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MARKOV DECISION PROBLEMS AND STATE-ACTION FREQUENCIES*

EITAN ALTMAN AND ADAM SHWARTZ?:

Abstract. Consider a controlled Markov chain with countable state and action spaces. Basic quantities
that determine the values of average cost functionals are identified. Under some regularity conditions, these
turn out to be a collection of numbers, one for each state-action pair, describing for each state the relative
number of uses of each action. These "conditional frequencies," which are defined pathwise, are shown to
determine the "state-action frequencies" that, in the finite case, are known to determine the costs. This is
extended to the countable case, allowing for unbounded costs. The space of frequencies is shown to be
compact and convex, and the extreme points are identified with stationary deterministic policies.

Conditions under which the search for optimality in several optimization problems may be restricted
to stationary policies are given. These problems include the standard Markov decision process, as well as
constrained optimization (both in terms of average cost functionals) and variability-sensitive optimization.
An application to a queueing problem is given, where these results imply the existence and explicit
computation of optimal policies in constrained optimization problems.

The pathwise definition of the conditional frequencies implies that their values can be controlled
directly; moreover, they depend only on the limiting behavior of the control. This has immediate application
to adaptive control of Markov chains, including adaptive control under constraints.

Key words. Markov decision process, average cost, constrained optimization, state-action frequencies,
nonstationary control
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Introduction. An important issue in optimization problems is the reduction of the
space of policies over which we optimize. This is motivated by the need to reduce the
complexity of the search for optimal policies, and by the desire to restrict attention to
those policies that are easy to implement. Indeed, in many optimization problems we
first show that it is possible to restrict the optimization to the class of stationary policies.
This simplifies the search, since many computational methods are available in the
stationary case. Furthermore, the implementation requires relatively little memory.
Conditions that ensure that we may indeed restrict the search of optimal policies for
Markov decision processes to stationary policies (or even to deterministic stationary
policies) are an active area of research (see, e.g., Borkar [9], [10], Cavazos-Cadena
[12], Dekker and Hordijk [14], Sennott [28], [29] and references therein).

On the other hand, it is of interest to know how flexible we can be in the choice
of policies, in a way that does not change the values of average cost criteria. This is
the case in adaptive optimization, where we often use on-line estimation schemes to
generate an approximation of the optimal control (the certainty equivalence approach).
The goal in this case is to achieve the same performance as in the case of full information.

These two issues are treated in this paper in the framework of the following
question. For a given policy, what are the quantities that determine the values of
average cost functionals? Fix a state x and an action a. For each t, consider the
(random) number of times the process visited state x and action a was used by time
t. It turns out that in many cases average costs are determined by the limits (in time)
of the expectations of such "state-action frequencies." For each time t, consider the
(random) ratio of the number of uses of action a while in state x, to the number of

Received by the editors November 14, 1988; accepted for publication (in revised form) June 15, 1990.
Electrical Engineering, Technion--Israel Institute of Technology, Haifa, 32000 Israel.

$ The research of this author was performed in part while he was visiting the Mathematical Sciences
Research Center, AT&T Bell Laboratories.

786



MARKOV DECISION PROBLEMS, STATE-ACTION FREQUENCIES 787

visits tO state x. Below we show that the pathwise limits of these "conditional frequen-
cies" are the more basic quantity, in that they determine the expected state action
frequencies.

We deal with countable state and action spaces, and obtain classes of policies
that achieve every possible state action frequency; we term such classes "complete."
In the finite case, some questions of completeness are investigated in [2], [15], and
[22]; Derman [15] gives conditions for the completeness of Markov policies. Hordijk
and Kallenberg [22] strengthen this result to Markov policies having just one accumula-
tion point of the "matrix" of frequencies. Derman [15] and, later, Hordijk and
Kallenberg [22] give conditions for the completeness of stationary policies. Two time
sharing policies were introduced by Altman and Shwartz 1 ]-[3], who show that under
the conditions of Derman [15], completeness depends on pathwise limit properties
only, and in particular may be achieved using deterministic (but nonstationary) policies.
In this paper we show that in the countable case the space of achievable frequencies
is a compact convex set whose extreme points are frequencies obtained by deterministic
(stationary) policies. This extends the geometric characterization given in the finite
case by Derman [15], Hordijk and Kallenberg [22], and Altman and Shwartz [2].

We give conditions under which some classes of policies (such as the stationaries)
are "sufficient" in the countable case for several optimization problems, including
optimization under several constraints. These results allow the use of steady-state
analysis of systems, which simplifies the search for optimal policies considerably. It
becomes possible to translate results on performance, which in many cases deal with
"steady state," into results concerning optimization (see, e.g., Altman and Shwartz ],
[3]). Previous results on the sufficiency of stationary policies in the case of countable
state space dealt only with the minimization (or maximization) of a single criterion.

Then, we introduce a larger family of"sufficient" policies--the action time sharing
(ats) policies--which is characterized by the existence of a with probability one limit
to the conditional frequencies. In contrast with the standard "small" classes of policies
such as the stationary policies, these policies are flexible enough to be useful for
adaptive problems, as they have the following .important property: the expected
frequencies (and thus the cost) achieved by any policy depends only on the (pathwise)
limiting behavior of the control mechanism. More precisely, it depends only on the
limit of the conditional frequencies, described above. Therefore it is possible to use
nonstationary algorithms based on real-time estimation of unknown parameters, and
still obtain optimality. Moreover, whereas existing results on adaptive control of
Markov chains consider only the optimization of a single criterion, the present results
can be used to obtain adaptive controls under more general criteria, such as constrained
optimization. An application of these ideas in the case offinite state and action spaces
is given in Altman and Shwartz [2, 5], [4]. The computation of optimal policies of
the ats type is equivalent to the computation over the more restricted class of stationary
policies, and the implementation is just as simple.

After introducing the model and some notation, 1 provides the basic motivation
by introducing the standard Markov decision problem and a constrained optimization
problem. In 2 we derive conditions under which the frequencies determine the value
of optimization criteria, and under which stationary policies or other complete classes
of policies are sufficient for the two optimization problems. In 3 the basic results
concerning the completeness of the stationary policies and the role of the conditional
frequencies in determining the behavior of the process are derived. Since the state and
action spaces are countable (and thus not compact), a tightness condition is used. The
literature concerning the tightness problem is extensive; in 4 we adapt some applicable
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results. The case where tightness does not hold is treated by imposing conditions on
the cost, under which tight policies are "better" than nontight ones. In 5 it is shown
that the space of frequencies is compact, and has the geometric characterization as
the convex hull of the frequencies of stationary deterministic policies. This has implica-
tions to the existence of.optimal policies in constrained optimization problems. Finally,
we apply and extend the results of the previous sections. In 6 we treat a queueing
network, and in 7 an equivalence between the constrained optimization problem and
an associated linear program (which is well known in the finite case [15], [22]) is
extended to the countable case. Section 8 treats some lesser known optimization
problems involving variance.

1. The model and the problems. Let {X,}7= be a discrete time process defined on
the countable state space X {0, 1,... }. At time an action A, from the countable
action space A is taken. Denote by A(x) the set of actions available when in state x.

hn :- (X, A, X2, A2," , Xn, An) is the history of {Xt}. Denote the transition prob-
abilities for the controlled Markov chain by

(1.1) P,ay:=P(Xn+=y]Xn=x;An=a)=P(Xn+=ylh,_=h,X=x;An=a).
A policy u in the policy space U is defined by u {Ul, u2," }, where u, is applied

at time epoch t, and u,(-Ih,_, X,) is a conditional probability measure over A. Each
policy u induces a probability measure pu on the space of paths (which serves as the
canonical sample space f). The corresponding expectation operator is denoted by Eu.

A Markov policyf U(M) is characterized by the dependence of u,(. h,_, X,)
on X, only; i.e., u,(. h,_, X,)= u,(.IX, ). A stationary policy g U(S) is characterized
by a single conditional probability measure u(.IX,)=px over A, so that PA(x)lx-- 1;
under g, {Xt} becomes a Markov chain with stationary transition probabilities, given
by Pgxy =aeA(x) PgalxPxay The class of stationary deterministic policies U(SD) is a
subclass of U(S), and every g U(SD) is identified with a mapping g" X-* A, so that
for each x, p. 6g()(. is concentrated at one point a A(x).

Let c(x, a) be a real valued function on X x A, possibly unbounded, and let

We assume throughout that for each u, the cost C’(u) is well defined. This will usually
follow from uniform integrability assumptions on c(X,, A,), or from a condition that
c(.,. is bounded below. The optimization problem OP involves the minimization of
average cost functionals"

(1.2a) x(U) lim C’x(U),

(1.2b) _Cx(u) lim C’(u).

These include the standard "positive" and "negative" Markov decision problems.
Given the constants Vk, 1 <_-- k <_- K, the constrained optimization problem COP is defined
as

(1.3a) minimize x(u) subjectto l(u)<-Vk, l<-_k<-_K,

(1.3b) minimize _C(u) subjectto l(u)<-Vk, l<-k<-_K,

where O(u) is defined similarly to (2(u) with c(x, a) replaced by dk(x, a), and both
c(x, a) and dk(x, a) may be unbounded. For finite state and action spaces, a solution
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to the constrained optimization problem based on linear programming was already
obtained by Derman [15] and Hordijk and Kallenberg [22], and some variables of
this linear program are limits of the state-action frequencies (1.4).

These expected state-actionfrequencies (Derman 15]) and expected statefrequencies

-T 1 T

fx,,(Y, a):=- 2 P"(Xs=y,A,=a]X=x),
s--.=l

(1.4)

are key quantities in the analysis below. Let the "matrix" {fx,u(Y, a)}y,a denote a generic
accumulation point of the infinite ’matrix’ { fx,,(Y, a)}y,a as T- oe (i.e., an accumula-
tion point in a countable-dimensional space with one coordinate for each state action
pair), and let {jQu(y)}y denote any accumulation point of the infinite vector {f’,,(y)}.
Let Fx,, denote the set of all limit matrices f,,, (., ). Any class of policies U’ determines
a set of accumulation points L,(U’):= ,u, F,, and the set of all such limits is
denoted by L := U,_ t Fx,,. We use the abbreviations L(S):= L(U(S)) and L(D):=
L(U(SD)).

The following definitions are useful for the sample-path analysis of 3. Let
fr(y,a):=(1/T)E "

s=l I{X y, A a} denote the sample-path frequency at which the
event of being at state y and choosing action a occurs till time T. The expectation of
the random variable f r(y, a) under u starting at x is thus f,,(y, a). The frequency
at which the event of being at state y occurs till time T. is denoted by fr(y)=
(l/T) E r.__ I{X =y}. Finally, f(a]y):---fr(y, a)[f(y)] is the frequency at which
action a is chosen conditioned on being in state y, until time T. If f(y)= 0 define
fr(a]y) := 0. Denote byf(y, a) (respectively, f(y)) any accumulation point offr(y, a)
(respectively, f

Let g be a stationary policy. The following standard result will be frequently used.
LEMMA 1.1. Assume that under g the process {Xt}L1 has one positive recurrent

class, and thatfrom any transient state, absorption into the recurrent class occurs in finite
expected time. Then

f,g(y, a)= rg(y)pgly limf’(y, a) Pg a.s.

For the last equality to hold, it suffices that absorption occurs with probability one.
A class of policies U’ is called complete if L U {Fx,,," u’ U’ and F,,, is a

singleton}. U’ is called weakly complete if

u’ U’ singleton}.L,VI sr’] sr(y,a)=l cU{F,,," andFx,,isa
y,a

--tNote that for each t, f,,(y, a) can be considered as a probability measure over X x A.
The condition ,of,,(y, a)= 1 for every limit point f,,(y, a) of a subsequence
{f’x’;,(y, a)}, is equivalent to tightness of this set of measures [8]. Thus weak complete-
ness considers only tight frequencies.

A class of policies U’ is called sufficient for an optimization problem if for any
policy u there is a policy u’ U’ that performs at least as well. The motivation for
studying questions of completeness and the spaces of frequencies is provided in 2
below, where the connection between completeness and sufficiency is established. Note
that sufficiency does not imply existence of an optimal policy, but rather that the search
for "good" policies can be restricted to any subclass that is sufficient.

The following assumptions are used frequently in the paper:

(A0) At each state x, the set of available actions A(x) is finite.
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(A1) Under any policy g U(S) the state space contains a single positive recurrent
class, and absorption into the positive recurrent class takes place in finite
expected time.

It follows from Fisher [18] that under (A0) and (A1), if there are no transient
states under any policy in U(SD) then the chain is ergodic under each policy in U(S)
if and only if it is ergodic under each policy in U(SD) (see also 5, Corollary 5.3).

(A2(u)) Given a policy u, the expected frequencies {fx,u(Y, a)}, are tight.

(A2) Assumption (A2(u)) holds for all policies u U.

(A2*) The family of stationary probabilities corresponding to policies in U(SD)
is tight.

Remarks. (i) The issue of tightness is treated in 4. In Lemma 4.1 we show that
under the appropriate conditions, (A2) is equivalent to (A2*). We give simple verifiable
sufficient conditions for (A2*), and develop some methods for the nontight case.

(ii) Assumption (A2(u)) depends on the initial state x, even when (A1) holds.
For example, let u’ be a policy that violates (A2(u’)) (e.g., the policy constructed in
[17]). Let g be a policy for which (A2(g)) holds (under (A1), this holds for any
stationary policy). If u equals u’ whenever Xo x and otherwise uses g, then clearly
(A2(u)) holds for all initial states except x. Throughout the paper, reference to (A2(u))
will implicitly assume a fixed initial state, which is omitted from the notation.

To make the discussion more concrete, we cite Theorem 3.2, whose proof is given
in {}3.

THEOREM 3.2. Under (A1) the class of stationary policies is weakly complete.
As will become clear in 3, the property of completeness does not depend on

stationarity; it is more naturally defined through conditional frequencies. This will be
seen to provide a large degree of flexibility, which can be applied in a straightforward
manner to adaptive optimization problems [4].

2. Sufficiency and completeness. The aim of this section is to establish the relation
between optimization problems and state-action frequencies, and in particular between
sufficiency and completeness. In the case of finite state and action spaces it is known
that the time average expected cost has a representation as a linear function of the
expected state-action frequencies (e.g., [15]). We extend this result to the countable
case, and establish sufficient conditions under which the costs (1.2a) and (1.2b) can
be represented as linear functionals (2.4) of the frequencies. The advantage of this
approach is that it deals directly with the cost functionals, and therefore applies to
many classes of optimization problems. In the following sections we investigate the
optimization problems OP and COP, and show the connection between completeness
and sufficiency. In particular, we present conditions under which the search for solutions
of OP and COP can be restricted to those policies for which the costs have the linear
representation (2.4) in terms of the frequencies. Similar results are obtained in 8 for
other optimization problems. These results motivate the further investigation of the
achievable frequencies under various classes of policies, which is carried out in 5.
We will be especially interested in finding out which classes of policies are complete.
This will indicate when a class of policies is sufficient for the optimization problems
OP and COP, or, in other words, whether we may restrict the search for optimal
policies to smaller classes of policies. Moreover, as will become clear is 3, this
approach identifies the key quantities that determine the costs, and allows for a flexible
choice of controls while keeping the cost fixed.
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The results of this section concerning optimization problems are given under
condition (A2), which is a rather strong "uniform stability" assumption. In 4 we
provide natural sufficient conditions for (A2), and also show how the results can be
extended when tightness does not hold.

2.1. Representation of costs through frequencies. Unlike the case of finite state and
action spaces, the time average expected cost in the countable case need not even have
a representation as a function of the expected state-action frequencies.

Counterexarnple 2.1. The deterministic case. Let Pxy l{x + 1 y} and c(x, a) 1
for all states and actions. The action is thus irrelevant to both the dynamics and cost
and we may assume that there is just one possible action. Under any policy u we
clearly have fx, (Y, a) 0, while C (u) 1.

In this example (A1) does not hold. Counterexample 3.5 in 3 presents a case
where (A1) holds but (A2) does not, and which exhibits similar behavior.

Lemmas 2.2 and 2.3 provide conditions under which a linear representation (2.4)
holds. Fix an initial state x and a policy u. Since by assumption C’(u) is well defined,
the definitions imply

(2.1) (u) lim -tfx,u(y,a)c(y,a).
y,a

Let {Sn}n be a subsequence along which the limit is obtained, i.e.,

(2.2) C(u) lim Z f",,(Y, a)c(y, a).
y,

Using diagonalization, choose a further subsequence { tn }, so that ft,% (y, a) --> jQ (y, a),
for all y and a.

LEMMA 2.2. Assume (A1) and let {c(Xs, A.)}s be uniformly integrable under P.
If (A2(u)) holds then the costs (1.2) are a function (2.4) of the fx, defined above. If v
is a policy such that F, {f,,} and {c(X,, A.)}s are also uniformly integrable under
P, then C(u)= C(v) and C_x(u)= C_(v).

Proof Consider first the cost function defined through (1.2a). Note that for each
--tt, f,(., can be considered as a probability measure over X A, and the cost c(.,

-tcan then be viewed as a random variable over X A. The convergence f",(y, a)-
f,(y, a) for all y and a thus translates under (A2(u)) into weak convergence of
probability measures along tn. As {c(X, A.)}, is uniformly integrable with respect to
P, c(.,-) is also uniformly integrable with respect to { -fx,u},, this follows from the
fact that for every function h,

(2.3) 2 -’ [h[c(X, a)]lx, x].y,,f,(y, a)h[c(y, a)] E,
,:,

This weak convergence of jz,, implies the convergence of c(. in distribution, and
combining this to the uniform integrability of c(.,. we finally obtain [8]

(2.4) Cx(u) 2 f,(Y, a)c(y, a).
y,a

The argument for (1.2b) is identical. The last claim is now immediate since f,u

It is not difficult to establish the following converse to Lemma 2.2. If (2.4) holds
for each limit point f,u in F, and c satisfies oe > > c(y, a)> e > 0, for all y, a, then
(A2(u)) holds. But for an arbitrary c (2.4) may not imply (A2(u)) (for example, c=0
provides no information).
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Next, we discuss the representation (2.4) for stationary policies. Fix g U(S) and
an initial state x, and let 0 X be recurrent under g. With the standard convention that
inf:=oe, define r(1):=inf{t-> 1: Xt=0}, r/(k+ 1):=inf{t> r/(k): Xt=0}, where
r/(k) =ee implies r(k+ 1) =oe.

LEMMA 2.3. Assume (A1) and let g U(S). Then (A2(g)) holds, and the representa-
tion (2.4) for the costs (1.2) holds whenever one of the following is true: (i) {e(Xs,
are uniformly integrable with respect to Pg; (ii) c is bounded from below and (A3(g))
holds; iii c is bounded from above and A3 g holds, where

[,(1)-i ]Eg E [c(X, &)l[X, x oo
s--1

(A3(g))
implies Eg ]c(Xs, As)llX1 x

rt(1)

Note that if, under g, x belongs to the recurrent class then (A3(g)) always holds
(see the proof below). In particular, when there are no transient states under g, (A3(g))
holds.

Proof The first claim follows from Lemma 1.1, and (i) is obtained by combining
this with Lemma 2.2.

To prove (ii), consider first a cost of the form c(x, a) c(x). Recall that the initial
condition is fixed, and is omitted from the notation below. Denote by -k:
E[rt(k + 1)- rt(k)] the expected time between consecutive visits to state zero under
g. (We call such a period a cycle.) From Chung [13], under (A1), -:= -k is independent
of k. Denote the (sample) cost over the kth cycle by Y(k):=
set Y(k) := 0. Assume that

n()

Denote by W:= Eg[ Y(1)] the total expected cost during the first cycle. Since c is
bounded below, (A1) implies that (*) is equivalent to W being finite. From Chung
[13] it follows that under (A1), (*), and (A3(g)),

(2.5) ((g) _C(g)= C(g)=__W= y -c(y).
’7" yeX

g whereas the tightness impliess Ya,fx,g(Y, a)=But as g is stationary, fx.g(y) ry
fx,g(y). Hence

(2.6) C(g) f,g(y)c(y)= 2 f,u(Y, a)c(y).
yX y,a

Next, if (*) does not hold then W=oe. Denote cM(x): c(x)l{c(x) <- M}, and define
W, Y(k), and C(u) as before, but with c(x) replacing e(x). The following
monotone convergence holds pathwise:

r/(2)-- r(2)--

Y(1)= c(Xs) lim c4(Xs) lim Y(1).
s=r/(1) M->oo r/(1) M->oo

Clearly, C(g)-->limM_o C(g) =lim_o W/ W/" by (2.5) and the monotone
convergence theorem. Thus C(g)= W/-, i.e., all but the last equality in (2.5) hold
independently of (*). It then follows from (2.5) that

W gcM g(2.7) oe= lim lim Y wy (Y)= 2 wyc(y)
Mocx ’7" Mc yX yX
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using the monotone convergence theorem. The argument leading to (2.6) now implies
(2.4).

Finally, we allow the cost to depend on the action. Let g’(x):= Eaa(x)p]lxc(a, x).
Note that

E f,g(y)(y)
yeX

E Z f,g(Y)PalyC(Y, a)= Z f,g(Y, a)c(y, a),
yX aA y,a

since fx,g(y)ply=fx,g(y, a), and where changes of order of summation are justified
since c is bounded below. The proof in the case the cost bounded from above is
identical. [3

That (A3(g)) is necessary can be seen through the following example. Let X be
the positive integers and let A := {a}. Let Poao 1, and Pxa0 0.5, Pa(+)=0.5 for x> 0.
With c(y, a)= b y, (A3(g)) is violated and (2.4) fails to hold whenever b->2.

2.2. Optimization and frequencies. Using the previous lemmas we next discuss
optimization under the expected average cost criterion.

LEMMA 2.4. Assume c(x, a) is bounded below, and let C(u) denote either of the
costs (1.2). If
(2.8) C(u) lim 2 -’f;,(y, a)c(y, a)

nooo y,a

for some u and sequence {In} then for any accumulation point fx, of -’{f;:.}, C(u) >=
Ey,af,(Y,a)c(y,a).

Proof Assume first that c is positive and let {sn} be a subsequence of {t,} such
that f:,-f, for all (a, y). An application of Fatou’s lemma, where c is considered
as a r-finite measure yields

(2.9) Cx(u) lim Y fZ(Y, a)c(y, a)>= Y lirn fx:,(y, a)c(y, a)= E f,u(Y, a)c(y, a).
y,a y,a n-oo y,a

In general, shifting c to obtain such a measure, the same argument applies.
COROLLARY 2.5. Let u and v be two policies such that F,, {fx,}, and f,, fx,,

for some accumulation point f,, Fx, Assume that under v the representation (2.4)
holds and c(x, a) is bounded below. Then C(v)<- Cx(u), where Cx(u) stands for either

of the costs (1.2).
The following theorem gives conditions under which the search for optimal (or

e optimal) policies can be restricted to a subclass of policies.
THEOREM 2.6. Consider the problem of minimizing Cx (u) (or minimizing C_ (u)).

Assume (A1) and (A2) and let U’ be complete. Then U’ is sufficient ifone of thefollowing
assumptions holds"

(i) { c(Xs, AL)}. is uniformly integrable with respect to Pu for each u U.
(ii) For each u’ U’ (2.4) holds and c(x, a) is bounded below.
Proof. (i). For any u U, there exists a v U’ satisfying the hypotheses of Lemma

2.2, and sufficiency follows. The proof of (ii) follows from Lemma 2.4 and Corollary
2.5.

Note that the question of existence of optimal policies is not raised here.

2.3. Constrained optimization. The reason for restricting problem COP to cost
functionals D defined through (1.2a) is that, when the constraints are defined through
(1.2b), a complete class of policies may not be sufficient, even if the state and action
spaces are finite. For example"
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Counterexample 2.7. Optimization under a constraint. Let X {x}, and A {p, q}.
Set c(x, p) d(x, q) -1, d(x, p) c(x, q) =0. Define _C and _D through (1.2b). The
objective is to minimize _Cx (u) under the constraint _Dx (u) =< -0.5.

In the finite, single class case, it is well known that the class of stationary policies
achieves all possible frequencies. It is easy to see that the best stationary policy g
chooses p or q with equal probability, and _Cx(g)=-0.5--_Dx(g). Consider the policy
u that uses p at times (2n)2-< t< (2n+ 1) 2 n--1,2,.., and action q at the remaining
epochs. Then _C(u) _D (u) -1, and we conclude that there is no stationary optimal
policy.

THEOREM 2.8. Consider problem COP (1.3a) and (1.3b). Under (A1) and (A2)
the stationary policies are sufficient if one of the following holds;

(i) {c(Xs, As)} and {dk(Xs, A.)}, 1 <- k <- K are uniformly integrable with respect
to pu for each u, or

(ii) c(x, a) and dk(x, a), 1 <--k <- K are bounded below and (A3(g)) holds for all
g U(S), with respect to c and d k, 1 < k < K.

Remark. It clearly suffices to check (A3(g)) for those policies that satisfy the
constraints (see also 4).

Proof Consider first (1.3a). Fix an arbitrary policy u. Let tn be a subsequence
such that C(u) limn y,,f,u(y,a)c(y,a), and such that the limits (y, a)-->

fx",u(Y, a)d (y, a) exist. According to Corol-fx,u(Y, a) for all y and a, and lim,_ 2y, --t k

lary 3.3 the class of stationary policies U(S) is complete, hence there exists a stationary
policy g such that fx,g =f,,. Under assumption (i), Lemma 2.3 implies that (A2(g))
holds, and so Lemma 2.2 implies Cx(g) C(u). Finally,

/k(u) lim f’,,(y, a)dk(y, a) > lim -f..,(y,a)dk(y,a)y,a y,a

E f,.(Y, a)dk(y, a)= ff)(g),
y,a

where the next to last equality is validated by the arguments of the proof of Lemma
2.2. This proves the theorem under assumption (i).

Under (ii), since (A1) implies that f,g is a singleton, Lemma 2.3 and Corollary
2.5 can be invoked to conclude ((g) -< tx(u) and /)k(g) _< /)k(u for each k, and the
proof for (1.3a) is concluded. The proof for (1.3b) is identical.

Finally, we consider an arbitrary complete class.
COROLLARY 2.9. Assume (A1) and (A2) and consider COP (1.3). Let U’ be any

complete class ofpolicies. Assume (2.4) holds for all u’6 U’ and for c and d k. Then U’
is sufficient if one of the following holds;

(i) {c(X, As)} and {dk(x, AL)}., 1 <--_ k <- K are uniformly integrable with respect
to P for each u, or

(ii) C(x, a) and dk(x, a), 1 <-- k <= K are bounded below.
Proof Stationarity is used in the proof of Theorem 2.8 solely to guarantee that F

is a singleton and the representation (2.4) holds.

3. Completeness: action time sharing. In Theorem 3.2 we prove that the class of
stationary policies is weakly complete under (A1), and complete (Corollary 3.3) under
the additional assumption (A2). This and the results of 2 allow us to recover and
extend classical results, concerning optimality of stationary policies.

The classical approach to Markov optimization problems relies on the specific
class of stationary policies, and on their statistical properties. In contrast, the point of
view taken here is to find weak sufficient conditions for a class of policies to be
complete. The class of "action time sharing" policies introduced below includes the
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stationary policies. However, the novelty of this approach is expressed in Theorem
3.6, which states that the frequencies achieved by "ats" policies depend only on their
pathwise conditional frequencies. This implies (Theorem 3.7) that completeness can
be achieved within subclasses other than stationaries: for example, using deterministic,
nonstationary policies.

> 0, and aca(y a 1 for each y X.Fix a := {a y, y X, a A(y)}, where a y

DEFNI3"ION. A policy u is an "action time sharing" (ats) policy with parameter
a, and is denoted as c if for every state y that is visited infinitely often pu almost
surely and any action a,

fT(a y)-ay asT pU a.s.

Thus an ats policy c alternates between several actions at each state so as to achieve
a prescribed (state dependent) limiting relative frequency for each action. There are
no restrictions as to how the limiting frequencies fT(a[y), are achieved, and there are
many ways such a policy can be realized.

A realization of an ats policy with parameter a is a mapping h from the space
S of all possible collections a to the space of all policies U. Given such a mapping
h, let U h (ats) :-- h(S) denote the subclass of ats policies of the form c h (a) for
some a S. For example, setting Pa[y--Oy defines a stationary policy, where PIy are
the conditional distributions. We thus recover the class of stationary policies, where
the realization is by randomly choosing the actions using unfair dice. Another possible
realization of ats policies is through the use of a counter for each y 6 X, a A(y). We
then choose in a deterministic way which action to use for every state, so that the
appropriate conditional frequencies are achieved.

The main result of this section, Theorem 3.7, states that under (A1) and (A2),
Uh(ats) is complete for any h (see the definition of completeness in 1). Moreover,
the frequencies fx,(Y, a) depend only on the parameter a, and not on the realization

h(a) (Theorem 3.6). We proceed to investigate the completeness of stationary
policies, and will then turn to ats policies. But first we need a technical lemma.

LEMMA 3.1. Under (A1) for any transition matrix Pg, g U(S) there exists a
measure zr such that

(.) (y)-> E (z){P"].
zcX

The measure is finite, is unique up to a multiplicative constant, and in fact zr(y)=
Ez,, r(z)[P]z.

Remark. This result is well known when there are no transient states (see, e.g.,
[27, Thm. 1.10, p. 67]).

Proof Existence. Let R and T denote the recurrent and transient classes under
g. By Theorem 1.10 of [27, p. 67], there exists a finite measure , unique up to a
multiplicative constant, such that

’(Y) E (z)[Pg]zy.
zGR

Define the measure on X by (y)= (y) for y R and (y)= 0 otherwise. Then it
is easy to check that solves (3.1), in fact with equality. To prove uniqueness, let
be a solution of (3.1). Iterating (3.1), we obtain for every n > 0

(.) (y) E (z)[(P)"]z 2 (z)[(P)"]z.
zX zR
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Again, by Theorem 1.10 of [27, p. 67], there exists {zr(y),y R}, unique up to a
multiplicative constant and independent of n, such that for all y R, zr(y)= zcR zr(z)
[(Pg)"]zy. But this and (3.2) imply that r satisfies zcr r(z)[(Pg)’]zy =0 for ally R
and all n. Fix some y R; by (A1), for each z T there exists a finite n such that
[(Pg)’]zy>O. Thus we conclude zr(z) =0 and the uniqueness is established. 13

THEOREM 3.2. Under (A1) the class of stationary policies is weakly complete.
Proof First note that Fx,g is a singleton for any stationary policy g. This follows

from the existence of a unique stationary probability, under (A1). Pick any frequency
matrix sr L, that is achieved, say, by a policy u U. To establish the theorem we need
to show that whenever -’{f,,}, is tight, there exists a policy g U(S) so that f,
Thus let u be a policy such that {f’,,}, is tight. Let { t,}, be an increasing sequence of
times (chosen by diagonalization) along which lim,_ jT,?,(y, a) := f,,, (y, a) sr (y, a)
and lim,_ f’,;,(y) := jQ,(y) exist for all y and a A(y). Note that for each y,

(3.3) f.u (Y) lim f’x’;u(Y) lim 2 f;;u-’ (y, a)
noo acA(y)

and by tightness and the convergence f,",,(y, a)--> f,,(y, a), the probability measures
f’,;,, n 1, 2,... converge weakly (see the Portmanteau theorem in [8]), so that

(3.4) f,,(y)= lim -’ -’f;5,(Y, a)= 2 lim f;5,(Y, a 2 f,u (Y, a ).
n-->oo acA(y) aA(y) acA(y)

Set/3 := f,,,(y, a)[f,,,(y)] -1 whenever f,,,(y) O. If fx,,(y)=0 then the/3 are chosen
a__ 1 By (3.4), Y,a fl 1< 1 for all a, and cA(y)Y cA(y)arbitrarily but such that 0 </3y

for every y. Define the stationary policy g by PIy =/3. Then

(3.5) Pxy E Pxay.
aA(x)

Since for every s > 1 we have P,{X y} -,z., P{Xs-1 z, As-1 a}Pzay, we get after
some algebra

(3.6) -’ 1 1
f,,(z, a)Pz,, -f,"(Y) P{Xl Y} y -,

z,a
E P,{X, z, A, a}Pz,y.
z,a

Since the left side of (3.6) converges along the sequence t, to f,,(y), so does the right.
Fix y and consider Pz,y as a g-finite measure on X x A. Applying Fatou’s lemma we
obtain using (3.6)

(3.7) fx,,(Y) lim E f,?,(z, )Pz,y=> E fx,,(z, a)Pzay
z,a z,a

since the last term in (3.6) is bounded by -1. From (3.5), (3.7) and from the definition
of/3y we obtain

(3 8) f,,(y) > E f,,(z) Pg
zyo

From (3.8) we conclude that f,, is an excessive measure with respect to the transition
matrix Pg. It follows from (3.4) that -’{fx,-,(. )},o are tight, and hence f,,(. is in fact
a probability measure But under (A1), Lemma 3.1 implies that f,, zr g. Using the
definition of/3 and g this finally implies that

(3.9) st(y, a)= f,,(y, a)= fx,,(y) "/3] rg(y)ply=f,g(y, a)
by Lemma 1.1. 13

From Theorem 3.2 we immediately obtain Corollary 3.3.
COROLLARY 3.3. Under (A1) and (A2) the class of stationary policies is complete.
Combining this with the theorems of 2 we thus conclude that, under the relevant

assumptions, the stationary policies are sufficient for problems OP and COP.
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Assumption (A2) is used to guarantee that -’y,a fx,u(Y, a) 1 and that ’.aA(y) y
for every y. Assumption (A0) guarantees the latter; note that it does not imply that A
is finite.

COROLLARY 3.4. Under (A1) and (A0), for every policy u and a matrix fx,u(.,. ),
there exists a stationarypolicy g and a constant 0 <-_ 6 <- 1 such thatfx, (Y, a) 6. f,g (y, a),
y X, a A(y). Under (A2), 6 1.

Proof Following the proof of Theorem 3.2, observe that f,,(.) is an excessive
measure due to (3.8) and is thus, by Lemma 3.1, proportional to 7r g. But f,,,( "," is
clearly a subprobability measure, i.e., y,a f,, (Y, a) =< 1. Thus by the argument of (3.9),
fx,,(y, a) 6. f,g(y, a), y X, a A(y). If (A2) holds then it is a probability measure,
and 6 1 by Theorem 3.2. [3

Remark. If under every u U(SD) there are no transient states then 6 in Corollary
3.4 is always strictly positive; moreover, f,,(y)> e(y) uniformly in u U (see, e.g.,
[18]).

Before we show that f,s depends only on c, we present a Simple example that
demonstrates the importance of (A2), and shows that a condition such as (A0) is
necessary for (A2).

Counterexample 3.5. Countable action space. Consider problem OP with X-- {x}
and A= {1, 2, }, and let c(x,a)=l+a -. Clearly, X,=x for all t. Under any
stationary policy g, C(g)> and a_A(x) fx,g(X, a)=fx,g(x)= 1. Let u be the non-
stationary policy that chooses action a at time t. Clearly, we have C(u)= 1,
Z,(x,a)=O,Z,(x)=.

This example demonstrates that even under the unichain assumption, the expected
state-action frequencies may not be tight while the expected state frequencies are, and
the average expected cost is not necessarily a function of the expected state action
frequencies. Moreover, the stationary policies are not complete, and due to the noncom-
pactness of the action space, the cost achieved by some nonstationary policy can be
strictly smaller than the cost of any stationary policy. This is in contrast with the case
of finite state and action spaces (see Derman [15]).

A counterexample where both (A1) and (A0) hold yet (A2) is not satisfied is
presented in Fisher and Ross [17]. They show that indeed without (A2) the stationary
policies may be incomplete.

THEOREM 3.6. Under (A1) and (A2), F, {f,} is a singleton. Moreover, f,
depends only on and is independent of the realization h.

Proof Let v c h (c) be some ats policy with parameter c. Define the stationary
policy g by PIy c. By the strong law of large numbers, g is also an ats policy with
parameter c. The proof is concluded by showing that fx,(Y, a)= fx,g(y, a). Since the
initial state is fixed, we suppress it in the notation of P and E. Let

M, := l{Xs y}- Y l{Xs_l x, a_ a}Pxay.
s-----2 s=2 x,a

Then for any u, M, is a P" martingale and by the stability theorem (e.g., [20, Thm. 2.22])

(3.10) liml[l{Xs=y}- l{Xs-1--x, as-1 a}Pxay]=O PU a.s.
t- s=2 s=2 x,a

Let N be the P-null set of o for which either (3.10) orthe convergence in the definition
of the ats policy v do not hold. Fix w f-N and an arbitrary increasing sequence
of times t,. Using diagonalization, construct a subsequence s, to t, along which for
all y and a, f s,, (y, a), f. (y) and f- (a Y) converge to some limits f(y, a), f(y), and
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f(aly), respectively Note that from the definition of the ats policy v it follows that
f(Y) =af(Y, a) pv almost surely. For that to we have from (3.10) for all yX:

(3.11) f(y) lim Y f,,-)(x, a)Pxay.
x,o

An argument as in (3.7) and (3.8) implies

(3.12) f(y) >= f(x, a)Pxay.

From the definition of the ats policy v it is easy to see that

(3.13) f(x) f(a Ix)f(x fx, a).

From (3.12) and (3.13) we obtain, since all terms are nonnegative

(3.14) f(y)> xxf(X [ ceapxay]= f(x)Pg
xy"

aA(x) xX

Using the same argument that followed the proof of Corollary 3.4 we obtain for all y X"
g(3.15) f(y) (to, {Sn}) 7re

for some constant satisfying 0_-< 6 _-< 1. Thus, for all y, z in X,

lim [f"(y)Trg(z)-f"(z)Trg(y)] =0.

Since the sequence {tn}n was arbitrary, we conclude that in fact

lim [ft(y),rrg(z)-f’(z),rrg(y)] =0

and this holds for PV almost surely But by the bounded convergence theorem,

lim [Ef (y)Trg(z)- Ef (z) 7rg (y)] lim f’,(Y)Trg(z) fx,-’ (z) rg (Y)] 0.

By assumption -t{fx,v}, is tight. Fix any subsequence {rn}n such that -rfx’,’ - f, Then
f,(y)Trg(z)=f,(z)Trg(y). However, the only probability measure that solves this
equation is f,v 7r g, and we conclude that f’,-> 7r g. From the definition of the ats
policy v and the bounded convergence theorem, we have

lim Ela]-f’(y a){f’(y)]-ll =0.

Thus, using the bounded convergence theorem and the tightness (A2),

(3.16) lim f, (y, a lim Ef’(y).
a

lim -tfx,v(y) Oy yg(y)

7rfor all a, y. Finally, Lemma 1.1 implies fx,g (Y, a) ay
depends only on a and not on c this concludes the proof.

Combining Theorem 3.2 and Theorem 3.6 it follows that the completeness is
determined by the a only, so that complete classes can be easily generated.

THEOREM 3.7. Under (A1) and (A2), for any realization h’S,- U, Uh(ats) is

complete.

4. Tightness. The issue of tightness for Markov decision processes has been
investigated extensively. It is easy to see that, in general, unless the sets A(x) are finite

,., ?.?:! ,... .t hold. In the compact case, Lemma 4.1 provides a simple
:,i,:: ".. ,.,.: !:’,: (,A2). We describe briefly several approaches that provide

.i;:-.i,..,i ,1;?.,:, r tightness in this compact case (i.e., under (At))).
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If compactness of the actions is not assumed, we can usually construct a policy
u for which (A2(u)) does not hold, so that (A2) will not hold. However, since the
tightness appears in connection with the optimization problems, we derive conditions
on the cost functions that guarantee that the search for optimal policy can be restricted
to policies satisfying (A2(u)). This extends the results of 2.2 and 2.3 to cases where
(A2) does not hold.

LEMMA 4.1. Under (A0) and (A1), (A2) implies (A2*). If in addition there are no
transient states, then A2 is equivalent to (A2*).

Proof It is shown in the proof of Lemma 7.3 of [10] that, under (A0) and (A1)
and when there are no transient states, (A2*) implies that for each state x and policy
u the expected frequencies { -’fx,,(y)}, are tight. To see that the converse holds assume
(A0) and (A1) and let gi be a sequence of policies in U(SD) such that the sequence
of corresponding invariant distributions 7ri is not tight. Clearly, -’fx,gi(Y) -> Try(y) for all
x, y. Thus we can find an increasing sequence {t} and construct a policy u where
ut(’lHt_l, Xt) gi(xt) for t< t<- ti+l such that -tf;,u fx,, and Ey fx,,(Y) < 1. Thus it
suffices to show that { -’fx,,(y)}, is tight if and only if {f’,,(y, a)}, is tight.

By definition, {-’f,u(Y)}, is tight if and only if for any e > 0 there exists a compact
(finite) set K(e)X such that y(f,.(y)> 1 e, and similarly for {f,u(y, a)},.
Given K(e), let K’(e) := {(y, a)"y K(e), a A(y)}. Then K’(e) is compact and since

(4.1) 2 (y,a)f’,,(y) -,
fx,

aA(y)

we have (y,.):,()f,u(y, a) (y):() f,.(y) > 1 e. To prove the converse, given
K’(e)cXxA let K(e):={y’(y,a)K’(e) for some aA(y)}. The same argument
now concludes the proof.

Assumption (A2*) is quite common in the literature on controlled Markov chains
with a countable state space, and sufficient conditions are available. Borkar [10, III]
shows that (A2*) is equivalent to the time between visits to some recurrent state being
uniformly integrable under all u U(SD). The whole IX in [10] is then devoted to
different sufficient conditions for that uniform integrability. Hordijk [21] presents

g , pgseveral sufficient conditions for (A2*), in terms of the measures Px,K .-/yc: xy,

(i) The set of probability measures {P(X2 .IX1 x)" x X, g U(S)} is tight
[21, Lemma 10.3, 10].

(ii) Given any e > 0 there exist a finite set K(e) and an integer N(e) such that
for allxXandgU(S),

[(p)N()] >l-e.x,K(e)--

(iii) The simultaneous Doeblin condition. There exist a finite set K, a positive
integer n, and a positive real number c such that [Pg],t; -> c for all x X and all
g U(S) [21, 11.1].

Two other assumptions that are equivalent to (iii) above (and are thus sufficient
for (A2*)) are presented in Theorem 11.3 of [21]. To formulate these conditions, denote

g,APx,B :-- Pg{X, B, X - A, < s < fIX x}, mg(X, A):= E
t=2

g,s(iv) There exist a finite set K, c > 0, and n such that .--2 Px, > c for all x X
and g U(S).

(v) There exist a finite set K and a real number b such that for all x X and
g U(S), rag(x, K) <-_ b.
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In the absence of tightness, it may be possible to restrict the optimization problem
to a subclass of policies under which tightness holds, if the structure of the costs makes
it unprofitable to use nontight policies (see also Borkar [10]).

LEMMA 4.2. Assume there exists a sequence ofincreasing compact (i.e.,finite) subsets
K of X x A such that UK X x A, and such that the cost function c(y, a) satisfies
(4.2) lim inf {c(y, a); (y, a) ; Ki}

Then for any policy u such that C, (u) < oo (or C_x_ (u) < oo), the frequencies { fix,u(.
are tight.

Proof By (4.2), c(x, a) is bounded below, say by B. Assume {fx,u(., .)} is not
tight. Then there exists some e>0 and an increasing sequence {tl} such that

tly,),fx,,(y, a)> e. Let c:=inf {c(y, a)" (y, a)#_ K}. Clearly, ((u) > ce-]B] But
by (4.2) lim_ c =oo, and hence C(u)=o, contradicting the hypotheses. The proof
using _C is identical, l-]

A complete class of policies (or even a weakly complete class of policies) may
thus be sufficient even when the tightness assumption (A2) does not hold.

THEOREM 4.3. Assume (A1) and consider the problem of minimizing C(u). Let U’
be a weakly complete class such that (2.4) holds for each v U’. If c(.,. satisfies the
conditions of Lemma 4.2, then U’ is sufficient for OP.

Note that the stationary policies are in fact weakly complete (Corollary 3.4) and,
under (A3(g)), satisfy (2.4).

Proof From Lemma 4.2 we conclude that if {f,,}t is not tight (so that for some
limit point ,y,a fx,u(Y, a)< 1), then necessarily C(u)=oo. Thus we may limit the
optimization to policies u for which {f’,,}, is tight, so that y,a fx,u(y, a)= 1. By (4.2)
c(.,. is bounded from below, and hence by Corollary 2.5 U’ is sufficient.

Similarly for the constrained problem COP, we may relax (A2) in Theorem 2.8.
THEOREM 4.4. Assume (A1) and considerproblem COP. Let U’ be a weakly complete

class such that (2.4) holds for each v U’. If either c( .,. or dk( "," ), some k satisfies
the conditions of Lemma 4.2, then U’ is sufficient for COP.

Proof The proof is similar to that of Theorem 4.3.
Next we present another method that provides conditions for sufficiency in cases

that the tightness does not hold. It is a generalization of conditions that Borkar [9]
introduced for the case of instantaneous cost that depends only on the state. Following
[9], c(.,. is said to be "V-almost monotone" if there exists a collection of compact
sets {Ki} as in Lemma 4.2 such that lim inf{(y, a); (y, a) K}_-> V.

LEMMA 4.5. Assume (A0) and (A1) and let U’ be a weakly complete class ofpolicies
such that every u U’ satisfies (2.4). If c(.,.) is V-almost monotone and C,(u’)<= V,
some u’6 U’, then U’ is sufficient for OP.

Proof Note that c(.,. is bounded below. Consider first the minimization of C,
fix an arbitrary v, and note that if C (v) _-> V then we are done. Thus assume C (v) < V

?t.,(y,and let t, be a subsequence such that Cx(v) lim,_.Yy, a)c(y, a) and f,%
converges to some f,. By Corollary 3.4, there exists a g U(S) such that 6f,g=f,
for some 0-< 6 <_-1. By completeness there exists a u U’ such that 6f,,, f,. Let
be such that inf{c(y, a); (y, a) K}=> V-ei. For every we have

Cx(v)= lim [ , f’x%(y, a)c(y, a)+ f (y, a)c(y, a ])(y,a) K (y,a )g K

>= , fx,(Y, a)c(y, a)/ lim f,n,(y, a)c(y, a),
(y,a)G K (y,a) K
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lim E f a)c(y, a) >= V- Ei) lim E f a)
(y,a)K ’n--oo (y,a)K

f%(y, a)
ncx (y,a) K

Using the fact that each term on the right converges to f,(y, a) and that f, f,u,
we get

C(v) => 2 fx,u(Y, a)c(y, a)+(V-e) 1-8 f,u(Y, a)
(y,a)Ki (y,a)Ki

By taking - c we obtain C (v) _->C (u) + V(1 6) or 6C (v) >- 6C (u) + (1 )
(V-Cx(v)). Since the last term is positive, Cx(v) > C(u) that establishes the proof.
The proof for _C is identical.

In the following lemma we apply the method of Lemma 4.5 in order to generalize
Theorem 4.4.

LEMMA 4.6. Assume (A0) and (A1). Let U’ be a weakly complete class ofpolicies
such that every u U’ satisfies (2.4) for c and d k, <--_ k <- K. Assume c( is Vo-monotone
and d k

",. is Vk-monotone, 1 <-- k <= K. If there exists a policy u’ U’ such that C,, u’)
Vo and Dkx(u ’) <-- Vk, <= k <-_ K, then U’ is sufficient for COP.

Proof. The proof is the same for both C and _C. Note that without loss of generality,
we may take the sets Ki to be the same for all costs c and d k. Fix v U’ and note that
if C(v)-> Vo or for some k Dk(v)> Vk then we are done. Thus assume Dk(v)--_< Vk
for k=l,...,K and C(v)<_-Vo. Choose a subsequence {tn}n such that Cx(v)-

f%(Y, -tsuch that hmn_,y f2(Y, a)dk(y, a), 1 <--_ k K, andlimn_ _ty, a)c(y, a) and
n---oo

< K D k > "=----’lim f,% exist. Then for l_-<k= (v)=llmn_oy,af(y,a)dk(y,a) and by
choosing u as in Lemma 4.5 we obtain by the same argument C(v) >-
C(u)+(1-8)(Vo-Cx(v)) and Dk(v)>--Dk(u)+(1--8)(Vk--Dk(v)). Hence
C(v)>-Cx(u) and Vk>-Dx(V)>-Dx(U that concludes the proof.

5. Achievable frequencies. In this section we describe the geometry of L,. For the
case of finite state and action spaces Derman [15] has shown that under (A1), Lx is
closed and convex, and its extreme points correspond to policies in U(SD). In Theorem
5.1 we extend this result to the countable space. Let co B denote the convex hull of
the set B, and B, its closed convex hull. Let r/be a function from the integers onto
all pairs (x, a) and fix 0 < p < 1. Define a metric d on the set of subprobability measures
on XxA.

(5.1) d(sr,, st2):= E [l(’r/[J])-
j=l

We will use henceforth the product topology induced by this metric. Throughout this
section we assume that

(AI’) The state space forms a single positive recurrent class under any policy
g U(S).

To prove Theorem 5.1, we need to introduce PTS ("policy time sharing") policies
[2]. A PTS policy is specified through the stationary policies ui, i= 1, 2,. ., l, a state
z, and by an /-dimensional vector parameter a {a l, a2," ", at}, where ai--> 0 and

Yi ai 1. Fix a state z that, due to (AI’) is positive recurrent under each ui. Call the
period between two consecutive visits to states z a cycle. A PTS policy v with parameter
a is any policy that uses a fixed ui during each cycle, and for which the relative number
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of cycles during which ui is used converges to ci, pv almost surely, i= 1, 2,..., 1.
Such a policy is denoted c. It follows immediately from the results of [1] and [3] that
for any initial state x, F,,a is a singleton, and

(5.2)
i=1

where yi cir[Y= cgrj]- and r is the mean recurrence time of state z under u.
THEOREM 5.1. Under (AI’) and (A2), Lx Lx(S) is compact. Moreover, L,=

co {Lx(D)}=-d-d {L(D)}.
Proof. By Corollary 3.3, L(S)= L. To prove compactness, let {sc} c Lx. Using

diagonalization, choose a subsequence {:,}i that (for notational convenience) is
denoted {’}, such that (x, a)-(’x, a) for some ’, for all x, a. ’ may all be
considered measures over X x A, and (x, a) ’(x, a), where " is (possibly subproba-
bility) measure. Our aim is to find a policy u that achieves sr. By (A2) this implies that

" is a probability measure.
By Corollary 3.3 there exists a stationary policy g that achieves ’. Let ei := d (’, ’),

so that lim_,oo e 0. Consider the nonstationary policy u, that uses g until the time
t:=min{t" d(sr,f,)-<e}, and uses gi until between ti_ and ti:=min{t> ti_"
d(sr,, -,

f u,) < e}. The fact that t, < oo can be proved by induction using the following
fact. Suppose the policy u uses gn from time s onward, and let X.(z)=
P"(X zlX, x). Then

ft,,(y, a)=_tf,..(y a)+ ly-- E Xs(Z) [Pg"],
zX r=l

where Pg,, is the transition matrix under g.. It then follows easily that lim,_ f,,(y, a)

Thus d(’, -tf;u)<d(,,)+d(, f-’x",u)<2e,= and we obtain along the subsequence
{ t,}., f,, sr. By (A2) " is a probability measure, so that Lx is closed and sequentially
compact, hence compact.

To prove the convexity, recall (the first part of the proof) that L, L(S). Suppose

= flfx,u,+(1-fl)fx,u2 for lgl, b/2 U(S). A PTS policy u such that fx,, sr is obtained
by setting a,:=(13/r,)(13/r+(1-13)/r2)-*, and a2 l-a, (this follows from (5.2)).

Since L,, is compact and convex in o, by the Krein-Milman theorem it is the
convex hull of its extreme points. Next we show that all extreme points of L, correspond
to deterministic stationary policies. Let g bd a stationary nondeterministic policy. Then
for some state z e X and actions a, and a2 in A(z), the probability a to use action a
under the policy g is strictly positive. Consider the stationary policies ui that coincide
with g in all states except for state z. In state z policy ui uses action ai with probability
al+ a2. Then according to (5.2), the PTS policy
and u2 achieves fx,g-- Yf,,,+ (1- Y)f,,2" Therefore fx,g is not an extreme point in L,,
and since for every policy u there is a g e U(S) with f,,=fx,g this concludes the
proof.

Theorem 5.1 enables us to strengthen theorem 2.6 as follows.
COROIIA 5.2. Assume (AI’) and (A2) under the uniform integrability assump-

tion, or under the assumption that c is bounded from below, the class of deterministic
policies is sufficient for problem OP (with C defined through either (1.2a) or (1.2b)).

Proof By Lemma 2.3, the cost of a stationary policies has the representation (2.4).
An argument as in the proof of Theorem 5.1 then shows that the cost of any nondeter-
ministic policy is a convex combination of the costs of two other stationary
policies.
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Another conclusion from Theorem 5.1 is that under (AI’) and (A2) the state
frequencies are bounded from below by a positive (state dependent) constant, uniformly
in the policy.

COROLLARY 5.3. Under (AI’) and (A2), for each yX there exists a constant
A(y)> 0 such that fx, (Y) > A(y) for all policies u U.

Proof Suppose the claim does not hold. Then there exists a sequence gn of
stationary policies and some state z such that limn_.oo fx,g,,(z) 0. We can then construct
a subsequence nk along which lim,_. f,,g,,(y) exists for all y X. Using Theorem 5.1
and (3.3), (3.4) there exists some stationary policy g achieving this limit, hence
f,g(z)=O, which contradicts (A1). [3

Remark. Fisher 18] showed that if the state space forms a single positive recurrent
class when using any deterministic policy g U(SD) then (AI’) holds. He then obtained
the same result as in Corollary 5.3 using only the weaker condition (A0) instead of (A2).

Finally, we use Theorem 5.1 to strengthen Theorem 2.8. Theorem 2.8 states that
we may restrict our search for optimal policy for COP to the stationary policies. But
it does not say that an optimal policy exists. We show that this is indeed the case.

COROLLARY 5.4. Consider problem COP. Assume (AI’) and (A2) and either
(i) Both c(y, a) and dk(y, a) are bounded from below; or
(ii) Both c(y, a) and dk(y, a) are uniformly integrable with respect to {iTs,g}, g

u(s).
If there is any feasible policy then there exists an optimal stationary policy.

Proof According to Theorem 2.8 we may restrict to the stationary policies in
searching for optimality. We first show that C(. and D(. are lower semicontinuous
functions of the frequencies f,g. Let {’,} be a sequence of frequencies, achieved, say,
by the stationary policies {gn} (i.e., rn(.," fx,,,(’," )) converging to sr. According to
Theorem 5.1 there exists a stationary policy g such that sr f,g. Under (i) this implies
by Fatou’s lemma (using c(.,. as a measure) that the cost function C(g) satisfies

(5.3)

C,(g) E (Y, a)c(x, a)= E lim n(Y, a)c(y, a)
y, y,

<_-lim n(Y, a)c(y, a)= lim C(gn)

and similarly

(5.4) D(g) E lim n(Y, a)dk(Y, a)<--lim Dgx(gn),
y,

which establishes the lower semicontinuity for the case (i). If (ii) is assumed, then in
fact we have continuity. To see that, note that the compactness of L,(S) (Theorem
5.1) implies by Prohorov’s theorem that {srn} are tight, hence converge weakly. As in
the proof of Lemma 2.2, consider now c(y, a) and d k(y, a) as "random variables" on
the space X x A. The weak convergence of {fin} implies the convergence of c(., and
dk(., in distribution, and combining it with (ii) we obtain C(g)= limn_o C(gn)
and Dk(g) limn_.o ck(gn).

We thus have lower semicontinuity under either (i) or (ii). This implies that the
D(lx) <-_ Vk, <-_ k<= K} is compact, since it is obtained as theset Hv := {/x /xe L(S), k

intersection of the compact set L(S) and the inverse map of the closed sets (-ee, Vk]:
Finally, by the lower semicontinuity of C(. on II v we conclude that C,(. achieves
its minimum on IIv, i.e. there exists an optimal stationary policy for COP. VI

6. Application to a queueing system. In this section we apply Theorems 2.6 and
3.2 to investigate a constrained problem in the following discrete-time queueing model.
At time t, M,k customers arrive to queue k, 1 <-k_-< K. Each input stream is received
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Mt} are independentin an infinite capacity buffer. Arrival vectors M, {Mr,’"
from slot to slot, form a renewal sequence with finite means Ak. During a time slot
(t, + 1) a customer from any class k, 1 <_-k_<-K may be served, according to some
policy, which is a prespecified dynamic priority assignment. If served, with probability
/k it completes its service and leaves the system; otherwise it remains in its queue. A

x2, .,x } and it represents ageneric element of the state is given by x {x,
K-dimensional vector of the different queue sizes. Altman and Shwartz [1], [3] solve
a problem with constraints on the average sizes of several queues. They find an optimal
nonstationary time sharing policy, using a linear program. The recurrence properties
of this system as well as bounds and representations for average cost functionals for
general cost functions are obtained in Makowski and Shwartz [25].

Below we present conditions for the completeness of stationary policies, and the
existence of optimal stationary policies for COP with several constraints. Sufficiency
is proved for costs that are nonlinear in the queue sizes. We then solve the general
constrained problem with linear costs (generalizing [1], [3], [26]). Throughout we
restrict to nonidling policies; using coupling (as in [11]) it can be shown that when
the costs are positive and increasing (in the number of customers), idling leads to no
improvement.

6.1. Completeness and sufficiency of stationary policies. We first show that (A1)
and (A2) hold. We assume the standard stability condition on the traffic intensity

K
p :=Y:A/ < 1. This is a sufficient condition for (A1) (see [25] or [26]). In order
to show that (A2) is satisfied, we use Lemma 4.2. Let c(x, a) = x . The average
cost is then finite and does not depend on the policy (this follows from the c rule
[5], [6], [11]). Therefore (with the obvious choice of Ki) all conditions of Lemma 4.2
are satisfied, and (A2) holds. Hence we obtain, using Theorem 2.8, Corollary 3.3, and
Corollary 6.1.

COROLLAI 6.1. Under the foregoing assumptions on the queueing model, the
stationary policies are complete. If c(x, a) and dk(x, a) are bounded below then the
stationary policies are sufficient for COP.

If c(x, a) and d k(x, a) are not bounded from below then the stationary policies
are still sufficient for COP, provided {c(X,,A)}, and {dk(X,,As)}L are uniformly
integrable with respect to pu for each policy u (Theorem 2.8). In [25], Makowski and
Shwartz give the following sufficient conditions (P1) and (P2)for the uniform integrabil-

K
ix kity. For any K-dimensional vector x let [x[ denote Y:

(P1) There exists an integer 3’ > 1 such that E[IM, ] < and E[IXI]
Note that both expectations are independent of the policy.

(P2) There exist 0< < 3’- 1 and L such that [c(x, a)[-< L(1 +[x[).
These results establish that the search for optimal, or e-optimal policies may be
restricted to the stationary policies. This allows the application of steady-state analysis,
of the type used in queueing theory, to problems OP and COP.

6.2. Solving COP with linear cost functions. Consider the linear cost function
k: :

dx for 1 <i<M, where c and d are non-c(x, a):=k: CkX and di(x, a) Ek:l
negative constants. This COP problem was solved in [1] and [3] for the case M 1,
and for the case d 6i(k) and M < K using "PTS" policies over the set of K!
priority policies g. It is shown [1] and [3] that under the condition p < 1 and EIX[ <
all the zi (defined below (5.2)) are equal, and the cost under c is given by

(6.1) Cx()-- E iC(gi)
i:1
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with a similar linear expression for Dk(d). Denote by/ the optimal policy among all
PTS policies for problem COP. From (6.1) it follows that/3 can be obtained by solving
the following linear program"

(6.2) (LP) Find a that minimizes ceiC(gi)
i---!

subject to aD(g) <- V, l <-_ k <-_ K, ci l, ce >= O
i---=1 i=1

for 1 <= i<=/.

Based on Theorem 2.8(ii) we show in the following theorem that/3 is in fact overall
optimal.

THEOREM 6.2. The PTS policy obtained by solving LP is optimal for COP.
Proof Following [3] we define the average size of queue k by

(6.3) J(u) := lim
1
E. [ xkIXI=X]t-,

Consider the class U’ of all policies satisfying

K K

(6.4) C(u)= . ckk(u) and D(u)= . dkX(u),-k I<--j<=M.
k=l k=l

Note that U(S)c U’ and U(PTS)c U’ (this is obtained by applying Lemma 2.3 to
compute (u)). According to Theorem 2.8(ii) U(S) is sufficient hence U’ must be
sufficient. Reference [3] shows that PTS policies are "Pareto optimal" in the following
sense. For any policy u there exists a PTS policy w such that Jk(w) _--< Jk(u), 1 _--< k=< K.
This implies that/3 is optimal over U’, and since U’ is sufficient, this implies that/
is overall optimal. [q

This result illustrates the usefulness of the present approach. There are several
results reducing optimization problems for queues to computable problems (such as
linear programs). However, the optimization is usually carried out over a class of
policies that is smaller than U’ above (e.g., in [19] the optimization is carried out over
the class of "steady state" policies). Results on sufficiency then allow to conclude
optimality over the class U of all policies.

7. Second application: a linear program formulation for COP. Below we present
a linear program that we show to be equivalent to COP. Such linear programs have
been introduced for the case of finite state and action spaces (e.g., Derman [15] and
Hordijk and Kallenberg [22]). In the finite case these are the most important method
to compute optimal policies for COP (an alternative linear program is described in
[2]). We use a different approach by which we obtain a similar linear program for the
countable case. Naturally, we cannot expect to find explicit solutions for COP using
an infinite-dimensional linear program, but this approach can be used to shed some
light on the structure of optimal solutions for COP. Consider the LP.

Find {z*(y, a)}y,a that minimizes C(z):-y, c(y, a)z(y, a) subject to

(7.1a) Z z(y, a)Py,<-_, z(v, a), vX,
y,a

(7.1b) 2 dk(y, a)z(y, a) <= V, <= k <= K,
y,

(7.1c) 2 z(y, a)= 1, z(y, a)>= O.
y,a
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THEOREM 7.1. Assume (A1) and (A2) and assume either that (i) c and d k are
bounded below, and (A3(g)) holds for all stationary g, with respect to both c and d k,
1 <- k <-_ K, or that (ii) {c(Xs, A.)}s and {dk(xs, As)}s, 1 <-_ k <-_ K are uniformly integrable
under pu for all u U.

(i) Ifthe stationarypolicy w isfeasiblefor COP, then {z(y, a)} satisfies (7.1), where

(7.2) z(y, a)= ry Paly.

(ii) Ifg is an optimal stationary policyfor COP then there exists an optimal solution
for LP satisfying

(7.3) z*(y, a)= ry

(iii) Conversely, let {z(y, a)} satisfy (7.1). Then the policy w is feasible for COP,
where

z(y, a)
(7.4) P]Y -"aA(y) z(y, a)

whenever the denominator is nonzero, and otherwise p ly are chosen arbitrarily but such
that P.ly is a probability measure.

(iv) If z* solves LP, then the stationary policy g is optimal for COP, where

z*(y, a)
(7.5) Pgaly ,aAy z*(y, a)

whenever the denominator is nonzero, and otherwise Pga]y are chosen arbitrarily but such
that Pg.I; is a probability measure.

Proof To prove (i) we note that z(y, a) as defined in (7.2) satisfies (7.1c) since
r and p.l are probability measures. Next we note that z(a, y) =f,w(a, y), thus (7.1b)
is satisfied since its left side is equal to Dk(g) by Lemma 2.3. Similarly, (7.1a) is
satisfied since by definition y is invariant under the transition Pyv=a PyavPa]y.

To prove (iii), let z(y):=Ay z(y, a) and substitute (7.4) in (7.1a) to obtain

(7.6) z(y) Z z(v)P.
X

Following Lemma 3.1 and using (7.1c) we obtain z(y)= w(y)=f,w(Y). By (7.4) and
by the fact that f,w(y, a)=f,w(Y)’Ply we obtain z(y, a)= W(y)ply=f,w(y, a). It
then follows by Lemma 2.3 and (7.1b) that Dk(w) Vk, 1 k K, and therefore w is
feasible for COP.

Parts (ii) and (iv) follow from the fact established above that (7.1) and (7.4) define
a one-to-one correspondence between the z’s that are feasible to LP and the stationary
policies w’s that are feasible to COP. Moreover, under this correspondence, it follows
from Lemma 2.3 that the value C(z) of LP is equal to C(w), which establishes the
proof.

8. Extensions. In this section we outline some applications of our methods to
lesser-known optimization criteria, involving variance minimization.

8.1. Variability sensitive optimization. The variability sensitive optimization prob-
lem VSOP was studied in the finite case by Filar, Kallenberg, and Lee [16] and later
by Bayal-Gursoy and Ross [7];

(8.1)
!

Maximize Rx(u):= lim - E Eu[r(c(Xs, As), C(u))],
t s=
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where r(.,. is called the variability function. Taking r(x, y)= x-A(x-y) 2 the VSOP
obtains the interpretation of finding a policy u that has high expected average reward
but low expected variance. Other variability criteria and other variability functions are
treated in the finite state-action space in [7] and [16].

In Theorem 8.1 we present conditions that ensure the sufficiency of classes of
policies for problem VSOP. We will use r(x, y)= X--A(x--y) 2. Note that when A =0
this reduces to problem OP.

THEOREM 8.1. Consider problem VSOP. Assume (A1) and (A2) and let U’ be
complete. If {c2(X, A)} is uniformly integrabte with respect to pu for each u, then U’
is sufficient.

Proof First note that Rx(u) is equal to

(8.2) lim 2 f,u(Y, a)[c(y, a)-Ac(y, a)]+A 2 f,(Y, a)c(y, a)
y, y,

Let t, be any subsequence of that achieves the lim in the expression above, and
along which f,% (y, a) fx,, (y, a) for all y and a. Following the same weak convergence
arguments that were used in 2.1, we obtain from the uniform integrability

(8.3) Rx(u)= f,,(y, a)[c(y, a)-Ac(y, a)]+, f,(y, a)c(y, a)
y, y,

Thus R(u) can be represented as a function of the expected state-action frequency,
so completeness implies sufficiency. [3

As a simple corollary, for bounded cost completeness implies sufficiency.

8.2. The problem with constraints. VSOP can also be considered in the framework
of optimization under constraints. Kawai [23] introduced the problem of minimizing
the variance of some cost subject to a single constraint on the expected average cost.
He treats the case of finite state and action spaces, and restricting to the stationary
policies he finds an optimal solution. Kurano [24] finds a policy that is optimal among
the stationary deterministic policies for the same problem as Kawai yet with general
state and action spaces.

Using similar arguments as above, we show below that any complete family of
policies (e.g., the stationary policies) is sufficient for the problem of Kawai; hence the
solution that Kawai finds is overall optimal. Moreover, using the same kind of assump-
tions as in Theorem 8.1 we show (using arguments as in the proof of Theorem 2.8)
that these are sufficient for the case of countable state and action spaces, and for more
than one constraint on expected average cost functionals.

Denote the variance under a policy u with initial state x by R(u) through (8.1)
with r(x, y):= (x-y). Given K real numbers V,. ., VK, define the following con-
strained problem"

(CVSOP) minimize R (u)

subject to /)k(u) _--< Vk, 1 _--< k -< K.

References [23] and [24] consider the case V= V that is (e) close to the supremum
of the optimal expected average cost. The meaning of CVSOP is then to find a policy
that minimizes the variance among all policies that are e-optimal for OP.

THEOREM 8.2. Consider problem CVSOP. Assume (A1) and (A2) and let U’ be
complete. If {c2(X, A)} and {dk(Xs, A)} 1 <- k <- K are uniformly integrable with
respect to P" for each u, then U’ is sufficient.
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Proof The variance is given by

R,(u) lim Y -’ e2fx,.(y,a)c(y,a) -Z -’fx,.(y, a) (y, a)
t--> y,a y,a

By diagonalization, there exists some subsequence tn along which limn_f’-,,(y, a)
f,,(y, a) for all y and a, such that

R,(u) f,.(y, a)c(y, a) 2 f..(Y, a)c2(Y, a).
y,a y,a

(similarly to the way (8.3) is obtained).
The rest of the proof now follows the same lines as the proof ofTheorem 2.8.
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