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Abstract

Current reporting of results based on Markov chain Monte Carlo computations

could be improved. In particular, a measure of the accuracy of the resulting estimates

is rarely reported in the literature. Thus the reader has little ability to objectively

assess the quality of the reported estimates. This paper is an attempt to address this

issue in that we discuss why Monte Carlo standard errors are important, how they

can be easily calculated in Markov chain Monte Carlo and how they can be used to

decide when to stop the simulation. We compare their use to a popular alternative

in the context of two examples.
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1 Introduction

Hoaglin and Andrews (1975) consider the general problem of what information

should be included in publishing computation-based results. The goal of their sug-

gestions was “...to make it easy for the reader to make reasonable assessments of

the numerical quality of the results.” In particular, Hoaglin and Andrews suggested

that it is crucial to report some notion of the accuracy of the results and, for Monte

Carlo studies this should include estimated standard errors. However, in settings

where Markov chain Monte Carlo (MCMC) is used there is a culture of rarely re-

porting such standard errors. For example, we looked at the issues published in 2006

of Journal of the American Statistical Association, Biometrika and Journal of the

Royal Statistical Society, Series B. In these journals we found 39 papers that used

MCMC. Only 3 of them directly addressed the Monte Carlo error in the reported

estimates. Thus it is apparent that the readers of the other papers have little ability

to objectively assess the quality of the reported estimates. This paper is an attempt

to address this issue in that we discuss why Monte Carlo standard errors are im-

portant, how they can be easily calculated in MCMC and compare their use to a

popular alternative.

MCMC has become a standard technique in the toolbox of applied statisticians.

Indeed, it is not much of an overstatement to say that it has revolutionized applied

statistics, especially that of the Bayesian variety. Simply put, MCMC is a method for

using a computer to generate data in order to estimate fixed, unknown quantities

of a given target distribution. (For this reason we object to calling it ‘Bayesian

Computation’.) That is, it is used to produce a point estimate of some characteristic

of a target distribution π having support X. The most common use of MCMC is to

estimate Eπg :=
∫

X
g(x)π(dx) where g is a real-valued, π-integrable function on X.

Suppose that X = {X1,X2,X3, . . . } is an aperiodic, irreducible, positive Harris

recurrent Markov chain with state space X and invariant distribution π (for defi-

nitions see Meyn and Tweedie, 1993). In this case X is Harris ergodic. Typically,

estimating Eπg is natural since an appeal to the Ergodic Theorem implies that if
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Eπ|g| < ∞ then, with probability 1,

ḡn :=
1

n

n
∑

i=1

g(Xi) → Eπg as n → ∞. (1)

The MCMC method entails constructing a Markov chain X satisfying the regularity

conditions described above and then simulating X for a finite number of steps, say

n, and using ḡn to estimate Eπg. The popularity of MCMC largely is due to the

ease with which such an X can be simulated.

An obvious question is when should we stop the simulation? That is, how large

should n be? Or, when is ḡn a good estimate of Eπg? In a given application we

usually have an idea about how many significant figures we want in our estimate but

how should this be assessed? Responsible statisticians and scientists want to do the

right thing but output analysis in MCMC has become a muddled area with often

conflicting advice and dubious terminology. This leaves many in a position where

they feel forced to rely on intuition, folklore and heuristics. We believe this often

leads to some poor practices: (A) Stopping the simulation too early, (B) Wasting

potentially useful samples, and, most importantly, (C) Providing no notion of the

quality of ḡn as an estimate of Eπg. In this paper we focus on issue (C) but touch

briefly on (A) and (B).

The rest of this paper is organized as follows. In Section 2 we introduce some

basic concepts from the theory of Markov chains. In Section 3 we consider estimating

the Monte Carlo error of ḡn. Then Section 4 covers two methods for stopping the

simulation and compares them in a toy example. In Section 5 the two methods are

compared again in a realistic spatial model for a data set on wheat crop flowering

dates in North Dakota. We close with some final remarks in Section 6.

2 Markov Chain Basics

Suppose that X = {X1,X2, . . . } is a Harris ergodic Markov chain with state space

X and invariant distribution π. For n ∈ N := {1, 2, 3, . . .} let Pn(x, ·) be the n-step

Markov transition kernel; that is, for x ∈ X and a measurable set A, Pn(x,A) =
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Pr (Xn+i ∈ A | Xi = x). An extremely useful property of X is that the chain will

converge to the invariant distribution. Specifically,

‖Pn(x, ·) − π(·)‖ ↓ 0 as n → ∞, (2)

where the left-hand side is the total variation distance between Pn(x, ·) and π(·).
(This is stronger than convergence in distribution.) The Markov chain X is geomet-

rically ergodic if there exists a constant 0 < t < 1 and a function M : X → R
+ such

that for any x ∈ X,

‖Pn(x, ·) − π(·)‖ ≤ M(x) tn (3)

for n ∈ N. If M(x) is bounded, then X is uniformly ergodic. Thus uniform ergodicity

implies geometric ergodicity. As one might imagine, finding M and t directly is often

quite difficult in realistic settings.

There has been a substantial amount of effort devoted to establishing (3) in

MCMC settings. For example, Hobert and Geyer (1998), Jones and Hobert (2004),

Marchev and Hobert (2004), Mira and Tierney (2002), Robert (1995), Roberts and

Polson (1994), Roberts and Rosenthal (1999), Rosenthal (1995, 1996) and Tier-

ney (1994) examined Gibbs samplers while Christensen et al. (2001), Douc et al.

(2004), Fort and Moulines (2000), Fort and Moulines (2003), Geyer (1999), Jarner

and Hansen (2000), Jarner and Roberts (2002), Meyn and Tweedie (1994), and

Mengersen and Tweedie (1996) considered Metropolis-Hastings-Green algorithms.

3 Monte Carlo Error

A Monte Carlo approximation is not exact. The number ḡn is not the exact value

of the integral we are trying to approximate. It is off by some amount, the Monte

Carlo error, ḡn − Eπg. How large is the Monte Carlo error? Unfortunately, we can

never know unless we know Eπg.

We don’t know the Monte Carlo error, but we can get a handle on its sam-

pling distribution. That is, assessing the Monte Carlo error can be accomplished
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by estimating the variance of the asymptotic distribution of ḡn. Under regularity

conditions, the Markov chain X and function g will admit a CLT. That is,

√
n(ḡn − Eπg)

d→ N(0, σ2
g) (4)

as n → ∞ where σ2
g := varπ{g(X1)} + 2

∑

∞

i=2 covπ{g(X1), g(Xi)}; the subscript π

means that the expectations are calculated assuming X1 ∼ π. The CLT holds when

either (i) X is geometrically ergodic and Eπ|g|2+δ < ∞ for some δ > 0 or (ii) X

is uniformly ergodic and Eπg2 < ∞. These are not the only sufficient conditions

for a CLT but are among the most straightforward to state; the interested reader

is pointed to the summaries provided by Jones (2004) and Roberts and Rosenthal

(2004).

Given a CLT one can assess the Monte Carlo error in ḡn by estimating the

variance, σ2
g . That is, we can calculate and report an estimate of σ2

g , say σ̂2
g that

will allow us to assess the accuracy of the point estimate. There have been many

techniques introduced for estimating σ2
g ; see, among others, Geyer (1992), Glynn

and Iglehart (1990), Glynn and Whitt (1991), Mykland et al. (1995) and Roberts

(1996). For an introduction to these methods we recommend Fishman (1996). We

will consider only one of the available methods for estimating σ2
g , namely batch

means. The reason we chose this method is because it is easy to implement and can

enjoy desirable theoretical properties.

3.1 Batch Means

In non-overlapping batch means the output is broken into blocks of equal size. Sup-

pose the algorithm is run for a total of n = ab iterations (hence a = an and b = bn

are implicit functions of n) and define

Ȳj :=
1

b

jb
∑

i=(j−1)b+1

g(Xi) for j = 1, . . . , a .

The batch means estimate of σ2
g is

σ̂2
g =

b

a − 1

a
∑

j=1

(Ȳj − ḡn)2 . (5)
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Batch means is attractive because it is easy to implement (and it is available in some

software, e.g. WinBUGS) but some authors encourage caution in its use (Roberts,

1996). In particular, we believe careful use is warranted since (5), in general, is not

a consistent estimator of σ2
g . On the other hand, Jones et al. (2006) showed that

if the batch size and the number of batches are allowed to increase as the overall

length of the simulation increases by setting bn = ⌊nθ⌋ and an = ⌊bn/n⌋, then

σ̂2
g → σ2

g with probability 1 as n → ∞. In this case we call it consistent batch means

(CBM) to distinguish it from the standard (fixed number of batches) version. The

regularity conditions require that X be geometrically ergodic, Eπ|g|2+ǫ1+ǫ2 < ∞ for

some ǫ1 > 0, ǫ2 > 0 and (1 + ǫ1/2)
−1 < θ < 1; often θ = 1/2 (i.e., bn = ⌊√n⌋ and

an = ⌊bn/n⌋) is a convenient choice that works well in applications. It is important

to note that the only practical difference between CBM and standard batch means

is that the batch number and size are chosen as functions of the overall run length,

n. A simple R function for implementing CBM or a faster command line C version

of this function is available from the authors upon request.

Using CBM to get an estimate of the Monte Carlo standard error (MCSE) of ḡn,

say σ̂g/
√

n, we can form an asymptotically valid confidence interval for Eπg. The

half-width of the interval is given by

tan−1
σ̂g√
n

(6)

where tan−1 is an appropriate quantile from Student’s t distribution with an − 1

degrees of freedom.

4 Stopping the Simulation

In this section we consider two approaches to terminating the simulation. The first

is based on calculating an MCSE and is discussed in subsection 4.1. The second is

based on the method introduced in Gelman and Rubin (1992) and is one of many so-

called convergence diagnostics (Cowles and Carlin, 1996). Our reason for choosing

the Gelman-Rubin diagnostic (GRD) is that it appears to be far and away the most
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popular method for stopping the simulation. GRD and MCSE are used to stop the

simulation in a similar manner. After n iterations either the value of the GRD or

MCSE is calculated and if it isn’t sufficiently small then we continue the simulation

until it is.

4.1 Fixed-Width Methodology

Suppose we have an idea of how many significant figures we want in our estimate.

Another way of saying this is that we want the half-width of the interval (6) to be less

than some user-specified value, ǫ. Thus we might consider stopping the simulation

when the MCSE of ḡn is sufficiently small. This, of course, means that we may have

to check whether this criterion is met many times. It is not obvious that such a

procedure will be guaranteed to terminate the computation in a finite amount of

time or whether the resulting intervals will enjoy the desired coverage probability

and half-width. Also, we don’t want to check too early in the simulation since we

will run the risk of premature termination due to a poor estimate the of the standard

error.

Suppose we use CBM to estimate the Monte Carlo standard error of ḡn, say

σ̂g/
√

n, and use it to form a confidence interval for Eπg. If this interval is too

large then the value of n is increased and simulation continues until the interval is

sufficiently small. Formally, the criterion is given by

tan−1
σ̂g√
n

+ p(n) ≤ ǫ (7)

where tan−1 is an appropriate quantile, p(n) = ǫI(n < n∗) where, n∗ > 0 is fixed,

I is the usual indicator function on Z+ and ǫ > 0 is the user-specified half-width.

The role of p is to ensure that the simulation is not terminated prematurely due to a

poor estimate of σ̂g. The conditions which guarantee σ̂2
g is consistent also imply that

this procedure will terminate in a finite amount of time with probability one and

that the resulting intervals have approximately the desired coverage and half-width

in practice (see Glynn and Whitt, 1992).
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4.1.1 Practical Implementation Issues

1. The CLT and CBM require a geometrically ergodic Markov chain. This can

be difficult to check directly in any given application. On the other hand,

considerable effort has been spent establishing (3) for a number of Markov

chains; see the references given at the end of Section 2. In our view, this is not

the obstacle that it was in the past.

2. The frequency with which (7) should be evaluated is an open question. Check-

ing often, say every few iterations, may substantially increase the overall com-

putational effort.

3. Consider p(n) = ǫI(n < n∗). The choice of n∗ is often made based on the

user’s experience with the problem at hand. However, for geometrically ergodic

Markov chains there is some theory that can give guidance on this issue (see

Jones and Hobert, 2001; Rosenthal, 1995).

4. Stationarity of the Markov chain is not required for the CLT or the asymptotic

validity of CBM. Hence burn-in is not required.

4.1.2 Toy Example

We now introduce a toy example that will be used again in the next subsection. Let

Y1, . . . , YK be iid N(µ, λ) and let the prior for (µ, λ) be proportional to 1/
√

λ. The

posterior density is characterized by

π(µ, λ|y) ∝ λ−
K+1

2 exp







− 1

2λ

K
∑

j=1

(yj − µ)2







(8)

where y = (y1, . . . , yK)T . It is easy to check that this posterior is proper as long

as K ≥ 3 and we assume this throughout. Using the Gibbs sampler to make draws

from (8) requires the full conditional densities, f(µ|λ, y) and f(λ|µ, y), which are as

follows:

µ|λ, y ∼ N(ȳ, λ/K) ,

λ|µ, y ∼ IG

(

K − 1

2
,
(K − 1)s2 + K(ȳ − µ)2

2

)

,
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where ȳ is the sample mean and (K−1)s2 =
∑

(yi− ȳ)2. (We say W ∼ IG(α, β) if its

density is proportional to w−(α+1)e−β/wI(w > 0).) Consider estimating the posterior

means of µ and λ. It is easy to prove that E(µ|y) = ȳ and E(λ|y) = (K−1)s2/(K−4)

for K > 4. Thus we do not need MCMC to estimate these quantities but we will

ignore this and use the output of a Gibbs sampler to estimate E(µ|y) and E(λ|y)

with µ̄n and λ̄n, respectively.

Consider the Gibbs sampler that updates λ then µ; that is, letting (λ′, µ′) denote

the current state and (λ, µ) denote the future state, the transition looks like (λ′, µ′) →
(λ, µ′) → (λ, µ). Jones and Hobert (2001) established that this Markov chain is

geometrically ergodic as long as K ≥ 5. If K > 10, then the moment conditions

ensuring the CLT and the regularity conditions for CBM (with θ = 1/2) hold.

Let K = 11, ȳ = 1, and (K − 1)s2 = 14; for the remainder of this paper

these settings will be used every time we consider this example. Consider estimat-

ing E(µ|y) and E(λ|y) with µ̄n and λ̄n, respectively and using CBM to calculate

the MCSE’s for each estimate. We performed 1000 independent replications of the

following procedure. Each replication of the Gibbs sampler was started from ȳ. Us-

ing (7), a replication was terminated when the half-width of a 95% interval with

p(n) = ǫI(n < 400) was smaller than a prespecified cutoff, ǫ, for both parameters.

If both standard errors were not less than the cutoff, then 10% of the current chain

length was added to chain before checking again. We used two settings for the

cutoff, ǫ = 0.06 and ǫ = 0.04. These settings will be denoted CBM1 and CBM2,

respectively.

First, consider the estimates of E(µ|y). We can see from Figures 1a and 1b that

the estimates of E(µ|y) are centered around the truth with both settings. Clearly,

the cut-off of ǫ = 0.04 is more stringent and yields estimates that are closer to the

true value. It should come as no surprise that the cost of this added precision is

increased computational effort. Similar plots for λ̄n yield the same results and are

therefore excluded.

Also, 100% of the estimates, µ̄n, of E(µ|y) and 96% of the estimates, λ̄n, of E(λ|y)
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are within the specified ǫ = 0.04 of the truth. In every replication the simulation

was stopped when the criterion (7) for E(λ|y) dropped below the cutoff.

4.2 The Gelman-Rubin Diagnostic

The Gelman-Rubin diagnostic (GRD) introduced in Gelman and Rubin (1992) and

refined by Brooks and Gelman (1998) is the most popular method for assessing the

output of MCMC algorithms. It is important to note that this method is also based

on a Markov chain CLT (Gelman and Rubin, 1992, p.463) and hence does not apply

more generally than approaches based on calculating an MCSE.

GRD is based on the simulation of m independent parallel Markov chains hav-

ing invariant distribution π, each of length 2l. Thus the total simulation effort is

2lm. Gelman and Rubin (1992) suggest that the first l simulations should be dis-

carded and inference based on the last l simulations; for the jth chain these are

denoted {X1j ,X2j ,X3j , . . . ,Xlj} with j = 1, 2, . . . ,m. Recall that we are interested

in estimating Eπg and define Yij = g(Xij),

B =
l

m − 1

m
∑

j=1

(Ȳ·j − Ȳ··)
2 and W =

1

m

m
∑

j=1

s2
j

where Ȳ·j = l−1
∑l

i=1 Yij , Ȳ·· = m−1
∑m

j=1 Ȳ·j and s2
j = (l − 1)−1

∑l
i=1(Yij − Ȳ·j)

2.

Let

V̂ =
l − 1

l
W +

(m + 1)B

ml
and d ≈ 2V̂

v̂ar(V̂ )
,

and define the corrected potential scale reduction factor

R̂ =

√

d + 3

d + 1

V̂

W
. (9)

As noted by Gelman et al. (2004), V̂ and W are essentially two different estimators

of varπg; not σ2
g from the Markov chain CLT. That is, neither V̂ nor W address the

sampling variability of ḡn and hence neither does R̂.

In our examples we used the R package coda which reports an upper bound on
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R̂. Specifically, a 97.5% upper bound for R̂ is given by

R̂0.975 =

√

d + 3

d + 1

[

l − 1

l
+ F0.975,m−1,w

(

m + 1

ml

B

W

)]

,

where F0.975,m−1,w is the 97.5% percentile of an Fm−1
w distribution, w = 2W 2/σ̂2

W

and

σ̂2
W =

1

m − 1

m
∑

j=1

(

s2
j − W

)2
.

In order to stop the simulation the user provides a cutoff, δ > 0, and simulation

continues until

R̂0.975 + p(n) ≤ δ . (10)

As with fixed-width methods, the role of p(n) is to ensure that we do not stop the

simulation prematurely due to a poor estimate, R̂0.975. By requiring a minimum

total simulation effort of n∗ = 2lm we are effectively setting p(n) = δI(n < n∗)

where n indexes the total simulation effort.

4.2.1 Practical Implementation Issues

1. A rule of thumb suggested by Gelman et al. (2004) is to set δ = 1.1. These

authors also suggest that a value of δ closer to 1 will be desirable in a “final

analysis in a critical problem” but give no further guidance. Since neither R̂

nor R̂0.975 directly estimates the Monte Carlo error in ḡn it is unclear to us

that R̂ ≈ 1 implies ḡn is a good estimate of Eπg.

2. How large should m be? There seem to be few guidelines in the literature

except that m ≥ 2 since otherwise we cannot calculate B. Clearly, if m is too

large then each chain will be too short to achieve any reasonable expectation

of convergence within a given computational effort.

3. The initial values, Xj1, of the m parallel chains should be drawn from an

“over-dispersed” distribution. Gelman and Rubin (1992) suggest estimating

the modes of π and then using a mixture distribution whose components are

centered at these modes. Constructing this distribution could be difficult and

is often not done in practice (Gelman et al., 2004, p. 593).
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4. To our knowledge there has been no discussion in the literature about optimal

choices of p(n) or n∗. In particular, we know of no guidance about how long

each of the parallel chains should be simulated before the first time we check

that R̂0.975 < δ or how often one should check after that. However, the same

theoretical results that could give guidance in item 3 of Section 4.1.1 would

apply here as well.

4.2.2 Toy Example

We consider implementation of GRD in the toy example introduced in subsec-

tion 4.1.2. Notice that

π(µ, λ|y) = g1(µ|λ)g2(λ)

where g1(µ|λ) is a N(ȳ, λ/K) density and g2(λ) is an IG((K − 2)/2, (K − 1)s2/2)

density. Thus we can sequentially sample the exact distribution by first drawing

from g2(λ), and then conditionally, draw from g1(µ|λ). We will use this to obtain

starting values for each of the m parallel chains. Thus each of the m parallel Markov

chains will be stationary.

Our goal is to investigate the finite-sample properties of the GRD by considering

the estimates of E(µ|y) and E(λ|y) as in subsection 4.1.2. To this end, we took

multiple chains starting from different draws from the sequential sampler. The

multiple chains were run until the total simulation effort was n∗ = 400 draws; this is

the same minimum simulation effort we required of CBM in the previous section. If

R̂0.975 < δ for both, the simulation was stopped. Otherwise, 10% of the current chain

length was added to each chain before R̂0.975 was recalculated. This continued until

R̂0.975 was below δ for both. This simulation procedure was repeated independently

1000 times with each replication using the same initial values. We considered 4

settings using the combinations of m ∈ {2, 4} and δ ∈ {1.005, 1.1}. These settings

will be denoted GRD1, GRD2, GRD3 and GRD4; see Table 1 for the different

settings along with summary statistics that will be considered later.

Upon completion of each replication, the values of µ̄n and λ̄n were recorded.
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Figures 1c–1f show histograms of µ̄n for each setting. We can see that all the

settings center around the true value of 1, and setting δ = 1.005 provides better

estimates. Increasing the number of chains seems to have little impact on the quality

of estimation, particularly when δ = 1.1. Histograms of λ̄n for each setting show

similar trends.

Let’s compare GRD and CBM in terms of the quality of estimation of E(µ|y).

Table 1 gives the estimated mean-squared error (MSE) for each setting based on 1000

independent replications described above. The estimates for GRD were obtained

using the methods described earlier in this subsection while the results for CBM

were obtained from the simulations performed for subsection 4.1.2. It is clear that

CBM results in superior estimation. Of particular interest, is that using the setting

CBM1 results in better estimates of E(µ|y) and E(λ|y) than using setting GRD4

while using approximately half the average simulation effort (2191 versus 5365); see

Table 2.

Now we focus on comparing two settings having comparable average simulation

effort, namely, GRD4 and CBM2. In this case, the MSE for µ̄n using GRD was

0.000134 (s.e.= 9.2 × 10−6) and for CBM we observed an MSE of 0.0000373 (1.8 ×
10−6). Now consider λ̄n. The MSE based on using GRD was 0.00165 (1.2 × 10−4)

and for CBM we observed an MSE of 0.000393 (1.8 × 10−5). There are likely two

reasons for this difference: (i) default use of burn-in in GRD and (ii) GRD has a

more variable total simulation effort than CBM.

Consider (i). Recall that we employed a sequential sampler to draw from the

target distribution implying that the Markov chain is stationary and hence burn-in is

unnecessary. To understand the effect of using burn-in we calculated the estimates of

E(µ|y) using the entire simulation; that is, we did not discard the first l draws of each

of the m parallel chains. This yields an estimated MSE of 0.0000709 (4.8×10−6) for

GRD4. Thus, the estimates using GRD4 still have an estimated MSE 1.9 times larger

than that obtained using CBM2. The standard errors of the MSE estimates show

that this difference is still significant, indicating CBM is still a superior method for
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estimating E(µ|y). Similarly, for estimating E(λ|y) the MSE using GRD4 without

discarding the first half of each chain is 2.1 higher than that of CBM2.

Now consider (ii). Figures 2a and 2b show a plot of the estimates, µ̄n, versus

the total number of draws in the chains. The graphs clearly show the total number

of draws was much more variable using GRD than using CBM. From a practical

standpoint, this implies that when using GRD we are likely to run a simulation

either too long or too short. Of course, if we run the simulation too long, we will

just get a better estimate. But if the simulation is too short, the estimate can be

poor. Table 2 shows the percentage of the 1000 replications which were stopped at

their minimum (n∗ = 400) and the percentage with less than 1000 total draws. This

clearly shows that premature stopping was common when using GRD.

Toy examples are useful for illustration, however it is sometimes difficult to know

just how much credence the resulting claims should be given. For this reason, we

turn our attention to a setting that is “realistic” in the sense that it is similar to

the type of setting encountered in practice. Specifically, we do not know the true

values of the posterior expectations and implementing a reasonable MCMC strategy

is not easy. Moreover, we do not know the convergence rate of the associated Markov

chain.

5 A hierarchical model for geostatistics

We consider a data set on wheat crop flowering dates in the state of North Dakota

(cf. Haran et al., 2006). This data consists of experts’ model-based estimates for the

dates when wheat crops flower at 365 different locations across the state. Let D be

the set of N sites and the estimate for the flowering date at site s be Z(s) for s ∈ D.

Let X(s) be the latitude for s ∈ D. The flowering dates are generally expected to

be later in the year as X(s) increases so we assume that the expected value for Z(s)

increases linearly with X(s). The flowering dates are also assumed to be spatially
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dependent, suggesting the following hierarchical model:

Z(s) | β, ξ(s) = X(s)β + ξ(s) for s ∈ D ,

ξ | τ2, σ2, φ ∼ N(0,Σ(τ2, σ2, φ)),

where ξ = (ξ(s1), . . . , ξ(sN ))T with Σ(τ2, σ2, φ) = τ2I + σ2H(φ) and {H(φ)}ij =

exp((−‖si − sj‖)/φ), the exponential correlation function. We complete the specifi-

cation of the model with priors on τ2, σ2, φ, and β,

τ2 ∼ IG(2, 30), σ2 ∼ IG(0.1, 30),

φ ∼ Log-Unif(0.6, 6), π(β) ∝ 1 .

Setting Z = (Z(s1), . . . , Z(sN )), inference is based on the posterior distribution

π(τ2, σ2, φ, β | Z). Note that MCMC may be required since the integrals required for

inference are analytically intractable. Also, samples from this posterior distribution

can then be used for prediction at any location s ∈ D via sequential sampling.

Consider estimating the posterior expectation of τ2, σ2, φ, and β. Unlike the toy

example considered earlier these expectations are not analytically available. Sam-

pling from the posterior is accomplished via a Metropolis-Hastings-Green sampler

with a joint update for the τ2, φ, β using a three-dimensional independent Normal

proposal centered at the current state with a variance of 0.3 for each component.

We use a univariate Gibbs update for σ2.

To obtain a high quality approximation to the desired posterior expectations

we used a single long run of 500,000 iterations of the sampler and obtained 23.23

(.0426), 25.82 (.0200), 2.17 (.0069), and 4.09 (4.3e-5) as estimates of the posterior

expectations of τ2, σ2, φ, and β, respectively. These are assumed to be the truth.

We also recorded the 10th, 30th, 70th and 90th percentiles of this long run for each

parameter.

Our goal is to compare the finite-sample properties of GRD and CBM in terms of

quality of estimation and overall simulation effort. Consider implementation of GRD.

We will produce 100 replications using the following procedure. For each replication

we used m = 4 parallel chains from four different starting values corresponding to the
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10th, 30th, 70th and 90th percentiles recorded above. A minimum total simulation

effort of 1000 (250 per chain) was required. Also, no burn-in was employed. This

is consistent with our finding in the toy example that estimation improved without

using burn-in. Each replication continued until R̂0.975 ≤ 1.1 for all of the parameter

estimates. Estimates of the posterior expectations were obtained by averaging draws

across all 4 parallel chains.

Now consider the implementation of CBM. For the purpose of easy comparison

with GRD, we ran a total of 400 independent replications of our MCMC sampler,

where the 10th, 30th, 70th and 90th percentiles of the parameter samples from the

long run were used as starting values for 100 replications each. Each replication was

simulated for a minimum of 1000 iterations so p(n) = ǫI(n < 1000). Using (7), a

single replication (chain) was terminated when the half-widths of a 95% interval was

smaller than 0.5, 0.5, 0.05 and 0.05 for the estimates of the posterior expectations

of τ2, σ2, φ, and β, respectively. These thresholds correspond to reasonable desired

accuracies for the parameters. If the half-width was not less than the cutoff, then

10 iterations were added to the chain before checking again.

The results from our simulation study are summarized in Table 3. Clearly, the

MSE for estimates using GRD are significantly higher than the MSE for estimates

obtained using CBM. However, CBM required a greater average simulation effort

31,568.9 (177.73) than did GRD 8,082 (525.7). To study whether the CBM stopping

rule delivered confidence intervals at the desired 95% levels, we also estimated the

coverage probabilities for the intervals for the posterior expectations of τ2, σ2, φ,

and β, which were 0.948 (0.0112), 0.945 (0.0114), 0.912 (0.0141), and 0.953 (0.0106)

respectively. The coverage for all parameters is fairly close to 95% as desired.

Finally, we note that this simulation study was conducted on a Linux cluster using

R (Ihaka and Gentleman, 1996), an MCMC package for spatial modeling, spBayes

(Finley et al., 2007), and the parallel random number generator package rlecuyer

(L’Ecuyer et al., 2002).
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6 Discussion

In our view, the point of this paper is that those examining the results of MCMC

computations are much better off when reliable techniques are used to estimate MC-

SEs and then the MCSEs are reported. An MCSE provides two desirable properties:

(1) It gives useful information about the quality of the subsequent estimation and

inference; and (2) it provides a theoretically justified, yet easily implemented, ap-

proach for determining appropriate stopping rules for their MCMC runs. On the

other hand, a claim that a test indicated the sampler “converged” is simply nowhere

near enough information for the reader of an article to judge the quality of the subse-

quent estimation and inference. Discarding a set of initial draws does not necessarily

improve the situation.

Of course, a key requirement for reporting valid Monte Carlo standard errors

is that the sampler works well. Finding a good sampler is likely to be the most

challenging part of the recipe we describe. We have given no guidance on this other

than one should look within the class of geometrically ergodic Markov chains if at all

possible. There is still a great deal of room for creativity and research in improving

samplers but there are already many useful methods that can be implemented for

difficult problems; for example, one of our favorite techniques is simulated temper-

ing (Geyer and Thompson, 1995; Marinari and Parisi, 1992) but many others are

possible.
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Table 1: Summary table for all settings and estimated mean-squared-error for estimating

E(µ|y) and E(λ|y) for the toy example of Section 4.1.2. Standard errors (S.E.) shown for

each estimate.

Stopping MSE for MSE for

Method Chains Rule E(µ|y) S.E. E(λ|y) S.E.

CBM1 1 0.06 9.82e-05 4.7e-06 1.03e-03 4.5e-05

CBM2 1 0.04 3.73e-05 1.8e-06 3.93e-04 1.8e-05

GRD1 2 1.1 7.99e-04 3.6e-05 8.7e-03 4e-04

GRD2 4 1.1 7.79e-04 3.7e-05 8.21e-03 3.6e-04

GRD3 2 1.005 3.49e-04 2.1e-05 3.68e-03 2e-04

GRD4 4 1.005 1.34e-04 9.2e-06 1.65e-03 1.2e-04
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Table 2: Summary of the proportion (and standard error) of the observed estimates which

were based on the minimum number (400) of draws, less than or equal to 1000 draws, and

the average total simulation effort for the toy example in Section 4.1.2.

Prop. Prop.

Method at Min. S.E. ≤ 1000 S.E. N S.E.

CBM1 0 0 0.011 0.0033 2191 19.9

CBM2 0 0 0 0 5123 33.2

GRD1 0.576 0.016 0.987 0.0036 469 4.1

GRD2 0.587 0.016 0.993 0.0026 471 4.2

GRD3 0.062 0.0076 0.363 0.015 2300 83.5

GRD4 0.01 0.0031 0.083 0.0087 5365 150 5

Table 3: Summary of estimated mean-squared error obtained using CBM and GRD for

the model of Section 5. Standard errors (S.E.) shown for each estimate.

Method GRD CBM

Parameter MSE S.E. MSE S.E.

E(τ 2|z) 0.201 0.0408 0.0269 0.00185

E(σ2|z) 0.0699 0.0179 0.00561 0.00039

E(φ|z) 0.00429 0.00061 0.000875 5.76e-05

E(β|z) 1.7e-07 3.09e-08 3.04e-08 1.89e-09
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Figure 1: Histograms from 1000 replications estimating E(µ|y) for the toy example of

Section 4.1.2 with CBM and GRD.
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(a) CBM1, with a cutoff of ǫ = 0.06.
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(b) CBM2, with a cutoff of ǫ = 0.04.
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(c) GRD1, 2 chains and δ = 1.1.
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(d) GRD3, 2 chains and δ = 1.005.
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(e) GRD2, 4 chains and δ = 1.1.
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(f) GRD4, 4 chains and δ = 1.005.
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Figure 2: Estimating E(µ|y) for the toy example of Section 4.1.2. Estimates of E(µ|y)

versus number of draws for the CBM2 and GRD4 settings.
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