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Abstract We present a novel fully probabilistic method

to interpret a single face image with the 3D Morphable

Model. The new method is based on Bayesian inference and

makes use of unreliable image-based information. Rather

than searching a single optimal solution, we infer the pos-

terior distribution of the model parameters given the target

image. The method is a stochastic sampling algorithm with

a propose-and-verify architecture based on the Metropolis–

Hastings algorithm. The stochastic method can robustly

integrate unreliable information and therefore does not rely

on feed-forward initialization. The integrative concept is

based on two ideas, a separation of proposal moves and

their verification with the model (Data-Driven Markov Chain

Monte Carlo), and filtering with the Metropolis acceptance

rule. It does not need gradients and is less prone to local

optima than standard fitters. We also introduce a new collec-

tive likelihood which models the average difference between

the model and the target image rather than individual pixel

differences. The average value shows a natural tendency

towards a normal distribution, even when the individual

pixel-wise difference is not Gaussian. We employ the new

fitting method to calculate posterior models of 3D face recon-

structions from single real-world images. A direct application

of the algorithm with the 3D Morphable Model leads us to

a fully automatic face recognition system with competitive

performance on the Multi-PIE database without any database

adaptation.
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1 Introduction

Understanding images of human faces is among the most

important problems in computer vision. Deformable Para-

metric Appearance Models (PAM) (Blanz and Vetter 1999;

Cootes et al. 2001; Matthews and Baker 2004) are a wide-

spread category of methods to solve this task. Most PAMs are

used in a generative setup with the intention to reconstruct

the input image with a parametrically-controlled synthetic

image. Such an Analysis-by-Synthesis approach leaves one

with the problem of how to find suitable parameters given an

input image (fitting). The fitting problem is difficult to solve.

The minimization of the difference between the synthetic

image and the target is highly non-convex and usually very

high-dimensional (d > 100). Most methods use standard

optimization algorithms, which require a very good initial-

ization and are prone to local optima. They cannot deal with

unreliable initialization and run into trouble if the calculated

gradients are not accurate enough.

We propose a novel probabilistic strategy for face model

fitting which is based on a Data-Driven Markov Chain Monte

Carlo (DDMCMC) (Tu et al. 2005) algorithm. It is stochastic

by design and produces a probabilistic result instead of a

point estimate. This makes the method suitable for uncertain

information as well as more robust towards local optima. Its

result is a posterior distribution, including information about

the certainty of the model fit.

The method is based on the separation of the optimization

iteration into a proposal and a verification stage. The split

removes the need for each update step to strictly improve
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the likelihood value and allows the method to also incorpo-

rate updates which are misleading. The method is formally

based on the Metropolis–Hastings (MH) algorithm, which

makes it a sampling-based fitting algorithm. Due to its sto-

chastic nature, the method becomes much less prone to local

optima and achieves high-quality reconstructions. Contrary

to traditional optimization, we integrate initialization infor-

mation directly into the Bayesian inference process of fitting.

Stochastic filtering, a cascaded application of the Metropo-

lis acceptance rule, generates samples from a sequence of

Bayesian conditional distributions.

We present and evaluate the probabilistic fitter with the 3D

Morphable Model (3DMM) for face reconstruction from a

single image. For this, we reformulate the 3DMM probabilis-

tically and present fitting as finding the posterior distribution

of the model’s parameters conditioned on the target image.

We demonstrate and study the integrative capabilities of

Bayesian stochastic filtering by including face and fea-

ture point detection directly into inference. The proposed

integration enables the method to reconstruct faces fully auto-

matically while avoiding a premature, irreversible decision

which is a problem in most feed-forward architectures.

In order to study the remaining uncertainty in a fit, we also

present a new collective likelihood to evaluate the degree of

fit between the model and the image. It is based on the average

squared distance between two images rather than the product

of independent Gaussian distributions at each pixel. While

the large product leads to extremely sharp posterior distrib-

utions due to the many thousand observations, the collective

likelihood lets us sample different solutions which show a

specified distance to the target image. With the collective

likelihood, we can study the remaining uncertainty of a fit.

The collective likelihood model is based on the idea of the

Central Limit Theorem to approximate a large average value

with a Normal distribution even if the individual constituents

are not normally distributed. It is thus also more insensitive

with respect to the actual noise distribution.

The MCMC fitter does not need gradient information,

which makes it a natural match for models which do not pro-

vide accurate gradient information, e.g. due to self-occlusion

or stochastic elements. But also in general, the adaptation of a

parametric face model to an image typically leads to a rough

cost function. Optimizing such functions with gradients is

difficult without further tricks such as smoothing or multi-

resolution approaches.

The results of the probabilistic fitter are useful for a wide

range of applications, from shape measurements to face

recognition. We evaluate the proposed fitting method with

respect to its reconstruction performance and present uncon-

strained face recognition as a straight-forward application.

For face recognition, we only use the general purpose model

without any database adaptation. We evaluate on multiple

standard datasets, such as the renderings published with the

Basel Face Model, the Multi-PIE database for recognition,

the BU-3DFE faces set for 3D reconstruction and to some

extent Labelled Faces in the Wild for an impression of the

method’s practicality. Besides the applications, we also study

the remaining variability of fits as an exclusive result of a

probabilistic fitter.

Contribution Our primary contribution is adapting the MH

algorithm to support a probabilistic propose-and-verify fit-

ting approach for face fitting. The method produces samples

from the posterior distribution and thus a fully probabilistic

fitting result. Our method is especially well-suited to inte-

grating unreliable information from different sources and

heuristics directly into the Bayesian inference process. From

a practical point of view, the benefits of the stochastic method

include adaptation without gradients, lower liability towards

local optima, information about the certainty of a fit and no

need for a feed-forward initialization. We present a novel and

more robust approach to fully automatic fitting of a 3DMM

to a single image. We also present a new likelihood where

we model the distribution of the average squared difference

between two images. This stands in contrast to the usual large

product of independent individual likelihoods for each pixel

value.

Overview The proposed method is a generative Analysis-by-

Synthesis model fitter. We try to explain an image Ĩ by the

parametric model with parameter θ such that the generated

model image I (θ) is close to the target image. We draw sam-

ples from the posterior distribution of the model parameters

given the target image P(θ | Ĩ ) using the MH algorithm. The

algorithm formalizes a propose-and-verify concept where

each iteration is split into a proposal and a verification stage.

A proposal is simply a parameter update θ → θ ′ to the current

explanation state θ . The update is unconstrained and can even

be random. The quality of the new state is then checked in

the verification stage, where we evaluate the likelihood of the

proposed parameter ℓ(θ ′ | Ĩ ) and decide whether to keep the

updated state or reject it. Instead of using just a single likeli-

hood evaluation, we propose to cascade the verification stage

to filtering steps with respect to different likelihoods. We

include different kinds of information, e.g. feature point loca-

tions, directly into the Bayesian inference process through

filtering with the respective likelihood. This makes the algo-

rithm independent of a feed-forward initialization. In Fig. 1,

we present an overview of our exemplary implementation for

adaptation of the 3DMM to a single image where we integrate

face and landmarks detection through cascaded filtering.

In the remainder of the article, we first discuss rele-

vant background information in detail, including deformable

parametric models and their standard fitting algorithms. The
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Fig. 1 Overview. The core of our sampling framework is a propose-

and-verify architecture. Updates are drawn by proposal generator Q

and evaluated in multiple filtering steps. The face model prior, detec-

tion results and the target images are used to verify the quality of the

proposal. A proposal is accepted or rejected at each filtering stage (aX )

using a stochastic MH acceptance step. The method yields samples of

the posterior distribution over our model parameters θ

presentation of the method and our exemplary implementa-

tion for adaptation of the 3DMM to a single image consists

of four parts: the probabilistic fitting setup in Sect. 3, the pro-

posals in Sect. 4, the applied likelihood models in Sect. 5 and

the integrative filtering concept in Sect. 6. In Sect. 7, we eval-

uate the resulting fitting algorithm in different tasks, such as

diagnostic runs of the sampler as well as applications for 3D

face reconstruction and face recognition. A discussion with

comparisons to existing fitters follows in Sect. 8.

2 Background

2.1 Parametric Appearance Models

Parametric Appearance Models (PAM), such as the Active

Appearance Model (AAM) (Cootes et al. 2001) and the 3D

Morphable Model (3DMM) (Blanz and Vetter 1999), are a

commonly used tool for generative face image analysis and

manipulation.

Compared to simpler models which only describe the

pixel-based image appearance, such as e.g. eigenfaces (Kirby

and Sirovich 1990; Turk and Pentland 1991), a paramet-

ric face model also captures the shape of the face through

correspondence information. The correspondence is defined

through a reference face, which is deformed to match the

geometry of the model instance.

Correspondence information must be obtained for all

training samples. It is usually based on user-identifiable ref-

erence points, called landmarks. The shape part of the model

becomes a point distribution model which describes the spa-

tial distribution of the selected points in the training samples.

For the 3DMM this process is only the first step, the final

model is acquired by performing a dense registration on the

whole face, based on the landmark values as weak boundary

condition.

A PAM can render artificial images I (θ), controlled by

the values of their parameters θ through

I (θ) = R (M (θS, θC ) ; θP , θL) . (1)

The parameter set θ = (θS, θC , θP , θL) contains all rele-

vant information for the image formation process. It includes

a description of the face instance M with shape and appear-

ance (θS, θC ) as well as the image transform parameters θP

(pose), which control the rendering process R, mapping the

model into the image and finally the illumination setup in θL .
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In order to generate meaningful images, the distribution

of the parameters is matched to some estimated statistics. By

far the most common type of representation is the Principal

Components Analysis (PCA), e.g. in Cootes et al. (2001) and

Blanz and Vetter (1999). To get a real prior distribution on

the complete data space, a probabilistic extension through

Probabilistic PCA (PPCA) is necessary (Tipping and Bishop

1999; Albrecht et al. 2013), see Sect. 3.1.

2.2 Model Adaptation

A PAM for face image analysis is used in a generative setup.

The synthetically generated image is required to match the

input image as closely as possible. The model adaptation

is then stated as a regularized optimization problem. The

parameters θ⋆, which explain the image best, are obtained

by minimizing a distance measure C between the model-

generated image I and the target image Ĩ together with a

regularization term R

θ⋆ = arg min
θ

C
(

I (θ) , Ĩ
)

+ R (θ) . (2)

The choice of cost function C can be motivated by

probabilistic considerations. It correspond to − log ℓ(θ; I ),

where ℓ(θ; I ) is the likelihood of the parameters given the

input image. Minimization of cost then corresponds to a

Maximum-a-posteriori (MAP) estimator. In practice, cost

function and regularization are usually chosen to be sums

of squared differences, motivated by Gaussian distributions.

The methods of choice to solve (2) are quite different. They

range from (stochastic) gradient descent to highly adapted

and efficient compositional methods, even machine learn-

ing approaches can be used. All of these iterative solutions

calculate a parameter update, based on the current value θn

and mainly differ in the method to calculate the update f in

θn+1 = θn + f (θn, Ĩ ).

The update f (θn, Ĩ ) is based on the local gradient (sto-

chastic gradient descent, Blanz and Vetter 1999), local

linearization of function composition (ICIA or warp-based

methods, Matthews and Baker 2004; Romdhani and Vet-

ter 2003) or local quadratic approximation (Romdhani and

Vetter 2005). All of these algorithms are built to optimize

the squared error cost C(I, Ĩ ) = ‖I (θ) − Ĩ‖2. Detailed

and expensive gradient calculations are necessary for reli-

able operation. Natural images normally exceed the model

space of a PAM and show many fine details. Calculated gra-

dients therefore become less representative and increasingly

affected by noise. Most methods are not built to deal with

unreliable gradients. Due to the local validity of gradients,

these methods need rather precise initialization and only

reach locally optimal solutions. The initialization is tradi-

tionally provided by the user.

The stochastic gradient descent method of the original

3DMM fitter (Blanz and Vetter 1999) is somewhat more for-

giving as it is non-deterministic and might recover from a

wrong update direction. It is also capable of avoiding some

local optima. But the randomness of the method, stemming

from a partial evaluation of the full gradient, is arbitrary and

lacks a systematic interpretation and analysis.

An alternative approach is taken by Aldrian and Smith

(2013). They propose to solve the problem in a strict feed-

forward setup. The method relies on many user-provided

feature point locations which are used to infer the shape

of the face. Once the algorithm has decided on the shape,

the illumination and texture are reconstructed using a fixed

geometry. The algorithm leads to accurate and fast results

if everything is properly set up and all the required points

are available. In a setup with uncertain input information and

unreliable detection it is dangerous to rely on proper ini-

tialization and fix the shape early. A later correction using

image appearance information, e.g. shading, is not possi-

ble.

The Supervised Descent Method (SDM) (Xiong and De

La Torre 2013) uses machine learning methods to predict the

update step from the difference between the current state and

the target. Through the learning step, the approach is more

robust to naturally occurring disturbances such as glasses,

beards or face details not present in the model. Contrary to

the standard methods above, the SDM minimizes an image

feature difference (e.g. SIFT, Lowe 2004) rather than squared

pixel differences. Measuring image differences with these

more abstract image features should already make the method

more robust but makes gradients impossible to calculate. The

recently developed method is based on cascaded regression

and already quite successful. It has been introduced to adapt

2D models of faces (Xiong and De La Torre 2013) without

self-occlusion and complex rendering functions. There is also

a recent variant to adapt 3DMMs to frontal views (Zhu et al.

2015). It remains open to this day whether the method is

actually suited to explain images with the full flexibility of

the 3DMM, such as face pose up to profile side views with

illumination and perspective camera setup.

None of the current methods is suitable for probabilistic

inference besides a local MAP analysis. All of the methods

rely on good update steps and a good initialization. Gradients

and Hessians are sometimes very expensive to obtain and

easily affected by noise or uncertain input data. Even though

SDM methods relieve this problem by learning from actual

data, including noise, they still fundamentally rely on good

update steps.

We propose to split the problem into two parts, proposal

and verification, where possible updates are only accepted as

next steps if they pass the model validation stage. The vali-

dation should not be perfectly strict and allow ‘backwards’

steps towards worse solutions. Both is naturally offered by
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the well-known MH algorithm, a representative of Markov

Chain Monte Carlo methods.

2.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a com-

mon tool to perform approximate inference with intractable

probabilistic models. The posterior distribution is approx-

imated using a set of random samples. All algorithms of

the MCMC-type draw samples from Markov Chains where

the target distribution is the equilibrium distribution. A good

technical overview is provided in Robert and Casella (2004)

and Chib and Greenberg (1995) while more practical aspects

are discussed in the classic text (Gilks et al. 1996).

We make use of the MH algorithm (Metropolis et al. 1953;

Hastings 1970) which builds its Markov Chain by accept-

ing or rejecting samples drawn from a proposal distribution.

It is a very general algorithm which is applied to solve a

variety of problems. The algorithm is generally used to per-

form Bayesian inference but also has explicit applications to

solve inverse problems, e.g. in geophysics (Sambridge and

Mosegaard 2002).

The MH algorithm transforms samples θ ′, drawn from a

proposal distribution Q(θ ′|θ), into samples stemming from

the target distribution P(θ). The algorithm accepts a proposal

as a new sample with probability

a = min

{

P(θ ′)

P(θ)

Q(θ |θ ′)

Q(θ ′|θ)
, 1

}

. (3)

On rejection, the algorithm keeps the current sample θ .

Normalization of P is not required, as only ratios of proba-

bilities are considered by the algorithm.

Computer vision models usually consist of many para-

meters of different scale and interdependence with variable

meaning to the image formation process. It is difficult to

design a general MCMC sampler in this field without adaptat-

ing it to the concrete problem. The more recent development

of Data-Driven Markov Chain Monte Carlo (DDMCMC)

extends the concept to integrate data-driven proposals (Tu

et al. 2005). Such proposals include probably useful knowl-

edge extracted directly from the target image. Fast machine

learning methods can be used to construct a more efficient

sampler. The methods fit the problems of computer vision

much better than pure MCMC methods.

DDMCMC methods are useful to solve large inverse prob-

lems with many parameters of varying meaning where some

heuristics exist but are not reliable enough to be used on

their own. Heuristics are most useful in richly structured

problems. A common theme is to use proposals which treat

blocks of the model as independent, e.g. objects in scenes. But

each of those proposals is always checked with the complete

model to ensure consistency among the parts. DDMCMC

are applied successfully to segment images (Tu et al. 2005),

infer a complex 3D scene from monocular input (Wojek et al.

2010), adapt a human body model to an image (Rauschert and

Collins 2012) or to localize faces in images (Liu et al. 2002).

Recently, DDMCMC has been proposed as a general

solution to inverse graphics problems, termed the informed

sampler (Jampani et al. 2015). The authors present an intrigu-

ing idea of forming general data-driven proposals using

kernel density estimates, but mainly demonstrate the useful-

ness using small artificial rendering problems. A very similar

approach is presented in Kulkarni et al. (2015), where the

authors focus on casting the concept into a programming

language intended for broad application.

3 Probabilistic Fitting

Our proposed fitting strategy is based on a Bayesian interpre-

tation of image reconstruction. It builds upon a probabilistic

face model as a prior and the MCMC sampling strategy for

inference. The probabilistic approach does not result in a

single point estimate but in samples from the posterior distri-

bution, conditioned on the target image. It allows us to deal

with uncertainty and unreliable information of various ori-

gins. We build the basic posterior distribution of the image

reconstruction problem from a prior P(θ) and an image like-

lihood ℓ(θ; Ĩ )

P(θ | Ĩ ) ∝ ℓ(θ; Ĩ )P(θ). (4)

The reconstruction problem turns into probabilistic infer-

ence of P(θ | Ĩ ). The posterior distribution is intractable to

normalize and difficult to optimize. To build our MCMC

inference method with the MH algorithm, we only need the

unnormalized, point-wise evaluation.

In the following, we introduce and describe our prior

model and the basic inference method. Further elements of

the algorithm, such as proposals and likelihood models, are

discussed in detail later.

3.1 Bayesian Face Model

We work with the publicly available Basel Face Model

(BFM) (Paysan et al. 2009) which is based on 200 densely

registered 3D face scans. The BFM consists of a statistical

model of shape and color.

Face model The model describes a face as a linear com-

bination of example faces in dense correspondence, using

an efficient PCA-based representation. We restrict the origi-

nal face mesh to roughly 30,000 vertices, removing the ears

and the throat (Fig. 2). To use the model in a probabilistic
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Fig. 2 3D Morphable Model scene setup with the mean face. Grayed

parts are not adapted to the image

context, we extend it to a Probabilistic PCA (PPCA) model.

Such a model is also defined outside the linear span of the

training samples and can thus be directly used as a prior dis-

tribution of face shape and appearance. This is achieved by

adding a spherical Gaussian noise term in the sample space

(Albrecht et al. 2013; Tipping and Bishop 1999). Our model

then becomes

P(x|θ) = N

(

x|µ + UDθ , σ 2I
)

(5)

P(θ) = N (θ |0, I) , (6)

where we have the mean face in µ, the principal components

in matrix U and the variances along each principal direction in

diagonal matrix D. The 3DMM consists of two independent

PPCA models, one for shape and one for surface color, which

we indicate by the subscripts ()S and ()C respectively.

Scene model To produce an image I , the face is set up in a

scene using standard computer graphics rendering. We apply

a 3D rotation R and a translation T to align the face relative to

the pinhole camera P (see Fig. 2). A point in 3D is rendered

onto the image plane through

x2D = P ◦ T ◦ R ◦ (x3D) . (7)

Illumination model Compared to the original 3DMM setup,

we use a different illumination model. A single directional

light source is often inappropriate outside lab situations. The

face within the scene is illuminated using an efficient rep-

resentation of both the environment map and the reflectance

function through real spherical harmonics basis functions Ylm

(Basri and Jacobs 2003; Zivanov et al. 2013).

The complete set of model parameters θ consists of the

face representation for shape and color θS , θC , the scene

(pose) description θP and the illumination expansion coef-

ficients θL . A full value of θ is sufficient to describe a face

image of the model.

Further details about the face model and the rendering

setup, including estimation of parameters, can be found in

Appendix 1.

3.2 Sampling from the Posterior

We propose to move from straight-forward optimization

towards a sample-based inference algorithm. The probabilis-

tic result represents the posterior distribution rather than only

a maximum. Inference is based on the MH algorithm and

therefore produces random samples from the posterior dis-

tribution P(θ | Ĩ ). A sample is generated by first drawing

a proposal θ ′ from the proposal distribution Q(θ ′|θ). The

proposal is only accepted to replace the last sample with

probability given by

a = min

{

P(θ ′| Ĩ )
P(θ | Ĩ )

Q(θ |θ ′)

Q(θ ′|θ)
, 1

}

. (8)

Posterior values only appear in ratios. It is therefore suf-

ficient to provide unnormalized evaluation of P(θ | Ĩ ). The

algorithm formalizes a propose-and-verify procedure which

is our conceptual tool to deal with unreliable information. Q

encodes proposals θ ′ which are possible parameter updates.

The algorithm verifies proposals with the posterior distri-

bution P to identify good solutions. To integrate multiple

sources of information, we propose a filtering approach

which consists of multiple cascaded acceptance stages (see

Sect. 6.1 and Fig. 1). The final sampling algorithm consists

of many different proposal generators and multiple filtering

accept/reject stages.

4 Proposals

The MH inference framework needs proposal distributions

to suggest updates for the current parameter values. In this

section, we present the basic proposal as a mixture of random

walk updates and introduce the illumination estimation.

4.1 Basic Proposal

The algorithm make use of a single proposal distribution Q

only. To combine many different proposal distributions Qi ,

we build a large mixture distribution
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Q(θ ′|θ) =
∑

i

ci Qi (θ
′|θ),

∑

i

ci = 1. (9)

The mixture coefficients ci express the probability of

drawing a proposal from Qi . The individual proposals might

be unreliable, even completely random. The accept/reject cri-

terion “filters” them to match the posterior P(θ | Ĩ ). As a basis,

we always mix with stochastic random walk proposals. Other

parts of the mixture are more informed through the filtering

process and serve as data-driven proposals Qi (θ
′|θ, Ĩ ). Fil-

tering is described below in Sect. 6.

Random walk proposals The simplest form of a parameter

update are random perturbations. Unbiased, they lead to a

random walk in parameter space. The random walk proposals

are the main source of randomness in the algorithm. To use

random walks efficiently, we need to take the different nature

of our parameters into account.

The random walk proposal is a mixture of proposals which

alter only one of the parameter blocks camera/pose, illumi-

nation, shape or color. The basic proposal distribution type

for a variable in a block b is a normal distribution centered at

its current value Q(θ ′
b|θb) = N (θ ′

b|θb, σ
2). We use a mixture

of scales (different σ 2) to match the exploration to both rough

alignment and detailed adaptation. Updates are multivariate

where appropriate, e.g. for shape and color.

Details about the individual blocks and mixtures, includ-

ing distribution parameters, are presented in Appendix 2.

4.2 Informed Proposals

Proposals are random samples drawn from a probabil-

ity distribution. Adding deterministic moves can speed-up

convergence but also introduce a bias. They still fit the

propose-and-verify framework very well, but they need to be

mixed with random walks to add a bit of uncertainty. Another

solution to circumvent the problem is to restrict usage of

deterministic proposals to an initial burn-in phase.

Illumination estimation Our most prominent deterministic

proposal is a direct estimation of illumination. Of all model

parts, illumination has the strongest effect on pixel intensi-

ties. A wrong illumination dominates every other source of

image difference.

The light model is linear for a fixed geometry and face

color. We can solve for the unknown illumination coefficients

while keeping the color and geometry of the face constant

(see Appendix 1 for details). We restrict the estimation to

only a small random subset of all vertices because illumi-

nation does not change on a small scale. The solution is a

noisy approximation due to sub sampling and the non-perfect

correspondence. The estimation therefore still contains a sto-

chastic element. The proposal is most effective during the

beginning, when it leads to promising regions of the para-

meter space quickly. In later phases of the run, illumination

exploration is dominated by random walk proposals.

5 Verification

To perform inference of the posterior distribution P(θ | Ĩ ),
given a target image Ĩ , we need a likelihood function ℓ(θ; Ĩ ).

Likelihoods are necessary in the verification step of the algo-

rithm where they measure the quality of an explanation. In

this section, we discuss different choices of likelihoods for

images, a widespread product approach and a new but more

appropriate collective view. We also introduce the likelihood

models necessary to integrate landmarks as well as face and

feature point detection.

5.1 Landmarks Likelihood

Fitting the model to observed landmarks is the most common

method to align a face model with an image. The 3DMM

renders the locations of facial landmark points in the image

through (7). The points are observed under a noise model. We

model the likelihood with respect to NLM observed landmark

positions {x̃i }NLM

i=1 with independent Gaussian noise

ℓ(θ; x̃1, x̃2, . . . , x̃NLM) =
NLM
∏

i=1

N (x̃i | xi (θ), σ 2
LM). (10)

We use 9 easily identifiable facial landmarks (see Fig. 4).

5.2 Face and Feature Point Detection

We explicitly integrate Bottom-Up information from face

and facial feature point detectors. They are traditionally only

used to initialize the model through a rough alignment with

the detected face box and the single most certain landmark

detections. The downside of integration by initialization is an

early decision which cannot be corrected later. Face detec-

tion works relatively well, even for strong pose variations and

occlusion. However, spurious false positives are still common

and can lead to a wrong initialization of the face model fit in

feed-forward architectures.

Given an image, we consider the 10 highest-rated face

detection candidates. Each of these “face boxes” Bi gives

rise to a likelihood ℓB(θ; Bi ) which compares the location

and scale of the face with the candidate values. We model

a positive face detection result as a face box with position

pi and size si . We compare a model instance with the box

using a likelihood which combines a log-normal distribution

on the scale s and a Gaussian on the position p
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Fig. 3 Detection results: all ten candidate face boxes, colored with

brightness according to certainty (left). The left inner eye corner (mid-

dle) can be detected with a high quality output while the detection result

of the right lip corner (right) is much more distributed (detection cer-

tainty overlaid with bright blue color) (Color figure online)

ℓB(θ; Bi ) = LN (s(θ) | si , σbs)N
(

p(θ) | pi , σbp

)

. (11)

Feature point detection results are used together with their

confidence values, given in a response map Dl(x) (Fig. 3).

The map captures the detector’s certainty of seeing landmark

l at location x in the image. Additionally, we also need a

landmarks likelihood ℓLM(θ; x̃) which measures the degree

of fit to a given feature point location x̃.

For each face detection candidate i , each feature point

detector l delivers a detection certainty map Di
l (x). To

account for imperfect detectors, we additionally limit the

maximal certainty values corresponding to false-positive and

false-negative probabilities of 0.001.

We construct the likelihood of a landmark falling on loca-

tion x to be the best possible combination of detection and

distance from the respective model point using our landmarks

observation model (10)

ℓLM (x; D) = max
t

N

(

t | x, σ 2
LM

)

D(t). (12)

The value is precomputed for each location x using the effi-

cient method from Felzenszwalb and Huttenlocher (2012).

Precomputation of the maximum convolution is possible

since landmark detections do not change during model adap-

tation and the landmark certainty is not varied.

The likelihood of each full face candidate, including the

box and all l feature point detection maps is then

ℓi (θ; Bi ,Di ) = ℓB(θ; Bi )
∏

l

ℓLM(x(θ); Dl). (13)

The likelihood including all individual face candidates is

constructed as a maximal value

ℓFB(θ;B,D) = max
i

ℓi (θ; Bi ,Di ). (14)

Fig. 4 Facial feature points we

detect, drawn on the mean face

of the BFM using our face

mask. The size of the points

corresponds to the standard

deviation σL M of the landmarks

likelihood

Choosing a maximum value corresponds to selecting the

best possible face candidate i for each parameter value θ .

Note that the best candidate i can be different for each θ

(Fig. 4).

5.3 Product Likelihood

For full image reconstruction, we also need a model for the

likelihood of the target image under a model instance. The

standard approach in the Analysis-by-Synthesis setting is an

independent, pixel-wise comparison between the rendered

image I (θ) and the target. We pose it as a probability distri-

bution of possible images and evaluate it for the target image

P( Ĩ |θ) for a given parameter value θ .

We assume pixel-wise conditional independence and eval-

uate in the target image, within the region of the rendered face

FG

P( Ĩ |θ) =
∏

i∈FG

P( Ĩi |Ii (θ)) =
∏

i∈FG

ℓ(θ; Ĩi ). (15)

Figure 5 gives a schematic overview of rasterization and

the notion of foreground and background.

We assume independent Gaussian noise all over the fore-

ground face region

ℓFG(θ; Ĩi ) = 1

N
exp

(

− 1

2σ 2

∥

∥

∥ Ĩi − Ii (θ)

∥

∥

∥

2
)

. (16)
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Fig. 5 The 3DMM is projected onto the image plane, where we per-

form a rasterization of each triangle of the 3D model. Image pixels which

lie within the projected face region (orange) are considered foreground

while those outside (blue) are background (Color figure online)

The choice of likelihood roughly corresponds to the usual

sum of squared differences. Due to truncation, there are minor

differences through normalization if the rendered model

color is close to the limits of the intensity range (see Appen-

dix 1).

Background model We evaluate (15) in the image domain. To

prevent a shrinking of the foreground region, a background

model ℓBG is necessary. We apply the foreground correction

mechanism presented in Schönborn et al. (2015)

ℓ(θ; Ĩi ) = ℓFG(θ; Ĩi )

ℓBG( Ĩi )
. (17)

Different background models are discussed in detail in

above reference. We namely make use of the constant (con-

stant likelihood ℓBG) and the histogram background model.

5.4 Collective Likelihood

The product likelihood assumes independent normal distrib-

utions at every location of the image. This measure is suited to

find a single maximally good fit with the least amount of devi-

ation per pixel. But it depends on the amount of pixels used

for image comparison. In practice, evaluation of image differ-

ence is often based on averaged measures, such as the mean

squared error. The collective likelihood allows us to use aver-

age differences in the likelihood and to explore multiple solu-

tions which match the target image at a specified noise level.

The collective likelihood model is based on the fact that

large sums of independent values with bounded variance

obey a Central Limit Theorem (CLT), e.g. Gonick and Smith

(1993). The large sum has a natural tendency to approach

a normal distribution, even if the individual constituents are

not normal. The assumption of independence among the indi-

vidual pixels is still required for applying the CLT.

Table 1 Parameters for our collective likelihood model (21) arising

from various distributions of the residuals d = (dR, dG , dB)

Model d2 E[d2] V[d2]

d{R,G,B} ∼ N (0, σ 2) Γ (3/2, 2σ 2) 3σ 2 6σ 4

‖d‖ ∼ Exp(α) Weibull(α, 1/2) 2α2 24α4

‖d‖2 ∼ Exp(α) Exp(α) α α2

Empirical – 0.0722 0.0002

Note that we model the squared residuals d2 = ‖ Ĩi − Ii ‖2 in the col-

lective likelihood. The gamma distribution Γ (k, θ) is parametrized by

shape k and scale θ

The average squared distance between the target and the

rendered model image is

d2 = 1

N

N
∑

i=1

d2
i = 1

N

N
∑

i=1

∥

∥

∥ Ĩi − Ii

∥

∥

∥

2
, (18)

where the sum is over N pixels inside the face. The value of

the squared residuals d2
i is bounded by the fact that intensity

and RGB color channel values lie within [0, 1]. The distri-

bution of the average d2 can be approximated by a normal

distribution if N is large (in our case N > 10,000)

√
N

(

d2 − m
)

→ N (0, v), (19)

m = E[d2
i ], v = V[d2

i ]. (20)

This motivates our collective likelihood

ℓ(θ; Ĩ ) = N

(

d2(θ)
∣

∣ m,
v

N

)

. (21)

The parameters m and v can be calculated from theoretical

assumptions about d2
i or simply be estimated empirically.

The assumption of independent Gaussian noise leads to a

χ2
N distribution of d2/(3σ 2). Other distributions of d2 lead

to different values of the parameters, see Table 1. In our

experiments we use empirically estimated values.

The collective likelihood considers model instances

together with the actual noise instantiation. A perfect fit has

a low likelihood since the chance of observing many inde-

pendent variables with a zero noise instantiation is very low.

The highest likelihood scores are assigned to solutions which

match the image at the specified noise level. With the collec-

tive likelihood, we can sample many solutions which show a

similar average difference to the target image. It allows us to

explore the variability of face fits at a given noise level (see

Sect. 7.2).
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Fig. 6 Information from different sources is integrated into the infer-

ence process by filtering. The current state of the sampler θ is updated

with a proposal drawn from Q only if it passes all likelihood filter steps.

The filters ensure that the proposed sample fits the model’s prior distri-

bution, the face and feature point detection maps (FB) and finally the

image likelihood. Each filtering stage applies a stochastic MH accep-

tance step (aX ) with the respective likelihood (the respective equations

are indicated). The thickness of the arrows corresponds to the amount

of samples which are accepted or recjected (see Table 2). For details

refer to Sect. 6.1

6 Integration

We propose to incorporate information from different sources,

e.g. face and feature point detection, into a single fitting

framework by filtering with Metropolis acceptance steps. The

cascaded application of the acceptance step of the basic algo-

rithm corresponds to individual steps of Bayesian inference.

It provides a fully probabilistic and flexible way to integrate

information of various origins, including its uncertainty. Con-

cretely, we demonstrate how to integrate information from

face and feature point detectors.

6.1 Integration by Filtering

We integrate additional information, e.g. landmark positions

and face detections, by biasing the random walks through

filtering. A proper integration into the inference algorithm

needs a formulation as a proposal distribution which can gen-

erate samples in the parameter space of the model. We do not

use direct encoding of feature point positions in the model.

Therefore, we have to resort to a generative type of inclusion

using our likelihood models.

An integration of (14) into a large product of likelihoods,

including all bottom-up parts as well as the final image like-

lihood ℓI (θ; Ĩ ), is not flexible enough. We would have to

evaluate the full product for each proposed sample. Instead,

we propose to approach the problem with a sequence of

Bayesian inference steps where each stage uses the posterior

of the previous one as a prior distribution. Such sequential

inference is more flexible and suits the propose-and-verify

algorithm very well:

P(θ)
ℓFB(θ;B,D)−−−−−−−→ P(θ | B,D)

ℓI (θ; Ĩ )−−−−→ P(θ | B,D, Ĩ ).

(22)

Metropolis filtering We implement each inference stage as a

separate Metropolis acceptance filter where each step biases

the sample distribution with its likelihood. Implementation

as a step-by-step process allows us to drop bad samples early.

The filtering approach is very flexible and allows us to inte-

grate almost any knowledge expressed as a likelihood in a

simple and canonical fashion.

Starting from the current state θ , we generate a proposal

θ ′, drawn from Q. The proposal is fed through a chain of

cascaded stochastic Metropolis acceptance decisions (filters)

a0 to an , with

a0(θ, θ ′) = min

{

P(θ ′)Q(θ | θ ′)

P(θ)Q(θ ′ | θ)
, 1

}

(23)

a f (θ, θ ′) = min

{

ℓ f (θ
′)

ℓ f (θ)
, 1

}

. (24)

The first step a0 generates samples from the prior P(θ)

while each subsequent filter step a f generates samples from

the posterior including likelihoods ℓ1 up to ℓ f . A likeli-

hood ℓ f measures compliance with a datum D f , which can

be anything, e.g. a feature, landmarks, face boxes or image

color values. A chain of these decisions can reject a proposal

early without evaluating all likelihoods. The proposal is only

accepted as new state if it passes all the stages. The poste-

rior distribution fulfills the detailed balanced condition of the

resulting transition kernel

P(θ |D1, D2, . . . , Dn) ∝ P(θ)ℓ1(θ) · · · ℓn(θ). (25)

In each stage, we only need likelihood ratios to decide on

the fate of a sample, normalization is not required. Addition-

123



Int J Comput Vis

ally, we can extract samples from the respective posterior at

each intermediate step.

Integration of detection information For each face box, sam-

ples from the unbiased prior distribution are filtered using the

face box likelihood thereby biasing them to respect the face

box Bi ’s position pi and size si . For each landmark, we do the

same using the detection map likelihoods. For an overview

refer to Fig. 6.

The procedure to draw a single sample then becomes

1. draw a proposed sample from θ ′ ∼ Q(θ ′ | θ)

2. apply first acceptance step a0 with prior P(θ)

on reject: discard θ ′, keep θ

3. apply acceptance step aℓFB

on reject: discard θ ′, keep θ

4. apply acceptance step aℓI

on reject: discard θ ′, keep θ

5. update θ ← θ ′

Note that on any reject, we discard the proposal com-

pletely, keep the current sample θ and start over.

6.2 Initialization

To find a suitable starting configuration, we construct Markov

chains for each candidate box Bi and draw a few samples,

where we use the respective likelihood ℓi (13) as a target.

After roughly 500 samples, we find parameter regions which

correspond to more or less consistent explanations of the fea-

ture point detection maps for each detection candidate. The

face candidate with the highest consistency and landmarks

detection likelihood value is chosen as a starting point for the

complete fitting chain.

We use the combined likelihood (14) to evaluate detection

consistency during the sampling run. This allows the chain to

evaluate with respect to all detection candidates and switch

to different explanations if these are more compatible with

the image.

7 Evaluation

The evaluation section contains quantitative and qualitative

experimentation on multiple databases. The experiments are

set up around the problem of 3D face reconstruction and head

scene recovery from a single image. The main result is a fully

automatic reconstruction of the 3D face from a real-world

target image. Depending on the task at hand, additional user-

provided or automatically detected landmarks are available

besides the target image. We evaluate our method on syn-

thetic, controlled and real-world facial images.

This section starts with specific evaluations of the Markov

Chain sampling algorithm in Sect. 7.1. The difference

between the collective and the product likelihood is presented

in Sect. 7.2. The algorithm results in a posterior distribution

which we demonstrate to be a powerful tool for studying the

output of the fitter in Sect. 7.4 where we analyze the certainty

of our parameters in a fit.

For evaluations concerning the 3D shape recovery

(Sect. 7.3), we make use of synthetically generated target

images to have a known ground-truth. These cases are explic-

itly labeled as such and result from an application of our

rendering engine, which is also used as part of the genera-

tive 3DMM. Note that these images are not model instances.

They are based on captured real shape and color of the face

(BFM scans) and additionally include a real illumination

(BU-3DFE).

The overall application of completely automatic and

generic face recognition is presented in Sect. 7.5. The last

subsections contain a qualitative evaluation of face recon-

struction on real-world imagery.

We compare our proposed sampling method to standard

fitting methods applied to the 3DMM throughout this section,

namely Aldrian and Smith (2013) and Romdhani and Vetter

(2005). Additionally, we present a conceptual comparison in

the discussion in Sect. 8.3.

General setup In applications where a single solution is

desired, we pick the sample with the highest posterior rat-

ing while we use many samples when studying distribution

properties. In the latter case, we discard the first part of the run

as burn-in samples. If not stated otherwise, we draw 10,000

samples from the constructed Markov Chain. In runs where a

single optimization-like result is necessary, we use the prod-

uct likelihood (15, with σ = 0.046) where we switch to

the collective likelihood (21) for real sampling experiments

using the empirically estimated parameters from Table 1. The

empirical estimation is based on an average reconstruction

error of selected very good fitting results. We consider this

residual to be an estimate of difference between our model

and the world. Expecting solutions closer to the real image

is not realistic.

We use two different background models, the histogram

model for the recognition experiment and in-the-wild tests

and a constant value at two standard deviations of the fore-

ground likelihood model for the other experiments. Both

models are discussed in Schönborn et al. (2015).

7.1 Markov Chain Diagnostics

Markov Chain methods can be problematic if one is inter-

ested in exact samples from the posterior. Because the chains

are built to have the target distribution as equilibrium distri-
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Table 2 Acceptance rates

Filter AR (%)

Prior filter 92

Landmarks filter (user) 75

Detection filter (detection) 71

Collective likelihood (image) 39

Filters show a high acceptance rate, which means only few samples are

dismissed in filter stages. The overall acceptance rate with the collective

likelihood is within the desired range of 25–50%

bution, we have to wait ‘long enough’ until we can consider

samples as being drawn from the posterior distribution. Since

we apply the MCMC method mainly to go beyond a classi-

cal fitter and use much of the power of DDMCMC methods

to integrate different cues, we are not very rigorous in the

diagnostic part. We are satisfied with some basic indicators

for a sampling chain rather than an optimizing chain. In the

experiments with only a single best result, we do not use

diagnostic methods but simply set the number of samples to

be drawn to a fixed value of 10,000 samples which yields a

satisfying quality in practice.

We performed the following diagnostic experiments on

the target image depicted in Fig. 3. To analyze the chain

behavior, we drew 100,000 samples from three independent

chains.

Acceptance rates The most simple diagnostic is the accep-

tance rate. If too few samples are accepted, the sampler tries

to make moves which are too large, and too many accepted

random walk samples indicate that the sampler could walk

further in a single step. For general random walk applica-

tions, acceptance rates of 25–50% are usually considered

acceptable (overview in Chib and Greenberg 1995). We use

a filtering strategy to integrate various information into the

inference process. A critical point about such filters is a pos-

sibly high rejection rate because a sample has to pass all

stages.

The acceptance rates of the diagnostic run can be found in

Table 2. We observe high acceptance rates for all filters and

a total acceptance rate within the desired range.

Samples For further analysis of the sampling chain, we

present the sequence of selected sampled parameter values

for yaw and a shape parameter in Fig. 7. Additionally, we

added the log value of the unnormalized posterior probabil-

ity (Fig. 8). There is an initial convergence phase of a few

thousand samples from very bad posterior values around the

starting point towards the region where the model matches the

image. In this region, the chain starts sampling and explores

according to the posterior distribution’s width. If we only

use a single best result, we usually stop after the initializa-

tion phase of 10,000 samples.

7.2 Collective Likelihood

We constructed the collective likelihood to specify a desired

noise model for image reconstruction. We compare this

model to the standard product likelihood of independent

Gaussians in an image reconstruction task. We draw 50,000

samples from the image reconstruction posterior given the

image in Fig. 3 and setup both likelihoods to represent the

same noise model: independent Gaussian noise with the same

empirically estimated standard deviation (σ = 0.042). For

comparison, we also present results from a second run where

we chose a broader product likelihood (σ = 0.058), see

Fig. 9.

The collective likelihood is useful to draw samples from

the many different solutions which all lead to an image
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Fig. 7 Sampled parameter values of yaw angle and a shape model parameter for three independent chains with target image from Fig. 3
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Fig. 9 Average image difference per pixel (RMS) between the model

and the target image. We compare samples drawn from posteriors with

respect to the product and the collective likelihood with the same noise

distribution (Gaussian noise with σ = 0.042) and a broader product

likelihood with 0.058 expected deviation per channel (

√

E[d2
i ] = 0.1

total per pixel). With the collective likelihood, we can draw samples

which all lead to a similar degree of image reconstruction, at the speci-

fied noise level (

√

E[d2
i ] = 0.072). The product likelihoods lead to very

sharp posteriors with strong optimization behavior. They converge to

the explanation with the least noise necessary to reconstruct the image

explanation of similar quality. These samples represent the

posterior variability at the specified noise level. The prod-

uct likelihood leads to a strongly peaked distribution where

sampling shows optimization behavior of ever-increasing fit.

The posterior variance almost vanishes and the samples are

not suitable to estimate any posterior properties (see Table 3).

The final level of image difference does not relate to the noise

magnitude. The runs aim for the classical best fit in terms of

image difference.

Table 3 Posterior standard deviation of samples from the collective

and product likelihoods

Posterior Yaw (deg) Shape q1

Collective 0.34 0.13

Product σ = 0.042 <0.05 <0.01

Product σ = 0.058 <0.05 <0.01

The product likelihood does not lead to useful posterior samples. The

collective likelihood leads to posterior samples which reflect the remain-

ing variability with a given noise model. The collective likelihood

corresponds to the product with σ = 0.042

7.3 Reconstruction of 3D Face Shape

The main application of the 3DMM and the presented fit-

ting machinery is a complete reconstruction of the dense 3D

shape of a face to establish full correspondence between the

model and the target image. Using this information, many

tasks can then be built on top of this result. Therefore, we try

to evaluate the 3D reconstruction quality first. This task is

inherently difficult to perform as there is currently no known

metric which is close to human perception of face similarity.

Therefore, we restrict ourselves to a simple root-mean-square

distance (RMSD) with all its shortcomings.

We reconstruct rendered frontal images from the BU-

3DFE dataset (Yin et al. 2006). This dataset contains both

shape and appearance information. The 3DMM does not

contain any expression variability, therefore we restrict

this analysis to neutral versions of all 100 individuals

in the dataset. We run our fitting method on the plain

frontal views of the textured meshes and user-provided

landmarks information to obtain the optimal reconstruction

performance.
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Table 4 3D reconstruction accuracy in mm

Dataset RMSD (mm)

BFM scans 3.78

BU-3DFE (3DMM) 5.39

BU-3DFE (mean-only) 6.79

The last line is the result of adapting the mean face to the target image,

not allowing any changes in the shape and appearance of the face

To obtain an estimation of the reconstruction quality, we

render a depth image of both our reconstruction and the orig-

inal scanned 3D face into the image. Since we do not use a

calibrated setup and cannot estimate depth reliably in frontal

views (see below), we allow the absolute distance from the

camera (tZ ) to vary and optimally align the original and our

reconstruction with respect to this value only before calcu-

lating the RMSD.

We perform the same reconstruction experiment using ten

face scans published for evaluation purposes together with

the BFM (Paysan et al. 2009). We use four different scene

settings to render the face scans, a frontal view, a side view

at 30◦ yaw and two difficult, realistic illumination situations.

The result presented in Table 4 are RMS averages over all

four setups. Figure 10 displays renderings of the BFM scans.

BFM renderings To compare our results to other fitting algo-

rithms we also performed the experimental setting proposed

by Aldrian and Smith (2013). We reconstruct the 270 syn-

thetic renderings which are provided with the BFM (Paysan

et al. 2009). To make the experiment comparable with the

literature, we present mean squared errors on the complete

face (no mask) where we average per pose and illumination

setup but not per vertex and convert to micro meters. Because

we cannot reliably determine the distance from the camera

(see Sect. 7.4), we rigidly align our shapes with the target

before evaluation.

The shape estimation error is compared to the state of

the art fitting algorithms in Fig. 11. For comparison reasons,

we also use landmarks as provided with the BFM render-

ings. We reach very similar performance to the multi-feature

approach by Romdhani and Vetter (2005). Using the full set

of 70 landmarks (Farkas set) we clearly outperform (Aldrian

and Smith 2013) which relies on this amount of landmarks

as input. However, the authors use a simpler camera model

which does not allow for a fully precise reconstruction.

7.4 Posterior Variability

In contrast to other methods, the probabilistic sampling

method delivers an estimate of the posterior distribution of

the model parameters given a target image. The distribution

contains information about the certainty of the fitting result.

We extract this information in terms of the posterior variance

of the face shape and pose parameters which is present in the

samples from the posterior. It expresses the remaining vari-

ability after adapting to the target image. This information

is very useful as a diagnostic tool concerning individual fits

and for deciding on further model improvements.

For these experiments, we fit the model to the complete set

of the renderings provided with the BFM (Paysan et al. 2009).

We fit the model to two different landmark sets, namely the

anchors provided with the renderings (10 points) and the

Farkas set (70 points). We then drew 100,000 samples and

selected every 25th posterior sample from the second half

of the run. The sparsity of this set reduces burn-in effects

and correlation between samples. For the evaluation, we

measured the posterior standard deviation of face shape and

selected pose parameters (Fig. 12; Table 5). For a visual com-

parison, we rendered the standard deviation of the surface

(shape) at each point into a frontal 2D view, see Fig. 12.

The method is able to find the posterior distribution given

only a single image. To highlight this, we also present the

posterior variability on an individual real-world target image

(from Fig. 3). We compare different fitting setups where an

increasing amount of information becomes available (see

Fig. 13 and Table 6).

In all experiments, the certainty of the model’s posterior

distribution increases with more or more certain informa-

Fig. 10 A scan available with the BFM rendered in four different scenes, one pose variation and two illumination setups. These views of all ten

scans are targets in the 3D shape reconstruction experiment, see Sect. 7.3
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Fig. 11 Shape estimation accuracy on the BFM renderings (Paysan

et al. 2009) compared to state of the art fitting methods (Aldrian and

Smith 2013) and (Romdhani and Vetter 2005). All numbers are from

Fig. 4 in Aldrian and Smith (2013)

(a) (b)

Fig. 12 Posterior variability of the face shape using landmarks as

input. Image a shows still a rather large variance of the shape while

the additional knowledge in b constrains the posterior. Average values

(RMS) on the BFM renderings. a 10 landmarks, b 70 landmarks

Table 5 Average (RMS) posterior standard deviations on BFM render-

ings (Paysan et al. 2009) using 10 landmarks or 70 landmarks (Farkas)

as provided with the BFM renderings

Posterior φ (yaw) (◦) tZ (distance) (mm)

10 Landmarks 1.7 2590

70 Landmarks 0.9 534

tion. The variance of the prior represents the complete model

flexibility without any observations. Next, we sample from

the posterior distribution conditioned on our detection maps.

This distribution already makes a clearer statement about the

shape of the face, while the pose is still uncertain. When

we add user-provided landmarks with high accuracy (σ = 4

pixels, 3% inter-eye distance, see Fig. 4), the pose estimation

becomes more certain. Conditioning on the image only can

restrict the pose with high certainty but not the shape. When

conditioning on the image and either detection maps or land-

marks, the posterior is most certain, both for pose and shape

(Fig. 13; Table 6).

Pose estimation We performed a pose estimation experiment

on the BFM renderings (Paysan et al. 2009). 270 renderings

over 9 poses and 3 illumination settings are provided in the

dataset and used for this experiment. The estimated yaw angle

is compared to the available ground truth data. In Fig. 14, we

show the yaw estimation error and the standard deviation of

the estimated posterior. This experiment shows that a lower

standard deviation of the posterior correlates with a higher

accuracy of the estimation.

Besides the yaw angle, we also estimate the camera dis-

tance. Distance from the camera is very difficult to estimate

from a single view. A change of distance mainly leads to

a scaling of the image and only to some extent to perspec-

tive distortion. The very high posterior standard deviation of

the distance from the camera (tZ ) reflects the inability of the

model to determine this parameter using only few landmark

points (Table 5). The yaw angle does not show such a drastic

performance difference and can be determined with much

higher certainty from only few landmarks.

As a conclusion we can state that the orthographic camera

model would suffice for frontal views when only few land-

mark points are available. The additional perspective of a

pinhole camera cannot be resolved.

7.5 Face Recognition

We investigate the quality of our reconstructions in a recogni-

tion experiment. The reconstructed model instance provides

a numerical representation of the face and can thus be used

to compare two faces with a suitable similarity measure. To

perform pose-invariant face recognition, we include only the

model parameters f = (θS, θC ) in the similarity measure.

We make use of the measure proposed in Blanz and Vetter

(2003) with the 3DMM. The similarity s between two faces

f1 and f2 in the model space is then

s = 〈 f1, f2〉
‖ f1 ‖·‖ f2‖

. (26)

BFM recognition A small face recognition experiment was

performed on the synthetic data provided with the BFM

(Paysan et al. 2009). The set consists of renderings for 10 sub-

jects over 9 poses and 3 illumination settings. The recognition

setting was implemented as proposed by Aldrian and Smith

(2013). The landmarks provided with the data were used to

compare the algorithms. The respective galleries consist of

a set of images with the same pose and illumination. Every

image is used once as a probe and compared to all images over

all possible combinations of galleries. The similarity is mea-

sured using (26). Our results are in the same range as results

obtained by the method of Romdhani and Vetter (2005) and
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(a) (b) (c)

(d) (e) (f)

Fig. 13 Variability of face shape (standard deviation at given sur-

face point) of the prior distribution (a) and different posteriors (b–f).

Landmarks information constrains the shape where there is informa-

tion available, both detected (b) and user-provided (c). The additional

uncertainty in detection maps over user-provided landmarks is mainly

absorbed in higher pose variability (see Table 6). Image information

leads to a strong restriction of shape variability (d). The combined pos-

teriors (e, f), conditioned on both the image and feature point cannot

add more certainty compared to (d). The relatively high variability of

the nose is very apparent in all posteriors. The exact reconstruction of

the nose depth from projected frontal views is inherently ambiguous.

a Prior, b detection, c landmarks, d image, e detection and image, f

landmarks and image

Table 6 Posterior standard deviations of landmarks and image fits for

a single example

Posterior φ (yaw) (◦) tZ (distance) (mm)

Detection 12 12,583

Landmarks 2.9 3,215

Image 0.5 19

Detection and image 0.5 48

Landmarks and image 0.4 28

Aldrian and Smith (2013) (all numbers from Aldrian and

Smith 2013). Note that the given landmarks are very exact

and therefore can be fully exploited by those optimization

methods in a clean synthetic setting. Our method integrates

them as unreliable and noisy input. The results are presented

using shape and color coefficients separately in Tables 7 and

8.

Multi-PIE We conducted a large face recognition experi-

ment on photographs using the Multi-PIE database (Gross

et al. 2010). This database contains a systematic exploration

of identity, pose, illumination and expression. We evaluate

recognition performance on neutral photographs of the 249

individuals of the first session.

We use the frontal images from the first session as gallery

and images at different yaw angles as probes. We then retrieve

the most similar face from the gallery using (26) and calculate

correct rank-1 identification rates. The exact identification of

image sets is given in Table 9. This is the setup as proposed

in Schönborn et al. (2013). Note that we did not adapt any

part of our generic face reconstruction method to the Multi-

PIE database. The only assumption we make is that there is

exactly one face per image.

The proposed integrative inference method is able to

achieve a fully automatic face reconstruction by using detec-

tion certainty maps as introduced above. We compare the

recognition performance of the fully automatic method to a

standard initialization with user-provided landmark positions

which are fully reliable. Additionally, we compare with the

naive feed-forward initialization using the single best detec-

tion results as certain inputs for initialization. The presented

method of integrating feature point detection is currently lim-

ited to roughly 45◦ of yaw angle since it does not yet handle

occlusion of feature points.

Detection For both face and facial feature detection, we use

a standard random forest algorithm close to (Breiman 2001)

with a scanning window to find the face. We grow a face

detection forest and 9 feature point forests, all built in a very

similar fashion using appropriate training patches. See Fig. 4

for a display of used landmarks.

A forest consists of 256 Haar-like feature trees with a

maximal depth of 30. We use the information gain criterion
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Fig. 14 Yaw estimation on BFM renderings (Paysan et al. 2009), deviation from ground truth (a) and estimation of the posterior standard

deviation (b)

Table 7 Mean rank-1 recognition rates using the shape coefficients for

the fittings of all 270 BFM renderings averaged over tree illumination

conditions per pose

Pose Aldrian Romdhani Ours

−70◦ 96.7 87.8 97.8

−50◦ 100 93.6 100

−30◦ 100 94.4 97.8

−15◦ 100 91.6 100

0 ◦ 97.8 92.9 93.3

15◦ 98.9 90.7 100

30◦ 100 94.5 98.9

50◦ 100 96.3 98.9

70◦ 92.2 93.0 96.7

Mean 98.4 92.7 98.1

Table 8 Mean rank-1 recognition rates using the color coefficients for

the fittings of all 270 BFM renderings averaged over tree illumination

conditions per pose

Pose Aldrian Romdhani Ours

−70◦ 92.0 81.0 78.9

−50◦ 94.8 92.0 84.9

−30◦ 94.9 89.9 90.5

−15◦ 98.4 91.7 94.1

0 ◦ 95.9 91.0 88.6

15◦ 94.9 88.1 86.2

30◦ 94.4 82.6 90.9

50◦ 96.0 84.7 88.9

70◦ 95.8 85.9 86.9

Mean 95.0 87.4 87.8

to select a split from a set of many random candidates at each

node. Training data is obtained as proposed by Eckhardt et al.

(2009) from the very rich Annotated Facial Landmarks in the

Wild database (AFLW) (Köstinger et al. 2011). We build bags

of 30% of the training data to train each tree. To obtain a cer-

tainty output, each leaf node stores its ratio of positives to

negatives. To strengthen this detector, we additionally used

negative examples from the PASCAL VOC 2012 (Evering-

ham et al. 2009) marked as not containing any person. Face

patches are mirrored horizontally to increase the amount of

training data. In total, we use 25,000 positive and 100,000

negative examples.

The face detector produces the 10 highest-rated candi-

dates with an overlap of less than 60% of the area for each

input image. For each candidate face box, we run facial fea-

ture point detection in an area roughly 40% larger than the

detected face box. Facial feature points are only searched

around the scale of the face candidate.

Results The results in Table 9 show only a weak performance

deterioration of the integrated method compared to the fully

reliable user-provided initialization data. The method is thus

able to successfully use the detection information. The detec-

tion quality is not good enough to simply use the strongest

detection result as a certain initializer in the naive construc-

tion. It is thus necessary to deal with the uncertainty in the

detection results to obtain good results.

7.6 In the Wild

The 3DMM is most useful when applied to real-world

images. Therefore, we test the reconstruction performance

in this category of images on the dataset Labeled Faces in
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Table 9 Rank-1 recognition rates (percent) on the Multi-PIE data-

base (Gross et al. 2010) across yaw angle, obtained by using frontal

(051_16) images as gallery and the respective pose images as probes

(exact camera and lighting condition indicated in second row)

15◦ 30◦ 45◦

140_16 130_16 080_16

Manual annotation 96.0 82.7 85.5

Best detection 94.4 69.9 49.4

Proposed integrative method 93.2 91.6 79.1

The integrative method reaches almost the performance of user-

provided initialization while the detections are not reliable enough to

be used directly

the Wild (LFW) (Huang et al. 2007). This dataset contains

many posed but unconstrained photographs of celebrities.

We present a visual evaluation of fitting quality on a few

representative example images from this database. Because

the BFM cannot handle expressions, we include only neutral

images.

Our overview in Fig. 15 reveals a quite pleasing fitting

quality on clean images. The model fails to deal with strong

outliers, such as heavy beards and expressions, as expected.

We did not tune the model to this database in any way. There-

fore it is not restricted to the main central face and sometimes

chooses to reconstruct faces in the background.

8 Discussion

We would like to highlight two aspects of the experimental

evaluation. First, using the probabilistic sampling method,

we can now estimate the certainty of a 3DMM fit after con-

ditioning on input data. The evaluations of the posterior

variability nicely demonstrate the use of this information as

a diagnostic research tool for further investigation. Second,

the stochastic nature of the complete algorithm, including all

integrative parts, leads to high-quality automatic fitting. It is

directly applicable, for example, in fully automatic, general-

purpose face recognition, even without any adaptation to the

specific database used.

Posterior uncertainty The reported posterior estimates re-

flect only model certainty with respect to the given input.

They do not measure actual reconstruction accuracy. Model

certainty is an optimal value which could ideally be reached

by the model and the given input data. The actual reconstruc-

tion accuracy is usually lower since the model is not a perfect

model of the input data.

8.1 Gradients

We consider the lack of gradient usage an advantage, since

we believe realistic and detailed skin models tend to become

more stochastic and thus cannot provide gradients. As an

example, consider procedural textures or stochastic Perlin

noise. Both are tools used in the computer graphics com-

munity to synthesize varying texture (Perlin 1985). Also,

already with the 3DMM, the varying domain of evalua-

tion due to self-occlusion is a serious problem for gradient

evaluation (Schönborn et al. 2015). Gradients of complex

models, such as the 3DMM fitted to an image, also tend to

be valid only very locally, making it difficult to design an

optimization algorithm which can deal with local optima.

Stochastic sampling methods provide a clean and elegant

solution for avoiding the problems systematically. By extend-

ing the framework to include Hamilton Monte Carlo moves

(Duane et al. 1987), gradient information can be integrated

into the sampling framework.

8.2 Sampling and Optimization

Compared to standard optimization algorithms, a random

sampling procedure is inefficient because (a) it will reject

many solutions but only after an expensive evaluation and

(b) it will deliver redundant results in regions of high proba-

bility.

The advantages of the sampling approach are its robust-

ness with respect to bad updates (proposals), its stochastic

nature to avoid local optima and its probabilistic output.

While a traditional optimization algorithm suffers severely

from bad update steps, the MH algorithm can just ignore

them. Detours and redundancy are useful for exploring the

solution space, and the probabilistic result can characterize

the posterior distribution with more than only its local maxi-

mum. However, compared to a pure optimization algorithm,

a sampler will usually not produce the sample at the maximal

value of the posterior.

Local optimization proposals The integration of determin-

istic moves or even local optimization steps is very simple

on an algorithmic level. They can be added as proposals.

The resulting algorithm is a strong fitting method which

might profit very much from the additional efficient moves.

But due to inaccurate transition corrections, the result is no

longer strictly the exact posterior distribution. In the face fit-

ting application, we do not consider this a problem because

the “real” likelihood of the problem is not known and each

choice is a compromise anyway. But if statistical correctness

is mandatory, there are methods for a formally flawless inte-

gration of full local optimization steps into the MH algorithm,

e.g. Multiple-Try MH (Liu et al. 2000).

Performance The method’s performance in terms of speed is

lower than that of optimization-only strategies. The stochas-

tic sampler, as used in the experiments, runs in approximately

10 minutes on current consumer hardware, single-threaded.
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Fig. 15 This figure shows the performance of our method on the LFW

database (Huang et al. 2007), which is close to a real world scenario. The

first and third column show the original database images, the second

column shows some successful fitting results of the fully automatic fit-

ting process. The fourth column shows some frequent sources of errors

(from top to bottom: detection failed, strong occlusion/beard, expres-

sion, textural details (mole), eye gaze)

This is still within the range of minutes that has always been

the time necessary to adapt a full 3DMM. The long runtime

is in large part due to the use of a software renderer and

the high resolution of the face model. A further advantage

of our method is a direct tradeoff of approximation quality

with computation time. We can stop a sampling run at any

time.

8.3 Comparison to Traditional Fitters

Our proposed method differs conceptually from traditional

fitting methods, which all follow the optimization idea.

Sampling aims at a fundamentally different result, a repre-

sentation of the posterior distribution rather than a best-point

estimate. However, a Markov Chain sampler, such as we pro-
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Fig. 16 A case where a feed-forward initialization would fail. The

most consistent face box at initialization is the big yellow one. The

sampling avoids this early wrong decision. The red facebox leads in

later sampling steps to higher consistency with all feature point detec-

tions and the image appearance. Therefore the sampling converges to

the red facebox. A close up of the target image (top) and the final fitting

result (bottom) are shown on the right (Image: KEYSTONE/EPA/Jason

Szenes) (Color figure online)

pose, shows very similar behavior during a first burn-in phase

when it searches for a region of high probability. Also the

applications are quite similar and can be compared, espe-

cially if only the best sample is kept at the end. The single

best sample of the sampler is not necessarily as well adapted

as that of an optimization method.

A second feature of the proposed algorithm is the construc-

tion of a framework for integrating unreliable information

directly into the inference process. The split into proposal

and verification allows us to use unreliable proposals, as

they can be rejected without disrupting the fitting process.

Integration of this kind is difficult in traditional, gradient-

based optimization methods. Consequently, we can set up

the sampling fitter to act fully automatically without relying

on high-quality initialization information.

In cases where the input information for initialization is

available with high quality and reliability and only the sin-

gle best solution is needed, a traditional optimizer can solve

the problem considerably more efficiently. It will probably

even reach a higher-quality output if the initialization is good

enough.

When automatic methods are considered, the reliability of

input information becomes an issue. We show an example of

an image with a prominent face where the most consistent

face (box and feature points) at initialization is the wrong one

(Fig. 16). The proposed method can still recover and adapt

the model to the face while a feed-forward initialization fails

on this image.

We present a comparison of a few important properties of

three state of the art fitting algorithms in Table 10.

The quantitative comparison shows a competitive out-

come of the proposed method, even in synthetic reliable

settings. But the more adapted method of Aldrian and Smith

(2013) is very strong and efficient in settings where the

feed-forward concept applies. We thus see the probabilis-

tic sampling approach rather as a complementary method,

applicable to different situations where more robustness or

integration of different cues is necessary.

Stochastic gradient descent The stochastic gradient descent

(SD) algorithm, proposed to adapt the original 3DMM in

Blanz and Vetter (1999) appears to be somewhat similar to

our method. Both methods are inherently stochastic and are

thus not very prone to local optima. Apart from this similarity,

there are many more differences. Albeit stochastic, stochas-

tic gradient descent is not a probabilistic method. There is

no information about the posterior distribution apart from

its maximal value, as with any other optimization method.

The stochastic nature of the algorithm arises from a par-

tial evaluation of the gradient which leads to uncontrollable,

adhoc randomness, as opposed to a well-defined proposal

distribution in the MCMC fitter. Further, the propose-and-

verify architecture of our method combined with filtering

leads to a robust and integrative framework whereas stochas-

tic gradient descent behaves like ordinary optimization in

this respect and needs a proper initialization. Also, stochastic

gradient descent still needs gradients, although only approx-

imately.
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9 Conclusion

We propose to solve the problem of fitting a parametric face

model with Bayesian inference and do a full sampling-based

approximation of the posterior distribution P(θ | Ĩ ). By

using the MH algorithm, we not only get samples from the

posterior distribution of the model’s parameters given the

input image but also a propose-and-verify concept. The sep-

aration into proposal and verification allows us to include

uncertain und unreliable information directly into the infer-

ence process. By cascading multiple Metropolis acceptance

steps, we successively integrate information of various ori-

gins, such as face and feature point detection or image pixel

information, in a flexible, step-by-step manner. Together with

the face and feature point detection presented, we construct

a method for robust and fully automatic face reconstruction

which does not rely on a single good initialization in a feed-

forward manner. It can explore multiple hypotheses without

a strong commitment to a single one determined in an unin-

formed initialization.

Inferring the posterior distribution, rather than just opti-

mizing it, gives valuable insights into the certainty of a model

fit. It can for example reveal the difficulty of finding the dis-

tance to the camera in a setup with only a few feature points

or find the remaining variability of the face shape for a given

target image, even for a single image. The stochastic nature of

the algorithm avoids problems of local optima and provides

robustness with respect to spurious false detections.

The evaluation of the method revealed a good performance

in tasks such as 3D reconstruction of face shape and pose esti-

mation from single images. The algorithm also enriches the

application side through access to the posterior distribution

which is useful for fitting diagnostics.

The downside, compared to traditional optimization-

based fitters, is a poor efficiency and long runtime in

situations where the flexibility and robustness of the pre-

sented framework are not necessary.

We believe this to be only a first variant of such an

inference framework for face model fitting. Due to the

propose-and-verify mechanism, the system is open to host

even heuristic methods which are traditionally not used due

to their unreliability. The model validation step decouples

the updates from the actual model. This gives the user more

freedom to design both, more complicated models and clever

adaptation steps, which might be incomplete on their own.

The current success of general DDMCMC applications in

computer vision, sometimes termed probabilistic program-

ming, is very promising in this respect.

Appendix 1: The Face Model

Face model The matrix U contains the principal compo-

nents. The diagonal matrix D is modified slightly compared
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to a standard PCA where it would contain the eigenvalues λi

of the covariance matrix � = UD̃2UT . We modify D to cor-

respond with the proposed Maximum-Likelihood estimators

from Tipping and Bishop (1999)

D2 = D̃2 − σ 2I (27)

We estimate the missing standard deviation parameter

σ of the PPCA model as the Root Mean Square (RMS)

reconstruction error of 3D faces, for both shape and texture.

Reconstructing the 10 BFM out-of-sample faces, we obtain

RMS reconstruction errors of σ̂S = 0.61 mm for the shape

part and σ̂C = 0.047 for the color. Note that all color values

are RGB floating point numbers in the interval [0, 1].
In order to better adapt the model to real images, we adapt

only the face, without ears and throat. A rendering of the

mean face of the masked model can be found in Fig. 2. We

recalculate the statistics using only the restricted face mask

to keep the model statistically valid and orthogonal.

All model parts of our software concerning statistical

shape modeling are implemented using the Statismo frame-

work (Lüthi et al. 2012).

Scene model The pinhole camera is modeled with focal

length f and an offset o of the principal point within the

image plane of size w × h pixels. The complete 3D-to-2D

projection is then

x2D = P ◦ T ◦ RZ ◦ RY ◦ RX ◦ (x3D) (28)

P (r) =
[

w f rx/rz + ox

h f ry/rz + oy

]

. (29)

Illumination The radiance pi of a point i on the face surface

with normal ni and albedo ai can be expressed using an

expansion into real Spherical Harmonics basis functions Ylm

pi = ai

2
∑

l=0

l
∑

m=−l

Ylm(ni )Llmkl . (30)

The above equation is per color channel. The expansion of

the environment map is captured in the illumination parame-

ters Llm , whereas the expansion of the Lambert reflectance

kernel is given by kl . For details, including the coefficient

values kl of the expansion, refer to Basri and Jacobs (2003).

The final image is produced by rasterization of all triangles

in the face model. We use a Phong shading approach with a

varying, interpolated normal for each pixel.

Illumination estimation As the light model (30) is linear for a

given geometry, the illumination expansion coefficients Lc
lm

for each color channel c are estimated solving a linear system

(least squares) with entries for each vertex i

9
∑

l ′=1

Yl ′(ni )kl ′a
c
i Lc

l ′ = pc
i . (31)

We solve the above system on 1000 randomly selected

visible vertices i .

Product likelihood normalization The distribution is cen-

tered at the color value of the synthetic image and normalized

to account for the truncation due to limited intensity values

through

N =
∫ 1

0

exp

(

−‖t − Ii (θ)‖2

2σ 2

)

dtRdtGdtB (32)

which can be calculated using the error function. The nor-

malization can also be replaced by a standard Gaussian

normalization as an approximation if the standard deviation

is much smaller than the range of bounds and the color chan-

nels are neither saturated nor zero. This is a valid assumption

for the majority of typical face images.

Appendix 2: Random Walk Proposals

The standard random walk proposal type is a Gaussian

update:

Q : θ ′ = θ + d d ∼ N (d|0, σ ). (33)

Camera model The proposals change three Euler angles of

rotation, three directions of translation, the principal point

in the image plane and the focal length. All of these are

updated independently, only one at a time, using a selected

variance for each. Additionally, 3D rotation proposals are

compensated for unwanted movements of the face within the

image plane such that it is kept at a fixed position in the

image.

Face model The updates of the 3DMM’s shape and texture

models consist of two types of parameter variations. First,

there is the addition of uncorrelated Gaussian noise to all

parameters. Second, there is a scaling of the total parameter

vector length with a log-normal distribution (distance from

mean, “caricature”). Proposals are generated by
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Table 11 Random walk proposals: σ is the standard deviation of the

normal distribution, centered at the current location. λ designates mix-

ture coefficients of the different scales coarse (C), intermediate (I) and

fine (F). The values are obtained empirically

Parameter Mixture

σC σI σF λC λI λF

Yaw (rad) 0.75 0.1 0.01 0.1 0.4 0.5

Nick (rad) 0.75 0.1 0.01 0.1 0.4 0.5

Roll (rad) 0.75 0.1 0.01 0.1 0.4 0.5

Focal length, log f 0.15 0.05 0.01 0.2 0.6 0.2

Distance, tz (mm) 500 50 5 0.2 0.6 0.2

Translation, tx,y (mm) 300 50 10 0.2 0.2 0.6

Shape, qS 0.2 0.1 0.025 0.1 0.5 0.2

Radial shape, ‖qS‖ 0.2 0.2

Color, qC 0.2 0.1 0.025 0.1 0.5 0.2

Radial color, ‖qC‖ 0.2 0.2

Light perturbation 0.001 1

Light intensity, log f 0.1 1

Light color 0.01 1

QS : θ ′
S = θS + d d ∼ N (d|0, σSI) (34)

θ ′
S = θS × λ λ ∼ log N (1, σSL). (35)

Ilumination The illumination coefficients are updated with

a mixture of a perturbation, an intensity and a color proposal.

The perturbation is a standard independent Gaussian acting

on all coefficients at once. The intensity proposal scales all

coefficients by a factor drawn from a log-normal distribution

and the color proposal keeps the intensity constant while

perturbing the coefficients.

Table 11 contains a detailed overview.
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