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Bayesian inference has found widespread application and use in science and engineering to reconcile

Earth system models with data, including prediction in space (interpolation), prediction in time (fore-

casting), assimilation of observations and deterministic/stochastic model output, and inference of the

model parameters. Bayes theorem states that the posterior probability, pðH
���~YÞ of a hypothesis, H is

proportional to the product of the prior probability, p(H) of this hypothesis and the likelihood, LðH
���~YÞ of

the same hypothesis given the new observations, ~Y, or pðH
���~YÞfpðHÞLðH

���~YÞ. In science and engineering, H

often constitutes some numerical model, F (x) which summarizes, in algebraic and differential equations,

state variables and fluxes, all knowledge of the system of interest, and the unknown parameter values, x

are subject to inference using the data ~Y. Unfortunately, for complex system models the posterior dis-

tribution is often high dimensional and analytically intractable, and sampling methods are required to

approximate the target. In this paper I review the basic theory of Markov chain Monte Carlo (MCMC)

simulation and introduce a MATLAB toolbox of the DiffeRential Evolution Adaptive Metropolis (DREAM)

algorithm developed by Vrugt et al. (2008a, 2009a) and used for Bayesian inference in fields ranging from

physics, chemistry and engineering, to ecology, hydrology, and geophysics. This MATLAB toolbox pro-

vides scientists and engineers with an arsenal of options and utilities to solve posterior sampling

problems involving (among others) bimodality, high-dimensionality, summary statistics, bounded

parameter spaces, dynamic simulation models, formal/informal likelihood functions (GLUE), diagnostic

model evaluation, data assimilation, Bayesian model averaging, distributed computation, and informa-

tive/noninformative prior distributions. The DREAM toolbox supports parallel computing and includes

tools for convergence analysis of the sampled chain trajectories and post-processing of the results. Seven

different case studies illustrate the main capabilities and functionalities of the MATLAB toolbox.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and scope

Continued advances in direct and indirect (e.g. geophysical,

pumping test, remote sensing) measurement technologies and

improvements in computational technology and process knowl-

edge have stimulated the development of increasingly complex

environmental models that use algebraic and (stochastic) ordinary

(partial) differential equations (PDEs) to simulate the behavior of a

myriad of highly interrelated ecological, hydrological, and biogeo-

chemical processes at different spatial and temporal scales. These

water, energy, nutrient, and vegetation processes are often non-

separable, non-stationary with very complicated and highly-

nonlinear spatio-temporal interactions (Wikle and Hooten, 2010)

which gives rise to complex system behavior. This complexity poses

significant measurement and modeling challenges, in particular

how to adequately characterize the spatio-temporal processes of

the dynamic system of interest, in the presence of (often)
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incomplete and insufficient observations, process knowledge and

system characterization. This includes prediction in space (inter-

polation/extrapolation), prediction in time (forecasting), assimila-

tion of observations and deterministic/stochastic model output,

and inference of the model parameters.

The use of differential equations might be more appropriate

than purely empirical relationships among variables, but does not

guard against epistemic errors due to incomplete and/or inexact

process knowledge. Fig. 1 provides a schematic overview of most

important sources of uncertainty that affect our ability to

describe as closely and consistently as possible the observed

system behavior. These sources of uncertainty have been dis-

cussed extensively in the literature, and much work has focused

on the characterization of parameter, model output and state

variable uncertainty. Explicit knowledge of each individual error

source would provide strategic guidance for investments in data

collection and/or model improvement. For instance, if input

(forcing/boundary condition) data uncertainty dominates total

simulation uncertainty, then it would not be productive to in-

crease model complexity, but rather to prioritize data collection

instead. On the contrary, it would be naive to spend a large

portion of the available monetary budget on system character-

ization if this constitutes only a minor portion of total prediction

uncertainty.

Note that model structural error (label 4) (also called epistemic

error) has received relatively little attention, but is key to learning

and scientific discovery (Vrugt et al., 2005; Vrugt and Sadegh,

2013).

The focus of this paper is on spatio-temporal models that may

be discrete in time and/or space, but with processes that are

continuous in both. A MATLAB toolbox is described which can be

used to derive the posterior parameter (and state) distribution,

conditioned on measurements of observed system behavior. At

least some level of calibration of these models is required to make

sure that the simulated state variables, internal fluxes, and output

variables match the observed system behavior as closely and

consistently as possible. Bayesian methods have found widespread

application and use to do so, in particular because of their innate

ability to handle, in a consistent and coherent manner parameter,

state variable, and model output (simulation) uncertainty.

If ~Y ¼ f~y1;…; ~yng signifies a discrete vector of measurements at

times t ¼ {1,…,n} which summarizes the response of some

environmental system J to forcing variables U ¼ {u1,…,un}. The

observations or data are linked to the physical system.

~Y)Jðx�Þ þ ε; (1)

where x� ¼ fx�1;…; x�
d
g are the unknown parameters, and

ε ¼ {ε1,…,εn} is a n-vector of measurement errors. When a hy-

pothesis, or simulator, Y)F ðx�; ~u; ~j0Þ of the physical process is

available, then the data can be modeled using

~Y)F

�
x�; ~U; ~j0

�
þ E; (2)

where ~j0 2J2 ℝ
t signify the t initial states, and E ¼ {e1,…,en}

includes observation error (forcing and output data) as well as error

due to the fact that the simulator, F (,) may be systematically

different from reality, Jðx�Þ for the parameters x*. The latter may

arise from numerical errors (inadequate solver and discretization),

and improper model formulation and/or parameterization.

By adopting a Bayesian formalism the posterior distribution of

the parameters of the model can be derived by conditioning the

spatio-temporal behavior of the model on measurements of the

observed system response

p
�
x
���~Y
�
¼

pðxÞp
�
~Y
���x
�

p
�
~Y
� ; (3)

where p(x) and pðx
���~YÞ signify the prior and posterior parameter

distribution, respectively, and L x
���~Y

� �
≡ p ~Y

���x
� �

denotes the likeli-

hood function. The evidence, pð~YÞ acts as a normalization constant

(scalar) so that the posterior distribution integrates to unity

p
�
~Y
�
¼
Z

c

pðxÞp
�
~Y
���x
�
dx ¼

Z

c

p
�
x; ~Y

�
dx; (4)

over the parameter space, x 2 c 2 ℝ
d. In practice, pð~YÞ is not

required for posterior estimation as all statistical inferences about

pðx
���~YÞ can be made from the unnormalized density

p
�
x
���~Y
�
fpðxÞL

�
x
���~Y
�

(5)

If we assume, for the time being, that the prior distribution, p(x)

Fig. 1. Schematic illustration of the most important sources of uncertainty in environmental systems modeling, including (1) parameter, (2) input data (also called forcing or boundary

conditions), (3), initial state, (4) model structural, (5) output, and (6) calibration data uncertainty. The measurement data error is often conveniently assumed to be known, a rather

optimistic approach in most practical situations. Question remains how to describe/infer properly all sources of uncertainty in a coherent and statistically adequate manner.
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is well defined, then the main culprit resides in the definition of the

likelihood function, Lðx
���~YÞ used to summarize the distance be-

tween the model simulations and corresponding observations. If

the error residuals are assumed to be uncorrelated then the like-

lihood of the n-vector of error residuals can be written as follows

L
�
x
���~Y
�
¼ f~y1

ðy1ðxÞÞ � f~y2
ðy2ðxÞÞ �…� f~yn

ðynðxÞÞ ¼
Yn

t¼1

f~yt
ðytðxÞÞ;

(6)

where fa(b) signifies the probability density function of a evaluated

at b. If we further assume the error residuals to be normally

distributed, etðxÞ�D N ð0; bs2
t Þ then Equation (6) becomes

L
�
x
���~Y; bs2

�
¼
Yn

t¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pbs2

t

q exp

"
� 1

2

�
~yt � ytðxÞ

bst

�2
#
; (7)

where bs ¼ fbs1;…; bsng is a n-vector with standard deviations of the

measurement error of the observations. This formulation allows for

homoscedastic (constant variance) and heteroscedastic measure-

ment errors (variance dependent on magnitude of data).1 For rea-

sons of numerical stability and algebraic simplicity it is often

convenient to work with the log-likelihood, L ðx
���~Y; bs2Þ instead

L

�
x
���~Y; bs2

�
¼ �n

2
logð2pÞ �

Xn

t¼1

flogðbstÞg �
1

2

Xn

t¼1

�
~yt � ytðxÞ

bst

�2

:

(8)

If the error residuals, EðxÞ ¼ ~Y � YðxÞ ¼ fe1ðxÞ;…; enðxÞg exhibit

temporal (or spatial) correlation then one can try to take explicit

account of this in the derivation of the log-likelihood function. For

instance, suppose the error residuals assume an AR(1)-process

etðxÞ ¼ cþ fet�1ðxÞ þ ht ; (9)

with ht �
D
N ð0; bs 2

t Þ, expectation E½etðxÞ� ¼ c=ð1� fÞ, and variance

Var[et(x)]¼ bs2/(1�f2). This then leads to the following formulation

of the log-likelihood (derivation in statistics textbooks)

ℒ

�
x
���~Y ; c;f; bs2

�
¼ �n

2
logð2pÞ � 1

2
log
h
bs2
1

.�
1� f2

�i

� ðe1ðxÞ � ½c=ð1� fÞ�Þ2

2bs2
1=
�
1� f2

	 �
Xn

t¼2

flogðbstÞg

� 1

2

Xn

t¼2

ððetðxÞ � c� fet�1 xð ÞÞ
bst

Þ2

(10)

where jfj<1 signifies the first-order autoregressive coefficient. If

we assume c to be zero (absence of long-term trend) then Equation

(10) reduces, after some rearrangement, to

ℒ

�
x
���~Y ;f; bs2

�
¼ �n

2
logð2pÞ þ 1

2
log
�
1� f2

�

� 1

2

�
1� f2

�
bs�2
1 e1ðxÞ2 �

Xn

t¼2

flogðbstÞg

� 1

2

Xn

t¼2

�ðetðxÞ � fet�1ðxÞÞ
bst

�2

; (11)

and the nuisance variables {f,bs} are subject to inference with the

model parameters, x using the observed data, ~Y2.

Equation (11) is rather simplistic in that it assumes a-priori that

the error residuals follow a stationary AR(1) process. This

assumption might not be particularly realistic for real-world

studies. Various authors have therefore proposed alternative for-

mulations of the likelihood function to extend applicability to sit-

uations where the error residuals are non-Gaussian with varying

degrees of kurtosis and skewness (Schoups and Vrugt, 2010; Smith

et al., 2010; Evin et al., 2013; Scharnagl et al., 2015). Latent variables

can also be used to augment likelihood functions and take better

consideration of forcing data and model structural error (Kavetski

et al., 2006a; Vrugt et al., 2008a; Renard et al., 2011). For systems

with generative (negative) feedbacks, the error in the initial states

poses no harm as its effect on system simulation rapidly diminishes

when time advances. One can therefore take advantage of a spin-up

period to remove sensitivity of the modeling results (and error

residuals) to state value initialization.

The process of investigating phenomena, acquiring new infor-

mation through experimentation and data collection, and refining

existing theory and knowledge through Bayesian analysis has many

elements in common with the scientific method. This framework,

graphically illustrated in Fig. 2 is adopted in many branches of the

earth sciences, and seeks to elucidate the rules that govern the

natural world.

Once the prior distribution and likelihood function have been

defined, what is left in Bayesian analysis is to summarize the pos-

terior distribution, for example by the mean, the covariance or

percentiles of individual parameters and/or nuisance variables.

Unfortunately, most dynamic system models are highly nonlinear,

and this task cannot be carried out by analytical means nor by

analytical approximation. Confidence intervals construed from a

classical first-order approximation can then only provide an

approximate estimate of the posterior distribution. What is more,

the target is assumed to be multivariate Gaussian ([2-norm type

likelihood function), a restrictive assumption. I therefore resort to

Monte Carlo (MC) simulation methods to generate a sample of the

posterior distribution.

In a previous paper, we have introduced the DiffeRential Evo-

lution AdaptiveMetropolis (DREAM) algorithm (Vrugt et al., 2008a,

2009a). This multi-chain Markov chain Monte Carlo (MCMC)

simulation algorithm automatically tunes the scale and orientation

of the proposal distribution en route to the target distribution, and

exhibits excellent sampling efficiencies on complex, high-

dimensional, and multi-modal target distributions. DREAM is an

adaptation of the Shuffled Complex Evolution Metropolis (Vrugt

et al., 2003) algorithm and has the advantage of maintaining

detailed balance and ergodicity. Benchmark experiments [e.g.

(Vrugt et al., 2008a, 2009a; Laloy and Vrugt, 2012; Laloy et al., 2013;

Linde and Vrugt, 2013; Lochbühler et al., 2014; Laloy et al., 2015)]

have shown that DREAM is superior to other adaptive MCMC

sampling approaches, and in high-dimensional search/variable1 If homoscedasticity is expected and the variance of the error residuals,

s2 ¼ 1
n�1

Pn

t¼1

et xð Þð Þ2 is taken as sufficient statistic for bs2, then one can show that the

likelihood function simplifies to L x
���~Y

� �
∝
Pn

t¼1

��et xð Þ
���n

.
2 A nuisance variable is a random variable that is fundamental to the probabilistic

model, but that is not of particular interest itself.
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spaces even provides better solutions than commonly used opti-

mization algorithms.

In just a few years, the DREAM algorithm has found wide-

spread application and use in numerous different fields,

including (among others) atmospheric chemistry (Partridge

et al., 2011, 2012), biogeosciences (Scharnagl et al., 2010;

Braakhekke et al., 2013; Ahrens and Reichstein, 2014; Dumont

et al., 2014; Starrfelt and Kaste, 2014), biology (Coelho et al.,

2011; Zaoli et al., 2014), chemistry (Owejan et al., 2012;

Tarasevich et al., 2013; DeCaluwe et al., 2014; Gentsch et al.,

2014), ecohydrology (Dekker et al., 2010), ecology (Barthel

et al., 2011; Gentsch et al., 2014; Iizumi et al., 2014; Zilliox and

Goselin, 2014), economics and quantitative finance (Bauwens

et al., 2011; Lise et al., 2012; Lise, 2013), epidemiology (Mari

et al., 2011; Rinaldo et al., 2012; Leventhal et al., 2013),

geophysics (Bikowski et al., 2012; Linde and Vrugt, 2013; Laloy

et al., 2012; Carbajal et al., 2014; Lochbühler et al., 2014, 2015),

geostatistics (Minasny et al., 2011; Sun et al., 2013), hydro-

geophysics (Hinnell et al., 2011), hydrologeology (Keating et al.,

2010; Laloy et al., 2013; Malama et al., 2013), hydrology (Vrugt

et al., 2008a, 2009a; Shafii et al., 2014), physics (Dura et al.,

2011; Horowitz et al., 2012; Toyli et al., 2012; Kirby et al.,

2013; Yale et al., 2013; Krayer et al., 2014), psychology (Turner

and Sederberg, 2012), soil hydrology (W€ohling and Vrugt,

2011), and transportation engineering (Kow et al., 2012). Many

of these publications have used the MATLAB toolbox of DREAM,

which has been developed and written by the author of this

paper, and shared with many individuals worldwide. Yet, the

toolbox of DREAM has never been released formally through a

software publication documenting how to use the code for

Bayesian inference and posterior exploration.

In this paper, I review the basic theory of Markov chain Monte

Carlo (MCMC) simulation, provide MATLAB scripts of some

commonly used posterior sampling methods, and introduce a

MATLAB toolbox of the DREAM algorithm. This MATLAB toolbox

provides scientists and engineers with a comprehensive set of

capabilities for application of the DREAM algorithm to Bayesian

inference and posterior exploration. The DREAM toolbox im-

plements multi-core computing (if user desires) and includes

tools for convergence analysis of the sampled chain trajectories

and post-processing of the results. Recent extensions of the

toolbox are described as well, and include (among others) built-

in functionalities that enable use of informal likelihood functions

(Beven and Binley, 1992; Beven and Freer, 2001), summary sta-

tistics (Gupta et al., 2008), approximate Bayesian computation

(Nott et al., 2012; Sadegh and Vrugt, 2013, 2014), diagnostic

model evaluation (Vrugt and Sadegh, 2013), and the limits of

acceptability framework (Beven, 2006; Beven and Binley, 2014).

These developments are in part a response to the emerging

paradigm of model diagnostics using summary statistics of sys-

tem behavior. Recent work has shown that such approach pro-

vides better guidance on model malfunctioning and related

issues than the conventional residual-based paradigm (Sadegh

et al., 2015b; Vrugt, submitted for publication). The main capa-

bilities of the DREAM toolbox are demonstrated using seven

different case studies involving (for instance) bimodality, high-

dimensionality, summary statistics, bounded parameter spaces,

dynamic simulation models, formal/informal likelihood func-

tions, diagnostic model evaluation, data assimilation, Bayesian

model averaging, distributed computation, informative/non-

informative prior distributions, and limits of acceptability. These

example studies are easy to run and adapt and serve as

Fig. 2. The iterative research cycle for a soil-tree-atmosphere-continuum (STAC). The initial hypothesis is that this system can be described accurately with a coupled soil-tree

porous media model which simulates, using PDEs, processes such as infiltration, soil evaporation, variably saturated soil water flow and storage, root water uptake, xylem wa-

ter storage and sapflux, and leaf transpiration. Measurements of spatially distributed soil moisture and matric head, sapflux, and tree trunk potential are used for model calibration

and evaluation. The model-data comparison step reveals a systematic deviation in the early afternoon and night time hours between the observed (black circles) and simulated

(solid red line) sapflux data. It has proven to be very difficult to pinpoint this epistemic error to a specific component of the model. Ad-hoc decisions on model improvement

therefore usually prevail. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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templates for other inference problems.

The present contribution follows papers by others in the same

journal on the implementation of DREAM in high-level statistical

languages such as R (Joseph and Guillaume, 2014) as well as

general-purpose languages such as Fortran (Lu et al., 2014). Other

unpublished versions of DREAM include codes in C (http://people.

sc.fsu.edu/~jburkardt/c_src/dream/dream.html) and Python

(https://pypi.python.org/pypi/multichain_mcmc/0.2.2). These

different codes give potential users the option to choose their

preferred language, yet these translations are based on source

code supplied by the author several years ago and have limited

functionalities compared to the MATLAB package described

herein. The present code differs from its earlier versions in that it

contains a suite of new options and new methodological de-

velopments (Vrugt and Sadegh, 2013; Sadegh and Vrugt, 2014;

Vrugt, 2015a,submitted for publication).

The remainder of this paper is organized as follows. Section 2

reviews the basic theory of Monte Carlo sampling and MCMC

simulation, and provides a MATLAB code of the Random Walk

Metropolis algorithm. This is followed in Section 3 with a brief

discussion of adaptive single and multi-chain MCMC methods.

Here, I provide a source code of the basic DREAM algorithm. This

source code has few options available to the user and Section 4

therefore introduces all the elements of the MATLAB toolbox of

DREAM. This section is especially concerned with the input and

output arguments of the DREAM program and the various func-

tionalities, capabilities, and options available to the user. Section 5

of this paper illustrates the practical application of the DREAM

toolbox to seven different case studies. These examples involve a

wide variety of problem features, and illustrate some of the main

capabilities of the MATLAB toolbox. In Section 6, I then discuss a

few of the functionalities of the DREAM code not demonstrated

explicitly in the present paper. Examples include Bayesian model

selection using a new and robust integration method for inference

of the marginal likelihood, pð~YÞ (Volpi et al., 2015), the use of

diagnostic Bayes to help detect epistemic errors (Vrugt, submitted

for publication), and the joint treatment of parameter, model

input (forcing) and output (calibration/evaluation) data uncer-

tainty. In the penultimate section of this paper, I discuss relatives

of the DREAM algorithm including DREAM(ZS), DREAM(D) (Vrugt

et al., 2011), DREAM(ABC) (Sadegh and Vrugt, 2014), and MT-

DREAM(ZS) (Laloy and Vrugt, 2012) and describe briefly how their

implementation in MATLAB differs from the present toolbox.

Finally, Section 8 concludes this paper with a summary of the

work presented herein.

2. Posterior exploration

A key task in Bayesian inference is to summarize the posterior

distribution. When this task cannot be carried out by analytical

means nor by analytical approximation, Monte Carlo simulation

methods can be used to generate a sample from the posterior dis-

tribution. The desired summary of the posterior distribution is then

obtained from the sample. The posterior distribution, also referred

to as the target or limiting distribution, is often high dimensional. A

large number of iterativemethods have been developed to generate

samples from the posterior distribution. All these methods rely in

some way on Monte Carlo simulation. The next sections discuss

several different posterior sampling methods.

2.1. Monte Carlo simulation

Monte Carlo methods are a broad class of computational algo-

rithms that use repeated random sampling to approximate some

multivariate probability distribution. The simplest Monte Carlo

method involves random sampling of the prior distribution. This

method is known to be rather inefficient, which I can illustratewith

a simple example. Lets consider a circle with unit radius in a square

of size x2 [�2,2]2. The circle (posterior distribution) has an area of

p and makes up p/16 z 0.196 of the prior distribution. I can now

use Monte Carlo simulation to estimate the value of p. I do so by

randomly sampling N ¼ 10,000 values of x from the prior distri-

bution. The M samples of x that fall within the circle are posterior

solutions and indicated with the plus symbol in Fig. 3. Samples that

fall outside the circle are rejected and printed with a dot. The value

of can now be estimated using p z 16M/N which in this numerical

experiment with N ¼ 10,000 samples equates to 3.0912.

The target distribution is relatively simple to sample in the

present example. It should be evident however that uniform

random sampling will not be particularly efficient if the hypercube

of the prior distribution is much larger. Indeed, the chance that a

random sample of x falls within the unit circle decreases rapidly

(quadratically) with increasing size of the prior distribution. If a

much higher dimensional sample were considered then rejection

sampling would quickly need many millions of Monte Carlo sam-

ples to delineate reasonably the posterior distribution and obtain

an accurate value of p. What is more, in the present example all

solutions within the circle have an equal density. If this were not

the case then many accepted samples are required to approximate

closely the distribution of the probability mass within the posterior

distribution. Indeed, methods such as the generalized likelihood

uncertainty estimation (GLUE) that rely on uniform sampling (such

as rejection sampling) can produce questionable results if the target

distribution is somewhat complex and/or comprises only a rela-

tively small part of the prior distribution (Vrugt, 2015a). In sum-

mary, standard Monte Carlo simulation methods are

computationally inefficient for anything but very low dimensional

problems.

This example is rather simple but conveys what to expect when

using simple Monte Carlo simulation methods to approximate

complex and high-dimensional posterior distributions. I therefore

Fig. 3. Example target distribution: A square with unit radius (in black) centered at the

origin. The Monte Carlo samples are coded in dots (rejected) and plusses (accepted).

The number of accepted samples can now be used to estimate the value of p z 3.0912.
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resort to Markov chain Monte Carlo simulation to explore the

posterior target distribution.

2.2. Markov chain Monte Carlo simulation

The basis of MCMC simulation is aMarkov chain that generates a

random walk through the search space and successively visits so-

lutions with stable frequencies stemming from a stationary distri-

bution, pð,Þ.3 To explore the target distribution, pð,Þ, a MCMC

algorithm generates trial moves from the current state of the

Markov chain xt�1 to a new state xp. The earliest MCMC approach is

the random walk Metropolis (RWM) algorithm introduced by

Metropolis et al. (1953). This scheme is constructed to maintain

detailed balance with respect to pð,Þ at each step in the chain. If

p(xt�1) (p(xp)) denotes the probability to find the system in state

xt�1 (xp) and q(xt�1/ xp)(q(xp/ xt�1)) is the conditional proba-

bility to perform a trial move from xt�1 to xp (xp to xt�1), then the

probability pacc(xt�1/ xp) to accept the trial move from xt�1 to xp is

related to pacc(xp/ xt�1) according to

pðxt�1Þq
�
xt�1/xp

	
pacc

�
xt�1/xp

	

¼ p
�
xp
	
q
�
xp/xt�1

	
pacc

�
xp/xt�1

	
(12)

If a symmetric jumping distribution is used, that is

q(xt�1/ xp) ¼ q(xp/ xt�1), then it follows that

pacc
�
xt�1/xp

	

pacc
�
xp/xt�1

	 ¼ p
�
xp
	

pðxt�1Þ
(13)

This Equation does not yet fix the acceptance probability.

Metropolis et al. (1953) made the following choice

pacc
�
xt�1/xp

	
¼ min



1;

p
�
xp
	

pðxt�1Þ

�
; (14)

to determine whether to accept a trial move or not. This

selection rule has become the basic building block of many

existing MCMC algorithms. Hastings (1970) extended Equation

(14) to the more general case of non-symmetrical jumping

distributions

pacc
�
xt�1/xp

	
¼ min

"
1;

p
�
xp
	
q
�
xp/xt�1

	

pðxt�1Þq
�
xt�1/xp

	
#
; (15)

inwhich the forward (xt�1 to xp) and backward (xp to xt�1) jump do

not have equal probability, q(xt�1/xp) s q(xp/xt�1). This gener-

alization is known as the Metropolis-Hastings (MH) algorithm and

broadens significantly the type of proposal distribution that can be

used for posterior inference.

The core of the RWM algorithm can be coded in just a few lines

(see Algorithm 1) and requires only a jumping distribution, a

function to generate uniform random numbers, and a function to

calculate the probability density of each proposal. Note, for the time

being I conveniently assume the use of a noninformative prior

distribution. This simplifies the Metropolis acceptance probability

to the ratio of the densities of the proposal and the current state of

the chain. The use of an informative prior distribution will be

considered at a later stage.

In words, assume that the points {x0,…,xt�1} have already been

sampled, then the RWM algorithm proceeds as follows. First, a

candidate point xp is sampled from a proposal distribution q that

depends on the present location, xt�1 and is symmetric, q(xt�1,xp) ¼
q(xp, xt�1). Next, the candidate point is either accepted or rejected

using the Metropolis acceptance probability (Equation (14)). Finally,

ALGORITHM 1. MATLAB function script of the RandomWalk Metropolis (RWM) algorithm. Notation matches variable names used in main

text. Based on input arguments prior, pdf, T and d, the RWM algorithm creates a Markov chain, x and corresponding densities, p_x. prior() is

an anonymous function that draws N samples from a d-variate prior distribution. This function generates the initial state of the Markov

chain. pdf() is another anonymous function that computes the density of the target distribution for a given vector of parameter values, x.

Input arguments T and d signify the number of samples of the Markov chain and dimensionality of the parameter space, respectively. Built-

in functions of MATLAB are highlighted with a low dash. The function handle q(C,d) is used to draw samples from a d-variate normal

distribution, mvnrnd() with zero mean and covariance matrix, C. rand draws a value from a standard uniform distribution on the open

interval (0,1), min() returns the smallest element of two different scalars, zeros() creates a zeroth vector (matrix), eye() computes the d � d

identity matrix, sqrt() calculates the square root, and nan() fills each entry of a vector (matrix) with not a number.

3 This notation for the target distribution has nothing to do with the value of p ¼
3.1415... subject to inference in Fig. 3.
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if the proposal is accepted the chainmoves toxp, otherwise the chain

remains at its current location xt�1. Repeated application of these

three steps results in aMarkov chainwhich, under certain regularity

conditions, has a unique stationary distribution with posterior

probability density function, pð,Þ. In practice, this means that if one

looks at the values of x sufficiently far from the arbitrary initial value,

that is, after a burn-inperiod, the successively generated states of the

chain will be distributed according to pð,Þ, the posterior probability

distribution of x. Burn-in is required to allow the chain to explore the

search space and reach its stationary regime.

Fig. 4 illustrates the outcome of the RWM algorithm for a simple

d ¼ 2-dimensional multivariate normal target distribution with

correlated dimensions. This target distribution is specified as

anonymous function (a function not stored as program file) in

MATLAB

pdf ¼ @ðxÞmvnpdfðx; ½0 0�; ½1 0:8; 0:8 1�Þ (16)

where the @ operator creates the handle, and the parentheses

contain the actual function itself. This anonymous function ac-

cepts a single input x, and implicitly returns a single output, a

vector (or scalar) of posterior density values with same number of

rows as x.

The chain is initialized by sampling from U 2½�10;10�, where

U dða; bÞ denotes the d-variate uniform distributionwith lower and

upper bounds a and b, respectively, and thus

prior ¼ @ðN;dÞ unifrndð � 10; 10; N; dÞ (17)

The left graph presents a scatter plot of the bivariate posterior

samples using a total of T ¼ 50,000 function evaluations and burn-

in of 50%. The contours depict the 68, 90, and 95% uncertainty in-

tervals of the target distribution. The right graph displays a plot of

the generation number against the value of parameter, x1 and x2 at

each iteration. This is also called a traceplot.

Perhaps not surprisingly, the bivariate samples of the RWM al-

gorithm nicely approximate the target distribution. The acceptance

rate of 23% is somewhat lower than considered optimal in theory

but certainly higher than derived fromMonte Carlo simulation. The

posterior mean and covariance are in excellent agreement with

their values of the target distribution (not shown).

This simple example just serves to demonstrate the ability of

RWM to approximate the posterior target distribution. The relative

ease of implementation of RWM and its theoretical underpinning

have led to widespread application and use in Bayesian inference.

However, the efficiency of the RWM algorithm is determined by

the choice of the proposal distribution, q(,) used to create trial

moves (transitions) in the Markov chain. When the proposal dis-

tribution is too wide, too many candidate points are rejected, and

therefore the chain will not mix efficiently and converge only

slowly to the target distribution. On the other hand, when the

proposal distribution is too narrow, nearly all candidate points are

accepted, but the distance moved is so small that it will take a

prohibitively large number of updates before the sampler has

converged to the target distribution. The choice of the proposal

distribution is therefore crucial and determines the practical

applicability of MCMC simulation in many fields of study (Owen

and Tribble, 2005).

3. Automatic tuning of proposal distribution

In the past decade, a variety of different approaches have been

proposed to increase the efficiency of MCMC simulation and

enhance the original RWM and MH algorithms. These approaches

can be grouped into single and multiple chain methods.

3.1. Single-chain methods

The most common adaptive single chain methods are the

adaptive proposal (AP) (Haario et al., 1999), adaptive Metropolis

(AM) (Haario et al., 2001) and delayed rejection adaptive metrop-

olis (DRAM) algorithm (Haario et al., 2006), respectively. These

methods work with a single trajectory, and continuously adapt the

covariance, S of a Gaussian proposal distribution,

qtðxt�1; ,Þ ¼ N dðxt�1; sdSÞ using the accepted samples of the chain,

S ¼ cov(x0,…,xt�1) þ 4Id. The variable sd represents a scaling factor

(scalar) that depends only on the dimensionality d of the problem,

Id signifies the d-dimensional identity matrix, and 4 ¼ 10�6 is a

small scalar that prevents the sample covariance matrix to become

singular. As a basic choice, the scaling factor is chosen to be

sd ¼ 2.382/d which is optimal for Gaussian target and proposal

distributions (Gelman et al., 1996; Roberts et al., 1997) and should

give an acceptance rate close to 0.44 for d ¼ 1, 0.28 for d ¼ 5 and

0.23 for large d. A MATLAB code of the AM algorithm is given on the

next page (see Algorithm 2).

Fig. 4. (A) bivariate scatter plots of the RWM derived posterior samples. The green, black and blue contour lines depict the true 68, 90 and 95% uncertainty intervals of the target

distribution, respectively. (B,C) traceplot of the sampled values of x1 (top) and x2 (bottom). (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

J.A. Vrugt / Environmental Modelling & Software 75 (2016) 273e316 279



Single-site updating of x (Haario et al., 2005) is possible to in-

crease efficiency of AM for high-dimensional problems (large d). In

addition, for the special case of hierarchical Bayesian inference of

hydrologic models, Kuczera et al. (2010) proposed to tune S using a

limited-memory multi-block pre-sampling step, prior to a classical

single block Metropolis run.

Another viable adaptation strategy is to keep the covariance

matrix fixed (identity matrix) and to update during burn-in the

scaling factor, sd until a desired acceptance rate is achieved. This

approach differs somewhat from the AM algorithm but is easy to

implement (see Algorithm 3).

ALGORITHM 3. Metropolis algorithm with adaptation of the scaling factor, sd rather than covariance matrix instead. The scaling factor is

updated after each 25 successive generations to reach a desired acceptance rate between 20 and 30%. Themultipliers of 0.8 and 1.2 are by no

means generic values and should be determined through trial-and-error. Note, adaptation is restricted to the the first half of the Markov

chain to ensure reversibility of the last 50% of the samples.

ALGORITHM2. Basic MATLAB code of adaptiveMetropolis (AM) algorithm. This code is similar to that of the RWMalgorithm in Algorithm 1

but the d� d covariancematrix, C of the proposal distribution, q() is adapted using the samples stored in theMarkov chain. Built-in functions

of MATLAB are highlighted with a low dash. mod() signifies the modulo operation, and cov() computes the covariance matrix of the chain

samples, x.
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Whether a specific adaptation scheme of the scaling factor

(also called jump rate) works well in practice depends on the

properties of the target distribution. Some tuning is hence

required to achieve adequate results. Practical experience sug-

gests that covariance matrix adaptation (AM) is preferred over

scaling factor adaptation. The proposals created with the AM al-

gorithm will more rapidly behave as the target distribution.

The use of a multivariate normal proposal distribution with

adaptive covariance matrix or jump rate works well for Gaussian-

shaped target distributions, but does not converge properly for

multimodal distributions with long tails, possibly infinite first and

second moments (as demonstrated in section). Experience further

suggests that single chain methods are unable to traverse effi-

ciently complex multi-dimensional parameter spaces with mul-

tiple different regions of attraction and numerous local optima.

The use of an overly dispersed proposal distribution can help to

avoid premature convergence, but with a very low acceptance

rate in return. With a single chain it is also particularly difficult to

judge when convergence has been achieved. Even the most

powerful diagnostics that compare the sample moments of the

first and second half of the chain cannot guarantee that the target

distribution has been sampled. Indeed, the sample moments of

both parts of the chain might be identical but the chain is stuck in

a local optimum of the posterior surface or traverses consistently

only a portion of the target distribution (Gelman and Shirley,

2009). In fact, single chain methods suffer many similar prob-

lems as local optimizers and cannot guarantee that the full

parameter space has been explored adequately in pursuit of the

target distribution.

3.2. Multi-chain methods: DE-MC

Multiple chain methods use different trajectories running in

parallel to explore the posterior target distribution. The use of

multiple chains has several desirable advantages, particularly

when dealing with complex posterior distributions involving

long tails, correlated parameters, multi-modality, and numerous

local optima (Gilks et al., 1994; Liu et al., 2000; ter Braak, 2006;

ter Braak and Vrugt, 2008; Vrugt et al., 2009a; Radu et al., 2009).

The use of multiple chains offers a robust protection against

premature convergence, and opens up the use of a wide arsenal

of statistical measures to test whether convergence to a limiting

distribution has been achieved (Gelman and Rubin, 1992). One

popular multi-chain method that has found widespread appli-

cation and use in hydrology is the Shuffled Complex Evolution

Metropolis algorithm (SCEM-UA, Vrugt et al., 2003). Although

the proposal adaptation of SCEM-UA violates Markovian prop-

erties, numerical benchmark experiments on a diverse set of

multi-variate target distributions have shown that the method is

efficient and close to exact. The difference between the limiting

distribution of SCEM-UA and the true target distribution is

negligible in most reasonable cases and applications. The SCEM-

UA method can be made an exact sampler if the multi-chain

adaptation of the covariance matrix is restricted to the burn-in

period only. In a fashion similar to the AP (Haario et al., 1999)

and AM algorithm, the method then derives an efficient

Gaussian proposal distribution for the standard Metropolis al-

gorithm. Nevertheless, I do not consider the SCEM-UA algorithm

herein.

ter Braak (2006) proposed a simple adaptive RWM algorithm

called Differential Evolution Markov chain (DE-MC). DE-MC uses

differential evolution as genetic algorithm for population evolution

with aMetropolis selection rule to decidewhether candidate points

should replace their parents or not. In DE-MC, N different Markov

chains are run simultaneously in parallel. If the state of a single

chain is given by the d-vector x, then at each generation t�1 the N

chains in DE-MC define a population, X which corresponds to an N

� d matrix, with each chain as a row. Then multivariate proposals,

Xp are generated on the fly from the collection of chains,

X ¼ fx1t�1;…; xNt�1g using differential evolution (Storn and Price,

1997; Price et al., 2005)

Xi
p ¼ gd

�
Xa � Xb

�
þ zd; asbsi; (18)

where g denotes the jump rate, a and b are integer values drawn

without replacement from {1,…,i�1,iþ1,…,N}, and z�D N dð0; c�Þ is
drawn from a normal distribution with small standard deviation,

say c* ¼ 10�6. By accepting each proposal with Metropolis

probability

pacc

�
Xi
/Xi

p

�
¼ min

h
1; p
�
Xi
p

�.
p
�
Xi
�i

; (19)

aMarkov chain is obtained, the stationary or limiting distribution of

which is the posterior distribution. The proof of this is given in ter

Braak and Vrugt (2008). Thus, if paccðXi
/Xi

pÞ is larger than some

uniform label drawn from U ð0;1Þ then the candidate point is

accepted and the ith chain moves to the new position, that is

xit ¼ Xi
p, otherwise xit ¼ xit�1.

Because the joint pdf of the N chains factorizes to

pðx1
��,Þ �…� pðxN

��,Þ, the states x1…xN of the individual chains

are independent at any generation after DE-MC has become inde-

pendent of its initial value. After this burn-in period, the conver-

gence of a DE-MC run can thus be monitored with the bR-statistic of
Gelman and Rubin (1992). If the initial population is drawn from

the prior distribution, then DE-MC translates this sample into a

posterior population. From the guidelines of sd in RWM the optimal

choice of g ¼ 2.38/2d. With a 10% probability the value of g ¼ 1, or

p(g¼1) ¼ 0.1 to allow for mode-jumping (ter Braak, 2006; ter Braak

and Vrugt, 2008; Vrugt et al., 2008a, 2009a) which is a significant

strength of DE-MC as will be shown later. If the posterior distri-

bution consists of disconnected modes with in-between regions of

low probability, covariance based MCMC methods will be slow to

converge as transitions between probability regions will be

infrequent.

The DE-MC method can be coded in MATLAB in about 20 lines

(Algorithm 4), and solves an important practical problem in RWM,

namely that of choosing an appropriate scale and orientation for

the jumping distribution. Earlier approaches such as (parallel)

adaptive direction sampling (Gilks et al., 1994; Roberts and Gilks,

1994; Gilks and Roberts, 1996) solved the orientation problem

but not the scale problem.

Based on input arguments, prior, pdf, N, T, and d, defined by the

user de_mc returns a sample from the posterior distribution. prior

is an anonymous function that draws N samples from a d-variate

prior distribution, and similarly pdf is a function handle which

computes the posterior density of a proposal (candidate point).

To demonstrate the advantages of DE-MC over single chain

methods please consider Fig. 5 that presents histograms of the

posterior samples derived from AM (left plot) and DE-MC (right

plot) for a simple univariate target distribution consisting of a

mixture of two normal distributions

pðxÞ ¼ 1

6
jð�8;1Þ þ 5

6
jð10;1Þ; (20)

where j(a,b) denotes the probability density function (pdf) of a

normal distribution with mean a and standard deviation b. The

target distribution is displayed with a solid black line, and in

MATLAB language equivalent to
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pdf ¼ @ðxÞ1=6�normpdfðx;­8;1Þ þ 5=6�normpdfðx;10;1Þ:
(21)

The initial state of the Markov chain(s) is sampled from U ½�20;20�
using

prior ¼ @ðN;dÞ unifrndð­20;20;N;dÞ: (22)

The AM algorithm produces a spurious approximation of the

bimodal target distribution. The variance (width) of the proposal

distribution is insufficient to enable the chain to adequately

explore both modes of the target distribution. A simple remedy to

this problem is to increase the (default) initial variance of the

univariate normal proposal distribution. This would allow the AM

sampler to take much larger steps and jump directly between both

modes, but at the expense of a drastic reduction in the acceptance

rate and search efficiency. Indeed, besides the occasional suc-

cessful jumps many other proposals will overshoot the target

distribution, receive a nearly zero density, and consequently be

rejected.

This rather simple univariate example illustrates the dilemma

of RWM how to determine an appropriate scale and orientation of

the proposal distribution. Fortunately, the histogram of the pos-

terior samples derived with the DE-MC algorithm matches

perfectly the mixture distribution. Periodic use of g ¼ 1 enables

the N ¼ 10 different Markov chains of DE-MC to transition directly

between the two disconnected posterior modes (e.g. ter Braak and

Vrugt (2008); Vrugt et al. (2008a); Laloy and Vrugt (2012)) and

Fig. 5. Histogram of the posterior distribution derived from the (A) AM (single chain), and (B) DE-MC (multi-chain) samplers. The solid black line displays the pdf of the true

mixture target distribution.

ALGORITHM 4. MATLAB code of differential evolution-Markov chain (DE-MC) algorithm. Variable use is consistent with symbols used in

main text. Based on input arguments prior, pdf, N, T and d, the DE-MC algorithm evolves N different trajectories simultaneously to produce

a sample of the posterior target distribution. Jumps in each chain are computed from the remaining N-1 chains. The output arguments x

and p_x store the sampled Markov chain trajectories and corresponding density values, respectively. Built-in functions are highlighted

with a low dash. randsample draws with replacement ‘true’ the value of the jump rate, gamma from the vector [gamma_RWM 1] using

selection probabilities [0.9 0.1]. randn() returns a row vector with d draws from a standard normal distribution. I refer to introductory

textbooks and/or the MATLAB “help” utility for its built-in functions setdiff(), and reshape().
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rapidly converge to the exact target distribution. The initial states

of the DE-MC chains should be distributed over the parameter

space so that both modes can be found. What is more the use of N

trajectories allows for a much more robust assessment of

convergence.

In previous work (Vrugt et al., 2008a, 2009a) we have shown

that the efficiency of DE-MC can be enhanced, sometimes

dramatically, by using adaptive randomized subspace sampling,

multiple chain pairs for proposal creation, and explicit consider-

ation of aberrant trajectories. This method, entitled DiffeRential

Evolution Adaptive Metropolis (DREAM) maintains detailed bal-

ance and ergodicity and has shown to exhibit excellent perfor-

mance on a wide range of problems involving nonlinearity, high-

dimensionality, and multimodality. In these and other papers [e.g

(Laloy and Vrugt, 2012)] benchmark experiments have shown that

DREAM outperforms other adaptive MCMC sampling approaches,

and, in high-dimensional search/variable spaces, can even provide

better solutions than commonly used optimization algorithms.

3.3. Multi-chain methods: DREAM

The DREAM algorithm has it roots within DE-MC but uses

subspace sampling and outlier chain correction to speed up

convergence to the target distribution. Subspace sampling is

implemented in DREAM by only updating randomly selected di-

mensions of x each time a proposal is generated. If A is a subset of

d*-dimensions of the original parameter space, ℝd�
4ℝ

d, then a

jump, dXi in the ith chain, i ¼ {1,…,N} at iteration t ¼ {2,…,T} is

calculated from the collection of chains, X ¼ fx1t�1;…; xNt�1g using

differential evolution (Storn and Price, 1997; Price et al., 2005)

dXi
A ¼ zd� þ ð1d� þ ld�Þgðd;d�Þ

X

j¼1

d �
X
aj

A � X
bj

A

�

dXi
sA ¼ 0;

(23)

where

g ¼ 2:38ffiffiffiffiffiffiffiffiffiffi
2dd*

p

is the jump rate, d denotes the number of chain pairs used to

generate the jump, and a and b are vectors consisting of d integers

drawn without replacement from {1,…,i�1,iþ1,…,N}. The default

value of d¼ 3, and results, in practice, in one-third of the proposals

being created with d ¼ 1, another third with d ¼ 2, and the

remaining third using d ¼ 3. The values of l and z are sampled

independently from U d� ð�c; cÞ and N d� ð0; c�Þ, respectively, the
multivariate uniform and normal distribution with, typically,

c ¼ 0.1 and c* small compared to the width of the target distri-

bution, c* ¼ 10�6 say. Compared to DE-MC, p(g¼1) ¼ 0.2 to enhance

the probability of jumps between disconnected modes of the

target distribution. The candidate point of chain i at iteration t then

becomes

Xi
p ¼ Xi þ dXi; (24)

and the Metropolis ratio of Equation (19) is used to determine

whether to accept this proposal or not. If paccðXi
/Xi

pÞ � U ð0;1Þ
the candidate point is accepted and the ith chain moves to the

new position, that is xit ¼ Xi
p, otherwise xit ¼ xit�1. The default

equation for g should, for Gaussian and Student target distribu-

tion, result in optimal acceptance rates close to 0.44 for d ¼ 1, 0.28

for d ¼ 5, and 0.23 for large d (please refer to Section 7.84 of

Roberts and Casella (2004) for a cautionary note on these

references acceptance rates).

The d*-members of the subset A are sampled from the entries

{1,…,d} (without replacement) and define the dimensions of the

parameter space to be sampled by the proposal. This subspace

spanned by A is construed in DREAM with the help of a crossover

operator. This genetic operator is applied before each proposal is

created and works as follows. First, a crossover value, cr is sampled

from a geometric sequence of nCR different crossover probabilities,

CR ¼
�

1
nCR

; 2
nCR

;…;1



using the discrete multinomial distribution,

M (CR,pCR) on CR with selection probabilities pCR. Then, a d-vector z

¼ {z1,…,zd} is drawn from a standard multivariate normal distri-

bution, z �DU dð0;1Þ. All those values j which satisfy zj � cr are

stored in the subset A and span the subspace of the proposal that

will be sampled using Equation (23). If A is empty, one dimension of

{1,…,d} will be sampled at random to avoid the jump vector to have

zero length.

The use of a vector of crossover probabilities enables single-site

Metropolis (A has one element), Metropolis-within-Gibbs (A has

one or more elements) and regular Metropolis sampling (A has d el-

ements), and constantly introduces new directions in the parameter

space that chains can take outside the subspace spanned by their

current positions.What ismore, the use of subspace sampling allows

using N < d in DREAM, an important advantage over DE-MC that

requires N ¼ 2d chains to be run in parallel (ter Braak, 2006). Sub-

space sampling as implemented in DREAM adds one extra algo-

rithmic variable, nCR to the algorithm. The default setting of nCR ¼ 3

has shown to work well in practice, but larger values of this algo-

rithmic variablemight seemappropriate for high-dimensional target

distributions, say d > 50, to preserve the frequency of low-

dimensional jumps. Note, more intelligent subspace selection

methods can be devised for target distributions involving many

highly correlated parameters. These parameters should be sampled

jointly in a group, otherwise too many of the (subspace) proposals

will be rejected and the search can stagnate. This topic will be

explored in future work.

To enhance search efficiency the selection probability of each

crossover value, stored in the nCR-vector pCR, is tuned adaptively

during burn-in by maximizing the distance traveled by each of the

N chains. This adaptation is described in detail in Vrugt et al.

(2008a, 2009a), and a numerical implementation of this approach

appears in the MATLAB code of DREAM on the next page.

The core of the DREAM algorithm can be written in about 30

lines of code (see Algorithm 5). The input arguments are similar to

those used by DE-MC and include the function handles prior and

pdf and the values of N, T, and d.

TheMATLAB code listed above implements the different steps of

the DREAM algorithm as detailed in themain text. Structure, format

and notation matches that of the DE-MC code, and variable names

correspond with their symbols used in Equations (23) and (24).

Indents and comments are used to enhance readability and to

convey themain intent of each line of code. Note that this code does

not monitor convergence of the sampled chain trajectories, an

important hiatus addressed in the MATLAB toolbox of DREAM

discussed in the next sections. The computational efficiency of this

code can be improved considerably, for instance through vectori-

zation of the inner for loop, but this will affect negatively

readability.

The source code of DREAM listed below differs in several

important ways from the basic code of the DE-MC algorithm

presented in Section 3.2. These added features increase the

length of the code with about 20 lines, but enhance significantly

the convergence speed of the sampled chains to a limiting dis-

tribution. For reasons of simplicity, a separate function is used for
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one of these features, the correction of outlier chains. This

function is called check (line 44) and patches a critical vulnera-

bility of multi-chain MCMC methods such as SCEM-UA, DE-MC,

and DREAM (Vrugt et al., 2003; ter Braak and Vrugt, 2008; Vrugt

et al., 2008a, 2009a). The performance of these methods is

impaired if one or more of their sampled chains have become

trapped in an unproductive area of the parameter space while in

pursuit of the target distribution. The state of these outlier chains

will not only contaminate the jumping distribution of Equation

(23) and thus slow down the evolution and mixing of the other

“good” chains, what is much worse, dissident chains make it

impossible to reach convergence to a limiting distribution. For as

long as one of the chains samples a disjoint part of the parameter

space, the bR-diagnostic of Gelman and Rubin (1992) cannot reach

its stipulated threshold of 1.2 required to officially declare

convergence.

The problem of outlier chains is well understood and easily

demonstrated with an example involving a posterior response

surface with one or more local area of attractions far removed

from the target distribution. Chains that populate such local

optima can continue to persist indefinitely if the size of their

jumps is insufficient to move the chain outside the space span-

ned by this optima (see Fig. 2 of ter Braak and Vrugt (2008)).

Dissident chains will occur most frequent in high-dimensional

target distributions, as they require the use of a large N, and

complex posterior response surfaces with many areas of

attraction.

The function check is used as remedy for dissident chains. The

mean log density of the samples stored in the second half of each

chain is used as proxy for the “fitness” of each trajectory, and these

N data points are examined for anomalies using an outlier

detection test. Those chains (data points) that have been labeled

as outlier will relinquish their dissident state and move to the

position of one of the other chains (chosen at random). Details of

this procedure can be found in Vrugt et al. (2009a). The MATLAB

toolbox of DREAM implements four different outlier detection

methods the user can choose from. Details will be presented in the

next section.

ALGORITHM 5. MATLAB code of the differential evolution adaptive Metropolis (DREAM) algorithm. The script is similar to that of DE-MC

but uses (a) more than one chain pair to create proposals, (b) subspace sampling, and (c) outlier chain detection, to enhance convergence to

the posterior target distribution. Built-in functions are highlighted with a low dash. The jump vector, dX(i,1:d) of the ith chain contains the

desired information about the scale and orientation of the proposal distribution and is derived from the remaining N-1 chains. deal() assigns

default values to the algorithmic variables of DREAM, std() returns the standard deviation of each column of X, and sum() computes the sum

of the columns A of the chain pairs a and b. The function check() is a remedy for outlier chains.
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Those proficient in statistics, computer coding and numerical

computation, will be able to personalize this code for their own

applications. Yet, for others this codemight not suffice as it has very

few built-in options and capabilities. To satisfy these potential

users, I have therefore developed a MATLAB toolbox for DREAM.

This package has many built-in functionalities and is easy to use in

practice. The next sections will introduce the various elements of

the DREAM package, and use several examples to illustrate how the

package can be used to solve a wide variety of Bayesian inference

problems involving (among others) simple functions, dynamic

simulation models, formal and informal likelihood functions,

informative and noninformative prior distributions, limits of

acceptability, summary statistics, diagnostic model evaluation, low

and high-dimensional parameter spaces, and distributed

computing.

Before I proceed to the next section, a few remarks are in order.

The code of DREAM listed on the previous page does not adapt the

selection probabilities of the individual crossover values nor does it

monitor the convergence of the sampled chain trajectories. These

functionalities appear in the toolbox of DREAM. In fact, several

different metrics are computed to help diagnose convergence of the

sampled chains to a limiting distribution.

The MATLAB code of DREAM listed in Algorithm 5 evolves each

of the N chains sequentially. This serial implementation satisfies

DREAM's reversibility proof (ter Braak and Vrugt, 2008; Vrugt et al.,

2009a), but will not be efficient for CPU-intensive models. We can

adapt DREAM to a multi-core implementation in which the N

proposals are evaluated simultaneously in parallel using the

distributed computing toolbox of MATLAB (Algorithm 6).

Numerical experiments with a large and diverse set of test

functions have shown that the parallel implementation of DREAM

converges to the correct target distribution. I will revisit this topic

in Section 7.1 of this paper.

4. MATLAB implementation of DREAM

The basic code of DREAM listed in Algorithm 5 was written in

2006 but many new functionalities and options have been added to

the source code in recent years due to continued research de-

velopments and to support the needs of a growing group of users.

The DREAM code can be executed from the MATLAB prompt by the

command

ALGORITHM 6. Distributed implementation of DREAM in MATLAB. This code differs from the standard code of DREAM in that the pro-

posals are evaluated in parallel on different cores using the built-in parfor function of the parallel computing toolbox.
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½chain; output; fx� ¼ DREAM ðFunc_name;DREAMPar; Par_infoÞ

where Func_name (string), DREAMPar (structure array), and the

variable Par_info (structure array), etc. are input arguments defined

by the user, and chain (matrix), output (structure array) and fx

(matrix) are output variables computed by DREAM and returned to

the user. Tominimize the number of input and output arguments in

the DREAM function call and related primary and secondary func-

tions called by this program, I use MATLAB structure arrays and

group related variables in one main element using data containers

called fields. Two optional input arguments that the user can pass

to DREAM are Meas_info and options and their content and usage

will be discussed later.

The DREAM function uses more than twenty other functions to

implement its various steps and functionalities and generate

samples from the posterior distribution. All these functions are

summarized briefly in Appendix A. In the subsequent sections I will

discuss the MATLAB implementation of DREAM. This, along with

prototype case studies presented herein and template examples

listed in RUNDREAM should help users apply Bayesian inference to

their data and models.

4.1. Input argument 1: Func_Name

The variable Func_Name defines the name (enclosed in quotes)

of the MATLAB function (.m file) used to calculate the likelihood (or

proxy thereof) of each proposal. The use of a m-file rather than

anonymous function (e.g. pdf example), permits DREAM to solve

inference problems involving, for example, dynamic simulation

models, as they can generally not be written in a single line of code.

If Func_name is conveniently assumed to be equivalent to ’model’

then the call to this function becomes

Y ¼ model ðxÞ (25)

where x (input argument) is a 1� d vector of parameter values, and

Y is a return argument whose content is either a likelihood, log-

likelihood, or vector of simulated values or summary statistics,

respectively. The content of the function model needs to be written

by the user - but the syntax and function call is universal. Appendix

C provides seven different templates of the function model which

are used in the case study presented in Section 5.

4.2. Input argument 2: DREAMPar

The structure DREAMPar defines the computational settings of

DREAM. Table 1 lists the different fields of DREAMPar, their default

values, and the corresponding variable names used in the mathe-

matical description of DREAM in Section 3.3.

The field names of DREAMPar match exactly the symbols (let-

ters) used in the (mathematical) description of DREAM in Equations

(23) and (24). The values of the fields d, N, T depend on the

dimensionality of the target distribution. These variables are

problem dependent and should hence be specified by the user.

Default settings are assumed in Table 1 for the remaining fields of

DREAMPar with the exception of GLUE and lik whose values will be

discussed in the next two paragraphs. To create proposals with

Equation (23), the value of N should at least be equivalent to 2dþ1

or N¼ 7 for the default of d¼ 3. This number of chains is somewhat

excessive for low dimensional problems involving just a few pa-

rameters. One could therefore conveniently set d ¼ 1 for small d.

The default settings of DREAMPar are easy to modify by the user by

declaring individual fields and their respective value.

The DREAM algorithm can be used to sample efficiently the

behavioral solution space of informal and likelihood functions used

within GLUE (Beven and Binley, 1992; Beven and Freer, 2001). In

fact, as will be shown later, DREAM can also solve efficiently the

limits of acceptability framework of Beven (2006). For now it suf-

fices to say that the field GLUE of structure DREAMPar stores the

value of the shaping factor used within the (pseudo)likelihood

functions of GLUE. I will revisit GLUE and informal Bayesian infer-

ence at various places in the remainder of this paper. The content of

the field lik of DREAMPar defines the choice of likelihood function

used to compare the output of the function model with the avail-

able calibration data. Table 2 lists the different options for lik the

user can select from. The choice of likelihood function depends in

large part on the content of the return argument Y of the function

model, which is either a (log)-likelihood, a vector with simulated

values, or a vector with summary statistics, respectively.

If the return argument, Y of function model is equivalent to a

likelihood or log-likelihood then field lik of DREAMPar should be

Table 1

Main algorithmic variables of DREAM:mathematical symbols, corresponding fields of DREAMPar and default settings. These default settings have been determined in previous

work and shown to work well for a range of target distributions.

Symbol Description Field DREAMPar Default

Problem dependent

d Number of parameters d �1

N Number of Markov chains N �2dþ1

T Number of generations T �1

L ðx
���~YÞ (Log)-Likelihood function lik [1,2], [11�17], [21�23], [31�34]

Default variablesa

ncr Number of crossover values nCR 3

d Number chain pairs proposal delta 3

lb Randomization lambda 0.1

zc Ergodicity zeta 10�12

p(g¼1) Probability unit jump rate p_unit_gamma 0.2

Outlier detection test outlier ’iqr’

K Thinning rate thinning 1

Adapt crossover probabilities? adapt_pCR ’yes’

Gd Shaping factor GLUE >0

b0
e Scaling factor jump rate beta0 1

a A change to the default values of DREAM will affect the convergence (acceptance) rate.
b
l D� U d� ð�DREAMPar:lambda;DREAMPar:lambdaÞ.

c z D� N d� ð0;DREAMPar:zetaÞ.
d For pseudo-likelihood functions of GLUE (Beven and Binley, 1992).
e Multiplier of the jump rate, g¼b0g, default b0¼1.
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set equivalent to 1 or 2, respectively. This choice is appropriate for

problems involving some prescribed multivariate probability dis-

tributionwhose density can be evaluated directly. Examples of such

functions are presented in the first two case studies of Section 5.

Option 1 and 2 also enable users to evaluate their own preferred

likelihood function directly in the model script. In principle, these

two options are therefore sufficient to apply the DREAM code to a

large suite of problems. Nevertheless, to simplify implementation

and use, the DREAM package contains about 15 different built-in

likelihood functions.

Likelihood functions 11e17 and 31e34 are appropriate if the

output of model consists of a vector of simulated values of some

variable(s) of interest. Some of these likelihood functions (e.g.,

12e14, 16, 17) contain extraneous variables (nuisance coefficients)

whose values need to be inferred jointly with the model parame-

ters, x. Practical examples of joint inference are provided in the

RUNDREAM script and Appendix B. Likelihood functions 21 and 22

are appropriate if the return argument Yof model consists of one or

more summary statistics of the simulated data. These two likeli-

hood functions allow use of approximate Bayesian computation

and diagnostic model evaluation (Vrugt and Sadegh, 2013; Sadegh

and Vrugt, 2014; Vrugt, submitted for publication). Finally, likeli-

hood function 23 enables use of the limits of acceptability frame-

work (Beven, 2006; Beven and Binley, 2014; Vrugt, 2015a). Section

5 presents the application of different likelihood functions and

provides templates for their use. Appendix B provides the mathe-

matical formulation of each of the likelihood functions listed in

Table 2. Note, likelihood 22 and 23 use a modified Metropolis se-

lection rule to accept proposals or not. This issue is revisited in

Section 7 of this paper.

The generalized likelihood (GL) function of Schoups and Vrugt

(2010) (14) is most advanced in that it can account explicitly for

bias, correlation, non-stationarity, and nonnormality of the error

residuals trough the use of nuisance coefficients. In a recent paper,

Scharnagl et al. (2015) has introduced a skewed student likelihood

function (17) as modification to the GL formulation (14) to describe

adequately heavy-tailed error residual distributions. Whittle's

likelihood (Whittle, 1953) (15) is a frequency-based approximation

of the Gaussian likelihood and can be interpreted as minimum

distance estimate of the distance between the parametric spectral

density and the (nonparametric) periodogram. It also minimizes

the asymptotic KullbackeLeibler divergence and, for autoregressive

processes, provides asymptotically consistent estimates for

Gaussian and non-Gaussian data, even in the presence of long-

range dependence (Montanari and Toth, 2007). Likelihood func-

tion 16, also referred to as Laplace or double exponential distribu-

tion, differs from all other likelihood functions in that it assumes a

[
1-norm of the error residuals. This approach weights all error re-

siduals equally and the posterior inference should therefore not be

as sensitive to outliers.

Likelihood functions 11e17 and 31e34 represent a different

school of thought. Formulations 11e17 are derived from first-order

statistical principles about the expected probabilistic properties of

the error residuals, EðxÞ ¼ ~Y � YðxÞ. These functions are also

referred to as formal likelihood functions. For example if the error

residuals are assumed to be independent (uncorrelated) and nor-

mally distributed then the likelihood function is simply equivalent

to formulation 11 or 12, depending on whether the measurement

data error is integrated out (11) or explicitly considered (12).

The second class of likelihood functions, 31e34, avoids over-

conditioning of the likelihood surface in the presence of

epistemic and other sources, and their mathematical formulation is

guided by trial-and-error, expert knowledge, and commonly used

goodness-of-fit criteria (Beven and Binley, 1992; Freer et al., 1996;

Beven and Freer, 2001). These informal likelihood functions

enable users to implement the GLUE methodology of Beven and

Table 2

Built-in likelihood functions of the DREAM package. The value of field lik of DREAMPar depends on the content of the return argument Y from the function

model; [1] likelihood, [2] log-likelihood, [11e17] vector of simulated values, [21e23] vector of summary statistics, and [31e34] vector of simulated values.

The mathematical formulation of each likelihood function is given in Appendix B.

lik Description References

User-free likelihood functions

1 Likelihood, Lðx
���~YÞ e.g. Equation (7)

2 Log-likelihood, L ðx
���~YÞ e.g. Equations (8), (10) and (11)

Formal likelihood functions

11 Gaussian likelihood: measurement error integrated out Thiemann et al. (2001) see also footnote 1

12a Gaussian likelihood: homos/heteroscedastic data error Equation (7)

13a,b Gaussian likelihood: with AR-1 model of error residuals Equations (10) and (11)

14c Generalized likelihood function Schoups and Vrugt (2010a)

15 Whittle's likelihood (spectral analysis) Whittle (1953)

16a Laplacian likelihood: homos/heteroscedastic data error Laplace (1774)

17c Skewed Student likelihood function Scharnagl et al. (2015)

ABC e diagnostic model evaluation

21d Noisy ABC: Gaussian likelihood Turner and Sederberg (2012)

22d,e ABC: Boxcar likelihood Sadegh and Vrugt (2014)

GLUE e limits of acceptability

23e Limits of acceptability Vrugt (2015a)

GLUE e informal likelihood functions

31f Inverse error variance with shaping factor Beven and Binley (1992)

32f Nash and Sutcliffe efficiency with shaping factor Freer et al. (1996)

33f Exponential transform error variance with shaping factor Freer et al. (1996)

34f Sum of absolute error residuals Beven and Binley (1992)

a Measurement data error in field Sigma of Par_info or inferred jointly with parameters.
b First-order autoregressive coefficient is nuisance variable.
c Nuisance variables for model bias, correlation, non-stationarity and nonnormality residuals.
d Default of ε ¼ 0.025 in field epsilon of options to delineate behavioral space.
e Uses a modified Metropolis selection rule to accept proposals or not.
f Shaping factor, G defined in field GLUE of DREAMPar (default G ¼ 10).
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Binley (1992). The use of DREAM enhances, sometimes dramati-

cally, the computational efficiency of GLUE (Blasone et al., 2008).

The field thinning of DREAMPar allows the user to specify the

thinning rate of each Markov chain to reduce memory re-

quirements for high-dimensional target distributions. For

instance, for a d ¼ 100 dimensional target distribution with

N ¼ 100 and T ¼ 10,000, MATLAB would need a staggering 100-

million bytes of memory to store all the samples of the joint

chains. Thinning applies to all the sampled chains, and stores only

every Kth visited state. This option reduces memory storagewith a

factor of T/K, and also decreases the autocorrelation between

successively stored chain samples. A default value of K ¼ 1 (no

thinning) is assumed in DREAM. Note, large values for K (K [ 10)

can be rather wasteful as many visited states are not used in the

computation of the posterior moments and/or plotting of the

posterior parameter distributions.

Multi-chain methods can suffer convergence problems if one or

more of the sampled chains have become stuck in a local area of

attractionwhile in pursuit of the target distribution. This fallacy has

been addressed in the basic source code of DREAM listed in

Algorithm 5 and the function check was used to detect and resolve

aberrant trajectories. Dissident chains are more likely to appear if

the target distribution is high-dimensional and the posterior

response surface is non-smooth with many local optima and re-

gions of attraction. These non-ideal properties are often the

consequence of poor model numerics (Clark and Kavetski, 2010;

Schoups et al., 2010) and hinder convergence of MCMC simula-

tion methods to the target distribution. The field outlier of

DREAMPar lists (in quotes) the name of the outlier detection test

that is used to expose dissident chains. Options available to the user

include the ’iqr’ (Upton and Cook, 1996), ’grubbs’ (Grubbs, 1950),

’peirce’ (Peirce, 1852), and ’chauvenet’ (Chauvenet, 1960) method.

These nonparametric methods diagnose dissident chains by

comparing the mean log-density values of each of the N sampled

trajectories. The premise of this comparison is that the states

visited by an outlier chain should have a much lower average

density than their counterparts sampling the target distribution.

Those chains diagnosed as outlier will give up their present posi-

tion in the parameter space in lieu of the state of one of the other

N � 1 chains, chosen at random. This correction step violates

detailed balance (irreversible transition) but is necessary in some

cases to reach formally convergence to a limiting distribution.

Numerical experiments have shown that the default option

DREAMPar.outlier ¼ ’iqr’ works well in practice. Note, the problem

of outlier chains would be resolved if proposals are created from

past states of the chains as used in DREAM(ZS), DREAM(DZS) and MT-

DREAM(ZS). Dissident chains can then sample their own position

and jump directly to the mode of the target if g ¼ 1 (ter Braak and

Vrugt, 2008; Laloy and Vrugt, 2012). We will revisit this issue in

Section 7 of this paper.

The field adapt_pCR of DREAMPar defines whether the cross-

over probabilities, pCR are adaptively tuned during a DREAM run so

as to maximize the normalized Euclidean distance between two

successive chain states. The default setting of ’yes’, can be set to ’no’

and thus switched off by the user. The selection probabilities are

tuned only during burn-in of the chains to not destroy reversibility

of the sampled chains.

The default choice of the jump rate in DREAM is derived from

the value of sd ¼ 2.382/d in the RWM algorithm. This setting should

lead to optimal acceptance rates for Gaussian and Student target

distributions, but might not yield adequate acceptance rates for

real-word studies involving complex multivariate posterior

parameter distributions. The field beta0 of structure DREAMPar

allows the user to increase (decrease) the value of the jump rate,

g ¼ 2.38b0/2dd
*, thereby improving the mixing of the individual

chains. This b0-correction is applied to all sampled proposals, with

the exception of the unit jump rate used for mode jumping. Values

of b0 2 [1/4,1/2] have shown to enhance significantly the conver-

gence rate of DREAM for sampling problems involving parameter-

rich groundwater and geophysical models (e.g. Laloy et al. (2015)).

4.3. Input argument 3: Par_info

The structure Par_info stores all necessary information about

the parameters of the target distribution, for instance their prior

uncertainty ranges (for bounded search problems), starting values

(initial state of each Markov chain), prior distribution (defines

Metropolis acceptance probability) and boundary handling (what

to do if out of feasible space), respectively. Table 3 lists the different

fields of Par_info and summarizes their content, default values and

variable types.

The field initial of Par_info specifies with a string enclosed be-

tween quotes how to sample the initial state of each of theN chains.

Options available to the user include (1) ’uniform’ (2) ’latin’ (3)

’normal’ and (4) ’prior’, and they create the initial states of the

chains by sampling from (1) a uniform prior distribution, (2) a Latin

hypercube (McKay et al., 1979), (3) a multivariate normal distri-

bution, and (4) a user defined prior distribution. The first three

options assume the prior distribution to be noninformative (uni-

form/flat), and consequently the posterior density of each proposal

to be directly proportional to its likelihood. On the contrary, if the

option ’prior’ is used and a non-flat (informative) prior distribution

of the parameters is specified by the user, then the density of each

proposal becomes equivalent to the product of the (multiplicative)

prior density and likelihood derived from the output of model.

Option (1) and (2) require specification of the fields min and

maxof Par_info. These fields contain in a 1� d-vector the lower and

upper bound values of each of the parameters, respectively. If op-

tion (3) ’normal’ is used then the fields mu (1 � d-vector) and cov

(d � d-matrix) of Par_info should be defined by the user. These

Table 3

DREAM input argument Par_info: Different fields, their default settings and variable types.

Field Par_info Description Options Default Type

initial Initial sample ’uniform’/’latin’/’normal’/’prior’ String

min Minimum values e∞d 1�d-vector

max Maximum values ∞d 1�d-vector

boundhandling Boundary handling ’eflect’/’bound’/’fold’/’none’ ’none’ String

mu Mean ’normal’ 1�d-vector

cov Covariance ’normal’ d�d-matrix

prior Prior distribution Cell arraya/function handleb

a Multiplicative case: each cell of the d-array contains a different marginal prior pdf.
b Multivariate case: an Anonymous function with prior pdf is provided by user.
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fields store the mean and covariance matrix of the multivariate

normal distribution. We will revisit the option ’prior’ at the end of

this section.

The fields min and max of the structure Par_info serve two

purposes. First, they define the feasible parameter space from

which the initial state of each of the chains is drawn if ’uniform’

random or ’latin’ hypercube sampling is used. Second, they can

define a bounded search domain for problems involving one or

more parameters with known physical/conceptual ranges. This

does however require the bound to be actively enforced during

chain evolution. Indeed, proposals generated with Equations (23)

and (24) can fall outside the hypercube defined by min and max

even if the initial state of each chain are well within the feasible

search space. The field boundhandling of Par_info provides several

options what to do if the parameters are outside their respective

ranges. The four different options that are available are (1) ’bound’,

(2) ’eflect’, (3) ’fold’, and (4) ’none’ (default). These methods are

illustrated graphically in Fig. 6 and act on one parameter at a time.

The option ’bound’ is most simplistic and simply sets each

parameter value that is out of bound of equal to its closest bound.

The option ’eflect’ is somewhat more refined and treats the

boundary of the search space as a mirror through which each in-

dividual parameter value is reflected backwards into the search

space. The reflection step size is simply equivalent to the “amount”

of boundary violation. The ’bound’ and ’eflect’ options are used

widely in the optimization literature in algorithms concerned only

with finding the minimum (maximum, if appropriate) of a given

cost or objective function. Unfortunately, these two proposal

correction methods violate detailed balance in the context of

MCMC simulation. It is easy to show for both boundary handling

methods that the forward (correction step) and backward jump

cannot be construed with equal probability. The third option ’fold’

treats the parameter space as a continuum representation by

simply connecting the upper bound of each dimension to its

respective lower bound. This folding approach does not destroy the

Markovian properties of the N sampled chains, and is therefore

preferred statistically. However, this approach can provide “bad”

proposals (reduced acceptance rate) if the posterior distribution is

located at the edges of the search domain. Then, the parameters can

jump from one side of the search domain to the opposite end.

The option ’bound’ is least recommended in practice as it col-

lapses the parameter values to a single point. This not only re-

linquishes unnecessarily sample diversity but also inflates

artificially the solution density (probability mass) at the bound. The

loss of chain diversity also causes a-periodicity (proposal and cur-

rent state are similar for selected dimensions) and distorts

convergence to the target distribution. A simple numerical

experiment with a truncated normal target distribution will

demonstrate the superiority of the folding approach. This results in

an exact inference of the target distribution whereas a reflection

step overestimates the probability mass at the bound. For most

practical applications, a reflection step will provide accurate results

unless too many dimensions of the target distribution find their

highest density in close vicinity of the bound.

What is left is a discussion of the use of ’prior’ as initial sampling

distribution of the chains. This option is specifically implemented

to enable the use of an informative (non-flat) prior distribution. The

user can select among two choices for ’prior’, that is the use of a

multiplicative prior or multivariate prior distribution. In the mul-

tiplicative case each parameter has its own prior distribution, and

the field prior of Par_info should be declared a cell array. Each cell

then specifies between quotes the density of the corresponding

parameter in the vector x, for example

Par_info:prior ¼ f’normpdf �2;0:1ð Þ’; ’tpdf 10ð Þ’;
’unifpdf �2;4ð Þ’g

(26)

uses a normal distributionwith mean of �2 and standard deviation

of �0.1 for the first parameter, a Student distribution with n ¼ 10

degrees of freedom for the second dimension, and a uniform dis-

tribution between �2 and 4 for the third and last parameter of the

target distribution, respectively. The prior density of some param-

eter vector is then simply equivalent to the product of the indi-

vidual densities specified in field prior of Par_info. The user can

select from the following list of built-in density functions in MAT-

LAB: beta, chi-square, extreme value, exponential, F, gamma, geo-

metric, generalized extreme value, generalized Pareto,

hypergeometric, lognormal, noncentral F, noncentral t, noncentral

chi-square, normal (Gaussian), Poisson, Rayleigh, T, uniform, and

the Weibull density. The function name of each density and cor-

responding input variables is easily found by typing “help stats” in

the MATLAB prompt.

The multiplicative prior assumes the parameters of the prior

distribution to be uncorrelated, an assumption that might not be

justified for some inference problems. The second option for ’prior’

includes the use of a multivariate prior distribution, and declares

the field prior of structure Par_info to be an anonymous function,

for example

Par_info:prior ¼ @ðx; a;bÞmvnpdfðx; a;bÞ (27)

where mvnpdf(x,a,b) is the d-variate normal distribution, N dða; bÞ,
evaluated at x and with mean a and covariance matrix, b, respec-

tively. The input variables, a and b should be specified as separate

fields of structure Par_info, for example Par_info.a ¼ zeros(1,d) and

Fig. 6. Different options for parameter treatment in bounded search spaces in the DREAM package. a) Set to bound, b) reflection, and c) folding. The option folding is the only

boundary handling approach that maintains detailed balance.
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Par_info.b ¼ eye(d). The use of a multivariate prior allows the user

to take into explicit consideration parameter interdependencies.

Options available to the user include the multivariate normal and

multivariate t-distribution, respectively.

If the standard built-in densities of MATLAB (univariate and

multivariate) are insufficient for a given application then the user is

free to contribute their own function for the prior distribution. This

subroutine should follow exactly the same format as the standard

MATLAB densities, and the name of the function should end with

“pdf”, for example ownpdf.m. What is more, the user has to supply

a second function ending with “rnd”, (e.g. ownrnd.m) which

returns random samples from the user-defined prior pdf. This

function should match exactly the format of standard built-in

univariate and multivariate random number generators such as

lognrnd and mvnrnd, respectively, and will be used by DREAM to

sample the initial states of the N different chains. If this second

code, ownrnd.m is too difficult to write then the user can always

choose to draw the initial states of the chains in DREAM from an

noninformative prior, using for instance Latin hypercube sampling.

That is, Par_info.initial ¼ ’latin’ with min and max of structure

Par_info defining the sampling ranges of the parameters. This

alternative approach might be favored in practice anyway as it will

allow DREAM to explore more thoroughly, at least in the first

generations, the parameter space outside the prior pdf. Unless of

course, the parameter space defined by min and max is limited to

the area of ownpdf.m with high prior density.

4.4. (Optional) input argument 4: Meas_info

The fourth input argument Meas_info of the DREAM function is

mandatory if the output of model constitutes a vector of simulated

values or summary metrics of one or more entities of interest.

Table 4 describes the different fields of Meas_info, their content and

type.

The field Y of Meas_info stores the n � 1 observations of the

calibration data, ~Y against which the output, Y of model is

compared. The n-vector of error residuals, EðxÞ ¼ ~Y � YðxÞ is then

translated into a log-likelihood value using one of the formal

(11e17) or informal (31e34) likelihood functions listed in Table 2

and defined by the user in field lik of structure DREAMPar. The

field S of Par_info storesm� 1 summary statistics of the data, and is

mandatory input for likelihood functions 21, 22, 23 used for ABC,

diagnostic model evaluation, and limits of acceptability. Examples

of these approaches are given in the case studies section of this

paper. The number of elements of Y and S should match exactly the

output of the script model written by the user.

The field Sigma of structure Meas_info stores the measurement

error of each entry of the field Y. This data error is necessary input

for likelihood functions 12, 13 and 16. A single value for Sigma

suffices if homoscedasticity of the data error is expected, otherwise

n-values need to be declared and specify the heteroscedastic error

of the observations of Y.

In case the measurement error of the data Y is unknown, three

different approaches can be implemented. The first option is to

select likelihood function 11. This function is derived from Equation

(7) by integrating over (out) the data measurement error. Field

Sigma of Meas_info can then be left blank (empty). The second

option uses likelihood function 12, 13, or 16 and estimates the

measurement data error along with the model parameters using

nuisance variables. The field Sigma of Meas_info should then be

used as inline function, for example, Meas_info.

Sigma ¼ inline(’a þ bY’), which defines mathematically the rela-

tionship between the observed data, Y and corresponding mea-

surement data error, Sigma. The scalars a and b are nuisance

variables and their values append the vector of model parameters,

which increases the dimensionality of the target distribution to

d þ 2. If the initial states of the chains are sampled from a uniform

distribution (Par_info.initial ¼ ’uniform’) then the ranges of a and b

augment the d-vectors of fields min and max. Note, care should be

exercised that Sigma > 0 ca,b. The user is free to define the mea-

surement error function, as long as the nuisance variables used in

the inline function are in lower caps, and follow the order of the

alphabet. The third and last option uses likelihood function 14

(Schoups and Vrugt, 2010) or 17 (Scharnagl et al., 2015). These

functions do not use field Sigma (can be left empty) but rather use

their own built-in measurement error model. The coefficients of

the error models are part of a larger set of nuisance parameters that

allow these likelihood functions to adapt to nontraditional error

residual distributions. Appendix B details how to use and adapt

likelihood function 11 and 17.

4.5. (Optional) input argument 5: options

The structure options is optional and passed as fifth input

argument to DREAM. The fields of this structure can activate (among

others) file writing, distributedmulti-core calculation, storage of the

model output simulations, ABC, diagnostic model evaluation, diag-

nostic Bayes, and the limits of acceptability framework. Table 5

summarizes the different fields of options and their default settings.

Table 5

Content of (optional) input structure options. This fifth input argument of the main DREAM code is required to activate several of its built-in capabilities such as distributed

multi-processor calculation, workspace saving, ABC, diagnostic model evaluation, diagnostic Bayes and limits of acceptability.

Field options Description Options Type

parallel Distributed multi-core calculation? no/yes String

IO If parallel, IO writing of model? no/yes String

modout Store output of model? no/yes String

save Save DREAM workspace? no/yes String

restart Restart run? (’save’ required) no/yes String

DB Diagnostic Bayes? no/yes String

epsilon ABC cutoff threshold scalar or m�1-vectora

rho ABC distance function inline functionb

linux Execute in Linux/unix? no/yes String

diagnostics Within chain convergence diagnostics? no/yes String

a Default setting of options.epsilon ¼ 0.025.
b Default is inline(’abs(Meas_info.S � Y)’) or rðSð~YÞ; SðYðxÞÞÞ ¼

���Sð~YÞ � SðYðxÞÞ
���.

Table 4

Content of (optional) input structure Meas_info. This fourth input argument of

DREAM is required if the return argument of model constitutes a vector of simulated

values (or summary statistics) of one or more variables.

Field Meas_info Description Type

Y Measurement data n�1-vector

Sigma Measurement error scalar or n�1-vector

S Summary statistics (ABC) m�1-vector
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Multi-core calculation takes advantage of the MATLAB Parallel

Computing Toolbox and evaluates the N different proposals created

with Equations (23) and (24) on a different processor. Parallel

computing is built-in the DREAM code and can be activated auto-

matically if the user sets the field parallel of field options equal to

’yes’ (default ’no’). Such distributed calculation can significantly

reduce the run time of DREAM for CPU-demanding forward

models. For simple models that require only a few seconds to run

the time savings of a parallel run is usually negligible due to latency

(transport delay) of the hardware and operating system. In fact, for

the mixture distribution of Equation (20) multi-core evaluation of

the N proposals increases the wall-time of DREAM as compared to

sequential calculation.

The field IO (input/output) of options allows the user to

communicate to DREAM the desired setup of their distributed

computing environment. If file writing is used in model to

communicate the parameter values of the DREAM proposal to some

external program coded in Fortran or C then the field IO of options

should be set equal to ’yes’. Then, DREAMwill create automatically,

during initialization, N different copies of the model directory (and

underlying folders) to satisfy each individual processor. This

method avoids the corruption of model input and output files that

were to happen if the external programwere executed at the same

time by different processors working in the same directory. At the

end of each DREAM trial, the duplicate directories are removed

automatically. This approach to parallelization was used in the

HYDRUS-1D case study in Section 5.3. If, on the contrary, the model

function involves MATLAB code only then a common directory

suffices for all the different workers as all input and output argu-

ments can be passed directly through shared memory. The field IO

of options can then be set to ’no’. The same holds if the model

function involves use of shared libraries linked through the built-in

MEX-compiler of MATLAB (see Case study 4).

For CPU-intensive forward models it would be desirable to not

only store the parameter samples but also keep in memory their

corresponding model simulations returned by model and used to

calculate the likelihood of each proposal. This avoids having to

rerun the model script many times after DREAM has terminated to

assess model predictive (simulation) uncertainty. The field modout

of options allows the user to store the output of the model script. If

simulation output storage is desired then modout should be set

equal to ’yes’, and the N simulations of X are stored, after each

generation, in a binary file “Z.bin”. These simulations are then

returned to the user as third output argument, fx of DREAM. If chain

thinning is activated (please check Table 1) then this applies to the

simulations stored in fx as well so that the rows of fx match their

samples stored in the chains.

To help evaluate the progress of DREAM, it can be useful to

periodically store the MATLAB workspace of the main function

“DREAM.m” to a file. This binary MATLAB file, “DREAM.mat”, is

written to the main directory of DREAM if the field save of struc-

ture options is set equal to ’yes’. This binary file can then be loaded

into the workspace of another MATLAB worker and used to eval-

uate the DREAM results during its execution. What is more, the

“DREAM.mat” file is required if the user wishes to reboot a pre-

maturely aborted DREAM trial or continue with sampling if

convergence (e.g. section 4.7) has not been achieved with the

assigned computational budget in field T of DREAMPar. A reboot is

initiated by setting the field restart of structure options equal to

’yes’. In case of a prematurely terminated DREAM run, rebooting

will finalize the computational budget assigned to this trial. If lack

of convergence was the culprit, then a restart run will double the

number of samples in each chain, or, add to the existing chains

whatever new number of samples specified by the user in field T of

DREAMPar.

The MATLAB code of DREAM was developed in Windows. For a

unix/linux operating system the user should set the field linux of

options to ’yes’. The field diagnostics controls the computation of

within-chain convergence diagnostics (see section 4.7). The default

setting of this field is ’no’. The single chain diagnostics augment the

multi-chain bR-statistic of Gelman and Rubin (1992) and enable a

more robust assessment of convergence.

For ABC or diagnostic model evaluation the fields rho and

epsilon of options need to be specified unless their default settings

are appropriate. The field rho is an inline function object which

specifies the mathematical formulation of the distance function

between the simulated and observed summary statistics. In prac-

tice, a simple difference operator rho ¼ inline(’abs(Meas_info.S �
Y)’) (default) suffices, where Y (output of model) and field S of

Meas_info denote the observed and measured summary statistics,

respectively. The field epsilon of options stores a small positive

value (default of 0.025) which is used to truncate the behavioral

(posterior) parameter space.

If ABC is used then the user can select two different imple-

mentations to solve for the target distribution. The first approach,

adopted from Turner and Sederberg (2012), uses likelihood

function 21 to transform the distance function between the

observed and simulated summary metrics in a probability density

that DREAM uses to derive the target distribution. This approach

can produce nicely bell-shaped marginal distributions, but does

not guarantee that the posterior summary metrics fall within

epsilon of their observed values. A more viable and powerful

approach was introduced recently by Sadegh and Vrugt (2014)

and uses likelihood function 22 with the following modified

Metropolis acceptance probability to decide whether to accept

proposals or not

pacc

�
Xi
/Xi

p

�
¼

8
<
:

I
�
f
�
Xi
p

�
� f
�
Xi
��

if f
�
Xi
p

�
<0

1 if f
�
Xi
p

�
� 0

; (28)

where I(a) is an indicator function that returns one if a is true, and

zero otherwise. The mathematical expression of the fitness

(likelihood) function 22 is given in Table B1 (in Appendix B).

Equation (28) is implemented in an extension of DREAM called

DREAM(ABC) and rapidly guides the posterior summary metrics to

lie within epsilon of their observed counterparts. Section 5.4 of

this paper demonstrates the application of ABC to diagnostic

inference using an illustrative case study involving a catchment

hydrologic model.

4.6. Output arguments

I now briefly discuss the three output (return) arguments of

DREAM including chain, output and fx. These three variables

summarize the results of the DREAM algorithm and are used for

convergence assessment, posterior analysis and plotting.

The variable chain is a matrix of size T � d þ 2 � N. The first

d columns of chain store the sampled parameter values (state),

whereas the subsequent two columns list the associated log-prior

and log-likelihood values respectively. If thinning is applied to

each of the Markov chains then the number of rows of chain is

equivalent to T/K þ 1, where K � 2 denotes the thinning rate. If a

non-informative (uniform) prior is used then the values in column

dþ 1 of chain are all zero and consequently, pðx
���~YÞfLðx

���~YÞ. With an

informative prior, the values in column d þ 1 are non-zero and the

posterior density, pðx
���~YÞfpðxÞLðx

���~YÞ.
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The following MATLAB command

plotðchainð1 : end;1;2Þ; ’rþ ’Þ (29)

creates a traceplot (using red dots) of the first parameter of the

second chain. By plotting in the same Figure the remaining N � 1

chains (using different colors/symbols), the mixing of the Markov

chains can be assessed visually.

The structure output contains important (diagnostic) informa-

tion about the progress of the DREAM algorithm. The field RunTime

(scalar) stores the wall-time (seconds), R_stat (matrix), AR (matrix)

and CR (matrix) list for a given number of generations the bR
convergence diagnostic for each individual parameter of the target

distribution, the average acceptance rate, and the selection proba-

bility of each of the nCR crossover values, respectively, and outlier

(vector) contains the index of all outlier chains (often empty). The

MATLAB command

output:RunTime (30)

displays the wall time of DREAM, and the command

plotðoutput:ARð:;1Þ; output:ARð:;2ÞÞ (31)

plots the acceptance rate of proposals (in %) as function of gener-

ation number. This plot reveals important information about the

performance of the DREAM algorithm but cannot be used to judge

when convergence has been achieved (see next section).

Finally, the matrix fx stores the output Y of model. If this return

argument constitutes a vector of simulated values (summary

metrics) then fx is of sizeNT� n (NT�m), otherwise fx is a vector of

NT � 1 with likelihood or log-likelihood values. If thinning is used

then this applies to fx as well and the number of rows of fx becomes

equivalent to NT/K þ 1; K � 2.

The directory “../postprocessing” (under main directory)

contains a number of different functions that can be used to

visualize the different output arguments of DREAM. The script

DREAM_postproc can be executed from the MATLAB prompt after

the main DREAM function has terminated. Appendix A summa-

rizes briefly the graphical output of the post-processing scripts.

4.7. Convergence diagnostics & burn-in

From MCMC theory, the chains are expected to eventually

converge to a stationary distribution, which should be the desired

target distribution. But, howdowe actually assess that convergence

has been achieved in practice, without knowledge of the actual

target distribution?

Oneway to check for convergence is to seehowwell the chains are

mixing, or moving around the parameter space. For a properly

converged MCMC sampler, the chains should sample, for a suffi-

ciently long period, the approximate same part of the parameter

space, and mingle readily and in harmony with one another around

some fixed mean value. This can be inspected visually for each

dimension of x separately, and used to diagnose convergence

informally.

Another proxy for convergence monitoring is the acceptance

rate. A value between 15 and 30% is usually indicative of good per-

formance of aMCMC simulationmethod. Much lower values usually

convey that the posterior surface is difficult to traverse in pursuit of

the target distribution. A low acceptance rate can have different

reasons, for instance poormodel numerics, or the presence ofmulti-

modality and local optima. The user can enhance the acceptance

rate by declaring a value for b0 < 1 in field beta0 of structure

DREAMPar (see Table 1). This multiplier will reduce the jumping

distance, dX in Equation (23) and thus proposals will remain in

closer vicinity of the current state of each chain. This should

enhance the acceptance rate and mixing of individual chains. Note,

the acceptance rate can only diagnose whether a MCMC method

such as DREAM is achieving an acceptable performance, it cannot be

used to determine when convergence has been achieved.

The MATLAB code of DREAM includes various non-parametric

and parametric statistical tests to determine when convergence

of the sampled chains to a limiting distribution has been achieved.

The most powerful of these convergence tests is the multi-chain
bR-statistic of Gelman and Rubin (1992). This diagnostic compares

for each parameter j ¼ {1,…,d} the within-chain

Wj ¼
2

NðT � 2Þ
XN

r¼1

XT

i¼PT=2R

�
xri;j � xrj

�2
xrj ¼

2

T � 2

XT

i¼PT=2R

xri;j

(32)

and between-chain variance

Bj
�
T ¼ 1

2ðN � 1Þ
XN

r¼1

�
xrj � xj

�2
xj ¼

1

N

XN

r¼1

xrj (33)

using

bRj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

N

bs2ðjÞ
þ
Wj

� T � 2

NT

vuut ; (34)

where T signifies the number of samples in each chain, P:,R is the

integer rounding operator, and bs2ðjÞ
þ is an estimate of the variance of

the jth parameter of the target distribution

bs2ðjÞ
þ ¼ T � 2

T
Wj þ

2

T
Bj: (35)

To official declare convergence, the value bRj � 1:2 for each

parameter, j2 {1,…,d}, otherwise the value of T should be increased

and the chains run longer. As the N different chains are launched

from different starting points, the bR-diagnostic is a relatively robust
estimator.

The DREAM code computes automatically during execution the
bR-statistic for each parameter. This statistic is returned to the user

in the field R_stat of options. After termination, the following

MATLAB command

plotðoutput:R_statð1: end; 2: DREAMPar:dþ 1ÞÞ (36)

creates a traceplot of the bR-convergence diagnostic for each of the

d parameters of the target distribution. This plot can be used to

determine when convergence has been achieved and thus which

samples of chain to use for posterior estimation and analysis. The

other samples can simply be discarded from the chains as burn-in.

An example of how to use the bR-statistic for convergence analysis

will be provided in case study 2 in section 5.2, a 100-dimensional

Student distribution.

The DREAM package also includes several within-chain di-

agnostics but their calculation is optional and depends on the

setting of the field diagnostics of structure options. If activated by

the user then DREAM computes, at the end of its run, the auto-

correlation function, the Geweke (1992), and Raftery and Lewis

(1992)-diagnostics.

The autocorrelation function for each parameter j ¼ {1,…,d} is

defined as
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rrj;k ¼
PT�k

i¼1

�
xri;j � xrj

��
xr
iþk;j

� xrj

�

PT
i¼1

�
xr
i;j
� xrj

�2 ; (37)

and returns the correlation between two samples k iterations apart

in the rth chain, r ¼ {1,…,N}. Compared to rejection sampling

which, per construction, produces uncorrelated samples, MCMC

chain trajectories exhibit autocorrelation as the current state of the

chain is derived from its previous state. This correlation is expected

to decrease with increasing lag k. The autocorrelation function is a

useful proxy to assess sample variability and mixing, but does not

convey when convergence has been achieved. A high autocorrela-

tion, say jrj > 0.8, at lags, say k � 5, simply demonstrates a rather

poor mixing of the individual chains.

The Geweke (1992)-diagnostic compares the means of two

nonoverlapping parts of the Markov chain using a standard Z-score

adjusted for autocorrelation. The Raftery and Lewis (1992)-statistic

calculates the number of iterations, T and length of burn-in

necessary to satisfy the condition that some posterior quantile of

interest, say q has a probability, p of lying within interval [q�r,qþr].

Default values are q ¼ 0.025, p ¼ 0.95, and r ¼ 0.01, respectively.

Details of how to compute and interpret these two statistics is

found in the cited references.

The three within-chain diagnostics are calculated for each of the

N chains and d parameters separately (if options.diagnostics¼ ’yes’)

and results stored in a file called “DREAM_diagnostics.txt”. This file

is subsequently printed to the screen in the MATLAB editor after

DREAM has terminated its run unless the user is running in a unix/

linux environment (options.linux ¼ ’yes’).

Altogether, joint interpretation of the different diagnostics

should help assess convergence of the sampled chain trajectories.

Of all these metrics, the bR-statistic provides the best guidance on

exactly when convergence has been achieved. This happens as soon

as this statistic drops below the critical threshold of 1.2 for all

d parameters of the target distribution. Suppose this happens at T*

iterations (generations) then the first (T*�1) samples of each chain

are simply discarded as burn-in and the remainingN(T�T*) samples

from the joint chains are used for posterior analysis. Note, I always

recommend to verify convergence of DREAM by visually inspecting

the mixing of the different chain trajectories.

In practice, one has to make sure that a sufficient number of

chain samples is available for the inference, otherwise the posterior

estimates can be biased. For convenience, I list here the total

number of posterior samples, N(T�T*) (in brackets) onewould need

for a reliable inference with DREAM for a given dimensionality of

the target distribution: d ¼ 1 (500); d ¼ 2 (1000); d ¼ 5 (5000);

d ¼ 10 (10,000); d ¼ 25 (50,000); d ¼ 50 (200,000); d ¼ 100

(1,000,000); d ¼ 250 (5,000,000). These listed numbers are only a

rough guideline, and based on several assumptions such as a

reasonable acceptance rate (> 10%) and not too complicated shape

of the posterior distribution. In general, the number of posterior

samples required increases with rejection rate and complexity of

the target distribution.

4.8. Miscellaneous

Themain reason towrite this toolbox of DREAM inMATLAB is its

relative ease of implementation, use, and graphical display. What is

more, the computational complexity of DREAM is rather limited

compared to the forward models in script model the code is

designed to work with. Indeed, the CPU-time of DREAM is deter-

mined in large part by how long it takes to evaluate the density of

the target distribution. Relatively little time savings are therefore

expected if DREAM were written and executed in a lower level

language such as Fortran or C.

The toolbox described herein has been developed for MATLAB

7.10.0.499 (R2010a). The current source code works as well for the

most recent MATLAB releases. Those that do not have access to

MATLAB, can use GNU Octave instead. This is a high-level inter-

preted language as well, and intended primarily for numerical

computations. The Octave language is quite similar to MATLAB so

that most programs are easily portable. GNU Octave is open-source

and can be downloaded for free from the following link: http://

www.gnu.org/software/octave/.

Finally, likelihood option 1 and 2 allow the user to return the

density of their own likelihood function (and prior distribution)

immediately to the main DREAM program to satisfy the needs of

their own specific inference problems and case studies. The same

holds for the use of summary statistics. The built-in likelihood

functions 21, 22 and 23 allow the use of any type of summary sta-

tistic (or combination thereof) the user deems appropriate for their

study.

5. Numerical examples

I now demonstrate the application of the MATLAB DREAM

package to seven different inference problems. These case studies

cover a diverse set of problem features and involve (among others)

bimodal and high-dimensional target distributions, summary sta-

tistics, dynamic simulation models, formal/informal likelihood

functions, diagnostic model evaluation, Bayesian model averaging,

limits of acceptability, and informative/noninformative prior

parameter distributions.

5.1. Case study I: one-dimensional mixture distribution

I revisit the bimodal target distribution of Equation (20). The

modes at �8 and 10 are so far separated that it is notoriously

Fig. 7. (A) Histogram of posterior distribution derived from DREAM using N¼10 chains, and T¼5,000 generations. The solid black line depict the target distribution. (B) Trace plot.

Individual chains are coded with a different color (symbol). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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difficult for regular covariance based proposal distributions (AM

and RWM) to sample correctly the target distribution. The initial

state of the chains is sampled from U ½�20;20�. The following

MATLAB script defines the problem setup.

The initial sample is drawn using Latin hypercube sampling, and

the target distribution is defined in the script mixture of Appendix

C. Fig. 7 plots a histogram of the posterior samples, and (right) a

traceplot of the sampled value of x in each of the Markov chains.

The average acceptance rate is about 36.3%.

The sampled distribution is in excellent agreement with the

target distribution, in large part due to the ability of DREAM to

jump directly from onemode to the other when g¼ 1. The traceplot

shows periodic moves of all chains between both modes of the

target distribution and an excelling mixing of the sampled trajec-

tories. The time each chain spends in each of the two modes of the

mixture is consistent with their weight in Equation (20).

5.2. Case study II: 100-dimensional t-distribution

Our second case study involves a 100-dimensional Student

distributionwith 60	 of freedom. The target distribution, defined in

the script t_distribution of Appendix C, is centered at the zeroth

vector, with all pairwise correlations equivalent to 0.5. The problem

setup is given below.

The initial sample is drawn using Latin hypercube sam-

pling, and thinning is applied to each Markov chain to reduce

memory storage. Fig. 8 compares histograms of the sampled

marginal distribution of dimensions {25, 50, …, 100} with the

actual target distribution (black line). The sampled distribu-

tions are in excellent agreement with their observed coun-

terparts. The bR diagnostic illustrates that about 500,000

function evaluations are required to reach convergence to a

stationary distribution. The acceptance rate of 15.9% is close

to optimal.

The marginal distributions derived from DREAM closely

approximate their true histograms of the 100-dimensional target.

In particular, the tails of the sampled distribution are very well

represented with mean correlation of the d ¼ 100 dimensions of

0.50 and standard deviation of 0.015.

5.3. Case study III: dynamic simulation model

The third case study considers HYDRUS-1D, a variably saturated

porous flowmodel written in Fortran by �Sim�unek et al. (1998). This

case study is taken from Scharnagl et al. (2011), and involves

inference of the soil hydraulic parameters qr, qs, a, n, Ks and l (van

Genuchten, 1980) and the lower boundary condition (constant

head) using time-series of observed soil water contents in the
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unsaturated zone. The following MATLAB script defines the prob-

lem setup.

An explicit prior distribution is used for the soil hydraulic pa-

rameters to make sure that their posterior estimates remain in

close vicinity of their respective values derived from surrogate soil

data using the Rosetta toolbox of hierarchical pedo-transfer func-

tions (Schaap et al., 1998, 2001). The initial state of each chain is

sampled from the prior distribution, and boundary handling is

applied to enforce the parameters to stay within the hypercube

specified by min and max. To speed-up posterior exploration, the

N¼ 10 different chains are ran in parallel using theMATLAB parallel

computing toolbox.

The hydrus script is given in Appendix C. The Fortran

executable of HYDRUS-1D is called from within MATLAB

using the dos command. File writing and reading is used to

communicate the parameter values of DREAM to HYDRUS-

1D and to load the output of this executable back into

MATLAB. The output, Y of hydrus constitutes a vector of

simulated soil moisture values which are compared against

their observed values in Meas_info.Y using likelihood

function 11.

Fig. 8. DREAM derived posterior marginal distribution of dimensions (A) 25, (B) 50, (C) 75, and (D) 100 of the d ¼ 100 multivariate Student distribution. The solid black line depicts

the target distribution. (E) Evolution of the bR convergence diagnostic of Gelman and Rubin (1992). The horizontal line depicts the threshold of 1.2, necessary to officially declare

convergence to a limiting distribution.
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Fig. 9 presents histograms of the marginal posterior distribution

of four of the seven parameters considered in this study. The bot-

tom panel presents a time series plot of simulated soil moisture

contents. The dark gray region constitutes the 95% HYDRUS-1D

simulation uncertainty due to parameter uncertainty, whereas

the light gray region denotes the total simulation uncertainty

(parameter þ randomly sampled additive error). The observed soil

moisture values are indicated with a red circle.

The HYDRUS-1Dmodel closely tracks the observed soil moisture

contents with Root Mean Square Error (RMSE) of the posterior

mean simulation of about 0.01 cm3/cm3. About 95% of the

observations lies within the gray region, an indication that the

simulation uncertainty ranges are statistically adequate. The

acceptance rate of DREAM averages about 12.6% e about half of its

theoretical optimal value of 22 e 25% (for Gaussian and Student

target distributions). This deficiency is explained in part by the high

nonlinearity of retention and hydraulic conductivity functions, and

numerical errors of the implicit, time-variable, solver of the

Richards' equation. This introduces irregularities (e.g. local optima)

in the posterior response surface and makes the journey to and

sampling from the target distribution more difficult.
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to parameter (dark region) and total uncertainty (light gray). The observed soil moisture value are indicated with a red circle. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Application of DREAM(ABC) to the hmodel using historical data from the Guadalupe River at Spring Branch, Texas. Posterior marginal distribution of the summary metrics (A)

S1 (runoff coefficient), (B) S2 (baseflow index), (C) S3 and (D) S4 (two coefficients of the flow duration curve). The blue vertical lines are epsilon removed from the observed summary

metrics (blue cross) and delineate the behavioral (posterior) model space. The bottom panel (E) presents the 95% simulation uncertainty ranges of the hmodel for a selected 300-day

portion of the calibration data set. The observed discharge data are indicated with red circles. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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5.4. Case study IV: diagnostic model evaluation

The fourth case study illustrates the ability of DREAM to be used

for diagnostic model evaluation. A rather parsimonious 7-

parameter lumped watershed model (also known as hmodel) is

used with historical data from the Guadalupe River at Spring

Branch, Texas. This is the driest of the 12MOPEX basins described in

the study of Duan et al. (2006). The model structure and hydrologic

process representations are found in Schoups and Vrugt (2010). The

model transforms rainfall into runoff at the watershed outlet using

explicit process descriptions of interception, throughfall, evapora-

tion, runoff generation, percolation, and surface and subsurface

routing.

Daily discharge, mean areal precipitation, and mean areal po-

tential evapotranspiration were derived from Duan et al. (2006)

and used for diagnostic model evaluation with DREAM(ABC)

(Sadegh and Vrugt, 2014). Details about the basin and experimental

data, and likelihood function can be found there, and will not be

discussed herein. The same model and data was used in a previous

study Schoups and Vrugt (2010), and used to introduce the

generalized likelihood function of Table 1.

Four different summary metrics of the discharge data are used

for ABC inference (activated with likelihood function 22), including

S1 (-) the annual runoff coefficient, S2 (-) the annual baseflow co-

efficient, and S3 (day/mm) and S4 (-) two coefficients of the flow

duration curve (Vrugt and Sadegh, 2013; Sadegh et al., 2015a). The

following setup is used in the MATLAB package of DREAM.

The function Calc_metrics returns the values of the four sum-

mary statistics using as input a record of daily discharge values. The

actual model crr_model is written in the C-language and linked to

MATLAB into a shared library called a MEX-file. The use of such

MEX function significantly reduces the wall-time of DREAM.

Fig. 10 (top panel) presents histograms of the marginal distri-

butions of the summary statistics. The posterior summary metrics

lie within epsilon of their observed values, a necessary requirement

for successful ABC inference. The bottom panel presents a time

series plot of the observed (red dots) and hmodel simulated

streamflow values. The dark gray region constitutes the 95%

simulation uncertainty of the hmodel due to parameter

uncertainty.

The simulated summary metrics cluster closely (within epsilon)

around their observed counterparts. About 15,000 function evalu-

ations were required with DREAM(ABC) to converge to a limiting

distribution (not shown). This is orders of magnitude more efficient

than commonly used rejection samplers (Sadegh and Vrugt, 2014).

Note that the hmodel nicely mimics the observed discharge dy-

namics with simulation uncertainty ranges that envelop a large

portion of the discharge observations. Thus, the four summary

metrics used herein contain sufficient information to provide a

reasonably adequate calibration. The interested reader is referred to

Vrugt and Sadegh (2013) and Vrugt (submitted for publication) for

a much more detailed ABC analysis with particular focus on diag-

nosis and detection of epistemic errors.

5.5. Case study V: Bayesian model averaging

Ensemble Bayesian Model Averaging (BMA) proposed by

Raftery et al. (2005) is a widely used method for statistical post-

processing of forecasts from an ensemble of different models.

The BMA predictive distribution of any future quantity of interest

is a weighted average of probability density functions centered on

the bias-corrected forecasts from a set of individual models. The

weights are the estimated posterior model probabilities, repre-

senting each model's relative forecast skill in the training (cali-

bration) period.

Successful application of BMA requires estimates of the

weights and variances of the individual competing models in

the ensemble. In their seminal paper, Raftery et al. (2005)

recommends using the Expectation Maximization (EM) algo-

rithm (Dempster et al., 1997). This method is relatively easy to

implement, computationally efficient, but does not provide

uncertainty estimates of the weights and variances. Here I

demonstrate the application of DREAM to BMA model training

using a 36-year record of daily streamflow observations from

the Leaf River basin in the USA. An ensemble of eight different

calibrated watershed models is taken from Vrugt and Robinson

(2007a) and used in the present analysis. The names of these

models and the RMSE (m3/s) of their forecast error are listed in

Table 6.

Theory, concepts and applications of DREAM(BMA) have been

presented by Vrugt et al. (2008c) and interested readers are
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referred to this publication for further details. Here, I restrict

attention to the setup of BMA in the MATLAB package of DREAM.

The predictive distribution of each constituent member of the

ensemble is assumed to follow a gamma distribution with un-

known heteroscedastic variance. The BMA_calc script is listed in

Appendix C.

Table 6 summarizes the results of DREAM(BMA) and presents (in

column “Gamma”) the maximum a-posteriori (MAP) values of the

BMAweights for the differentmodels of the ensemble. Values listed

in parentheses denote the posterior standard deviation derived

from the DREAM sample. I also summarize the MAP values of the

weights for a Gaussian (conditional) distribution (columns

“Normal”) with homoscedastic (left) or heteroscedastic (right) error

variance, and report the average RMSE (m3/s), coverage (%) and

spread (m3/s) of the resulting BMA model during the 26-year eval-

uation period.

The values of the weights depend somewhat on the

assumed conditional distribution of the deterministic model

forecasts of the ensemble. The GR4J, HBV and SACSMA models

consistently receive the highest weights and are thus most

important in BMA model construction for this data set. Note

also that TOPMO receives a very low BMA weight, despite

having the second lowest RMSE value of the training data

period. Correlation between the individual forecasts of the

watershed models affects strongly the posterior distribution of

the BMA weights. The gamma distribution is preferred for

probabilistic streamflow forecasting with 95% simulation un-

certainty ranges that, on average, are noticeably smaller than

their counterparts derived from a normal distribution. The

interested reader is referred to Vrugt and Robinson (2007a)

and Rings et al. (2012) for a more detailed analysis of the

BMA results, and a comparison with filtering methods.

Fig. 11 presents histograms of the marginal posterior distribu-

tion of the BMA weights for each of the models of the ensemble.

The MAP values of the weights are separately indicated with a blue

cross.

The distributions appear rather well-defined and exhibit an

approximate Gaussian shape. The posterior weights convey which

models of the ensemble are of importance in the BMA model and

which models can be discarded without harming the results. The

use of fewermodels is computational appealing as it will reduce the

CPU-time to generate the ensemble.

5.6. Case study VI: generalized likelihood uncertainty estimation

Our sixth case study reports on GLUE and involves application of

an informal likelihood function to the study of animal population

dynamics. One of the first models to explain the interactions be-

tween predators and prey was proposed in 1925 by the American

biophysicist Alfred Lotka and the Italian mathematician Vito Vol-

terra. This model, one of the earliest in theoretical ecology, has been

widely used to study population dynamics, and is given by the

following system of two coupled differential equations

Table 6

Results of DREAM(BMA) by application to eight different watershed models using

daily discharge data from the Leaf River in Mississippi, USA. I list the individual

forecast errors of the models for the training data period, the corresponding MAP

values of the weights for a Gamma (default) and Gaussian forecast distribution

(numbers between parenthesis list the posterior standard deviation), and present

the results of the BMA model (bottom panel) during the evaluation period. The

spread (m3/s) and coverage (%) are derived from a 95% prediction interval.

Model RMSE Gamma Normala Normalb

ABC 31.67 0.02 (0.006) 0.03 (0.010) 0.00 (0.002)

GR4J 19.21 0.21 (0.016) 0.14 (0.013) 0.10 (0.013)

HYMOD 19.03 0.03 (0.008) 0.13 (0.046) 0.00 (0.005)

TOPMO 17.68 0.03 (0.006) 0.08 (0.047) 0.03 (0.010)

AWBM 26.31 0.05 (0.009) 0.01 (0.010) 0.00 (0.002)

NAM 20.22 0.05 (0.011) 0.14 (0.048) 0.11 (0.014)

HBV 19.44 0.24 (0.017) 0.13 (0.034) 0.31 (0.016)

SACSMA 16.45 0.37 (0.017) 0.34 (0.022) 0.43 (0.017)

BMA: log-likelihood �9775.1 �9950.5 �9189.4

BMA: RMSE 22.54 23.22 23.16

BMA: spread 39.74 46.98 46.54

BMA: coverage 93.65% 92.59% 95.71%

a Homoscedastic (fixed) variance.
b Heteroscedastic variance.
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dP1t
dt

¼ aP1t � bP1t P
2
t

dP2t
dt

¼ �gP2t þ dP1t P
2
t ;

(38)

where P1t and P2t denote the size of the prey and predator popula-

tion at time t respectively, a (-) is the prey growth rate (assumed

exponential in the absence of any predators), b (-) signifies the

attack rate (prey mortality rate for per-capita predation), g (-)

represents the exponential death rate for predators in the absence

of any prey, and d (-) is the efficiency of conversion from prey to

predator.

A synthetic monthly data set of a prey and predator population

is created by solving Equation (38) numerically for a 20-year period

using an implicit, time-variable, integration method (built-in ode

solver of MATLAB). The initial states, P10 ¼ 30 and P20 ¼ 4 and

parameter values a¼ 0.5471, b¼ 0.0281, g¼ 0.8439 and d¼ 0.0266

correspond to data collected by the Hudson Bay Company between

1900 and 1920. These synthetic monthly observations are subse-

quently perturbed with a homoscedastic error, and this corrupted

data set is saved as text file “abundances.txt” and used for infer-

ence. The following setup of DREAM is used in MATLAB.
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Fig. 11. Histograms of the marginal posterior distribution of the weights and variances of each individual model of the ensemble. The MAP values of the weights are denoted with a

blue cross. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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An informal likelihood function (32) is used to transform the

difference between the observed and simulated predator-prey

populations in a likelihood. The forward model script lotka_-

volterra can be found in Appendix C.

Fig. 12 presents the marginal posterior distributions of the pa-

rameters a, b, g and d (top panel) and displays (bottom panel) the

95% uncertainty (dark grey) of the simulated prey and predator

populations. The observed species abundances are separately

indicated with the red circles.

The parameter d appears best defined by calibration against the

observed species abundances with posterior ranges that are rather

tight. The histograms of a and g are rather dispersed with posterior

uncertainty ranges that encompass a large part of the prior distri-

bution. This relatively large parameter uncertainty translates into

an unrealistically large prediction uncertainty (bottom panel). Of

course, the results of DREAM depend strongly on the value of the

shaping factor, GLUE of DREAMPar in likelihood function 32. If this

value is taken to be much larger (e.g. 100), then the marginal dis-

tributions would be much peakier and center on the “true” Lok-

taeVolterra parameter values used to generate the synthetic record

of predator and prey populations. Moreover, the spread of the 95%

prediction uncertainty rangeswould bemuch smaller. Blasone et al.

(2008) presents a more in-depth analysis of the application of

MCMC simulation to GLUE inference.

5.7. Case study VII: limits of acceptability

In the manifesto for the equifinality thesis, Beven (2006) sug-

gested that a more rigorous approach to model evaluation would

involve the use of limits of acceptability for each individual

observation against which model simulated values are compared.

Within this framework, behavioral models are defined as those that

satisfy the limits of acceptability for each observation. Our seventh

and last case study briefly describes the application of DREAM to

sampling the behavioral parameter space that satisfies the limits of

acceptability of each observation.

I use a simple illustrative example involving modeling of the soil

temperature T in degrees Celsius using the following analytic

equation

Tðt; zÞ ¼ T0 þ A0exp
�
�z

d

�
sin
�
uðt � fÞ � z

d

�
; (39)

where t (hr) denotes time, T0 (oC) is the annual average temper-

ature at the soil surface, A0 (	C) is the amplitude of the tempera-

ture fluctuation, u ¼ 2p/24 (hr�1) signifies the angular frequency,

f (hr) is a phase constant, z (cm) is the depth in the soil profile

(positive downward) and d (cm) denotes the characteristic

damping depth.

A synthetic record of hourly soil temperature observations at z¼
5, z¼ 10, and z¼ 15 cm depth is used to illustrate the DREAM setup

and results. This data set was created by solving Equation (39) in

themodel script heatflow (see Appendix C) for a 2-day period using

T0 ¼ 200 C, A0 ¼ 50 C, f ¼ 8 (hr) and d ¼ 20 (cm). The hourly data

was subsequently perturbed with a normally distributed error of

0.5o C and used in the analysis. The limits of acceptability were set

to be equal to 2 	C for each of the m ¼ 144 temperature observa-

tions. The four parameters T0, A0, f and d are determined from the

observed temperature data using the following setup of DREAM in

MATLAB.

The value of the effective observation error is assumed to be a

constant, and consequently a scalar declaration suffices for this

field epsilon of structure Meas_info. If the limits of acceptability are

observation dependent then a vector, with in this case m ¼ 144

values, should be defined.

Fig. 13 presents the results of the analysis. The top panel pre-

sents marginal distributions of the parameters (A) T0, (B) A0, (C) f,

and (D) d, whereas the bottom panel presents time series plots of

(E) the original temperature data before corruption with a mea-

surement error, and the behavioral simulation space of Equation

(39) in model at (F) 5, (G) 10 and (H) 15 cm depth in the soil profile.

The gray region satisfies the limits of acceptability of each tem-

perature observation and measurement depth.

The histograms center around their true values (denoted with a

blue cross). The parameters T0, A0, and f appear well defined,

whereas the damping depth d exhibits a large uncertainty. This

uncertainty translates in a rather large uncertainty of the apparent

soil thermal diffusivity, KT ¼ 1
2ud

2 (cm2 hr�1). This concludes the

numerical experiments. The interested reader is referred to Vrugt
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(2015a) for a more detailed exposition of membership-set likeli-

hood functions such as those used in the GLUE limits of accept-

ability framework.

6. Additional options

The seven case studies presented herein illustrate only some of

the capabilities of the DREAM software package. The script RUN-

DREAM presents a more exhaustive overview of the different

functionalities of the DREAM toolbox, and includes 23 prototype

example studies involving among others much more complex and

higher dimensional target distributions as well, for example esti-

mation of the two- and/or three-dimensional soil moisture distri-

bution from travel time data of ground penetrating radar (Laloy

et al., 2012; Linde and Vrugt, 2013) and treatment of rainfall un-

certainty in hydrologic modeling (Vrugt et al., 2008a). Users can

draw inspiration from these different test problems and use them

as templates for their ownmodeling and inference problems. I now

list a few important topics that have not been explicitly addressed

herein.

6.1. Diagnostic Bayes

A recurrent issue with the application of ABC is self-sufficiency

of the summary metrics, Sð~YÞ. In theory, S(,) should contain as

much information as the original data itself, yet complex systems

rarely admit sufficient statistics. Vrugt (submitted for publication)

therefore proposed in another recent article a hybrid approach,

coined diagnostic Bayes, that uses the summary metrics as prior

distribution and the original data in the likelihood function, or

pðx
���~YÞfpðx

���Sð~YÞÞLðx
���~YÞ. This approach guarantees that no infor-

mation is lost during the inference. The use of summary metrics as

prior distribution is rather unorthodox and arguments of in favor of

this approach are provided by Vrugt (submitted for publication).

Fig. 13. Histograms (top panel) of the marginal posterior distribution of the heat flow parameters (A) T0, (B) A0, (C) f, and (D) d. The true values of the parameters are separately

indicated with a blue cross. Time series plot (bottom panel) of (E) original data (before corruption) at the 5, 10 and 15 cm depth in the soil profile, and (F)e(H) behavioral simulation

space (gray region) that satisfies the effective observation error (2 	C) of each temperature measurement. The corrupted data are separately indicated with dots. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Histograms (top panel) of the marginal posterior distribution of the LotkaeVolterra model parameters (A) a, (B) b, (C) g, and (D) d. Time series plot (bottom panel) of 95%

simulation uncertainty ranges of the (E) prey and (F) predator populations. The observed data are indicated with the red circles. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Diagnostic Bayes is easily setup and executed within DREAM.

The user has to set the field DB of structure options equal to ’yes’.

Then, the observations of the calibration data and related summary

statistics are stored in fields Y and S of structure Meas_info,

respectively. The output of the model script consists of the simu-

lated data, Y augmented at the end of the return vector Y with the

values of the simulated summary statistics, S(Y(x)).

6.2. Joint parameter and state estimation

The return argument Y of the function script model usually in-

volves the output of some model, Y)F ðx; ,Þ. The computation in

this script can involve state estimation as well. The return argu-

ment of model then involves a time-series of forecasts derived from

the Kalman filter. This approach, assumes time-invariant parameter

values and is at the heart of SODA and particle-DREAM (Vrugt et al.,

2005, 2013b).

6.3. Bayesian model selection

Inferences about the model parameters are typically made from

the unnormalized posterior density, pðx
���~YÞ in Equation (5). This

Equation ignores the normalization constant, pð~YÞ. This constant,

also referred to as marginal likelihood or evidence can be derived

from multi-dimensional integration of the posterior distribution,

pð~YÞ ¼
R
c

pðxÞLðx
���~YÞdc, where x 2 c2 ℝ

d. In the case of multiple

competing model hypotheses

p
�
~Y
���H
�
¼
Z∞

�∞

pðHÞL
�
H
���~Y
�
dH (40)

the model with the largest value of pð~Y
���HÞ is preferred statistically.

The statistical literature has introduced several methods to

determine pð~Y
���HÞ (Chib, 1995; Kass and Raftery, 1995; Meng and

Wong, 1996; Lewis and Raftery, 1997; Gelman and Meng, 1998).

Numerical experiments with a suite of different benchmark func-

tions have shown that these approaches are not particularly accu-

rate for high-dimensional and complex target distributions that

deviate markedly from multi-normality. Volpi et al. (2015) have

therefore presented a new estimator of the marginal likelihood

which works well for a large range of posterior target distributions.

This algorithm uses the posterior samples derived fromDREAM and

is integrated in the MATLAB package.

6.4. Improved treatment of uncertainty

Most applications of Bayesian inference in Earth and environ-

mental modeling assume the model to be a perfect representation

of reality, the input (forcing) data to be observed without error, and

consequently the parameters to be the only source of uncertainty.

These assumptions are convenient in applying statistical theory but

often not borne out of the properties of the error residuals whose

probabilistic properties deviate often considerably from normality

with (among others) non-constant variance, heavy tails, and vary-

ing degrees of skewness and temporal and/or spatial correlation.

Bayes law allows for treatment of all sources of modeling error

through the use of nuisance variables, b for instance

p
�
x;b; ~U; ~j0

���~Y
�
fpðxÞpðbÞp

�
~U
�
p
�
~j0

	
L
�
x;b; ~U; ~j0

���~Y
�
: (41)

The nuisance variables are coefficients in error models of the initial

states and forcing data, respectively and their values subject to

inference with the parameters using the observed data, ~Y. The

BATEA framework is an example of this more advanced approach

(Kavetski et al., 2006a,b; Kuczera et al., 2006; Renard et al., 2010,

2011), and can be implemented with DREAM as well (Vrugt et al.,

2008a, 2009a,b). The formulation of Equation (41) is easily adapt-

ed to include errors in the calibration data as well (see Appendix B)

though it remains difficult to treat epistemic errors. What is more,

this approach with many nuisance variables will only work satis-

factorily if a sufficiently strong prior is used for each individual

error source. Otherwise the inference can rapidly degenerate and

become meaningless.

One can also persist in treating model parameter uncertainty

only, and use instead an advanced likelihood function whose

nuisance variables render it flexible enough to mimic closely

complex nontraditional error residual distributions (Schoups and

Vrugt, 2010; Evin et al., 2013; Scharnagl et al., 2015). The results

of such approach might be statistically meaningful in that the as-

sumptions of the likelihood function are matched by the actual

residual properties, yet this methodology provides little guidance

on structural model errors.

The answer to this complicated problem of how to detect, di-

agnose and resolve model structural errors might lie in the use of

summary statistics of the data rather than the data itself. A plea for

this approach has been made by Gupta et al. (2008) and Vrugt and

Sadegh (2013) have provided the mathematical foundation for

diagnostic model evaluation using ABC. Subsequent work by

Sadegh et al. (2015b) has shown the merits of this methodology by

addressing the stationarity paradigm. Other recent work demon-

strates that the use of summary metrics provides much better

guidance on model malfunctioning (Vrugt, submitted for

publication).

6.5. [
U-norm of error residuals

Likelihood functions play a key role in statistical inference of the

model parameters. Their mathematical formulation depends on the

assumptions that are made about the probabilistic properties of the

error residuals. The validity of these assumptions can be verified a-

posteriori by inspecting the actual error residual time series of the

posteriormean simulation. Likelihood functions based on a [2-norm

(squared residuals) are most often used in practical applications,

despite their relative sensitivity to peaks and outlier data points.

Their use is motivated by analytic tractability - that is - with rela-

tively little ease confidence intervals of the parameters can be

construed from a classical first-order approximation around the

optimum. This attractive feature of a [2-type likelihood functionwas

of imminent importance in past eras without adequate computa-

tional resources but is a far less desirable quality nowadays with

availability of powerful computing capabilities and efficient algo-

rithms. Indeed, methods such as DREAM can solve for likelihood

functionswith anydesirednorm,U2ℕ
þ. For instance, the Laplacian

likelihood (see Table B1) uses a [
1 norm of the error residuals and

therefore should be less sensitive to peaks and outliers. Unless there

are very good reasons to adopt a [
2-type likelihood function, their

use might otherwise be a historical relic (Beven and Binley, 2014).

6.6. Convergence monitoring

The most recent version of DREAM also includes calculation of

the multivariate bR-statistic of Gelman and Rubin (1992). This sta-

tistic, hereafter referred to as bR
d
-diagnostic, is defined in Brooks

and Gelman (1998) and assesses convergence of the d parameters

simultaneously by comparing their within and between-sequence

covariance matrix. Convergence is achieved when a rotationally
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invariant distance measure between the two matrices indicates

that they are “sufficiently” close. Then, the multivariate bR
d
-statistic

achieves a value close to unity, otherwise its value is much larger. In

fact, the bR and bR
d
-statistic take on a very similar range of values,

hence simplifying analysis of when convergence has been achieved.

The bR
d
-statistic is particularly useful for high-dimensional

target distributions involving complicated multi-dimensional

parameter interactions. We do not present this statistic in the

present paper, but the DREAM package returns its value at different

iteration numbers in field MR_stat of structure options.

6.7. Prior distribution

The prior distribution, p(x) describes all knowledge about the

model parameters before any data is collected. Options include the

use of noninformative (flat, uniform) and informative prior distri-

butions. These built-in capabilities will not suffice for applications

involving complex prior parameter distributions defined (or not) by

a series of simulation steps rather than some analytic distribution.

Such priors are used abundantly in the fields of geostatistics and

geophysics, andhave ledMosegaardandTarantola (1995) todevelop

the extendedMetropolis algorithm (EMA). This algorithm builds on

the standard RWM algorithm, but samples proposals from the prior

distribution instead, thereby honoring existing data and the spatial

structure of the variable of interest (Hansen et al., 2012; Laloy et al.,

2015). The acceptance probability in Equation (14) then becomes

pacc
�
xt�1/xp

	
¼ min



1;

L
�
xp
	

Lðxt�1Þ

�
; (42)

and the resulting chain simulated by EMA satisfies detailed balance.

This approach, also known as sequential simulation or sequential

geostatistical resampling, can handle complex geostatistical priors,

yet its efficiency is critically dependent on the proposal mechanism

used to draw samples from the prior distribution (Laloy et al., 2015;

Ruggeri et al., 2015).

The basic idea of EMA is readily incorporated in DREAM by

replacing the parallel direction jump of Equation (23) with a swap

type proposal distribution used in the DREAM(D) algorithm (see

section). For instance, the most dissimilar entries of two other

chains can be used to guide which coordinates to draw from the

prior distribution. This adaptive approach shares information about

the topology of the search space between the different chains, a

requirement to speed up the convergence to the target distribution.

I will leave this development for future research.

Dimensionality reduction methods provide an alternative to

EMA and represent the spatial structure of the variable of interest

with much fewer parameters than required for pixel based inver-

sion while maintaining a large degree of fine-scale information.

This allows for the use of standard closed-form prior distributions

for the reduced set of parameters. Examples of such approaches

include the discrete cosine transform (Jafarpour et al., 2009, 2010;

Linde and Vrugt, 2013; Lochbühler et al., 2015), wavelet transform

(Davis and Li, 2011; Jafarpour, 2011), and singular value decom-

position (Laloy et al., 2012; Oware et al., 2013).

7. The DREAM family of algorithms

In the past years, several other MCMC algorithms have appeared

in the literature with a high DREAM pedigree. These algorithms use

DREAM as their basic building block but include special extensions

to simplify inference (among others) of discrete and combinatorial

search spaces, and high-dimensional and CPU-intensive system

models. These algorithms have their own individual MATLAB

toolboxes identical to what is presented herein for DREAM, but

with unique algorithmic parameters. I briefly describe each of these

algorithms below, and discuss their algorithmic parameters in the

MATLAB code.

7.1. DREAM(ZS)

This algorithm creates the jump vector in Equation (23) from the

past states of the joint chains. This idea is implemented as follows.

If Z ¼ {z1,…,zm} is a matrix of size m � d which thinned history of

each of the N chains, then the jump is calculated using

dXi
A ¼ zd� þ ð1d� þ ld� Þgðd;d�Þ

X

j¼1

d �
Z
aj

A � Z
bj

A

�

dXi
sA ¼ 0;

(43)

where a and b are 2dN integer values drawn without replacement

from {1,…,m}.

The DREAM(ZS) algorithm contains two additional algorithmic

variables compared to DREAM, including m0, the initial size

(number of rows) of the matrix Z and k the rate at which samples

are appended to this external archive. Their recommended default

values are m0 ¼ 10d and k ¼ 10 iterations respectively. The initial

archive Z is drawn from the prior distribution of which the last N

draws are copied to the matrix X which stores the current state of

each chain. After each k draws (generations) in each Markov chain,

the matrix X is appended to Z.

The use of past samples in the jump distribution of Equation

(43) has three main advantages. First, a much smaller number of

chains suffices to explore the target distribution. This not only

minimizes the number of samples required for burn-in, but also

simplifies application of DREAM(ZS) to high-dimensional search

spaces. Indeed, whereas DREAM requires at least N � d/2,

benchmark experiments with DREAM(ZS) have shown that N ¼ 3

chains (set as default) suffices for a large range of target di-

mensionalities. Second, because the proposal distribution in

DREAM(ZS) uses past states of the chains only, each trajectory can

evolve on a different processor. Such distributed implementation

is used within DREAM as well, but violates, at least theoretically,

the convergence proof (see Section 3.3). Third, outlier chains do

not need forceful treatment. Such chains can always sample their

own past and with a periodic value of g ¼ 1 jump directly to the

mode of the target.

The sampling from an external archive of past states violates the

Markovian principles of the sampled chains, and turns the method

into an adaptive Metropolis sampler (Roberts and Rosenthal, 2007;

ter BraakandVrugt, 2008). To ensure convergence to the exact target

distribution the adaptation should decrease in time, a requirement

satisfied by DREAM(ZS) as Z grows by an order of N/m ¼ k/t which

hence slows downwith generation t (ter Braak and Vrugt, 2008).

To enhance the diversity of the proposals created by DREAM(ZS),

the algorithm includes a mix of parallel direction and snooker

jumps (ter Braak and Vrugt, 2008). This snooker jump is depicted

schematically in Fig. 14 and uses an adaptive step size. The indexes

a, b and c are drawn randomly from the integers {1,…,m} (without

replacement).

The orientation of the snooker jump is determined by the line

XiZa going through the current state of the ith chain and sample a of

the external archive. The snooker axis is now defined by the line

ZbZc and is projected orthogonally on to the line XiZa. The differ-

ence between the two projection points Zb
⊥
and Zc

⊥
now defines the

length of the snooker jump as follows
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dXi ¼ gs

�
Zb
⊥
� Zc

⊥

�
þ zd; (44)

where gs �
D
U ½1:2;2:2� signifies the snooker jump rate (ter Braak

and Vrugt, 2008). The proposal point is then calculated using

Equation (24).

The MATLAB code of DREAM(ZS) uses the exact same coding

terminology and variables as DREAM but includes three additional

fields in structure DREAMPar, that is m0, k and psnooker with

default values of 10d, 10 and 0.1, respectively. These are the algo-

rithmic parameters that determine the initial size of the external

archive, the rate at which proposals are appended to this archive,

and the probability of a snooker jump. Furthermore, a default value

of N ¼ 3 is used for the number of chains.

7.2. DREAM(D)

The DREAM(D) code is especially developed to sample efficiently

non-continuous, discrete, and combinatorial target distributions.

This method helps solve experimental design problems involving

real-time selection of measurements that discriminate best among

competing hypothesis (models) of the system under consideration

(Vrugt and ter Braak, 2011; Kikuchi et al., 2015). The DREAM(D) al-

gorithm uses DREAM as its main building block and implements

two different proposal distributions to recognize explicitly differ-

ences in topology between discrete and Euclidean search spaces.

The first proposal distribution is a regular parallel direction jump

dXi
A ¼

6664zd� þ ð1d� þ ld�Þgðd;d�Þ
X

j¼1

d �
X
aj

A � X
bj

A

�
7775
d�

dXi
sA ¼ 0;

(45)

but with each of the sampled dimensions of the jump vector

rounded to the nearest integer using the operator, Pð,ÞR. The integer-
valued proposals, Xi

p2ℕ
d; i ¼ f1;…;Ng can be transformed to

non-integer values using a simple linear transformation

Xi
p ¼ Dx1Xi

p (46)

whereDx¼ {Dx1,…,Dxd} isa1�d-vectorwithdiscretization intervalof

each dimension of x and 1 denotes element-by-element multipli-

cation. For instance, consider a two-dimensional problemwith prior

U 2½�2;6� (and thus Par_info.min ¼ [�2 �2], Par_info.max ¼ [6 6])

and Dx ¼ {1/4,1/2}, then DREAM(D) samples the integer space, x1
2 [0�33] and x2 2 [0�17], respectively. A proposal, Xi

p ¼ f16;9g is

then equivalent to {�2,�2} þ {16�1/4,9�1/2} ¼ {2,5/2}. The field

stepsof structurePar_info stores in a1� d-vector the values ofDx. For

an integer space, the value of Dx ¼ 1d.

The parallel direction jump of Equation (45) works well for

discrete problems but is not necessary optimal for combinatorial

problems in which the optimal values are known a-priori but not

their location in the parameter vector. The topology of such search

problems differs substantially from Euclidean search problems.

Vrugt et al. (2011) therefore introduce two alternative proposal

distributions for combinational problems. The first of these two

proposal distributions swaps randomly two coordinates in each

individual chain. If the current state of the ith chain is given by

Xi
t�1 ¼ ½Xi

t�1;1;…;Xi
t�1;j;…;Xi

t�1;k;…;Xi
t�1;d� then the candidate

point becomes,Xi
p ¼ ½Xi

p;1;…;Xi
p;k;…;Xi

p;j;…;Xi
p;d�where j and k are

sampled without replacement from the integers {1,…,d}. It is

straightforward to see that this proposal distribution satisfies

detailed balance as the forward and backward jump have equal

probability.

This coordinate swappingdoesnot exploit any information about

the topologyof the solution encapsulated in theposition of the other

N�1 chains. Each chain essentially evolves independently to the

target distribution. This appears rather inefficient, particularly for

complicated search problems. The second proposal distribution

takes explicit information from the dissimilarities in coordinates of

the N chains evolving in parallel. This idea works as follows Vrugt

et al. (2011). Let Xa and Xb be two chains that are chosen at random

from the populationXt�1. From the dissimilar coordinates of a and b

twodifferentdimensions, say j and k, are pickedat random,and their

values swapped within each chain. The resulting two proposals, Xa
p

andXb
p are subsequentlyevaluatedbymodel and theproductof their

respective Metropolis ratios calculated, paccðXa
/Xa

pÞpaccðXb
/Xb

pÞ
using Equation (14). If this product is larger than the random label

drawn from U ð0;1Þ then both chains move to their respective

candidate points, that is, xat ¼ Xa
p and xbt ¼ Xb

p, otherwise they

remain at their current state, xat ¼ xat�1 and xbt ¼ xbt�1.

The dimensions j and k are determined by the dissimilarities of

the d coordinate values of two different chains. Unlike the random

swap this second proposal distribution (also referred to as directed

swap) shares information between two chains about their state.

Those coordinates of the chains that are dissimilar are swapped, a

strategy that expedites convergence to the target distribution. The

swap move is fully Markovian, that is, it uses only information from

the current states for proposal generation, and maintains detailed

balance (Vrugt et al., 2011). If the swap is not feasible (less than two

dissimilar coordinates), the current chain is simply sampled again.

This is necessary to avoid complications with unequal probabilities

of move types (Denison et al., 2002), the same trick is applied in

reversible jump MCMC (Green, 1995). Restricting the swap to dis-

similar coordinates does not destroy detailed balance, it just selects a

subspace to sample on the basis of the current state. For combina-

tional search problems, the DREAM(D) algorithm uses a default 90/

10% mix of directed and random swaps, respectively.

The field prswap of structure DREAMPar in DREAM(D) defines the

probability of a random swap (default DREAMPar.prswap ¼ 0.1).

Fig. 14. DREAM(ZS) algorithm: Explanation of the snooker update for a hypothetical

two-dimensional problem using some external archive of m¼10 points (grey dots).

Three points of this archive Za, Zb and Zc are sampled at random and define the jump of

the ith chain, Xi (blue) as follows. The points Zb and Zc are projected orthogonally on to

the dotted XiZa line. The jump is now defined as a multiple of the difference between

the projections points, Zb
⊥
and Zc

⊥
(green squares) and creates the proposal, , Xi

p . The

DREAM(ZS) algorithm uses a 90/10% mix of parallel direction and snooker updates,

respectively. The probability of a snooker update is stored in field psnooker of structure

DREAMPar. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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7.3. DREAM(DZS)

Alternative (not published) discrete variant of DREAM(ZS). This

code uses discrete (snooker) sampling from the past to explore

target distributions involving non-continuous and/or combinato-

rial parameter spaces.

7.4. DREAM(ABC)

This code has been developed by Sadegh and Vrugt (2014) for

diagnosticmodelevaluationandcanbeactivated fromwithinDREAM

using likelihood function 22. Implementation details have been dis-

cussed in the main text of this paper and in Appendix B and C.

7.5. DREAM(BMA)

Specific implementation of DREAM for Bayesian model aver-

aging. Theory and application of this method have been discussed

in Vrugt et al. (2008c) and an example has been presented in the

case studies section of this paper.

7.6. MT-DREAM(ZS)

The MT-DREAM(ZS) algorithm uses multiple-try sampling (Liu

et al., 2000), snooker updating, and sampling from an archive of

past states to enhance the convergence speed of CPU-intensive and

parameter rich models. Benchmark experiments in geophysics, hy-

drology and hydrogeology have shown that this sampler is able to

sample correctly high-dimensional target distributions (Laloy and

Vrugt, 2012; Laloy et al., 2012, 2013; Linde and Vrugt, 2013;

Carbajal et al., 2014; Lochbühler et al., 2014, 2015).

The MT-DREAM(ZS) algorithm uses as basic building block the

DREAM(ZS) algorithm and implements multi-try sampling in each of

the chains. This multi-try scheme is explained in detail by Laloy and

Vrugt (2012) and creates m different proposals in each of the N ¼ 3

(default) chains. If we use symbol Jd(,) to denote the jumping distri-

butions inEquation (43)or (44) then this schemeworksas follows. For

conveniencewhenever the symbol j is used Imean ’for all j2 {1,…,m}’.

(1) Create m proposals, Xj
p ¼ Xi þ Jdð,Þ.

(2) Calculate wj
p, the product of prior and likelihood of Xj

p and

store values in m-vector, wp ¼ fw1
p;…;wm

pg.
(3) Select Xi

p from Xp using selection probabilities wp.

(4) Set X1
r ¼ Xi

p and create remaining m�1 points of reference

set, Xj
r ¼ Xi

p þ Jdð,Þ.
(5) Calculate w

j
r, the product of prior and likelihood of Xj

r and

store values in m-vector, wr ¼ fw1
r ;…;wm

r g.
(6) Accept Xi

p with probability

pacc

�
Xi
/Xi

p

�
¼ min

2
41;

�
w1

r þ…þwm
r

	
�
w1

p þ…þwm
p

�

3
5: (47)

It can be shown that this method satisfies the detailed balance

condition and therefore produces a reversible Markov chainwith the

target distribution as the stationary distribution (Liu et al., 2000).

The advantage of this multi-try scheme is that the m proposals

can be evaluated in parallel. With the use of N¼ 3 chains this would

require only N � mt processors, which is much more practical for

large d than running DREAM in parallel with large N (Laloy and

Vrugt, 2012). Compared to DREAM(ZS) the MT-DREAM(ZS) algo-

rithm has one more algorithmic parameter, m, the number of multi-

try proposals in each of the N chains. This variable is stored in field

mt of DREAMPar and assumes a default value of m ¼ 5.

8. Summary

In this paper I have reviewed the basic theory of Markov chain

Monte Carlo (MCMC) simulation and have introduced a MATLAB

package of the DREAM algorithm. This toolbox provides scientists

and engineers with an arsenal of options and utilities to solve

posterior sampling problems involving (amongst others) bimo-

dality, high-dimensionality, summary statistics, bounded param-

eter spaces, dynamic simulation models, formal/informal

likelihood functions, diagnostic model evaluation, data assimila-

tion, Bayesian model averaging, distributed computation,

and informative/noninformative prior distributions. The DREAM

toolbox supports parallel computing and includes tools

for convergence analysis of the sampled chain trajectories and post-

processing of the results. Seven different case studies were used to

illustrate the main capabilities and functionalities of the MATLAB

toolbox. These example studies are easy to run and adapt and serve

as templates for other inference problems.

A graphical user interface (GUI) of DREAM is currently under

development and will become available in due course.
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Appendices

Appendix A

Table A1 summarizes, in alphabetic order, the different function/

program files of the DREAM package in MATLAB. The main program

RUNDREAM contains 23 different prototype studies which cover a

large range of problem features. These example studies have been

published in the geophysics, hydrologic, pedometrics, statistics and

vadose zone literature, and provide a template for users to setup

their own case study. The last line of each example study involves a

function call to DREAM, which uses all the other functions listed on

the next page to generate samples of the posterior distribution. Each

example problem of RUNDREAM has its own directory which stores

the model script written by the user and all other files (data file(s),

MATLAB scripts, external executable(s), etc.) necessary to run this

script and compute the return argument Y.

If activated by the user (field diagnostics of structure options is

set to ’yes’), then at the end of each DREAM trial, the autocorrela-

tion function, Geweke (1992) and Raftery and Lewis (1992)

convergence diagnostic are computed separately for each of the N

chains using the CODA toolbox written by James P. LeSage (http://

www.spatial-econometrics.com/). These functions are stored in

the folder “../diagnostics” under the main DREAM directory and

produce an output file called “DREAM_diagnostics.txt” which is

printed to the screen in the MATLAB editor at the end of each

DREAM trial. These within-chain convergence diagnostics were

designed specifically for single-chain Metropolis samplers, and

augment the multi-chain univariate and multivariate bR and
bR
d
-statistic of Gelman and Rubin (1992) and Brooks and Gelman

(1998) stored in fields R_stat and MR_stat of structure output,

respectively. Joint interpretations of all these different convergence
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diagnostics allows for a better assessment of when convergence to

the target distribution has been achieved. The single-chain di-

agnostics, require each chain to have at least 200 samples other-

wise the file “DREAM_diagnostics.txt” is returned empty.

The directory “../postprocessing” contains a number of different

functions designed to visualize the results (output arguments) of

DREAM. The program DREAM_POSTPROC creates a large number of

MATLAB figures, including (among others) traceplots of the

sampled chain trajectories, bivariate scatter plots and histograms of

the posterior samples, traceplots of the bR- and bR
d
-diagnostics,

autocorrelation functions of the sampled parameter values, quan-

tileequantile plots of the error residuals, time series plots of the

95% simulation (prediction) uncertainty intervals. If ABC or diag-

nostic Bayes is used then marginal distributions of the sampled

summary statistics are plotted as well. The number of figures that is

plotted depends on the dimensionality of the target distribution,

the number of chains used, and the type of output argument (e.g.

likelihood/simulation/summary metrics or combination thereof)

that is returned by the function model written by the user.

Appendix B

The mathematical formulations of the built-in likelihood func-

tions of DREAM in Table 2 are given in Table B1 below. For conve-

nience, E(x) ¼ {e1(x),…,en(x)} signifies the n-vector of residuals,
~S ¼ fS1ð~YÞ;…; Smð~YÞg and S ¼ {S1(Y(x)),…,Sm(Y(x))} are m-vectors

with observed and simulated summary statistics, respectively, and

A¼ {a1,…,an} is a n-vector of filtered residuals in likelihood function

14 using an autoregressive model with coefficients, f ¼
{f1,…,f4}.

Table A1

Description of the MATLAB functions and scripts (.m files) used by DREAM, version 3.0.

Name of function Description

ADAPT_PCR Calculates the selection probabilities of each crossover value

BOUNDARY_HANDLING Corrects those parameter values of each proposal that are outside the search domain (if so desired)

CALC_DELTA Calculates the normalized Euclidean distance between successive samples of each chain

CALC_DENSITY Calculates the log-likelihood of each proposal

CALC_PROPOSAL Computes proposals (candidate points) using differential evolution (see Equations (23) and (24))

CHECK_SIGMA Verifies whether the measurement error is estimated along with the parameters of the target distribution

DRAW_CR Draws crossover values from discrete multinomial distribution

DREAM Main DREAM function that calls different functions and returns sampled chains, diagnostics, and/or simulations

DREAM_CALC_SETUP Setup of computational core of DREAM and (if activated) the distributed computing environment

DREAM_CHECK Verifies the DREAM setup for potential errors and/or inconsistencies in the settings

DREAM_END Terminates computing environment, calculates single-chain convergence diagnostics, and checks return arguments

DREAM_INITIALIZE Samples the initial state of each chain

DREAM_SETUP Setup of the main variables used by DREAM (pre-allocates memory)

DREAM_STORE_RESULTS Appends model simulations to binary file “Z.bin”

EVALUATE_MODEL Evaluates the proposals (executes function/model script Func_name)

GELMAN Calculates the bR convergence diagnostic of Gelman and Rubin (1992)

GL Evaluates generalized likelihood function of Schoups and Vrugt (2010a)

LATIN Latin hypercube sampling

METROPOLIS_RULE Computes Metropolis selection rule to accept/reject proposals

MOMENT_TPDF Calculate absolute moments of the skewed standardized t-distribution

REMOVE_OUTLIER Verifies presence of outlier chains and resets their states

RUNDREAM Setup of 17 different example problems and calls the main DREAM script

WHITTLE Evaluates Whittle's likelihood function (Whittle, 1953)
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The generalized likelihood function of Schoups and Vrugt (2010)

allows for bias correction, which is applied to the first or higher

order filtered residuals prior to calculation of the likelihood. I refer

to Schoups and Vrugt (2010) and Scharnagl et al. (2015) for an exact

derivation and detailed analysis of likelihood functions 14 and 17,

respectively, and Whittle (1953) for an introduction to likelihood

15. The ABC likelihood functions 21 and 22 are described and dis-

cussed in detail by Turner and Sederberg (2012) and Sadegh and

Vrugt (2014), whereas the limits of acceptability function 23 is

introduced and tested in Vrugt (2015a). The pseudo-likelihoods in

31, 32, 33 and 34 are explicated in the GLUE papers of Beven and

coworkers (Beven and Binley, 1992; Freer et al., 1996; Beven and

Freer, 2001; Beven, 2006). The derivation and explanation of the

remaining likelihood functions, 11, 12, 13, and 16 can be found in

introductory textbooks on time-series analysis and Bayesian

inference.

Likelihood functions 14 and 17 extend the applicability of the

other likelihood functions to situations where residual errors are

correlated, heteroscedastic, and non-Gaussian with varying de-

grees of kurtosis and skewness. For instance, consider Fig. 15

which plots the density of the generalized likelihood function

for different values of the skewness, b and kurtosis, x. The

density is symmetric for x ¼ 1, positively skewed for x > 1 and

negatively skewed for x < 1. If x ¼ 1, then for b ¼ �1(0)[1] this

density reduces to a uniform (Gaussian) [double-exponential]

distribution.

Table B1

Mathematical formulation of built-in likelihood functions of DREAM. Option (1) and (2) return directly a likelihood and log-likelihood value, respectively, and their formulation

is defined in the model script by the user.

lik Mathematical formulation Nuisance variables Note

Formal likelihood functions

11
L ðx

���~YÞ ¼ �n
2 logf

Pn
t¼1etðxÞ2g none

12
L ðx

���~YÞ ¼ �n
2 logð2pÞ �

Pn
t¼1flogðstÞg � 1

2

Pn
t¼1

�
et ðxÞ
st

�2 st;t2{1,…,n} y

13
L ðx

���~YÞ ¼ �n

2
logð2pÞ � 1

2
log

 
s21

ð1� f2Þ

!
� 1

2
ð1� f2Þ

�
e1ðxÞ
s1

�2

�P
n

t¼2

flogðstÞg �
1

2

Xn

t¼2

�ðetðxÞ � fet�1ðxÞÞ
st

�2

st,f; t2{1,…,n} y

14
L ðx

���~YÞxnlog

0
@ub

2sx

ðxþ x�1Þ

1
A�

Xn

t¼1

flogðstÞg � cb
Xn

t¼1

���ax;t
���
2=ð1þbÞ

þðlBC � 1ÞP
n

t¼1

ð~yt þ KBCÞ

s0,s1,b,x,m1,f,KBC,lBC zx

15
ℒ x

�����Y
e

 !
¼ Pbn=2c

j¼1

log fℱ lj; x
� 	

þ fE lj;F
� 	� 	

þ g ljð Þ
fℱ lj ;xð ÞþfE lj ;Fð Þ

� 
 none ¶

16
ℒ x

�����Y
e

 !
¼ �P

n

t¼1

log 2stð Þf g �
Pn

t¼1

jet xð Þj
st

� � st;t2{1,…,n} y

17

L ðx
���~YÞ ¼

Xn

t¼2

8
<
:logð2c2Gððnþ 1Þ=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn� 2Þ

p
Þ

� logððkþ k�1ÞGðn=2Þ
ffiffiffiffiffiffi
pn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f2Þ

q
stÞ

� ððnþ 1Þ=2Þlog

0
@1þ ð1=ðn� 2ÞÞ

 
c1 þ c2ht

k
signðc1þc2h

t
Þ

!2
1
A

9
=
;

sa,sb,sc,sd,f,n,k x¥

ABC e diagnostic model evaluation

21
L ðx

���~YÞ ¼ �m
2 logð2pÞ �mlogðεÞ � 1

2ε
�2 Pm

j¼1

rðSjð~YÞ; SjðYðxÞÞÞ2
none £♯

22
L ðx

���~YÞ ¼ min
j¼1:m

ðεj � rðSjð~YÞ; SjðYðxÞÞÞÞ none £♯

GLUE e limits of acceptability

23
L ðx

���~YÞ ¼
Pm

j¼1fIð
���Sjð~YÞ � SjðYðxÞÞ

��� � εjÞg none )♯

GLUE - informal likelihood functions

31
L ðx

���~YÞ ¼ �G logfVar½EðxÞ�g none ⋄

32
L ðx

���~YÞ ¼ G log

 
1� Var½EðxÞ�

Var½~Y�

!
none ⋄

33
L ðx

���~YÞ ¼ �GVar½EðxÞ� none ⋄

34
L ðx

���~YÞ ¼ �logf
Pn

t¼1

�����etðxÞ
�����g

none ⋄

y Measurement error, st defined in field Sigma of Meas_info or inferred jointly with x (see Appendix B).
z Measurement error defined as st ¼ s0þ s1 yt(x); Scalars ub, sx and cb derived from values of x and b; f ¼ {f1,…,f4} stores coefficients autoregressive model of error residuals.
x User is free to select exact formulation (depends on selection nuisance variables).
¶ Fourier frequencies, lj, spectral density function, fE(,) and periodogram, g(,) defined in Whittle (1953).

¥ Scalars c1 and c2 computed from n>2 and k>0; h signifies (n�1)-vector of restandardized first-order decorrelated residuals; G(,) and sign denote the gamma and signum

function, respectively.
£ ABC distance function, rðSð~YÞ; SðYðxÞÞÞ specified as inline function in field rho of structure options.

♯ ε (scalar or m-vector) stored in field epsilon of options.

) Variable I(a) returns one if a is true, zero otherwise.

⋄ Shaping factor, G defined in field GLUE of structure DREAMPar. Default setting of G ¼ 10.
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The Student likelihood function, 17, of Scharnagl et al. (2015) is

designed in part to better mimic residual distributions with heavy

tails (see Fig. 16).

Table B2 summarizes several commonly used formal likelihood

functions in hydrologic modeling applications and lists how like-

lihood function 14 can be reduced to these by making specific as-

sumptions about the error residuals (see also Schoups and Vrugt

(2010)).

By fixing some of the values of the nuisance variables the like-

lihood function can be simplified to a specific family of probability

distributions.

I am now left to describe how to setup the joint inference of the

model and nuisance parameters using the data stored in field Y of

structure Meas_info. The MATLAB script on the next page provides

an example for likelihood function 14 involving a model with d ¼ 3

parameters, their names referred to in the excerpt as A, B and C.

Fig. 15. Densities of the generalized likelihood function of Schoups and Vrugt (2010) for different values of the kurtosis (b) and skewness (x).

Fig. 16. Densities of the skewed Student likelihood function of Scharnagl et al. (2015) for different values of the skewness (k) and kurtosis (x).

Table B2

Relationship of likelihood functions used/proposed in the hydrologic literature and the likelihood function 14 of the

DREAM package.

Reference Implementation using 14

Standard least squares f1 ¼ 0; f2 ¼ 0; f3 ¼ 0; f4 ¼ 0; s1 ¼ 0; x ¼ 1; b ¼ 0

Sorooshian and Dracup (1980): Equation (20) f2 ¼ 0; f3 ¼ 0; f4 ¼ 0; s1 ¼ 0; x ¼ 1; b ¼ 0

Sorooshian and Dracup (1980): Equation (26) f1 ¼ 0; f2 ¼ 0; f3 ¼ 0; f4 ¼ 0; x ¼ 1; b ¼ 0

Kuczera (1983) b ¼ 0

Bates and Campbell (2001) b ¼ 0

Thiemann et al. (2001) f1 ¼ 0; f2 ¼ 0; f3 ¼ 0; f4 ¼ 0
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Each nuisance variable in the DREAM package is assigned a

unique label, hereafter also referred to as index or identifier. For

example, the coefficients, s0, f1, and KBC in likelihood function 14

have index, dþ1, dþ6 and dþ9, respectively which equates to an

index of 4, 9, and 12 for a model involving d ¼ 3 parameters. Those

indexes of the nuisance variables which are stored in the field

idx_vpar of global variable LV will be subject to inference. These

nuisance variables of the likelihood function augment the param-

eters. Nuisance variables not selected for inference are held con-

stant at their default value declared by the user in field fpar of LV.

Thus, in the MATLAB except above the nuisance variables {s0, s1, b,

f1, KBC, lBC} are subject to inference, whereas the remaining co-

efficients, {x, m1, f2, f3, f4} of likelihood 14 will assume their

respective default values of fpar.

A similar setup is used for likelihood function 17 (see below),

except that the user has to separately define the values of the fields

a, b, c, and d of structure LV. These values define the anchor points

to be used with piecewise cubic hermite interpolation, details of

which are given by Scharnagl et al. (2015).

All nuisance variables are selected for inference in this setup of

likelihood function 17, except the skewness parameter k which is

assumed to be unity (no skew).

For completeness, I also consider an example for likelihood

function 13 involving joint inference of the model parameters, the

measurement error of the data, st; t 2 {1,…,n}, and the first order

autoregressive parameter, f.

The user is free to determine the measurement error model of

the data as long as this is specified as an inline function object. In

the present example a heteroscedastic error model was assumed. If

homoscedasticity of the measurement error is expected then the

user can resort to another formulation of the inline function, for

instance without the parameter a. Whatever mathematical

formulation of the measurement data error model is used the

ranges of its parameters should augment those of the parameters

stored in field min and max of structure Par_info. These ranges are

then followed by those of the first-order autoregressive coefficient,

f. This order is consistent with that specified for likelihood function
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13 in the third column of Table B1.

The last example considered herein involves the use of likeli-

hood function 12 and 16 both of which share st; t 2 {1,…,n}, the

measurement error of the data. This variable can be specified by

the user in field Sigma of structure Meas_info (see section 4.4), or

alternatively be estimated along with the parameters of the target

distribution. I follow this second approach in the script listed on

the previous page.

This setup is similar to that of likelihood function 13, except

without the use of f. Likelihood function 12 and 16 do not assume

such first-order autoregressive correction of the error residuals.

Appendix C

This Appendix presents the different model functions used in

the six case studies presented in Section 5 of this paper. These

functions (.m file) serve as a template for users to help define

their own forward model in DREAM. All model functions have as

input argument, x a row-vector with d parameter values, and a

single output argument which contains the likelihood, log-

likelihood, a vector with simulated values or vector with sum-

mary statistics, respectively. A low-dash is used in the print out of

each model script to denote the use of a standard built-in function

of MATLAB.

Case study I: one-dimensional mixture distribution

The function mixture listed below uses the built-in normal

probability density function of MATLAB, normpdf() to calculate the

density (likelihood) of the mixture distribution for a given candi-

date point, x.

Case study II: 100-dimensional t-distribution

The function t_distribution listed below takes advantage of the

built-in functions, log() and mvtpdf() of MATLAB to calculate the

log-density (log-likelihood) of the multivariate t-probability den-

sity function with covariance matrix C and degrees of freedom, df.

The persistent declaration helps retain variables C and df in local

memory after the first function call has been completed. This is

computationally appealing, as it avoids having to recompute these

variables in subsequent function calls.

Case study III: dynamic simulation model

The MATLAB function hydrus listed on the next page executes

the HYDRUS-1D porous flow model and returns a vector with

simulated soil moisture values.

The HYDRUS-1D model is an executable file encoded with in-

structions in Fortran, and consequently it is not possible to pass the

d parameter values, x in MATLAB directly to this stand-alone pro-

gram. I therefore have to resort to an alternative, and somewhat

less efficient approach. First, in the MATLAB script hydrus a file

writing command is used to replace the current values of the pa-

rameters in the input files of HYDRUS-1D with those of the pro-

posal, x. Then, HYDRUS-1D is executed from within MATLAB using

the dos command and functionality. After this call has terminated, a

load-command is used to read in MATLAB workspace the output

files created by the HYDRUS-1D program. The simulated soil

moisture values are then isolated from the data stored in MATLAB

memory and returned to the main DREAM program. To maximize

computational efficiency, the option persistent is used to retain the

structure data in local memory after the first function call has been

completed.

Case study IV: likelihood-free inference

The MATLAB function hmodel listed on the next page simulates

the rainfall-runoff transformation for parameter values, x and

returns four summary statistics (signatures) of watershed behavior.
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The source code of the hmodel is written in C and linked into

a shared library using the MEX-compiler of MATLAB. This avoids

file writing, and enables a direct passing of the parameter values,

forcing data, and numerical solver settings to crr_model. A

second-order time-variable integration method is used to solve

the differential equations of the hmodel. The function Calc_-

metrics computes the four summary metrics using as input ar-

guments the simulated discharge record and observed

precipitation data.

Case study V: Bayesian model averaging

The MATLAB function BMA_calc returns the log-likelihood of

the BMA model for a given proposal, x consisting of weights and

variances.

The log-likelihood of the BMAmodel is computed as the log of the

sum of the likelihoods of each of ensemble member. In the

example considered herein, the conditional distribution of each

ensemble member is assumed to be Gaussian and with unknown

variance.

Case study VI: generalized likelihood uncertainty estimation

The MATLAB function lotka_volterra solves the predator-prey

system for the proposal, x and returns in a single vector, Y their

simulated abundances as function of time.

A time-variable integrationmethod, ode45 is used for numerical

solution of the two coupled differential equations. The parameters

are defined as additional state variables of the LotkaeVolterra

model so that their values can be passed directly to the inline

function within the built-on ODE solver.

Case study VII: limits of acceptability

The MATLAB function heat_flow returns the simulated time

series of soil temperatures at 5, 10 and 15 cm depth in the soil

profile.
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