal of
the sample mean cluster size. However, this requires some method of identifying clusters; there
are many possibilities for this (Smith and Weissman, 1994). Figure 1 shows 8 estimated using
a ‘fixed storm length’ definition, whereby extreme events have a maximum duration of specified
length. In Figure 1 the maximum lengths are 2,5 and 10 days plotted as +,e and X respectively.
Each empirical estimator follows the profile of the fitted model, with a maximum duration of
5 days apparently doing best. Figure 1 clearly illustrates the difficulty of analysing extreme
events without a formal temporal model: results are sensitive to the choice of declustering
scheme, whilst without a model for reference or additional physical information, there is little

basis for making an appropriate choice.

6.2 The distribution of the number of exceedances per cluster

;From the random walk, the distribution, 7, of the number of threshold exceedances per cluster
can easily be obtained. As with the extremal index this functional is invariant to threshold
choice. For the fitted logistic model = is given in Table 2. Unlike some analytical examples
(Hsing et al., 1988), 7 is not geometric, having both a heavier tail and larger 7(1). Also shown

in Table 2 are the empirical estimates of 7, based on the declustering scheme which gave the
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7(J)

J | Model-based | u=5.5|u=75|u=105

1 0.6585 0.4478 | 0.6095 | 0.6721

2 0.2002 0.4179 | 0.2857 | 0.2951

3 0.0787 0.1119 | 0.0857 | 0.0164

4 0.0330 0 0.0095 0

5 0.0154 0.0223 | 0.0095 | 0.0164
>6 0.0144 0 0 0

Table 2: Empirical and model-based estimates of the distribution, 7, of the number of the
exceedances of the threshold, u, per cluster

best empirical estimate of , for various choices of threshold u. According to the asymptotic
arguments on which our model is based, the distribution of the number of events within a
cluster should be independent of the threshold, once thresholds are sufficiently high. Indeed,
our model threshold of 5.5 was selected so as to give stability in the mean cluster size (Figure
1). It seems, however, that this level does not ensure stability of the distribution as a whole,
and that somewhat higher levels may be required to achieve this. This explains, in part, the
poor agreement between the model-based and empirical estimates of 7. The agreement is better
when the empirical estimates are obtained at higher thresholds, though in each case the model
under-predicts the proportion of two-day events observed. This indicates that the first—order
Markov model may not give a sufficiently detailed description of the true temporal dependence
for such detailed aspects of temporal behaviour to be accurately estimated.

6.3 Return Levels

The distribution of the annual minimum temperature is an essential design input for many man-
ufacturing processes. Quantiles of this distribution are termed ‘return levels’. Using standard
theory for extremes of stationary processes (Leadbetter et al., 1983), we take

Pr{, max Y; <y} » {F(y)}™, (6.2)

where m(= 90) is the number of days in the winter period. This result also follows as a conse-
quence of Theorem 1 applied to functional (i) of Section 3. Using the GPD tail approximation
for F, the return level y,, defined such that (6.2) equals 1 — p, satisfies

Yp = u— o€ 1 = {A7Y[1 - (1 - p)/(mON}-¢ (6.3)

for y, > u. Substitution of the maximum likelihood estimates (mles) of (A,0,k), together with
the random walk estimate of # based on the logistic model with the mle of the parameter a, leads
to the mle §, of y,. Ideally we would like to use profile likelihood based confidence intervals for
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ijp. However, here this requires considerable additional computation relative to the delta method
and so seems unwarranted for an exploratory analysis. Calculation even of the standard error of
Yp is complicated, since we only have the hessian matrix corresponding to the vector (A, o, k, a).
But by exploiting the linearity of Figure 3, we have § ~ —1.34+(1.81) X 2%, from which standard
errors for y, follow. The resulting estimates, plotted as a function of — log[—log(1—p)], together
with pointwise 95% confidence intervals, are given in Figure 4.

Also shown are return level estimates based on the cluster maxima approach of Davison and
Smith (1990), for which the GPD parameter estimates are & = 7.16(0.76), € = —0.344(0.066) and
A= 134/8458. Clearly, a consequence of the declustering is that some distortion of the tail has
occurred, with compensatory changes in the estimates of scale and shape. The cluster maxima
model therefore gives comparable estimates within the range of the data, but under—estimation in
the extreme tail by comparison with the Markov model. The apparent improvement in precision
of the cluster maxima approach, as measured by confidence intervals obtained using the delta
method, is an artefact of the shape parameter estimate being greater for that model. Results in
Davison and Smith (1990) suggest that if profile likelihood based confidence intervals had been

used the width of confidence intervals would be more comparable.

6.4 Aggregate Excesses and Cold—Waves

The functionals examined in Sections 6.1 — 6.3 relate only to the peak and duration of extreme
events. There are many problems for which the cumulative effect of extreme values is a better
measure of the severity of an extreme event. In such cases the aggregate excess functional, Wg
(functional (v) in Section 3), is the main quantity of interest.

Anderson and Dancy (1992) derive the asymptotic distribution of this functional when z = 0,
from the point process characterization of Hsing (1987). No specific forms for the dependence
structure are assumed, and consequently the limiting distributional family is very broad. By con-
trast, our fitted Extremal Markov model completely specifies the aggregate excess distribution,
which can be obtained by simulation, based on importance sampling of the cluster maximum to
ensure accurate tail estimates. For the temperature data, Figure 5 compares the model-based
distribution function of Wg, with the corresponding empirical distribution function; in each case
we take z = 0, and the empirical estimation is based on the previously discussed declustering
scheme. Furthermore, by Theorem 1, the distribution of the winter period maximum aggregate
excess, W, is given by

Pr(Wg < w) = exp{—900A(1 — W,)},

where W, = Pr{Wg < w}.

The joint distribution of the aggregate excess and the cluster maximum, Wjs, can also be
obtained from the above simulation scheme. This distribution has a singular component, with
probability n(1), for Wg = Wjy, and a density on {w: Wg > Wy}. In Figure 6 model-based
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densities are compared with the corresponding empirical observations of the cluster maximum
and aggregate excess.

As a final example, we consider the cold—wave functional discussed in Section 3. The stochas-
tic behaviour of this characteristic is highly dependent on the localized structure of extreme
events. We fix m = 3 and consider various levels of cold-wave definition z > 0. By simulating
clusters of exceedances from the fitted model we obtain an estimate of C(z), the probability a
cluster contains no cold waves at level u + z. Then by Theorem 1, the probability of no cold
waves of level u + z in a winter period is given by exp{—900AC(z)}. This probability is plotted
as a function of u + z in Figure 7.

6.5 Comparison of model and empirical estimates

One of the earliest papers to address the kind of questions we have studied in this paper was
Barnett and Lewis (1965). In that paper, motivated by an industrial problem, they wanted to
compute probabilities of various events related to low temperatures, such as whether at any time
during the winter the temperature dropped below a certain critical level for three consecutive
hours. Their approach was essentially to condition on the annual minimum value, which they
modelled by a Gumbel distribution, and to use empirical approaches to obtain the required
conditional probabilities. A disadvantage of their method, as they themselves quite openly
pointed out, was that without any model for the conditional probabilities their method required
some rather ad hoc assumptions that they could not justify on general grounds.

;From the more modern point of view of threshold methods, we could consider the condi-
tional distribution of an event of the form described given the mimimum temperature within a
cluster, rather than given the mimimum temperature over the whole year, and methods of the
form described by Barnett and Lewis should still be applicable. This could be considered an
empirical approach to the problem, as opposed to the model-based approach which has been
the main theme of this paper. The caveat of empirical estimators in this context is that clus-
ters are intrinsically rare, so that estimates tend to be unstable and partially dependent on the
declustering scheme adopted. We have shown how an appeal to asymptotic model structure
can avoid these difficulties, but it is still valuable to compare model-based and empirical esti-
mates. For example, in the cold-wave example of Section 6.4, the empirical estimate of C(u)is
123/134 = 0.92, by comparison with a value of 0.87 obtained from the fitted model.

Generally, where comparison is possible, the fitted model appears to capture the key empirical
features of functionals of interest. When discrepancies do arise, as highlighted by the empiri-
cal and model estimates of the cluster size distribution in Table 2, the dilemma is whether to
attribute the discrepancy to inadequacies of the asymptotic model, or to instability of empir-
ical estimates. Potential deficiencies of the asymptotic model include the possibility of non-
stationarity of the process over the winter period (cf. Coles et al., 1993), the possible need for
a higher-order Markov model, and inconsistencies due to our model being continuous and the
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data discrete. The choice of threshold u = 5.5 was made so as to ensure stability of empirical
estimates of the mean cluster size, but the results of Section 6.2 suggest that a higher threshold
may be required to obtain stability of other cluster characteristics. Thus, for example, there
is significant evidence that the model under—estimates the aggregate excess distribution at all
levels except the tails of the distribution. This is perhaps not too serious, since if the relevant
functional is the aggregate excess then the upper tail is the region of most interest.

Appendix

Proof of Theorem 1: Let {t,,} denote another sequence of integers such that £, — 00,1, /Pn —
0 and né(t,)/pn — 0. To see that such a sequence must exist, observe that if we can find a se-
quence {p, } satisfying (4.2), then there also exists a sequence satisfying (4.2) and né(pn/6)/pn —
0 for any § > 0. By choosing a sequence {§,} so that §, — oo sufficiently slowly, we can ensure
nd(pn/6n)/pn — 0. Let t, = 1 +int(pn/éy), where int(z) denotes integer part of z.

With ¢, so defined, let k, = int(n/(pn + t,)) and write the index set {1,...,n} as A1 U
By U A; U B, U...U By, where the A’s and B’s are successive ‘long’ and ‘short’ blocks of
lengths p,, and either t, or t, + 1; thus A; = {1,2,...,p,}, By is either {pn+ 1,...,pn + 15} or
{pn+1,...,Pn +tn + 1}, and so on. Write

kn
Walun) = S (W + W)

=1
where

W = 3 g{(¥; = wn)ts- s (Viem=1 — un)4},
JEA;

Wed = 3 o{(¥; ~wn)ere s (Vigmos = va)s},
JEB;
and observe that by (4.3), (4.7), and the fact that knt,{1 — F(un)} — 0, we have

E W(z)

i=1

Hence it suffices to calculate the asymptotic distribution of ZW,S’I,) Let {W,S?i),l <i<ky}de
note independent random variables with the same (common) marginal distribution as W,(llz),l <
t < ky. Define

i kn
Tﬂ = Z W1S.Jt)7

=Wl

N, 2
1=1 i=k+1

j=0,1 and 0< k < kn,

(S,(f()) =0 T(J)n =0, §=0,1)and
¥i(t) = E [exp{it(S (0) +T ) H,0<L k<L k.
k n,k
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Thus g is the characteristic function of ZW,(:,Z, ¥k, is the characteristic function of ZW,S?,E,
and

| Yrs1(t) — Yr(t) < (tn), 0< k< kn-—1.
Hence
| Yo(t) = Yra(?) I£ knd(tn) — 0.

Thus the asymptotic distribution of EWS,Z is the same as that of EW,S?,Z. To conclude the
proof, define I, x to be 1if Y; > u, for some j such that either j € Ay or j — m + 1 € A, and
0 otherwise. By standard results in extreme value theory (e.g. Leadbetter, 1983; or Hsing et
al., 1988), 3" I, x converges to a Poisson random variable with mean 7. The result then follows
from this fact, the independence of summands, and (4.8).

Proof of (4.9): More precisely, we want to show that if (4.4) holds and if the limiting
distribution defined by (4.9) exists, then this limiting distribution also satisfies (4.8).

Fix w > 0. If (4.9) holds, then there exists some sequence p/, — oo such that

Pr{W* < w} = limPr{W,, < w|max(¥y,...,Yp) > us}. (6.4)

'Pn

One way to characterise the limit in (4.11) is to condition on the first time, I, and the last time,
J, at which the level u, is exceeded, where 1 < I < J < pl,. The probability that W;,Pi. <w
given I and J is a function of J — I, say 1. Define 8,(u) = Pr{Yz < u,...,Y, < u | ¥} > u}
as earlier, and also f,(u) = Pr{¥; < u,...,Ypu; < u| Y, > u}. Then

Pr{W, i, < w|max(Yy,...,Yp ) > u} =

Pn J

Z Zol(un)ep;‘_,]ﬂ(un)qjq Pr{Y; > un | Y7 > un}

J=11I=1
7 (6.5)
> Oy, ~+1(un)
J=1

We claim that (4.12) is asymptotically indistingishable from
0 Zq, Pr{Y;41 > un | Y1 > u,}. (6.6)

r=0
Since our proof will work equally well with p!, replaced by p,, this will suffice to show that (4.9)
and (4.11) lead to the same limit. Using the fact that 8;(u,) for 1 < j < pl, is bounded below

Ph
and above, and that 20,,;. —J+1(un) diverges as n — oo, it suffices to show that
J=1
J —
E{Ol(un) —0}qi—1Pr{Y; > un | Y1 > us}
I+1

becomes negligible for sﬁiﬁciently large J < p,. However, this follows directly from (4.4) and
the fact that the definition (4.5) works equally well in reverse time.
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Figure Headings

Figure 1 Estimated extremal index, 6, plotted against the threshold, u, used in its estimation.
The curve corresponds to estimates obtained using the Markov model with transitions described
by the fitted logistic model. Associated 95% confidence intervals are shown by the broken lines.
The points +, e, X correspond to empirical estimates of 8 obtained using a fixed storm length

declustering scheme of 2, 5 and 10 days respectively.

Figure 2 Simplex plot of W;; v W; 3. Contours at heights 1,10(1), are based on the trivariate
time series logistic model and the points to observed values.

Figure 3 The relationship between the extremal index, 8, and the extremal coefficient, 2%, for

the Markov logistic model, with parameter a.

Figure 4 Return levels, y,, together with associated 95% confidence intervals. All ezceedances
and cluster mazima correspond to the Markov model and the Davison and Smith (1990) ap-

proaches respectively.

Figure 5 The distribution of aggregate excesses, Pr{Wg < w}, estimated from the Markov
model (solid line) and empirically (broken line).

Figure 6 The joint distribution of the cluster maximum and aggregate excess. Plot (a) shows
the singular component (i.e. cluster maximum = aggregate excess) occurring with probability
7(1), whereas plot (b) shows the continuous component. The fitted model and observations are

given in each case — in (a) the observations are shown via a crude histogram.

Figure 7 Probability of no cold waves in a winter period for various levels, u + 2, of cold wave

definition.
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