
268 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 2, FEBRUARY 2013

Markov Decision Process Based Energy-Efficient
On-Line Scheduling for Slice-Parallel Video

Decoders on Multicore Systems
Nicholas Mastronarde, Member, IEEE, Karim Kanoun, David Atienza, Member, IEEE,
Pascal Frossard, Senior Member, IEEE, and Mihaela van der Schaar, Fellow, IEEE

Abstract—We consider the problem of energy-efficient on-line

scheduling for slice-parallel video decoders on multicore systems

with Dynamic Voltage Frequency Scaling (DVFS) enabled pro-

cessors. In the past, scheduling and DVFS policies in multi-core

systems have been formulated heuristically due to the inherent

complexity of the on-line multicore scheduling problem. The key

contribution of this paper is that we rigorously formulate the

problem as a Markov decision process (MDP), which simulta-

neously takes into account the on-line scheduling and per-core

DVFS capabilities; the power consumption of the processor cores

and caches; and the loss tolerant and dynamic nature of the video

decoder. The objective of the MDP is to minimize long-term power

consumption subject to a minimum Quality of Service (QoS)

constraint related to the decoder’s throughput. We evaluate the

proposed on-line scheduling algorithm in Matlab using realistic

video decoding traces generated from a cycle-accurate multipro-

cessor ARM simulator.

Index Terms—Video decoding, multicore scheduling, dynamic

voltage frequency scaling, energy-efficient scheduling, Quality-of-

Service, Markov decision process.

I. INTRODUCTION

H IGH-QUALITY video decoding imposes unprecedented
performance requirements on energy-constrained mo-

bile devices. To address the competing requirements of high
performance and energy-efficiency, embedded mobile mul-
timedia device manufactures have recently adopted MPSoC
(multiprocessor system-on-chip) architectures that support Dy-
namic Voltage Frequency Scaling (DVFS) and Dynamic Power

Manuscript received December 03, 2011; revised May 21, 2012; accepted
July 08, 2012. Date of publication December 04, 2012; date of current version
January 15, 2013. The work of M. van der Schaar and N. Mastronarde was sup-
ported in part by the National Science Foundation under Award CNS-0509522.
The work of D. Atienza and K. Kanoun was supported in part by the Swiss Na-
tional Science Foundation, under Grant 200021-127282, and a research grant
funded by CSEM SA. The associate editor coordinating the review of this man-
uscript and approving it for publication was Dr. Yiannis Andreopoulos.
N. Mastronarde is with the Department of Electrical Engineering, State Uni-

versity of New York at Buffalo, Buffalo, NY 14260 USA. This work was done
in part while he was at the University of California at Los Angeles (UCLA),
Los Angeles, CA 90095-1594 USA (e-mail: nmastron@buffalo.edu).
K. Kanoun, D. Atienza, and P. Frossard are with the Institute of Electrical

Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lau-
sanne, Switzerland (e-mail: karim.kanoun@epfl.ch; david.atienza@epfl.ch;
pascal.frossard@epfl.ch).
M. van der Schaar is with the Department of Electrical Engineering, Univer-

sity of California at Los Angeles (UCLA), Los Angeles, CA 90095-1594 USA
(e-mail: mihaela@ee.ucla.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2012.2231668

Management (DPM) technologies. DVFS enables dynamic
adaptation of each processor’s frequency and voltage, and can
be exploited to reduce power consumption when the maximum
frequency of operation is not required to meet the deadlines
of a certain set of tasks [8]. Meanwhile, DPM enables system
components such as processors to be dynamically switched on
and off when they are not needed [15].
Despite improvements in mobile device technology,

energy-efficient multicore scheduling for video decoding
remains a challenging problem for several reasons. First, video
decoding applications have intense and time-varying stochastic
workloads, which have worst-case execution times that are
significantly larger than the average case. Second, video ap-
plications have sophisticated dependency structures due to
predictive coding. These dependency structures, which can be
modeled as directed acyclic graphs (DAGs), not only result in
different frames having different priorities, but also make it
difficult to balance loads across the cores, which is important
for energy efficiency [1]. Finally, video applications often have
stringent delay constraints, but are considered soft real-time
applications [18]. In other words, video frames should meet
their deadlines, but when they do not, the application quality
(e.g., decoded video frame rate) is reduced.
During the last decade, many energy-efficient multicore

scheduling algorithms that exploit DVFS and/or DPM have
been proposed, e.g., [2]–[4], [6], [7], [9], [10]. The Largest
Task First with Dynamic Power Management (LTF-DPM)
algorithm in [3] assumes that frame decoding deadlines are
equally spaced in time (e.g., 33 ms apart for 30 frame per
second video), and therefore does not support video group of
pictures (GOP) structures with B frames; moreover, LTF-DPM
will typically have looser deadline constraints than our pro-
posed algorithm because it assigns groups of frames a common
“weak” deadline. The Scheduling 2D and Stochastic Sched-
uling 2D algorithms in [6] and [7], respectively, both consider
a periodic directed acyclic graph (DAG) application model that
requires a “source” and “sink” node in each period, making the
algorithms incompatible with GOP structures where the last B
frame in a GOP depends on the I frame in the next GOP (e.g.,
an IBPB GOP).The Variation Aware Time Budgeting (Var-TB)
algorithm in [10] uses a DAG task model and allows for arbi-
trary complexity distributions; however, the author’s propose
using a functional partitioning algorithm for parallelizing the
video decoder (e.g., pipelining decoder sub-functions such as
inverse DCT and motion compensation on different cores).
Functional partitioning is known to be suboptimal because

1520-9210/$31.00 © 2012 IEEE

MASTRONARDE et al.: MARKOV DECISION PROCESS BASED ENERGY-EFFICIENT ON-LINE SCHEDULING 269

moving data between cores requires a lot of memory bandwidth
[17]. It is shown in [17] that parallelization approaches based
on data partitioning (e.g., mapping different frames, slices, or
macroblocks to different processors) are superior to functional
partitioning approaches. The Global Earliest Deadline First
Online DVFS (GEDF-OLDVFS) algorithm in [9] is inap-
propriate for predictively coded video applications because
it assumes that tasks are independent. The so-called SpringS
algorithm in [4] uses a task-level software pipelining algorithm
called RDAG [5] to transform a periodic dependent task graph
(expressed as a DAG) into a set of tasks that can be pipelined on
parallel processors. Unfortunately, if this technique is applied
to video decoding applications, it will require retiming delays
proportional to the GOP size, which may be arbitrarily large.
Finally, all of the aforementioned research takes into account
processing energy, but does not take into account the power
consumption of different cache levels in the memory hierarchy
despite multimedia applications being data-access dominated
[11].
In summary, although many important advancements have

been made, there is still no rigorous multicore scheduling so-
lution that simultaneously considers per-core DVFS capabili-
ties; dynamic processor assignment; the separate power con-
sumption of the processor cores and caches; and loss-tolerant
tasks with different complexity distributions, DAG dependency
structures (i.e., precedence constraints), and stringent, but soft
real-time, constraints. The contributions of this paper are as
follows:
� We rigorously formulate the multi-core scheduling
problem using a Markov decision process (MDP) that
considers the above mentioned properties of the multi-core
system and video decoding application. The MDP enables
the system to optimally trade-off long-term power and
performance, where the performance is measured in terms
of a Quality of Service (QoS) metric that is related to the
decoder’s throughput.

� The MDP solution requires complexity that exponen-
tially increases with both the number of processors and
the number of frames in a short look-ahead window. To
mitigate this complexity, we propose a novel two-level
scheduler. The first-level scheduler determines scheduling
and DVFS policies for each frame using frame-level
MDPs, which account for the coupling between the
optimal policies of parent frames and their childrens’
optimal policies. The second-level scheduler decides the
final frame-to-processor and frequency-to-processor map-
pings at run-time, ensuring that certain system constraints
are satisfied.

� We validate the proposed algorithm in Matlab using video
decoder trace statistics generated from an H.264/AVC de-
coder that we implemented on a cycle-accurate multipro-
cessor ARM (MPARM) simulator [14].

The remainder of the paper is organized as follows. We intro-
duce the system and application models in Section II and formu-
late the on-line multi-core scheduling problem as an MDP. In
Section III, we propose a lower complexity solution by approx-
imating the original MDP problem with a two-level scheduler.
In Section IV, we present our experimental results.We conclude
in Section V.

II. PROBLEM FORMULATION

We consider the problem of energy-efficient slice-parallel
video decoding in a time slotted multicore system, where time
is divided into slots of (equal) duration seconds indexed
by . We assume that there are processors, which we
index by . In Section II-A, we describe seven
important video data attributes. In Section II-B, we propose a
sophisticated Markovian traffic model for characterizing video
decoding workloads that accounts for the video data attributes
introduced in Section II-A. In Sections II-C–II-E we describe
the scheduling and frequency actions, the evolution of the video
traffic/workload, and the power and Quality of Service (QoS)
metrics used in our optimization. In Section II-F, we formulate
the multicore scheduling problem as a Markov decision process
(MDP).

A. Video Data Attributes

We model the encoded video bitstream as a sequence of
compressed data units with different decoding and display
deadlines, source-coding dependencies, priorities, and de-
coding complexity distributions. In this paper, we assume
that a data unit corresponds to one video slice, which is a
subset of a video frame that can be decoded independently
of other slices within the same frame (see [12] for a good
discussion about slice-parallel video decoding). We assume
that the video is encoded using a fixed, periodic, GOP structure
that contains frames and lasts a period of time slots of
duration . The set of frames within GOP is denoted
by and the set of all frames is denoted
by . Each frame is characterized by seven
attributes:
1. Type : Frame is an I, P, or B frame. We denote the oper-
ator extracting the frame type by .

2. Number of slices: Frame is composed of
slices, where is assumed to be fixed and

is the maximum number of slices allowed in any
single video frame. The number of slices is determined
by the encoder [19].

3. Decoding complexity: Slices belonging to frame
have decoding complexity cycles. We assume that

is an exponentially distributed i.i.d. random vari-
able conditioned on the frame type with expectation

. The assumption of exponentially
distributed complexity is inaccurate; however, it is nec-
essary to make the MDP problem formulation tractable.
We discuss why we make this assumption in Section II-C;
however, due to space limitations, we refer the interested
reader to Section 3.3 of our technical report [19] for a more
detailed discussion about the assumption’s consequences.

4. Arrival time: denotes the earliest time slot can be
decoded (i.e., its arrival time at the scheduler).

5. Display deadline: denotes the final time slot in
which must be decoded so it can be displayed.

6. Decoding deadline: denotes the final time slot in
which must be decoded so that frames that depend on
it can be decoded before their display deadline. Note that

.

270 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 2, FEBRUARY 2013

Fig. 1. Illustrative DAG dependencies for an IBPB GOP structure that contains frames and lasts a period of time slots of duration
.

7. Dependency: The frames must be decoded in decoding
order, which is dictated by the dependencies introduced by
predictive coding (e.g., motion-compensation). In general,
the dependencies among frames can be described by a di-
rected acyclic graph (DAG), denoted by ,
with the nodes in representing frames and the edges in
representing the dependencies among frames. We use the
notation to indicate that frame depends on

frame (i.e., there exists a path directed from to)

and therefore cannot be decoded until is decoded.

We write if there is a directed arc emanating

from frame and terminating at frame , indicating that

is an immediate parent of .
These attributes are important because they determine which
slices can be decoded, how long they will take to decode, when
they need to be decoded, and what the penalty is for not de-
coding them on time. In the next subsection, we propose a Mar-
kovian traffic model that captures the above attributes, enabling
us to rigorously formulate the multicore scheduling problem as
an MDP.

B. Markovian Traffic Model

We define a traffic state to represent the
video data that can potentially be decoded in time slot .
This traffic state comprises three components defined in the
following paragraphs: the current frame set , the buffer
state , and the dependency state .
In time slot , we assume that the set of frames

whose deadlines are within the scheduling time window

(STW) can be decoded. We define the cur-
rent frame set as all the frames within the STW, i.e.,

. Because
the GOP structure is fixed and periodic, is periodic with
some period . Frame ’s arrival time , display deadline

, and decoding deadline are fully determined
by the periodic GOP structure. Specifically, it turns out
that , , and

. In words, a frame’s arrival
time (respectively, display deadline) is the first (respectively,
last) time slot in which it appears in the current frame set,
and a frame’s decoding deadline is the minimum display

deadline of its children. Note that the distinction between
display and decoding deadlines is important because, even if a
frame’s decoding deadline is missed, which renders its children
undecodable, it is still possible to decode the frame before its
display deadline. Fig. 1 illustrates how the current frame sets
are defined for a simple IBPB GOP structure. The following
example illustrates one way to define the current frame sets for
the GOP structure in Fig. 1.
Example: Current frame sets: Let and

. Using the GOP structure in Fig. 1, and a
time slot duration of , the current frame sets de-
fined by these scheduling time windows are ,

, ,

, and . No-
tice that the GOP structure is periodic with period such
that the current frame sets and contain frames in the
same position of the GOPwith the same underlying dependency
structure.
We define the buffer state , where de-

notes the number of slices of frame awaiting decoding at
time . By definition, , where is the total number
of slices belonging to frame . Finally, the dependency state

defines whether or not each frame in the cur-
rent frame set is decodable in time slot . In particular, is a
binary variable that takes value 1 if all of frame ’s dependen-
cies are satisfied, i.e., if for all , and takes value
0 otherwise.

C. Scheduling Actions and Processor Frequencies

Let denote the number of slices be-
longing to frame that are scheduled on processor at time

. For notational convenience, we define ,

, and . There are

three important constraints on the scheduling actions for all
and :

� Buffer constraint: . In words, the total
number of scheduled slices belonging to frame cannot
exceed the number of slices in frame ’s buffer in slot .

� Processor constraint: . In words, no more
than one slice can be scheduled on processor in slot .

MASTRONARDE et al.: MARKOV DECISION PROCESS BASED ENERGY-EFFICIENT ON-LINE SCHEDULING 271

� Dependency constraint: If , then .
In words, all of the frame’s dependencies must be
satisfied before slices belonging to it are scheduled to be
decoded.

We assume that each processor can operate at a different fre-
quency in each time slot to trade-off processing energy and
delay. Let denote the frequency
vector, where is the speed of the processor in time
slot and is the set of available operating frequencies. Re-
call from Section II-A that slices belonging to frame have de-
coding complexity cycles, where is assumed to be ex-
ponentially distributed with mean . Con-
sequently, slices belonging to frame and processed at speed

have service time , where is expo-

nentially distributed with mean . Due
to the memoryless property of the exponential distribution, if a
slice belonging to frame is scheduled on processor at time
, then it will finish decoding in time slot (i.e., in seconds)

with probability , re-
gardless of the number of times it was previously scheduled.
In other words, if a slice takes multiple time slots to decode,
then the memoryless property implies that it is not necessary to
know the number of cycles that were spent decoding the slice
in past time slots to predict the distribution of remaining cy-
cles. Hence, assuming exponentially distributed service times
greatly reduces the number of states required in our Markovian
traffic model (see the appendix of our technical report [19] for
more details). This is (implicitly) why a lot of prior research on
power management using MDPs assumes exponential service
times (e.g., [15], [16]).

D. State Evolution and System Dynamics

To fully characterize the video traffic, we need to understand
how the traffic state evolves over time. The
transition of the current frame set from to is indepen-
dent of the scheduling action; in fact, as illustrated in Fig. 1,
it is deterministic and periodic for a fixed GOP structure, and
therefore the sequence of current frame sets can be
modeled as a deterministic Markov chain.
Unlike the current frame set transition, the transition of

the buffer state from to depends on the scheduling

action and processor frequency. Let
denote the number of slices belonging to frame that finish
decoding on processor at time . Note that .

For notational convenience, we define ,

, and .

Let denote the probability that slices are

decoded on processor in time slot given the frequency
and scheduling action .
Before we can write the buffer recursion governing the tran-

sition from to , we need to define a partition of the cur-
rent frame set . The partition divides into two sets:
a set of frames that persist from time to because they
have display deadlines , i.e., ; and, a set
of newly arrived frames with arrival times , i.e.,

. Based on this partition, can
be determined from and as follows:

if

if

(1)

The sequence of buffer states can be modeled as a
controlled Markov chain. Note that the buffer state for frame ,
i.e., , is only defined for . We will refer to this
range of times as the lifetime of frame .
The transition of the dependency state from to for

can be determined as follows:

if for all

such that
if
otherwise.

(2)

The first line in (2) states that frame can be decoded in time
slot if all of its parents are completely decoded at the end
of time slot . The second line in (2) states that if frame can
be decoded in time slot then it can also be decoded in time slot

. Meanwhile, the initial value of dependency state for
can be determined as follows:

if for all
such that

otherwise.
(3)

It follows that the sequence of dependency states
can be modeled as a controlled Markov chain. Note that, similar
to the buffer state, the dependency state is only defined for the
lifetime . Additionally, (2) and (3) imply that,
if frame is an I frame, then for the frame’s entire
lifetime.
Because the individual components of the traffic state

evolve as controlled Markov chains, the sequence of
traffic states can be modeled as a controlled Markov
chain.

E. Power Cost and Slice Decoding Rate

The power-frequency function maps the pro-

cessor’s speed to its expected power consumption (watts).
We assume that the power-frequency function is a strictly
convex and increasing function of the frequency and that it
is the same for each processor. We also consider the expected
power consumed by the instruction, data, and L2 cache using a

function , which maps the processor’s

speed , the scheduling action , and frame type
to power consumption (watts). Thus, the total expected power
consumed by processor (and the associated accesses to the
various caches) at time can be written as

(4)

272 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 2, FEBRUARY 2013

We consider the following QoS metric in each time slot :

(5)

This QoS metric is simply the expected number of slices be-
longing to frame that will be decoded on processor in time
slot . We will refer to (5) as the slice decoding rate for frame
on processor . For notational simplicity, in the remainder of

the paper, we will omit the functional dependence of (4) and (5)
on .

F. Markov Decision Process Formulation

In this subsection, we formulate the problem of
energy-efficient slice-parallel video decoding on processors.
In each time slot , the objective is to determine the scheduling
action , for all and , and the
frequency vector , in order to minimize the total average
power consumption subject to a constraint on the average slice
decoding rate. In this paper, for mathematical convenience,
we use discounted1 average power consumption and slice
decoding rate, which can be expressed as follows

(6)

(7)

respectively, where is the discount factor, and the
expectation is over the sequence of traffic states .
Stated more formally, the optimization objective and constraints
are as follows:

(8)

where is the discounted slice decoding rate constraint.

1In this paper, for mathematical convenience, we use the discounted averages
instead of conventional averages; however, the problem can be formulated using
non-discounted averages. We refer the interested reader to [15] for an intuitive
justification for using discounted averages.

The constrained optimization defined in (8) can be formulated
as an unconstrained MDP by introducing a Lagrange multiplier

associated with the slice decoding rate constraint.
Note that the buffer, processor, and dependency constraints
defined in (8) must still hold in every time slot, however, for
notational simplicity, we will omit them from our exposition in
the remainder of the paper. We can define the Lagrangian cost
function:

(9)

For a fixed , in each time slot , the unconstrained problem’s
objective is to determine the frequency vector and scheduling
matrix in order to minimize the average Lagrangian cost.
The discounted average Lagrangian cost can be expressed as

(10)

Letting denote the traffic state transition proba-
bility function, the problem of minimizing (10) can be mapped
to the following dynamic programming equation:

(11)

which can be solved using the well-known value iteration algo-
rithm [13] as follows:

(12)

where is the iteration index, is initialized to 0 for all
, and approaches as [13].

III. LOW COMPLEXITY SOLUTION

Unfortunately, solving (12) directly is a computationally in-
tractable problem for two reasons. First, the number of traffic
states exponentially increases with the number of frames in the
current frame set. Second, the action-space exponentially in-
creases with the number of processors because and,
accounting for the processor constraint defined in Section II-C
and the fact that all processors are homogeneous, we have to

consider at most scheduling actions [19].
Clearly, the reason for the exponential growth in the state

space (respectively, action space) is that the optimization simul-
taneously considers the states (respectively, scheduling actions
and processor frequencies) of multiple frames. However, care-
fully studying the optimization objective and constraints defined
in (8), it is clear that the only reason these need to be optimized
jointly is the processor constraint, which ensures that only one
slice is assigned to each processor in each time slot. Motivated
by this weak coupling among tasks, we propose a two-level
scheduler to approximately solve (8): The first-level scheduler

MASTRONARDE et al.: MARKOV DECISION PROCESS BASED ENERGY-EFFICIENT ON-LINE SCHEDULING 273

TABLE I
FRAME-LEVEL VALUE ITERATION ALGORITHM PERFORMED BY THE FIRST-LEVEL SCHEDULER

determines the optimal scheduling actions and processor fre-
quencies for each frame under the assumption that each frame
has exclusive access to the processors. Given the results of
the first-level scheduler, the second-level scheduler determines
the final slice- and frequency-to-processor mappings.

A. First-Level Scheduler

The first-level scheduler computes a value function
for every frame in a GOP. This value func-

tion only depends on the current frame set, the frame’s buffer
state , and the frame’s dependency state . Note that the
current frame set indicates the remaining lifetime of a frame and
describes the connections to its parents and children. Hence, the
current frame state will have a significant impact on the optimal
scheduling and DVFS decisions for the frame. To account for
the dependencies among frames, we define the frame’s
value function so that it includes the values of its
children. In this way, frames with many children (e.g., I frames)
can account for how their scheduling and frequency decisions
impact the future performance of their children. We describe
the first-level scheduler in more detail in the remainder of this
section.
1) Frame-Level Value Iteration: The first-level scheduler

performs the frame-level value iteration algorithm illustrated in
Table I to compute the optimal value functions .
Unlike the conventional value iteration algorithm, the proposed
algorithm has multiple coupled value functions that need to be

updated. Note that the coupling exists because the value of a
frame depends on the values of its children. Due to this cou-
pling, the form of the value function update (lines 5–9 in Table I)
is different from the conventional value iteration algorithm.
If it is not possible to make any decisions for a frame in the

current traffic state, then we set the frame’s value to 0 in that
state. Hence, if a frame is not in the current frame set (i.e.,
), does not have its dependencies satisfied (i.e.,), or is
in the current frame set, but is already fully decoded (i.e.,
and), then we set the frame’s value to 0 (line 8 in Table I).
The more interesting case is when the frame is in the current
frame set, still has undecoded slices, and has its dependencies
satisfied (i.e., , , and). In this case, the
value function update comprises four distinct terms: the power
consumed by each processor in the current state; the expected
slice decoding rate on each processor in the current state; the
expected future value of frame ; and the sum of the expected
future values of the frame’s children. Note that the expected
future value of frame , i.e., , is
0 if ; and, the sum of the expected future values of the chil-
dren’s frames, i.e., , is 0 if

is not 0 (because must be 0 for
to be 1). In other words, the parent frame’s value function

is coupled with the children’s value functions only if the parent
frame gets fully decoded.
2) Decomposing the Monolithic Frame-Level Value Iteration

Update: The frame-level value iterations allow us to eliminate

274 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 2, FEBRUARY 2013

the exponential growth of the state space with respect to the
number of frames in the current frame set, but we still have to
address the fact that the optimization in (13) (Line 6 of Table I)
requires a search over an exponential number of scheduling and
frequency vectors. In this subsection, we discuss how to de-
compose the monolithic update defined in (13) into stages
(hereafter, sub-value iterations), each corresponding to a local
scheduling problem on a single processor. These sub-value
iterations can be performed iteratively, using the output of the

processor’s sub-value iteration as the input to the
processor’s sub-value iteration. Importantly, decomposing the
monolithic update into sub-value iterations significantly re-
duces the computational complexity of the update. Due to space
limitations, we omit the derivation of the sub-value iterations
and refer the interested reader to our technical report [19] for
details.
Let , , , for , be vectors de-

noting the frequencies, scheduling actions, and number of
decoded slices for frame on processors 1 through . Let

denote the -norm of the vector .
Equipped with this new notation, the sub-value iteration at
processor is defined as follows:
Sub-value iteration at processor : See equation (14) at

the bottom of the page. The processor’s sub-value itera-
tion estimates the value of being in traffic state
conditioned on processors 1 through successfully de-
coding slices. This value
is calculated as the sum of (i) the immediate cost incurred
by processor for processing slices belonging to frame ,
i.e., , (ii) the
expected discounted future value of frame transitioning to
state , and (iii) the
expected discounted future value of the frame’s children,

i.e., .
The output of the processor’s sub-value iteration, i.e.,

is used as input to the processor’s sub-value iteration
defined below.

The sub-value iterations for processors are
defined as follows:
Sub-value iteration at processors : See

equation (15) at the bottom of the page. The processor’s
sub-value iteration estimates the value of being in traffic state

conditioned on processors 1 through suc-
cessfully decoding slices. This
value is calculated as the sum of the immediate cost incurred by
processor and an expectation over the value calculated by the

processor’s sub-value iteration. The output of the
processor’s sub-value iteration, i.e.,

is used as input to the processor’s sub-value iteration.
Finally, the sub-value iteration at processor is defined

as follows:
Sub-value iteration at processor 1:

(16)

The output of the first processor’s sub-value iteration

includes (i) the immediate power costs incurred by all proces-
sors, (ii) the slice decoding rate of all processors, (iii) the ex-
pected discounted future value of frame , and (iv) the expected
future discounted value of frame ’s children, and it is used as
input to the processor’s sub-value iteration during itera-
tion .
Performing the sub-value iterations for frame on a single

traffic state only requires a search over the
(scalar) scheduling actions and frequencies
for each processor and each possible value

of . Therefore, using the proposed decomposition of
the monolithic value function update significantly reduces the
action-selection complexity.

(14)

(15)

MASTRONARDE et al.: MARKOV DECISION PROCESS BASED ENERGY-EFFICIENT ON-LINE SCHEDULING 275

TABLE II
DETERMINING AN APPROXIMATELY OPTIMAL POLICY FOR FRAME

3) Determining the Approximately Optimal Policy: We de-
fine the policy as a mapping from
the frame’s traffic state to a pair of sched-
uling and frequency vectors . If we know the optimal
frame-level value functions , then we can de-
termine the optimal action to take in each traffic state, and there-
fore the optimal policy, by finding the scheduling and frequency
vectors that optimize (13). However, as we discussed earlier,
this requires searching over an exponential number of sched-
uling and frequency vectors. Fortunately, it turns out that we
can use the sub-value iterations proposed in Section III-A2 to
find an approximately optimal policy. An algorithm for doing
this is summarized in Table II.
The key idea behind the algorithm in Table II is to find the

(scalar) scheduling and frequency actions that optimize the sub-
value functions defined in (14), (15), and (16) for each pro-
cessor. However, notice that the sub-value iterations for pro-
cessors require knowledge of the number of
slices that finish decoding on processors 1 through , but we
need to select the (scalar) scheduling action and processor fre-
quency on processor before is known. To work
around this problem, the algorithm in Table II first selects the

optimal (scalar) scheduling action and frequency for processor
1. Then, to select the optimal (scalar) scheduling actions and
frequencies for processors , the algorithm ap-
proximates with the floor of its expected value (the
floor of , denoted by , is the largest integer value that is
less than), which depends on the optimal actions selected by
processors 1 through .

B. Second-Level Scheduler

Given the optimal policies calculated by the first-level sched-
uler (i.e., , for all), it is very likely that
slices belonging to different frames in the current frame set
will want to be scheduled on the same processor in the same
time slot, thereby violating the processor constraint defined in
(8). To avoid this problem, the second-level scheduler deter-
mines the final slice-to-processor and frequency-to-processor
mappings using an Earliest Deadline First (EDF) policy. Specif-
ically, frame gets scheduled on processor at frequency

if is the solution to the following optimization:

(17)

276 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 2, FEBRUARY 2013

where is the frame’s decoding deadline and ties are
broken randomly.
Finally, if a slice finishes decoding before the first-level

scheduler’s time quantum is up, then the second-level sched-
uler will start decoding another slice (from the same frame)
during the “slack” time, which is the time between the begin-
ning of the next time quantum and the time that the originally
scheduled slice finished decoding.
We refer the interested reader to our technical report [19]

for a detailed discussion about the complexity of our proposed
algorithm.

IV. EXPERIMENTS

In this section, we describe our experimental framework in
detail and evaluate our proposed algorithm. We note that we
did not have access to a decoder that supports the sophisticated
level of slice parallel decoding that our algorithm is designed
to exploit. Specifically, the available decoder implementation
can decode slices belonging to the same frame in parallel, but it
cannot decode slices from different frames in parallel. Because
the latter capability is essential to our proposed algorithm, we
use Matlab to evaluate it, instead of the multiprocessor ARM
(MPARM) simulator.
In order to validate our optimized multi-core scheduling ap-

proach in Matlab, we use accurate profiling/statistics generated
from an H.264/AVC decoder executed on a sophisticated multi-
processor virtual platform simulator. Specifically, we have ex-
tended and customized the MPARM virtual platform simulator
in [14], which is a complete SystemC simulation environment
for MPSoC architectural design and exploration. MPARM pro-
vides cycle-accurate and bus signal-accurate simulation for dif-
ferent processors. Due to space limitations, we refer the inter-
ested reader to our technical report [19] for an in depth descrip-
tion of the modifications that we made to theMPARM simulator
to support the execution of our multimedia benchmark (the Joint
Model reference software version 17.2 of an H.264 encoder) and
to support the gathering of accurate profiling statistics.
To generate our experimental results, we implemented the

two-level scheduling algorithm proposed in Section III in
Matlab. This algorithm, together with slice-level data traces
recorded from MPARM, allowed us to determine on-line
scheduling and DVFS policies for the Silent and Foreman
sequences (CIF resolution, 30 frames per second, 8 slices per
frame) with an IBPB GOP structure as illustrated in Fig. 1. In
our Matlab simulations, we assume a time slot duration of 1/90
s, which is one-third of the frame period. We divide each GOP
into 12 current frame sets to capture the dependencies among
frames. These 12 current frame sets are generated from the four
unique current frame sets given in the example in Section II-B
by repeating each for three consecutive time slots.2 The system,
application, and other parameters used in our experiments
are given in Table III. Importantly, although our MDP model
assumes that the slice decoding complexities are exponentially
distributed, we use the actual slice decoding times from the

2In the example of Section II-B, the time slot duration was equal to the frame
duration (i.e., 1/30 s). Because we are now using a time slot duration equal to
one-third of the frame duration (i.e., 1/90 s), we must repeat each of the current
frame sets in example 1 three times.

TABLE III
SIMULATION PARAMETERS

Fig. 2. Power consumption versus the average decoded frame rate. (a, b) Per
core power. (c, d) Total power.

MPARM simulator when we simulate the scheduling and DVFS
policies.

A. Trade-Off Between Power Consumption and Quality of

Service

The optimization proposed in (8) allows the system to
trade-off power consumption and a QoS metric, namely, the
slice decoding rate, which is roughly proportional to the frame
rate. This trade-off can be made by adapting the Lagrange
multiplier in the cost function defined in (9). Fig. 2 shows
the trade-off between the average power consumption and
average frame rate for the values of given in Table III and

, and 8 processors.
Figs. 2(a) and 2(b) show the average power consumption per

core versus the average decoded frame rate for the Foreman
and Silent sequences, respectively. The power-QoS pairs in the
lower left of these two figures occur when and correspond
to a scheduling policy that never schedules any tasks and a

MASTRONARDE et al.: MARKOV DECISION PROCESS BASED ENERGY-EFFICIENT ON-LINE SCHEDULING 277

Fig. 3. Fractions of I, P, and B frames that miss their display deadline as a function of the parameter . (a,b,c,d) Foreman sequence. (e,f,g,h) Silent sequence.

DVFS policy that always selects the lowest operating frequency,
thereby achieving a QoS of zero frames per second. The min-
imum power consumption per core, which is approximately 20
mW, is due to leakage power. If we were to introduce DPM into
our optimization framework, then this minimum power would
be significantly lower. Clearly, as increases, the QoS is im-
proved at the expense of power; as the number of processors
increases, less power is required per processor to decode at a
given QoS; and, depending on the video source characteristics
(e.g., Foreman vs. Silent), the achievable QoS varies for a given
power consumption (in this case, Silent receives a higher QoS
than Foreman for the same power consumption because Silent
is a lower activity sequence).
Figs. 2(c) and 2(d) show the average total power consump-

tion versus the average decoded frame rate for the Foreman and
Silent sequences, respectively. It is interesting to note that, as
the decoded frame rate decreases, having less processors re-
sults in less overall power consumption. This is due to the large
leakage power incurred by each processor, which, as mentioned
before, could be significantly reduced using DPM in addition to
DVFS. It is clear from Fig. 2 that the proposed scheduling algo-
rithm exploits the loss-tolerant nature of video decoding tasks
to achieve lower decoded frame rates when the energy-budget
does not allow for full frame rate decoding.

B. Display Deadline Miss Rates

Fig. 3 shows the fractions of I, P, and B frames that miss
their display deadline as a function of the parameter (for the
values of listed in Table III). The results show that the pro-
posed on-line scheduling and DVFS optimization has a very
desirable property: as minimizing power becomes more impor-
tant (i.e., decreases), B frames are the first to miss their dead-
lines, followed by P frames, and then I frames. In other words,
due to the proposed scheduling algorithm, the QoS (i.e., frame
rate) decreases slowly with the power consumption. In contrast,
a scheduling policy that allows P frames to be lost before B

frames, or I frames before P frames, is inherently suboptimal
because a deadline miss by one I or P frame induces deadline
misses of dependent frames, adversely impacting the QoS.
We refer the interested reader to our technical report [19]

for additional experimental result showing the impact of video
resolution on the system performance and power consumption.
In [19], we have also included a detailed comparison (both
qualitative and quantitative) of our proposed algorithm to the
so-called Optimum Minimum-Energy Multicore Scheduling
algorithm (OPT-MEMS [2]), which we omit here due to space
limitations.

V. CONCLUSION

We propose a Markov decision process based on-line sched-
uling algorithm for slice-parallel video decoders on multicore
systems. To mitigate the complexity of solving the optimal
on-line scheduling and DVFS policy, we proposed a novel
two-level scheduler. The first-level scheduler determines
scheduling and DVFS policies independently for each frame
and the second-level decides the final frame-to-processor and
frequency-to-processor mappings at run-time. We validated
the proposed algorithm in Matlab using accurate video de-
coder trace statistics generated from an H.264/AVC decoder
that we implemented on a cycle-accurate MPARM simulator.
Our experimental results indicate that the proposed algorithm
effectively trades-off power consumption and QoS by ensuring
that a limited energy-budget is allocated to decoding the most
important frames (e.g., I and P frames) before the less important
frames (e.g., B frames).

REFERENCES
[1] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor

real-time systems,” in Proc. 17th Int. Symp. Parallel and Distributed
Proc. (IPDPS ’03), Apr. 2003.

[2] W.Y. Lee, Y.W.Ko, H. Lee, andH. Kim, “Energy-efficient scheduling
of a real-time task on DVFS-enabled multi-cores,” in Proc. 2009 Int.
Conf. Hybrid Inform. Technol. (ICHIT ’09), 2009, pp. 273–277.

278 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 2, FEBRUARY 2013

[3] Y.-H. Wei, C.-Y. Yang, T.-W. Kuo, S.-H. Hung, and Y.-H. Chu, “En-
ergy-efficient real-time scheduling of multimedia tasks on multi-core
processors,” in Proc. 2010 ACM Symp. Appl. Comput. (SAC ’10), 2010,
pp. 258–262.

[4] H. Liu, Z. Shao, M.Wang, and P. Chen, “Overhead-aware system-level
joint energy and performance optimization for streaming applications
on multiprocessor systems-on-Chip,” in Proc. 2008 Euromicro Conf.
Real-Time Syst. (ECRTS ’08), Jul. 2008, pp. 92–101.

[5] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,” Al-
gorithmica, vol. 6, no. 1–6, pp. 5–35, 1991.

[6] R. Xu, R. Melhem, and D. Mosse, “Energy-aware scheduling for
streaming applications on chip multiprocessors,” in Proc. 28th IEEE
Int. Real-Time Syst. Symp. (RTSS ’07), pp. 25–38.

[7] R. Xu, “Energy-aware scheduling for streaming applications” Ph.D.
dissertation, Univ. Pittsburgh, Pittsburgh, PA. [Online]. Available:
http://etd.library.pitt.edu/ETD/available/etd-03082010- 201840/unre-
stricted/XuRuibin20100104.pdf.

[8] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” SIGOPS Oper. Syst. Rev., vol.
35, no. 5, pp. 89–102, Oct. 2001.

[9] D. Zhang, F. Chen, and S. Jin, “Global EDF-based online, energy-effi-
cient real-time scheduling in multi-core platform,” in Proc. 2011 IEEE
Int. Conf. Comput. Sci. and Automation Eng. (CSAE), Jun. 10-12, 2011,
vol. 2, pp. 666–670.

[10] J. Cong and K. Gururaj, “Energy efficient multiprocessor task sched-
uling under input-dependent variation,” in Proc. Conf. Design, Au-
tomation and Test in Europe (DATE ’09), 2009, pp. 411–416.

[11] F. Catthoor, E. de Greef, and S. Suytack, Custom Memory Man-

agement Methodology: Exploration of Memory Organisation for

Embedded Multimedia System Design. Norwell, MA: Kluwer, 1998.
[12] M. Roitzsch, “Slice-balancing H.264 video encoding for improved

scalability of multicore decoding,” in Proc. 7th ACM & IEEE Int.

Conf. Embedded Software, 2007, pp. 269–278.
[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: an Introduc-

tion. Cambridge, MA: MIT Press, 1998.
[14] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,

“MPARM: Exploring the multi-processor SoC design space with sys-
temc,” J. VLSI Signal Process. Syst., vol. 41, no. 2, pp. 169–182, Sep.
2005.

[15] L. Benini, A. Bogliolo, G. A. Paleologo, and G. D. Micheli, “Policy
optimization for dynamic power management,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 18, no. 6, pp. 813–833, Jun.
1999.

[16] D. Niyato, S. Chaisiri, and L. B. Sung, “Optimal power management
for server farm to support green computing,” in Proc. 9th IEEE/ACM
Int. Symp. Cluster Comput. and the Grid, 2009.

[17] E. B. v. d. Tol, E. G. Jaspers, and R. H. Gelderblom, “Mapping of H.264
decoding on a multiprocessor architecture,” Proc. SPIE , pp. 707–718,
May 2003.

[18] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, and R. H. Kravets,
“GRACE-1: Cross-layer adaptation for multimedia quality battery en-
ergy,” IEEE Trans. Mobile Comput., vol. 5, no. 7, pp. 799–815, Jul.
2006.

[19] N. Mastronarde, K. Kanoun, D. Atienza, P. Frossard, and M. v. d.
Schaar, Markov Decision Process Based Energy-Efficient on-Line
Scheduling for Slice-Parallel Video Decoders on Multicore Systems.
[Online]. Available: http://arxiv.org/abs/1112.4084.

Nicholas Mastronarde (S’07–M’11) received the
B.S. and M.Sc. degrees in electrical engineering
from the University of California at Davis in 2005
and 2006, respectively, and the Ph.D. degree in elec-
trical engineering from the University of California
at Los Angeles (UCLA) in 2011.
He is currently an Assistant Professor in the De-

partment of Electrical Engineering at the State Uni-
versity of New York at Buffalo.

Karim Kanoun received the M.Sc. degree in com-
puter science from the ENSIMAG School of Engi-
neering in Informatics and Applied Mathematics in
Grenoble, France. He is currently pursuing the Ph.D.
degree in embedded systems at the Federal Institute
of Technology in Lausanne, Switzerland.

David Atienza (M’05) received the M.Sc. and Ph.D.
degrees in computer science and engineering from
Complutense University of Madrid (UCM), Spain,
and Inter-University Micro-Electronics Center
(IMEC), Belgium, in 2001 and 2005, respectively.
Currently, he is Professor and Director of the

Embedded Systems Laboratory (ESL) at EPFL,
Switzerland, and Adjunct Professor at the Computer
Architecture and Automation Department of UCM.

Pascal Frossard (S’96–M’01–SM’04) received
the M.Sc. and Ph.D. degrees, both in electrical
engineering, from the Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland, in 1997
and 2000, respectively.
Since 2003, he has been a faculty at EPFL, where

he heads the Signal Processing Laboratory (LTS4).

Mihaela van der Schaar (F’10) is Chancellor’s Pro-
fessor of Electrical Engineering at the University of
California, Los Angeles. She is the founding director
of the UCLA Center for Engineering Economics,
Learning, and Networks (see netecon.ee.ucla.edu).

