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Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of
Phylogenetic Trees

Bret Larget and Donald L. Simon
Department of Mathematics and Computer Science, Duquesne University

We further develop the Bayesian framework for analyzing aligned nucleotide sequence data to reconstruct phylog-
enies, assess uncertainty in the reconstructions, and perform other statistical inferences. We employ a Markov chain
Monte Carlo sampler to sample trees and model parameter values from their joint posterior distribution. All statistical
inferences are naturally based on this sample. The sample provides a most-probable tree with posterior probabilities
for each clade, information that is qualitatively similar to that for the maximum-likelihood tree with bootstrap
proportions and permits further inferences on tree topology, branch lengths, and model parameter values. On mod-
erately large trees, the computational advantage of our method over bootstrapping a maximum-likelihood analysis
can be considerable. In an example with 31 taxa, the time expended by our software is orders of magnitude less
than that a widely used phylogeny package for bootstrapping maximum likelihood estimation would require to
achieve comparable statistical accuracy. While there has been substantial debate over the proper interpretation of
bootstrap proportions, Bayesian posterior probabilities clearly and directly quantify uncertainty in questions of
biological interest, at least from a Bayesian perspective. Because our tree proposal algorithms are independent of
the choice of likelihood function, they could also be used in conjunction with likelihood models more complex
than those we have currently implemented.

Introduction

The traditional methods for phylogenetic inference
select a single ‘‘best’’ tree, either according to some op-
timality criterion (maximum likelihood, maximum par-
simony) or by a clustering algorithm (neighbor joining).
Uncertainty may then be assessed by a subsequent pro-
cedure, such as the bootstrap. In contrast, a Bayesian
approach to phylogeny reconstruction expresses the un-
certainty in the phylogeny and in the parameters of the
sequence mutation model with a posterior probability
distribution. Summaries of parameters of interest, such
as the tree topology, are described by their marginal pos-
terior distributions. Equations which express the desired
summaries are analytically intractable for even small
phylogeny problems. The approach which has proven to
be successful for many such intractable analytical
Bayesian analyses is to use stochastic simulation to ob-
tain a sample from the posterior distribution and to base
inferences on this sample. (See Gelman et al. [1995] for
an accessible and practical introduction to modern
Bayesian methods.)

This paper describes a Bayesian approach to phy-
logeny reconstruction and introduces novel Markov
chain Monte Carlo (MCMC) algorithms to solve the
computational aspects of the problem. We demonstrate
our methodology with two examples. While in many
regards, the approach we advocate has a similar goal to
an approach using maximum likelihood with bootstrap-
ping, a Bayesian approach enjoys a substantial compu-
tational advantage in the examples we have studied. We
make comparisons between the Bayesian computational
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approach described here and analysis by maximum like-
lihood with bootstrapping in the discussion.

We are aware of three groups who began working
independently on a Bayesian approach to phylogenetic
inference using MCMC at about the same time. The
dissertation work of Mau (1996) led to additional pa-
pers. Mau and Newton (1997) make phylogenetic infer-
ences with restriction site data. Mau, Newton, and Lar-
get (1999) introduce the MCMC sampler that is the pre-
cursor to the tree proposal algorithms we introduce in
this paper. These same authors apply their sampler in a
Bayesian study of the coevolution of pocket gophers and
their parasitic lice (Newton, Mau, and Larget 1999). A
second disseration (Li 1996) also explores an MCMC
approach to phylogeny reconstruction, but we are not
aware of published papers in scientific journals resulting
from this work. Rannala and Yang (1996) describe a
Bayesian analysis for which the computational approach
is suitable only for very small trees, and they employ
MCMC on a somewhat larger tree in a subsequent paper
(Yang and Rannala 1997). We compare our computa-
tional approach with the methods of these other authors
in the discussion.

The MCMC papers on phylogenetic inference cited
above all assume a molecular clock. This paper gives a
different description of the tree proposal mechanism de-
scribed in the papers authored by Mau, Newton, and
Larget cited above that leads to a simpler introduction
to the novel nonclock version presented here.

Furthermore, we introduce a completely different
pair of algorithms which enjoy a computational advan-
tage over the previously published methods. We dem-
onstrate that a Bayesian approach to phylogeny recon-
struction makes assessment of uncertainty computation-
ally practical on trees far larger than those currently
being assessed using maximum likelihood and boot-
strapping.
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Materials and Methods
A Bayesian Approach

A Bayesian approach to phylogeny reconstruction
requires a likelihood model for sequence evolution
through a phylogenetic tree, prior distributions on trees
and model parameters, and data. A tree c 5 (t, b) is
described by its tree topology t and associated branch
lengths b. The likelihood model L(x | v) for observed
data x may contain several parameters w, where v 5 (c,
w) represents a specific choice of tree topology, branch
lengths, and model parameters. Parameter space V 5
(C, F) contains the sets of all possible trees C and
model parameters F. The tree topology is discrete, and
its values partition V.

A fully Bayesian analysis models the prior uncer-
tainty in v with a joint prior distribution p(v) for all the
parameters in the space. The product of the likelihood
function and the prior distribution, normalized to have
volume 1 over V, is the joint posterior distribution upon
which all inference is based, expressed as

L(x z v)p(v)
p(v z x) 5 . (1)

L(x z v)p(v) dvE
V

Notice that the numerator in equation (1) may be eval-
uated for any point v, but that computing the denomi-
nator can be infeasible for even fairly small trees.

To find the posterior probability of a particular tree
topology t, we need to find the volume under p(v | x) in
the portion of the partition of V which corresponds to
t by integrating out all other parameters. A point v 5
(t, b, f) may be broken into its component parts, and
we have

L(x z t, b, w)p(t, b, w) dw dbE E
B F

p(t z x) 5 , (2)

L(x z t, b, w)p(t, b, w) dw dbO E E
t B F

where B and F are the sets of all possible branch lengths
and model parameter values, respectively. If we wanted
to know the posterior probability that a group of taxa
formed a monophyletic clade, we would sum the pos-
terior probabilities of all topologies t that satisfied this
condition.

Markov Chain Monte Carlo

The Metropolis-Hastings algorithm (Metropolis et
al. 1953; Hastings 1970) samples a dependent sequence
of points in V, v(0), v(1), v(2), . . . , such that after some
point in the sequence, all subsequent sampled points are
distributed approximately according to the posterior dis-
tribution. As a consequence, after discarding an initial
portion of the sequence, the long-run frequencies of the
sampled tree topologies are arbitrarily close to their pos-
terior probabilities after sufficiently long simulations, by
the Markov chain law of large numbers (Theorem 3 in
Tierney 1994). Smith and Roberts (1993) give several
advantages of a sample-based approach to Bayesian in-

ference, including the ability to do graphical exploratory
data analysis, inference, prediction, and model valida-
tion. Because V includes both tree and model parameter
information, a sample to estimate the tree topology pos-
terior probabilities of equation (2) can also provide in-
ferences about branch lengths and model parameter val-
ues. Gelman et al. (1995, chapter 11) contains an ac-
cessible introduction to MCMC methods including the
Metropolis-Hastings algorithm.

We begin with a Markov chain on V that proposes
a move to state v2 from the current state v1 according
to probability density function q(v1, v2). The Metrop-
olis-Hastings algorithm modifies these transition prob-
ability densities so that the resultant stationary distri-
bution is the desired posterior distribution. In theory,
any irreducible Markov chain may be modified by the
Metropolis-Hastings algorithm so that long-run frequen-
cies converge with probability one to the appropriate
posterior probabilities. The art is in designing a Markov
chain that rapidly traverses the posterior distribution so
that inferences based on samples short enough to be
computationally feasible will be sufficiently accurate.

The Metropolis-Hastings algorithm accepts a pro-
posed new state v* from current state v with probability

p(v* z x)q(v*, v)
min 1, . (3)1 2p(v z x)q(v, v*)

If the proposal is rejected, the current state is repeated
in the sequence. Often, q is symmetric, and the Hastings
ratio q(v*, v)/q(v, v*) equals 1 and does not affect the
acceptance probability. Notice that the posterior density
appears only as a ratio in equation (3) so that the de-
nominator in equation (1) cancels.

We will actually use a composition of two different
basic update mechanisms to traverse V. Specifically, we
begin with a randomly chosen initial tree and model
parameter values, v(0) 5 (c(0), w(0)), from some very
dispersed distribution. Given the current state of v(i) 5
(c(i), w(i)), a single cycle will consist of two stages. In
the first stage, while keeping the current tree c(i) fixed,
we propose new model parameters w* with a Markov
chain q1 on the space of model parameter values F
which are either accepted (w(i11) 5 w*) or rejected (w(i11)

5 w(i)) with acceptance probability from equation (3).
The second stage modifies the current tree c(i) in a se-
quence of steps while holding w(i11) fixed. One step of
the second stage proposes a new tree c* according to a
Markov chain q2 on C which is accepted or rejected and
repeats this process a fixed number of times. The tree
c(i11) is the result of a fixed number of Metropolis-Has-
tings steps according to q2 from c(i).

MCMC Algorithms for Proposing New Trees

We describe two different algorithms for proposing
new trees. Each algorithm has two versions, one which
assumes a molecular clock and one which does not. The
molecular clock version of the GLOBAL algorithm, which
modifies all branch lengths and potentially changes the
tree topology simultaneously, is equivalent to the algo-
rithm presented in Mau, Newton, Larget (1999). Our
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FIG. 1.—A tree and its representation under the molecular clock assumption. The peaks are all at the same height. The permutation of five
leaf labels and the four ordered valley depths determine the tree completely. There are 24 equivalent ways to represent the same tree.

FIG. 2.—A tree and its representation without assuming the molecular clock. The permutation of five leaf labels and the eight left and right
valley depths describe the tree completely. There are 24 equivalent representations for this rooted tree. A different rooting of the corresponding
unrooted tree would be represented differently.

description of the algorithm is based on a different rep-
resentation of the tree than is given in that paper. The
LOCAL algorithm proposes changes to only small por-
tions of the tree. Our experience is that a single algo-
rithm is not sufficient for rapid mixing in all data sets.

A Tree Representation

At first, we shall consider the phylogeny to be a
rooted binary tree. A binary tree with s leaves has s 2
1 internal nodes including the root and may be drawn
in 2s21 equivalent ways, as there is an arbitrary decision
to be made at each internal node on which subtree
should be left and which should be right. For a given
set of left/right choices there is a unique in-order tra-
versal of the tree (e.g., Drozdek and Simon 1995, section
8.4). Each internal node is adjacent to two leaves in this
traversal, the rightmost leaf of its left subtree and the
leftmost leaf of its right subtree. Given an ordering of
the nodes and the distances between adjacent nodes, the
tree topology and branch lengths are uniquely deter-
mined.

If a molecular clock is assumed, the pair of dis-
tances to the adjacent leaves are equal for each internal
node, and the branch lengths are all determined by s 2
1 values. Otherwise, 2(s 2 1) values are necessary.

This tree representation, a permutation of the s taxa
and a sequence of s 2 1 or 2(s 2 1) distances, may be
visualized in a graph of the distance from the root in a
depth-first walk through the tree, as in figures 1 and 2.
A variation of this representation appears in Aldous
(1993) and Aldous and Larget (1992). Durbin et al.
(1998, pp. 206–210) describe this representation and

give it the name ‘‘traversal profile.’’ Each taxon appears
at a peak in the graph, and each internal node is a valley.
The permutation of taxa is read across the tops of the
peaks and the branch lengths and tree topology are de-
termined by the s 2 1 valley depths in the molecular
clock case, or the 2(s 2 1) left and right valley depths
without a molecular clock.

GLOBAL with a Molecular Clock

For GLOBAL with a molecular clock (Mau and New-
ton 1997; Mau, Newton, and Larget 1999), first, one
representation of the current tree is selected uniformly
at random by choosing the left/right orientation of the
two subtrees with equal probability for each internal
node. Second, the s 2 1 valley depths are simultaneous-
ly and independently modified by adding to each a small
perturbation uniformly chosen between 2dc and dc,
keeping the depth between 0 and a specified maximum.
If a proposed change would take a valley depth out of
range, the excess is reflected back into the required in-
terval. The resultant tree is either accepted or rejected
by the Metropolis-Hastings algorithm. The size of dc

affects the mixing properties and needs to be carefully
chosen. We begin with a large value and halve it when
the acceptance rate is low during an initial burn-in pe-
riod. Changing the proposal mechanism based on the
history of the chain violates the Markov property and
can lead to invalid inferences from long-run frequencies
(see Gilks, Roberts, and Sahu 1998). We leave the value
of dc fixed while sampling trees for inference.
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FIG. 3.—A tree before and after a local move which changes its tree topology. The labeled nodes are in the neighborhood of the randomly
selected edge between u and v. Because x , h1, there were three choices of tree topologies. A return move to the prior heights of u and v
would result in a forced choice of tree topology, and is thus three times as likely, so the Hastings ratio is 3.

GLOBAL Without the Molecular Clock

For GLOBAL without the molecular clock, we per-
turb the 2(s 2 1) left and right valley depths of the tree
representation instead of the s 2 1 valley depths as with
the molecular clock. Because the likelihood models we
use are reversible and do not distinguish between alter-
native rootings of the same unrooted tree, with a small
probability we propose an alternative rooting (which is
always accepted) in place of changing the tree.

LOCAL with a Molecular Clock
LOCAL modifies the tree only in a small neighbor-

hood of a randomly chosen internal branch, leaving the
remainder of the tree unchanged. We begin by choosing
with equal probability one of the rooted tree’s s 2 2
internal edges (not joined to a leaf of the tree) from the
current tree c. In figure 3, u and v are the nodes joined
by the randomly chosen edge, and the other nodes in-
volved in the proposal are labeled. LOCAL with a mo-
lecular clock will only change the branch lengths con-
necting these labeled nodes and possibly introduce a
new tree topology.

First, we consider the case in which v is not the
root of the tree. Leaving a, b, c, and w fixed, we pick
new positions for nodes u and v. Let dist(·, ·) be the
within-tree distance between any two nodes. Let h1, h2,
and h3 be the three distances dist(a, w), dist(b, w), and
dist(c, w) in sorted order with h1 , h2 , h3. LOCAL

chooses x uniformly at random from the interval [0, h2]
and y uniformly at random from [0, h1]. Proposed nodes
u* and v* will be distances max(x, y) and min(x, y) from
w, respectively. If max(x, y) , h1, there are three pos-
sible tree topologies. One of the three children, a, b, and
c, is randomly chosen to be joined to v*, with the others
becoming children of u*. On the other hand, if max(x,
y) . h1, the tree topology is forced, and the child node
with the smallest height becomes a child of v*. The
Hastings ratio for this proposal is either 1/3, 1, or 3: If
dist(u, v) . dist(c, v) in the current tree and max(x, y)
, h1, the Hastings ratio is 3; if dist(u, v) , dist(c, v) in
the current tree and max(x, y) . h1, the Hastings ratio
is 1/3; otherwise, it is 1. When v is not the root, the
overall height of the tree is unchanged.

In the second case, v is the root of the tree, and
there is no node w. LOCAL randomly changes the dis-
tances between v and the children a, b, and c and choos-

es a new location for u. Let h1, h2, and h3 be the three
distances dist(a, v), dist(b, v), and dist(c, v) in sorted
order with h1 , h2 , h3. We let h 5 h1 3 el1

(U20.5),*
1

where U is a uniform(0, 1) random variable, and l1 is
a tuning parameter. We let h 5 hi 1 h 2 h1 for i 5* *

i 1
2, 3 be the proposed distances of a, b, and c to the
proposed root v*. We then place u* at a height x above
v*, chosen uniformly at random between 0 and h . The*

2
relative sizes of x and h determine whether the tree*

1
topology is forced or randomly chosen from three pos-
sibilities as above. The Hastings ratio is r 3 (h /h1),*

1
where r is 1/3, 1, or 3, as above. LOCAL with a molecular
clock is very similar in character to the method for re-
arranging trees in Kuhner, Yamato, and Felsenstein
(1995). Their method differs from ours in the manner in
which new branching points are proposed.

LOCAL Without the Molecular Clock
For LOCAL without the molecular clock, we ran-

domly pick one of the s 2 3 internal edges of the un-
rooted tree, designating its two nodes u and v. The other
two neighbors of u are randomly labeled a and b, and
v’s two other neighbors are randomly labeled c and d
with equal probability. Set m 5 dist(a, c). Our proposal
changes m by multiplying edge lengths on the path from
a to c by a random factor. We then detach either u or v
with equal probability and reattach it along with its un-
changed subtree to a point chosen uniformly at random
on the path from a to c. Specifically, m* 5 m 3
el2(U1

20.5), where U1 is a uniform(0, 1) random variable
and l2 is a tuning parameter. Let x 5 dist(a, u) and y
5 dist(a, v) be distances in the current tree. If u is cho-
sen to move, the proposal sets x* 5 U2 3 m* and y*
5 y 3 m*/m. If v is chosen to move, x* 5 x 3 m*/m
and y* 5 U2 3 m*. In both cases, U2 is a uniform(0,
1) random variable. If x* , y*, the tree topology does
not change while dist(a, u*) 5 x*, dist(u*, v*) 5 y* 2
x*, and dist(v*, c) 5 m* 2 y*. If x* . y*, the tree
topology does change as u* becomes a neighbor of c
and v* becomes a neighbor of a while dist(a, v*) 5 y*,
dist(v*, u*) 5 x* 2 y*, and dist(u*, c) 5 m* 2 x*. The
Hastings ratio in this case is (m*/m)2. An example using
this proposal mechanism is shown in figure 4.

MCMC Algorithms for Updating Parameters
When a parameter, such as k in the HKY85 model

(Hasegawa, Kishino, and Yano, 1985), is restricted in a
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FIG. 4.—A tree before and after a non-molecular-clock local move which changes its tree topology. The distance from a to c was modified
by a randomly chosen factor. The subtrees extending from u* and v* through b and d, respectively, did not change. The node v was randomly
chosen to move, while the relative position of u on the path from a to c did not change.

range [0, M], we propose a new value k* 5 k 1 U,
where U is chosen uniformly at random between 2dk

and dk, reflecting the excess back into the range should
k* be negative or exceed M. The Hastings ratio is 1 for
this proposal distribution.

When a set of parameters is constrained to sum to
a constant, we propose a new set of values according to
a Dirichlet distribution centered at the current parameter
values. Specifically, if the current values are z 5 (z1, z2,
. . . , zk), where Si zi 5 c, we let z* 5 cY, where Y is
randomly chosen from a Dirichlet distribution with pa-
rameters (az1, az2, . . . , azk), with a a tuning parameter.
The higher a is, the more likely the proposed parameter
values are to remain close to their current values. (Dir-
ichlet random variables are generated by normalizing
independent gamma random variables by their sum. See
Johnson and Kotz [1972, chapter 40] for details.) The
Hastings ratio for this proposal distribution is a ratio of
two Dirichlet densities, and we do not report its com-
plicated expression.

The entire parameter proposal chain is obtained by
independently proposing new parameter values for all
parameters with these two types of proposals and ac-
cepting or rejecting the combined proposal in a single
Metropolis-Hastings step. It is critical for proper mixing
that the tuning parameters dk and a be chosen well for
good acceptance rates.

Results and Discussion
Examples
A Primate Phylogeny

For our first example, we reanalyze the primate mi-
tochondrial DNA sequences studied by Yang and Ran-
nala (1997). The data set is distributed with the PAML
(Phylogenetic Analysis by Maximum Likelihood, Yang
1997) package and represents segments of the mito-
chondrial genomes of nine primates. The data originally
appeared in Hayasaka, Gojobori, and Horai (1988). The
sequences each contain 888 sites, with segments from
two protein-coding genes and three tRNA genes. In our
analysis, we use F84 with a molecular clock, the model
of nucleotide base substitution in the DNAMLK pro-
gram in PHYLIP (Felsenstein 1995). The parameteri-
zation of the instantaneous rate matrix we use is

 · (1 1 k /p )p p pR G C T

 (1 1 k /p )p · p pR G C T
u 

p p · (1 1 k /p )pA G Y T 
p p (1 1 k /p )p ·A G Y C 

(4)

Instead of modeling all sites equally, we allow different
parameter values for each of four different site catego-
ries. In the protein-coding regions, we have different
parameters for each codon position. A fourth category
is for the tRNA genes.

We assume a uniform prior p(c) on all clocklike
trees whose total height is less than 100. (The exact
choice of this constant has no effect on the simulations,
provided it is large enough.) Because each category re-
quires six parameters in its instantaneous rate matrix, w
is a vector of 24 parameters. Its flat prior, independent
of the prior on trees, is

4

p(w) 5 p(u , . . . , u ) p(k )p(p , p , p , p ),P1 4 i i,A i,G i,C i,T
i51

(5)

where p(ki) is the uniform density between 0 and 100
for each i. The density p(u1, . . . , u4) is determined so
that (w1u1, . . . , w4u4) has a flat Dirichlet distribution
where wi is the proportion of all sites in category i. This
constraint avoids confounding with branch lengths. We
also assume that p(pi,A, pi,G, pi,C, pi,T) is a flat Dirichlet
density for each category i. Because our prior p(w) is
constant over the set of permissible parameter values,
the ratio of posterior densities in equation (3) is simply
the ratio of likelihoods.

Before our runs for inference, we conducted several
short runs to find good initial values for model param-
eters and tuning parameters, and we report these values
in the caption of figure 5. We completed four separate
runs from randomly selected initial trees and obtained
consistent results. Each run consisted of 2,000 cycles
with GLOBAL with a molecular clock and no parameter
updating during which dc was dynamically lowered to
0.00625. This was followed by 2,000 cycles with one
parameter proposal and one tree proposal using LOCAL

with a molecular clock to complete burn-in. We contin-
ued the same sequence of cycles, subsampling every
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FIG. 5.—Primate tree topology with clade posterior probabilities. The number above and to the left of each internal node is the posterior
probability that the taxa in the corresponding subtree form a clade in the true tree (although perhaps with a different tree topology than that
shown) based on observed frequencies in 40,000 sampled trees from four combined runs. Analysis of the sample also yields posterior probabilities
for each subtree topology, which we do not report. The branch lengths are approximately scaled to the means of their posterior estimates. Initial
model parameters values were k 5 (1.16, 2.37, 8.07, 2.24), u 5 (0.89, 0.29, 2.32, 0.39), with p values equal to observed frequencies in the
data. Initial tuning parameter values were lu 5 lp 5 3,000, l1 5 2 log 2, dc 5 0.2, and dk 5 0.1.

Table 1
The Central 95% of the Posterior Distribution of Each Likelihood Model Parameter in
Each of the Four Rate Categories, as Determined by the Four Combined MCMC Runs
and the Observed Mean Values

CODING GENES

First Position

95% C.R.a Mean

Second Position

95% C.R. Mean

Third Position

95% C.R. Mean

TRNA GENES

95% C.R. Mean

k. . . . .
u . . . . .
pA . . .
pG . . .
pC . . .
pT. . . .

(0.73, 1.64)
(0.81, 1.17)
(0.33, 0.42)
(0.10, 0.16)
(0.23, 0.32)
(0.19, 0.26)

1.14
0.98
0.37
0.13
0.27
0.22

(1.94, 5.47)
(0.19, 0.40)
(0.12, 0.20)
(0.07, 0.13)
(0.28, 0.37)
(0.37, 0.48)

3.36
0.28
0.16
0.10
0.32
0.42

(5,69, 15.45)
(2.04, 2.45)
(0.33, 0.42)
(0.04, 0.06)
(0.37, 0.43)
(0.16, 0.20)

9.81
2.25
0.37
0.04
0.40
0.18

(1.48, 4.01)
(0.28, 0.53)
(0.28, 0.39)
(0.11, 0.18)
(0.17, 0.26)
(0.25, 0.36)

2.50
0.39
0.34
0.14
0.22
0.31

NOTE.—Because we assume flat priors, the means are likely to be close to the maximum-likelihood estimates.
a C.R. 5 credible region.

tenth tree from the next 100,000 cycles for inference.
Examination of trace plots of the log-likelihood and the
observed consistency between runs suggests that the
burn-in period was sufficiently long. The log-likelihood
for sampled trees in each run varied around a mean of
24,887.5. The combined samples yield a posterior prob-
ability of 0.964 for the best tree topology, with an es-
timated Monte Carlo standard error of 0.005 determined
from the four independent samples. The tree topology
is the same as that found in Yang and Rannala (1997).
Their posterior probabilities for the same tree topology
varied between 0.951 and 0.958 under different priors.
The discrepancy in our values is caused primarily by the
fact that we modeled categories of sites differently. Fig-
ure 5 summarizes the uncertainty in the tree topology.
Our approach allows inferences on model parameters
and tree branch lengths, including 95% credible regions
(Bayesian confidence intervals) displayed in table 1 for
the parameters in the model.

A Whale Phylogeny

The traditional whale phylogeny places one group
of toothed whales (Odontoceti), the sperm whales (Phy-

seteridae), as a sister group to dolphins and as more
distantly related to baleen whales (Mysticeti). This tra-
ditional view has been challenged (Milinkovitch, Mey-
ers, and Powell 1994; Milinkovich, Ortı´, and Meyers
1995) and the assertion made that sperm whales and
baleen whales were sister groups on the basis of analysis
of molecular sequences. Another set of authors (Árna-
son, Gretarsdottir, and Gullberg 1993; Árnason and
Gullberg 1994) found evidence for yet another tree to-
pology with dolphins and baleen whales being the most
closely related. Adachi and Hasegawa (1995) found that
the choice of outgroup made a considerable difference
in the bootstrap proportions in favor of each competing
tree topology. Their analysis found support for the tree
proposed by Milinkovitch, Meyers, and Powell (1994)
and Milinkovitch, Ortı´, and Meyers (1995). A Bayesian
reanalysis of the cytochrome b data set of 1,140 aligned
base pairs can attach a posterior probability to each of
the three competing hypotheses.

The data set contains sequences from 14 species of
whales (2 dolphins, 1 sperm whale, and 11 baleen
whales) and 17 artiodactyles (hippopotamus, 6 camels,
pig, peccary, cow, sheep, goat, black-tailed deer, giraffe,
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fallow, pronghorn, and chevrotain). Using data from all
31 taxa, we used the likelihood model HKY85 (Hase-
gawa, Kishino, and Yano 1985) with different parameter
values for each codon position and did not assume a
molecular clock. Experimentation on short runs led us
to choose these initial parameters: k 5 (6.0, 3.8, 10.0),
u 5 (0.29, 0.10, 2.61), p given by observed frequencies,
dc 5 0.2 (dynamically reduced to about 0.0016), dk 5
0.2, lu 5 2,000, and lp 5 4,000. Burn-in consisted of
5,000 cycles of GLOBAL with a molecular clock and no
parameter updating followed by 10,000 cycles each with
one parameter proposal and one tree proposal using LO-
CAL without a molecular clock. We continued the same
cycle sequence and subsampled every tenth tree from
the next 500,000 cycles for inference. We repeated the
simulation four times with different random seeds, ob-
taining consistent results. Our inferences are based on
the combined sample of 200,000 saved tree topologies.

We attach posterior probabilities to each of the
three hypotheses by simply counting the number of tree
topologies of each type in the sample. We find that the
most probable hypothesis is the tree (dolphins, (sperm
whales, baleen whales)) with posterior probability
99.3% (198,630/200,000). The traditional tree (baleen
whales, (dolphins, sperm whales)) has posterior proba-
bility 0.6% (1,185/200,000), while the other alternative
has posterior probability 0.1% (185/200,000). This anal-
ysis draws the same general conclusion as that drawn
by Adachi and Hasegawa (1995). A host of other infer-
ences could be drawn from our sample of 200,000 trees,
but we refrain. The validity of the inferences depends
on the validity of the likelihood model, prior distribu-
tions, and data.

The fact that out posterior probabilities are much
more extreme than the bootstrap proportions in Adachi
and Hasegawa (1995) is not caused by fundamental dif-
ferences between the two approaches. Rather, it results
from our use of more data to locate the root of the whale
tree: we use 17 outgroup taxa in a single analysis instead
of one or two.

In both examples, we used GLOBAL during burn-in
and LOCAL for our inference runs. LOCAL is about three
times as fast as GLOBAL per cycle on the data sets in
this paper and seems to mix through tree topologies
equally well. Were we interested in estimating branch
lengths, GLOBAL may be a better choice, because it up-
dates all branch lengths with each proposal.

Comparison with Maximum Likelihood and
Bootstrapping

In this paper, we are interested in assessing uncer-
tainty in a Bayesian framework. The alternative method
most similar to this is maximum-likelihood estimation
and bootstrapping (Felsenstein 1985). The application of
maximum-likelihood has become increasingly wide-
spread for trees without too many taxa. A practical con-
cern is that maximum-likelihood estimation depends on
heuristic optimization that is not guaranteed to converge
to the true optimal trees.

The computational effort in bootstrapping the max-
imum-likelihood procedure on a problem with many

taxa can be so onerous that practitioners may be inclined
instead to choose an alternative method. One computa-
tionally tractible approximate likelihood-based approach
is quartet puzzling (Strimmer and von Haeseler 1996),
which provides some numerical means to assess uncer-
tainty, although a theory which guides an objective in-
terpretation of these numerical values has yet to be de-
veloped. In a similar vein, although bootstrapping has
been proven to be a valid method of assessing uncer-
tainty in a variety of situations (see Efron and Tibshirani
1993 for many examples), there is considerable debate
over the proper way to interpret bootstrap proportions
in a phylogeny reconstruction (Felsenstein and Kishino
1993; Berry and Gascuel 1996; and Newton 1996).
From our perspective, an interesting interpretation is that
of Efron, Halloran, and Holmes (1996). These authors
conclude that the most reasonable interpretation of boot-
strap proportions, as applied in Felsenstein (1985), are
as Bayesian posterior probabilities with a uniform prior.
While refuting the claim made by others of systematic
bias in Felsenstein’s application of the bootstrap, they
argue that a two-stage bootstrap requiring at least 20
times the computational effort that Felsenstein’s boot-
strap requires is necessary for proper frequentist statis-
tical inference.

There is a considerable difference in the time we
needed for our analyses and the time required using the
bootstrap and maximum likelihood to achieve similar
standard errors in the estimated probabilities. In our
analysis, each of the four runs required about 100 min
of CPU time on a 300-MHz Pentium II PC operating
under Solaris x86. The best tree topology with all 31
taxa (not shown) had a posterior probability of 0.413
with an estimated Monte Carlo standard error of 0.013
(determined from our four independent samples).

To estimate a proportion close to 0.413 to the same
degree of accuracy requires about 1,400 independent ob-
servations. In some sense, this means that the informa-
tion from our highly dependent sample of 200,000 trees
is equivalent to about 1,400 independent draws from the
posterior. Ignoring differences between bootstrap pro-
portions and Bayesian posterior probabilities, the infor-
mation in our sample is about as good as 1,400 bootstrap
replicates. We achieved this in less than 7 h of CPU
time on a desktop PC. In the process, we also obtained
estimates and assessments of uncertainty of all param-
eters in the model.

In contrast, a single run of DNAML from the PHY-
LIP package with three rate categories required over 180
min of CPU time on the same computer. Assuming the
genuine maximal tree is found in about 3 h, bootstrap-
ping 1,400 times would require 175 days of CPU time,
nearly half a year.

The difference in computational requirements is
easily explained. Maximum likelihood requires exten-
sive computation to produce a single tree. To assess un-
certainty using the bootstrap, at least 100 equally chal-
lenging computational problems must be solved. Com-
putation used in one optimization is not used in subse-
quent optimizations. In contrast, in a Bayesian analysis
by Metropolis-Hastings MCMC, once burn-in has been
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reached, every tree evaluation adds information useful
for assessing uncertainty.

While many practitioners adhere to or avoid Bayes-
ian methods on purely philosophical grounds, we ad-
vocate a Bayesian approach for phylogenetic inference
because, unlike bootstrapping, it quantifies uncertainty
in questions of biological interest in a directly inter-
pretable manner (from a Bayesian perspective) and does
this with much less computational effort. When deciding
between three unnested hypotheses, such as the three
candidate whale phylogenies, a Bayesian analysis atta-
ches a posterior probability to each. Classical hypothesis
testing, in contrast, is awkward to apply when there is
no natural null model.

Comparison with the Computational Approach of
Yang and Rannala

We reanalyzed the primate data using the program
mcmctree in PAML to make efficiency comparisons
between our two computational approaches. The results
of these comparisons are striking. Running our code on
the computer described above, we found that each run
required 9 min of CPU time, for a total of 36 min of
CPU time, to obtain our estimates of the tree topology
and the parameters. We ran mcmctree on the same
computer using the empirical Bayes option (which is
faster than the hierarchical option) with the same initial
parameter estimates described in Yang and Rannala
(1997) and d1 5 0.01 to obtain Monte Carlo standard
errors twice as large as those we obtained. The program
required 10.9 h of CPU time to complete. To halve the
standard errors would have required more time.

While there are minor differences between the
Bayesian models we use and those used by Yang and
Rannala (1997), our methods of Metropolis-Hastings
sampling are quite different. The computational method
described in Yang and Rannala (1997) uses MCMC as
a means to generate a collection of labeled histories
which will subsequently be evaluated individually by
Monte Carlo integration. Because they evaluate the pos-
terior probability ratios of labeled histories to only lim-
ited precision during the MCMC portion of their com-
putational approach, the sampled labeled histories are
not a valid sample from their posterior, and the advan-
tages of a sample-based approach to Bayesian inference
mentioned earlier are not available. The Monte Carlo
integration estimates of posterior labeled history prob-
abilities found by Yang and Rannala are accurate and
valid. Their approach is simply substantially more ex-
pensive computationally than the method we present
here, at least for this example.

In our approach, the state space includes the tree
topology, branch lengths, and model parameters. The
calculation of an acceptance probability of a proposed
tree sums over the unknown data at the internal nodes,
a process that is rapid and accurate with the pruning
algorithm (Felsenstein 1983). In contrast, determining
the relative posterior probabilities between two labeled
histories requires integrating over all possible branch
lengths in addition to summing over unknown data at

the internal nodes of each tree. This is a highly expen-
sive computation to perform with great accuracy.

Extending Yang and Rannala’s Approach to the
Larger Example

We could not apply Yang and Rannala’s (1997) ap-
proach to the whale/artiodactyl data. Although there is
no inherent reason why their method cannot work on
larger trees, the distributed code is restricted to trees
with 10 or fewer taxa. This artificial restriction could
presumably be removed. A second complication was our
use of a model without the molecular clock. Because the
MCMC algorithm of Yang and Rannala operates on la-
beled histories which are not defined for unrooted trees,
some algorithmic change would be necessary to handle
this model change. Inference using Yang and Rannala’s
computational approach to ascertain the posterior prob-
abilities of the 175 tree topologies in the 99% credible
region for the tree topology found in our analysis would
require at least 175 separate 30-dimensional Monte Car-
lo integrations, a considerably more difficult computa-
tion than that for the 14 separate 8-dimensional Monte
Carlo integrations their code computed for the primate
data set. Assuming their MCMC algorithm could find
all tree topologies with nonnegligible posterior proba-
bilities, it is also unknown how much computational
time would be required to achieve the accuracy we dem-
onstrate running our algorithms for less than 7 h.

Conclusions

We have demonstrated that a Bayesian approach to
phylogenetic inference has substantial advantages over
the approach of maximum likelihood and bootstrapping
for large trees and that the Metropolis-Hastings algo-
rithms we introduce are superior to other published com-
putational algorithms, at least on the small number of
data sets we have considered. We do, however, mention
several issues of which a user of these methods ought
to be aware.

Pitfalls of MCMC
Just as there is reason to question whether a max-

imum-likelihood algorithm truly finds a global maxi-
mum, there is reason to question whether an MCMC
algorithm correctly identifies and measures the posterior
probabilities of the collection of highly probable tree
topologies. A common difficulty is for a particular sim-
ulation run to get stuck in one region of the parameter
space and fail to visit other regions where the posterior
is of comparable size or even higher, leading to sub-
stantial bias in inference. A related difficulty appears
when transitions between islands of high posterior prob-
ability occur at very low rates. Without providing an
ironclad guarantee that these potential pitfalls have been
avoided, obtaining consistent results from several re-
peated long runs from randomly chosen disparate initial
trees is a minimal criterion for reliable results of the
computation. A more stringent test is to check if the true
tree topology is captured with substantial posterior prob-
ability on simulated data. Mau, Newton, and Larget
(1999) conduct a simulation study with a 32-taxon tree
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using GLOBAL with a molecular clock that successfully
passes this test. However, the algorithms in this paper
have failed to give consistent results when applied to
simulated data from a tree with 64 taxa (data not
shown).

Model Misfit

The standard errors we report in this paper measure
the likely disparity between the theoretical probabilities
expressed in equation (2) and the numerical values our
simulations provide. They are calculated assuming that
the underlying likelihood model is a sufficiently good
explanation for the observed data. In this paper, we have
modeled obvious data features by allowing different pa-
rameter values for different codon positions, for exam-
ple. Still, data sequences generated by our best fitted
model would likely differ considerably from genuine
data regarding composition of amino acids, locations of
stop codons, and other biologically relevant features.
More effort is needed to incorporate more biological un-
derstanding into the likelihood models in common use.
Users of MCMC in phylogentic inference ought to be
concerned more about proper modeling than about com-
putational issues in the simulations.

A Promising Future

Despite these caveats, we are quite confident that
the algorithms we have developed represent a major step
forward in likelihood-based phylogenetic analysis. We
reemphasize that the tree proposal algorithms presented
in this paper interact with the likelihood model solely
through the acceptance probabilities; they require no
modification should a Bayesian approach be extended to
problems with different types of data or likelihood mod-
els.

We have developed the software package Bayesian
Analysis in Molecular Biology and Evolution (BAMBE,
Simon and Larget 1998), written in ANSI C, which is
publicly available on our Web site (http://www.mathcs.
duq.edu/larget/bambe.html). Windows and Macintosh
versions are under development.
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