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MARKOV DECISION PROCESSES
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Abstract: The theory of Markov Decision Processes is the theory of controlled
Markov chains. Its origins can be traced back to R. Bellman and L. Shapley in the
1950’s. During the decades of the last century this theory has grown dramatically.
It has found applications in various areas like e.g. computer science, engineering,
operations research, biology and economics. In this article we give a short intro-
duction to parts of this theory. We treat Markov Decision Processes with finite and
infinite time horizon where we will restrict the presentation to the so-called (gen-
eralized) negative case. Solution algorithms like Howard’s policy improvement and
linear programming are also explained. Various examples show the application of
the theory. We treat stochastic linear-quadratic control problems, bandit problems
and dividend pay-out problems.
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1. Introduction

Do you want to play a card game? Yes? Then I will tell you how it works. We
have a well-shuffled standard 32-card deck which is also known as a piquet deck.
16 cards are red and 16 cards are black. Initially the card deck lies on the table
face down. Then I start to remove the cards and you are able to see its faces. Once
you have to say ”stop”. If the next card is black you win 10 Euro, if it is red you
loose 10 Euro. If you do not say ”stop” at all, the color of the last card is deciding.
Which stopping rule maximizes your expected reward?
Obviously, when you say ”stop” before a card is turned over, your expected reward
is

1
2
· 10 Euro +

1
2
· (−10) Euro = 0 Euro.

The same applies when you wait until the last card due to symmetry reasons. But
of course you are able to see the cards’ faces when turned over and thus always
know how many red and how many black cards are still in the deck. So there may
be a clever strategy which gives a higher expected reward than zero. How does it
look like?
There are now various methods to tackle this problem. We will solve it with the the-
ory of Markov Decision Processes. Loosely speaking this is the theory of controlled
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Markov chains. In the general theory a system is given which can be controlled
by sequential decisions. The state transitions are random and we assume that the
system state process is Markovian which means that previous states have no in-
fluence on future states. In the card game the state of the system is the number
of red and black cards which are still in the deck. Given the current state of the
system, the controller or decision maker has to choose an admissible action (in the
card game say ”stop” or ”go ahead”). Once an action is chosen there is a random
system transition according to a stochastic law (removing of next card which either
is black or red) which leads to a new state and the controller receives a reward. The
task is to control the process such that the expected total (discounted) rewards are
maximized.
We will see that problems like this can be solved recursively. When we return to
the card game for example it is quite easy to figure out the optimal strategy when
there are only 2 cards left in the stack. Knowing the value of the game with 2
cards it can be computed for 3 cards just by considering the two possible actions
”stop” and ”go ahead” for the next decision. We will see how this formally works
in Section 2.3.1.
First books on Markov Decision Processes are Bellman (1957) and Howard (1960).
The term ’Markov Decision Process’ has been coined by Bellman (1954). Shapley
(1953) was the first study of Markov Decision Processes in the context of stochastic
games. For more information on the origins of this research area see Puterman
(1994). Mathematical rigorous treatments of this optimization theory appeared
in Dubins and Savage (1965), Blackwell (1965), Shiryaev (1967), Hinderer (1970),
Bertsekas and Shreve (1978) and Dynkin and Yushkevich (1979). More recent
textbooks on this topic are Schäl (1990), Puterman (1994), Hernández-Lerma and
Lasserre (1996), Bertsekas (2001, 2005), Feinberg and Shwartz (2002), Powell (2007)
and Bäuerle and Rieder (2011).
This article is organized as follows: In the next section we introduce Markov De-
cision Processes with finite time horizon. We show how they can be solved and
consider as an example so-called stochastic linear-quadratic control problems. The
solution of the card game is also presented. In Section 3 we investigate Markov De-
cision Processes with infinite time horizon. These models are on the one hand more
complicated than the problems with finite time horizon since additional convergence
assumptions have to be satisfied, on the other hand the solution is often simpler
because the optimal strategy is stationary and the value function can be charac-
terized as the largest r-subharmonic function or as the unique fixed point of the
maximal reward operator. Here we will restrict the presentation to the so-called
(generalized) negative case. Besides some main theorems which characterize the
optimal solution we will also formulate two solution techniques, namely Howard’s
policy improvement and linear programming. As applications we consider a div-
idend pay-out problem and bandit problems. Further topics on Markov Decision
Processes are discussed in the last section. For proofs we refer the reader to the
forthcoming book of Bäuerle and Rieder (2011).

2. Markov Decision Processes with Finite Time Horizon

In this section we consider Markov Decision Models with a finite time horizon.
These models are given by a state space for the system, an action space where the
actions can be taken from, a stochastic transition law and reward functions. Hence
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Figure 1. General evolution of a Markov Decision Model.

a (non-stationary) Markov Decision Model with horizon N ∈ N consists of a set of
data (E,A, Dn, Qn, rn, gN ) with the following meaning for n = 0, 1, . . . , N − 1:

• E is the state space, endowed with a σ-algebra E. The elements (states) are
denoted by x ∈ E.

• A is the action space, endowed with a σ-algebra A. The elements (actions)
are denoted by a ∈ A.

• Dn ⊂ E×A is a measurable subset of E×A and denotes the set of admissible
state-action pairs at time n. In order to have a well-defined problem we
assume that Dn contains the graph of a measurable mapping fn : E → A,
i.e. (x, fn(x)) ∈ Dn for all x ∈ E. For x ∈ E, the set Dn(x) = {a ∈
A | (x, a) ∈ Dn} is the set of admissible actions in state x at time n.

• Qn is a stochastic transition kernel from Dn to E, i.e. for any fixed pair
(x, a) ∈ Dn, the mapping B 7→ Qn(B|x, a) is a probability measure on E and
(x, a) 7→ Qn(B|x, a) is measurable for all B ∈ E. The quantity Qn(B|x, a)
gives the probability that the next state at time n + 1 is in B if the current
state is x and action a is taken at time n. Qn describes the transition law.
If E is discrete we write qn(x′|x, a) := Qn({x′}|x, a).

• rn : Dn → R is a measurable function. rn(x, a) gives the (discounted) one-
stage reward of the system at time n if the current state is x and action a
is taken.

• gN : E → R is a measurable mapping. gN (x) gives the (discounted) terminal
reward of the system at time N if the state is x.

Next we introduce the notion of a strategy. Since the system is stochastic, a strategy
has to determine actions for every possible state of the system and for every time
point. A measurable mapping fn : E → A with the property fn(x) ∈ Dn(x) for all
x ∈ E, is called decision rule at time n. We denote by Fn the set of all decision
rules at time n. A sequence of decision rules π = (f0, f1, . . . , fN−1) with fn ∈ Fn

is called N -stage policy or N -stage strategy. If a decision maker follows a policy
π = (f0, f1, . . . , fN−1) and observes at time n the state x of the system, then the
action she chooses is fn(x). This means in particular that the decision at time
n depends only on the system state at time n. Indeed the decision maker could



4 N. BÄUERLE AND U. RIEDER

also base her decision on the whole history (x0, a0, x1 . . . , an−1, xn). But due to the
Markovian character of the problem it can be shown that the optimal policy (which
is defined below) is among the smaller class of so called Markovian policies we use
here.
We consider a Markov Decision Model as an N -stage random experiment. The un-
derlying probability space is given by the canonical construction as follows. Define
a measurable space (Ω,F) by

Ω = EN+1, F = E⊗ . . .⊗ E.

We denote ω = (x0, x1, . . . , xN ) ∈ Ω. The random variables X0, X1, . . . , XN are
defined on the measurable space (Ω,F) by

Xn(ω) = Xn((x0, x1, . . . , xN )) = xn,

being the n-th projection of ω. The random variable Xn represents the state of the
system at time n and (Xn) is called Markov Decision Process. Suppose now that
π = (f0, f1, . . . , fN−1) is a fixed policy and x ∈ E is a fixed initial state. There
exists a unique probability measure IPπ

x on (Ω,F) with
IPπ

x(X0 ∈ B) = εx(B) for all B ∈ E,
IPπ

x(Xn+1 ∈ B|X1, . . . , Xn) = IPπ
x(Xn+1 ∈ B|Xn) = Qn

(
B|Xn, fn(Xn)

)
,

where εx is the one-point measure concentrated in x. The second equation is the
so-called Markov property, i.e. the sequence of random variables X0, X1, . . . , Xn is
a non-stationary Markov process with respect to IPπ

x . By IEπ
x we denote the expec-

tation with respect to IPπ
x . Moreover we denote by IPπ

nx the conditional probability
IPπ

nx(·) := IPπ(· | Xn = x). IEπ
nx is the corresponding expectation operator.

We have to impose an assumption which guarantees that all appearing expectations
are well-defined. By x+ = max{0, x} we denote the positive part of x.

Integrability Assumption (AN): For n = 0, 1, . . . , N

δN
n (x) := sup

π
IEπ

nx

[
N−1∑
k=n

r+
k (Xk, fk(Xk)) + g+

N (XN )

]
< ∞, x ∈ E.

We assume that (AN ) holds for the N -stage Markov Decision Problems throughout
this section. Obviously Assumption (AN ) is satisfied if all rn and gN are bounded
from above. We can now introduce the expected discounted reward of a policy
and the N -stage optimization problem. For n = 0, 1, . . . , N and a policy π =
(f0, . . . , fN−1) let Vnπ(x) be defined by

Vnπ(x) := IEπ
nx

[
N−1∑
k=n

rk

(
Xk, fk(Xk)

)
+ gN (XN )

]
, x ∈ E.

The function Vnπ(x) is the expected total reward at time n over the remaining stages
n to N if we use policy π and start in state x ∈ E at time n. The value function
Vn is defined by

Vn(x) := sup
π

Vnπ(x), x ∈ E, (2.1)

and gives the maximal expected total reward at time n over the remaining stages n
to N if we start in state x ∈ E at time n. The functions Vnπ and Vn are well-defined
since

Vnπ(x) ≤ Vn(x) ≤ δN
n (x) < ∞, x ∈ E.
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Note that VNπ(x) = VN (x) = gN (x) and that Vnπ depends only on (fn, . . . , fN−1).
Moreover, it is in general not true that Vn is measurable. This causes (measure)
theoretic inconveniences. Some further assumptions are needed to imply this. A
policy π ∈ F0× . . .×FN−1 is called optimal for the N -stage Markov Decision Model
if V0π(x) = V0(x) for all x ∈ E.

2.1. The Bellman Equation. For a fixed policy π ∈ F0× . . .×FN−1 we can com-
pute the expected discounted rewards recursively by the so-called reward iteration.
First we introduce some important operators which simplify the notation. In what
follows let us denote

IM(E) := {v : E → [−∞,∞) | v is measurable}.

Due to our assumptions we have Vnπ ∈ IM(E) for all π and n.
We define the following operators for n = 0, 1, . . . , N − 1 and v ∈ IM(E):

(Lnv)(x, a) := rn(x, a) +
∫

v(x′)Qn(dx′|x, a), (x, a) ∈ Dn,

(Tnfv)(x) := (Lnv)(x, f(x)), x ∈ E, f ∈ Fn,

(Tnv)(x) := sup
a∈Dn(x)

(Lnv)(x, a), x ∈ E

whenever the integrals exist. Tn is called the maximal reward operator at time n.
The operators Tnf can now be used to compute the value of a policy recursively.

Theorem 2.1 (Reward Iteration). Let π = (f0, . . . , fN−1) be an N -stage policy.
For n = 0, 1, . . . , N − 1 it holds:

a) VNπ = gN and Vnπ = Tnfn
Vn+1,π.

b) Vnπ = Tnfn
. . . TN−1fN−1gN .

For the solution of Markov Decision Problems the following notion will be impor-
tant.

Definition 2.2. Let v ∈ IM(E). A decision rule f ∈ Fn is called a maximizer of v
at time n if Tnfv = Tnv, i.e. for all x ∈ E, f(x) is a maximum point of the mapping
a 7→ (Lnv)(x, a), a ∈ Dn(x).

Below we will see that Markov Decision Problems can be solved by successive
application of the Tn-operators. As mentioned earlier it is in general not true that
Tnv ∈ IM(E) for v ∈ IM(E). However, it can be shown that Vn is analytically
measurable and the sequence (Vn) satisfies the so-called Bellman equation

VN = gN ,

Vn = TnVn+1, n = 0, 1, . . . , N − 1,

see e.g. Bertsekas and Shreve (1978). Here we use a different approach and state
at first the following verification theorem. The proof is by recursion.

Theorem 2.3 (Verification Theorem). Let (vn) ⊂ IM(E) be a solution of the
Bellman equation. Then it holds:

a) vn ≥ Vn for n = 0, 1, . . . , N.
b) If f∗n is a maximizer of vn+1 for n = 0, 1, . . . , N − 1, then vn = Vn and

the policy (f∗0 , f∗1 , . . . , f∗N−1) is optimal for the N -stage Markov Decision
Problem.
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Theorem 2.3 states that whenever we have a solution of the Bellman equation,
together with the maximizers, then we have found a solution of the Markov Decision
Problem. Next we consider a general approach to Markov Decision Problems under
the following structure assumption. An important case where this assumption is
satisfied is given in Section 2.2.

Structure Assumption (SAN): There exist sets IMn ⊂ IM(E) of measurable
functions and sets ∆n ⊂ Fn of decision rules such that for all n = 0, 1, . . . , N − 1:

(i) gN ∈ IMN .
(ii) If v ∈ IMn+1 then Tnv is well-defined and Tnv ∈ IMn.
(iii) For all v ∈ IMn+1 there exists a maximizer fn of v with fn ∈ ∆n.

Often IMn is independent of n and it is possible to choose ∆n = Fn ∩ ∆ for a
set ∆ ⊂ {f : E → A measurable}, i.e all value functions and all maximizers have
the same structural properties. The next theorem shows how Markov Decision
Problems can be solved recursively by solving N (one-stage) optimization problems.

Theorem 2.4 (Structure Theorem). Let (SAN ) be satisfied. Then it holds:
a) Vn ∈ IMn and the value functions satisfy the Bellman equation, i.e. for

n = 0, 1, . . . , N − 1

VN (x) = gN (x),

Vn(x) = sup
a∈Dn(x)

{
rn(x, a) +

∫
Vn+1(x′)Qn(dx′|x, a)

}
, x ∈ E.

b) Vn = TnTn+1 . . . TN−1gN .
c) For n = 0, 1, . . . , N − 1 there exists a maximizer fn of Vn+1 with fn ∈ ∆n,

and every sequence of maximizers f∗n of Vn+1 defines an optimal policy
(f∗0 , f∗1 , . . . , f∗N−1) for the N -stage Markov Decision Problem.

Proof. Since b) follows directly from a) it suffices to prove a) and c). We show by
induction on n = N − 1, . . . , 0 that Vn ∈ IMn and that

Vnπ∗ = TnVn+1 = Vn

where π∗ = (f∗0 , . . . , f∗N−1) is the policy generated by the maximizers of V1, . . . , VN

and f∗n ∈ ∆n. We know VN = gN ∈ IMN by (SAN ) (i). Now suppose that the
statement is true for N − 1, . . . , n + 1. Since Vk ∈ IMk for k = N, . . . , n + 1,
the maximizers f∗n, . . . , f∗N−1 exist and we obtain with the reward iteration and
the induction hypothesis (note that f∗0 , . . . , f∗n−1 are not relevant for the following
equation)

Vnπ∗ = Tnf∗nVn+1,π∗ = Tnf∗nVn+1 = TnVn+1.

Hence Vn ≥ TnVn+1. On the other hand we have for an arbitrary policy π

Vnπ = Tnfn
Vn+1,π ≤ Tnfn

Vn+1 ≤ TnVn+1

where we use the fact that Tnfn
is order preserving, i.e. v ≤ w implies Tnfn

v ≤
Tnfnw. Taking the supremum over all policies yields Vn ≤ TnVn+1. Altogether it
follows that

Vnπ∗ = TnVn+1 = Vn

and in view of (SAN ), Vn ∈ IMn. �
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2.2. Semicontinuous Markov Decision Processes. In this section we give suf-
ficient conditions under which assumptions (AN ) and (SAN ) are satisfied and thus
imply the validity of the Bellman equation and the existence of optimal policies.
The simplest case arises when state and action spaces are finite in which case (AN )
is obviously satisfied and (SAN ) is satisfied with IMn and ∆n being the set of all
functions v : E → [−∞,∞) and f : S → A respectively. We assume now that E
and A are Borel spaces, i.e. Borel subsets of Polish spaces (i.e. complete, separable,
metric spaces). Also Dn is assumed to be a Borel subset of E×A. Let us first con-
sider the Integrability Assumption (AN ). It is fulfilled when the Markov Decision
Model has a so-called upper bounding function.

Definition 2.5. A measurable function b : E → R+ is called an upper bounding
function for the Markov Decision Model if there exist cr, cg, αb ∈ R+ such that for
all n = 0, 1, . . . , N − 1:

(i) r+
n (x, a) ≤ crb(x) for all (x, a) ∈ Dn,

(ii) g+
N (x) ≤ cgb(x) for all x ∈ E,

(iii)
∫

b(x′)Qn(dx′|x, a) ≤ αbb(x) for all (x, a) ∈ Dn.

When an upper bounding function exists we denote in the sequel

αb := sup
(x,a)∈D

∫
b(x′)Q(dx′|x, a)

b(x)

(with the convention 0
0 := 0). If rn and gN are bounded from above, then obviously

b ≡ 1 is an upper bounding function. For v ∈ IM(E) we define the weighted
supremum norm by

‖v‖b := sup
x∈E

|v(x)|
b(x)

and introduce the set

IBb := {v ∈ IM(E) | ‖v‖b < ∞}.

The next result is fundamental for many applications.

Proposition 2.6. If the Markov Decision Model has an upper bounding function
b, then δN

n ∈ IBb and the Integrability Assumption (AN ) is satisfied.

In order to satisfy (SAN ) we consider so-called semicontinuous models. In the next
definition M is supposed to be a Borel space.

Definition 2.7. a) A function v : M → R̄ is called upper semicontinuous if
for all sequences (xn) ⊂ M with limn→∞ xn = x ∈ M it holds

lim sup
n→∞

v(xn) ≤ v(x).

b) The set-valued mapping x 7→ D(x) is called upper semicontinuous if it has
the following property for all x ∈ E: If xn → x and an ∈ D(xn) for all
n ∈ N, then (an) has an accumulation point in D(x).

The next theorem presents easy to check conditions which imply (SAN ).

Theorem 2.8. Suppose a Markov Decision Model with an upper bounding function
b is given and for all n = 0, 1, . . . , N − 1 it holds:

(i) Dn(x) is compact for all x ∈ E and x 7→ Dn(x) is upper semicontinuous,
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(ii) (x, a) 7→
∫

v(x′)Qn(dx′|x, a) is upper semicontinuous for all upper semicon-
tinuous v with v+ ∈ IBb,

(iii) (x, a) 7→ rn(x, a) is upper semicontinuous,
(iv) x 7→ gN (x) is upper semicontinuous.

Then the sets IMn := {v ∈ IM(E) | v+ ∈ IBb, v is upper semicontinuous} and
∆n := Fn satisfy the Structure Assumption (SAN ).

Of course, it is possible to give further conditions which imply (SAN ), e.g. other
continuity and compactness conditions, monotonicity conditions, concavity or con-
vexity conditions (see Bäuerle and Rieder (2011), Chapter 2).

2.3. Applications of Finite-Stage Markov Decision Processes. In this sec-
tion we present the solution of the card game and investigate stochastic linear-
quadratic control problems. Both examples illustrate the solution method for finite-
stage Markov Decision Processes.

2.3.1. Red-and-Black Card-Game. Let us first reconsider the card game of the
introduction. The state of the system is the number of cards which are still uncov-
ered, thus

E := {x = (b, r) ∈ N2
0 | b ≤ b0, r ≤ r0}

and N = r0 + b0 where r0 and b0 are the total number of red and black cards in
the deck. The state (0, 0) will be absorbing. For x ∈ E and x /∈ {(0, 1), (1, 0)} we
have Dn(x) = A = {0, 1} with the interpretation that a = 0 means ”go ahead”
and a = 1 means ”stop”. Since the player has to take the last card if she had
not stopped before we have DN−1

(
(0, 1)

)
= DN−1

(
(1, 0)

)
= {1}. The transition

probabilities are given by

qn

(
(b, r − 1) | (b, r), 0

)
:=

r

r + b
, r ≥ 1, b ≥ 0

qn

(
(b− 1, r) | (b, r), 0

)
:=

b

r + b
, r ≥ 0, b ≥ 1

qn

(
(0, 0) | (b, r), 1

)
:= 1, (b, r) ∈ E.

qn

(
(0, 0) | (0, 0), a

)
:= 1, a ∈ A.

The one-stage reward is given by the expected reward

rn

(
(b, r), 1

)
:=

b− r

b + r
for (b, r) ∈ E \ {(0, 0)},

and the reward is zero otherwise. Finally we define

gN (b, r) :=
b− r

b + r
for (b, r) ∈ E \ {(0, 0)}

and gN ((0, 0)) = 0. Since E and A are finite, (AN ) and also the Structure Assump-
tion (SAN ) is clearly satisfied with

IMn = IM := {v : E → R | v(0, 0) = 0} and ∆ := F.
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In particular we immediately know that an optimal policy exists. The maximal
reward operator is given by

(Tnv)(b, r) := max
{

b− r

b + r
,

r

r + b
v(r − 1, b) +

b

r + b
v(r, b− 1)

}
for b + r ≥ 2,

(TN−1v)(1, 0) := 1,

(TN−1v)(0, 1) := −1,

(Tnv)(0, 0) := 0.

It is not difficult to see that gN = TngN for n = 0, 1, . . . , N − 1. For x = (b, r) ∈ E
with r + b ≥ 2 the computation is as follows:

(TngN )(b, r) = max
{

b− r

b + r
,

r

r + b
gN (r − 1, b) +

b

r + b
gN (r, b− 1)

}
= max

{
b− r

b + r
,

r

r + b
· b− r + 1
r + b− 1

+
b

r + b
· b− r − 1
r + b− 1

}
= max

{
b− r

b + r
,

b− r

b + r

}
= gN (b, r).

Since both expressions for a = 0 and a = 1 are identical, every f ∈ F is a maximizer
of gN . Applying Theorem 2.4 we obtain that Vn = Tn . . . TN−1gN = gN and we can
formulate the solution of the card game.

Theorem 2.9. The maximal value of the card game is given by

V0(b0, r0) = gN (b0, r0) =
b0 − r0

b0 + r0
,

and every strategy is optimal.

Thus, there is no strategy which yields a higher expected reward than the trivial
ones discussed in the introduction. The game is fair (i.e. V0(b0, r0) = 0) if and
only if r0 = b0. Note that the card game is a stopping problem. The theory of
optimal stopping problems can be found e.g. in Peskir and Shiryaev (2006). For
more gambling problems see Ross (1983).

2.3.2. Stochastic Linear-Quadratic Control Problems. A famous class of
control problems with different applications are linear-quadratic problems (LQ-
problems). The name stems from the linear state transition function and the qua-
dratic cost function. In what follows we suppose that E := Rm is the state space
of the underlying system and Dn(x) := A := Rd, i.e. all actions are admissible.
The state transition is linear in state and action with random coefficient matrices
A1, B1, . . . , AN , BN with suitable dimensions, i.e. the system transition is given by

Xn+1 := An+1Xn + Bn+1fn(Xn).

We suppose that the random matrices (A1, B1), (A2, B2), . . . are independent but
not necessarily identically distributed and have finite expectation and covariance.
Thus, the law of Xn+1 is given by the kernel

Qn(B|x, a) := IP
(
(An+1x + Bn+1a) ∈ B

)
, B ∈ B(Rm).

Moreover, we assume that IE
[
B>

n+1RBn+1

]
is positive definite for all symmetric

positive definite matrices R. The one-stage reward is a negative cost function

rn(x, a) := −x>Rnx
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and the terminal reward is

gN (x, a) := −x>RNx

with deterministic, symmetric and positive definite matrices R0, R1, . . . , RN . There
is no discounting. The aim is to minimize

IEπ
x

[
N∑

k=0

X>
k RkXk

]
over all N -stage policies π. Thus, the aim is to minimize the expected quadratic
distance of the state process to the benchmark zero.

We have rn ≤ 0 and b ≡ 1 is an upper bounding function, thus (AN ) is satisfied.
We will treat this problem as a cost minimization problem, i.e. we suppose that Vn

is the minimal cost in the period [n, N ]. For the calculation below we assume that
all expectations exist. The minimal cost operator is given by

Tnv(x) = inf
a∈Rd

{
x>Rnx + IE v

(
An+1x + Bn+1a

)}
.

We will next check the Structure Assumption (SAN ). It is reasonable to assume
that IMn is given by

IMn := {v : Rm → R+ | v(x) = x>Rx with R symmetric, positive definite}.
It will also turn out that the sets ∆n := ∆ ∩ Fn can be chosen as the set of all
linear functions, i.e.

∆ := {f : E → A | f(x) = Cx for some C ∈ R(d,m)}.
Let us start with assumption (SAN )(i): Obviously x>RNx ∈ IMN . Now let v(x) =
x>Rx ∈ IMn+1. We try to solve the following optimization problem

Tnv(x) = inf
a∈Rd

{
x>Rnx + IE v

(
An+1x + Bn+1a

)}
= inf

a∈Rd

{
x>Rnx + x> IE

[
A>n+1RAn+1

]
x + 2x> IE

[
A>n+1RBn+1

]
a

+a> IE
[
B>

n+1RBn+1

]
a
}

.

Since R is positive definite, we have by assumption that IE
[
B>

n+1RBn+1

]
is also

positive definite and thus regular and the function in brackets is convex in a (for
fixed x ∈ E). Differentiating with respect to a and setting the derivative equal to
zero, we obtain that the unique minimum point is given by

f∗n(x) = −
(

IE
[
B>

n+1RBn+1

])−1

IE
[
B>

n+1RAn+1

]
x.

Inserting the minimum point into the equation for Tnv yields

Tnv(x) = x>
(
Rn + IE

[
A>n+1RAn+1

]
− IE

[
A>n+1RBn+1

](
IE

[
B>

n+1RBn+1

])−1

IE
[
B>

n+1RAn+1

])
x = x>R̃x

where R̃ is defined as the expression in the brackets. Note that R̃ is symmetric and
since x′R̃x = Tnv(x) ≥ x>Rnx, it is also positive definite. Thus T v ∈ IMn and the
Structure Assumption (SAN ) is satisfied for IMn and ∆n = ∆ ∩ Fn. Now we can
apply Theorem 2.4 to solve the stochastic linear-quadratic control problem.
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Theorem 2.10. a) Let the matrices R̃n be recursively defined by

R̃N := RN

R̃n := Rn + IE
[
A>n+1R̃n+1An+1

]
− IE

[
A>n+1R̃n+1Bn+1

](
IE

[
B>

n+1R̃n+1Bn+1

])−1 IE
[
B>

n+1R̃n+1An+1

]
.

Then R̃n are symmetric, positive semidefinite and Vn(x) = x>R̃nx, x ∈ E.
b) The optimal policy (f∗0 , . . . , f∗N−1) is given by

f∗n(x) := −
(

IE
[
B>

n+1R̃n+1Bn+1

])−1

IE
[
B>

n+1R̃n+1An+1

]
x.

Note that the optimal decision rule is a linear function of the state and the coefficient
matrix can be computed off-line. The minimal cost function is quadratic. If the
state of the system cannot be observed completely the decision rule is still linear
in the state but here the coefficient matrix has to be estimated recursively. This
follows from the principle of estimation and control.
Our formulation of the stochastic LQ-problem can be generalized in different ways
without leaving the LQ-framework (see e.g. Bertsekas (2001, 2005)). For example
the cost function can be extended to

IEπ
x

[
N∑

k=0

(Xk − bk)>Rk(Xk − bk) +
N−1∑
k=0

fk(Xk)>R̂kfk(Xk)

]

where R̂k are deterministic, symmetric positive semidefinite matrices and bk are
deterministic vectors. In this formulation the control itself is penalized and the
expected distance of the state process to the benchmarks bk has to be kept small.

2.3.3. Further Applications. Applications of Markov Decision Processes can be
found in stochastic operations research, engineering, computer science, logistics and
economics (see e.g. Stokey and Lucas (1989), Bertsekas (2001, 2005), Tijms (2003),
Meyn (2008), Bäuerle and Rieder (2011)). Prominent examples are inventory-
production control, control of queues (controls can be routing, scheduling), portfo-
lio optimization (utility maximization, index-tracking, indifference pricing, Mean-
Variance problems), pricing of American options and resource allocation problems
(resources could be manpower, computer capacity, energy, money, water etc.). Re-
cent practical applications are e.g. given in Goto et al. (2004) (Logistics), Enders
et al. (2010) (Energy systems) and He et al. (2010) (Health care). Research areas
which are closely related to Markov Decision Processes are optimal stopping and
multistage (dynamic) game theory.
Markov Decision Problems also arise when continuous-time stochastic control prob-
lems are discretized. This numerical procedure is known under the name approxi-
mating Markov chain approach and is discussed e.g. in Kushner and Dupuis (2001).
Stochastic control problems in continuous-time are similar to the theory explained
here, however require a quite different mathematical background. There the Bell-
man equation is replaced by the so-called Hamilton-Jacobi-Bellman equation and
tools from stochastic analysis are necessary. Continuous-time Markov Decision
Processes are treated in Guo and Hernández-Lerma (2009).
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3. Markov Decision Processes with Infinite Time Horizon

In this chapter we consider Markov Decision Models with an infinite time horizon.
There are situations where problems with infinite time horizon arise in a natural
way, e.g. when the random lifetime of a stochastic system is considered. However
more important is the fact that Markov Decision Models with finite but large hori-
zon can be approximated by models with infinite time horizon. In what follows
we always assume that a stationary Markov Decision Model with infinite horizon
is given, i.e. the data does not depend on the time parameter n and we thus have
a state space E, an action space A, a set of admissible state-action pairs D, a
transition kernel Q, a one-stage reward r and a discount factor β ∈ (0, 1]. By F
we denote the set of all decision rules, i.e. measurable functions f : E → A with
f(x) ∈ D(x) for all x ∈ E.
Let π = (f0, f1, . . .) ∈ F∞ be a policy for the infinite-stage Markov Decision Model.
Then we define

J∞π(x) := IEπ
x

[ ∞∑
k=0

βkr
(
Xk, fk(Xk)

)]
, x ∈ E

which gives the expected discounted reward under policy π (over an infinite time
horizon) when we start in state x. The performance criterion is then

J∞(x) := sup
π

J∞π(x), x ∈ E. (3.1)

The function J∞(x) gives the maximal expected discounted reward (over an infinite
time horizon) when we start in state x. A policy π∗ ∈ F∞ is called optimal if
J∞π∗(x) = J∞(x) for all x ∈ E. In order to have a well-defined problem we assume

Integrability Assumption (A):

δ(x) := sup
π

IEπ
x

[ ∞∑
k=0

βkr+
(
Xk, fk(Xk)

)]
< ∞, x ∈ E.

In this stationary setting the operators of the previous section read

(Lv)(x, a) := r(x, a) + β

∫
v(x′)Q(dx′|x, a), (x, a) ∈ D,

(Tfv)(x) := (Lv)(x, f(x)), x ∈ E, f ∈ F,

(T v)(x) := sup
a∈D(x)

(Lv)(x, a), x ∈ E.

When we now define for n ∈ N0

Jnπ(x) := Tf0 . . . Tfn−10(x), π ∈ F∞

Jn(x) := T n0(x),

then the interpretation of Jn(x) is the maximal expected discounted reward over
n stages when we start in state x and the terminal reward function is zero, i.e. it
holds

Jnπ(x) = IEπ
x

[ n−1∑
k=0

βkr
(
Xk, fk(Xk)

)]
Jn(x) = sup

π
Jnπ(x), x ∈ E.
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Moreover, it is convenient to introduce the set

IB := {v ∈ IM(E) | v(x) ≤ δ(x) for all x ∈ E}.

Obviously, we have J∞π ∈ IB for all policies π. In order to guarantee that the
infinite horizon problem is an approximation of the finite horizon model, we use
the following convergence assumption.

Convergence Assumption (C):

lim
n→∞

sup
π

IEπ
x

[ ∞∑
k=n

βkr+
(
Xk, fk(Xk)

)]
= 0, x ∈ E.

When assumptions (A) and (C) are satisfied we speak of the so-called (generalized)
negative case. It is fulfilled e.g. if there exists an upper bounding function b and
βαb < 1. In particular if r ≤ 0 or r is bounded from above and β ∈ (0, 1).
The Convergence Assumption (C) implies that limn→∞ Jnπ and limn→∞ Jn exist.
Moreover, for π ∈ F∞ we obtain

J∞π = lim
n→∞

Jnπ.

Next we define the limit value function by

J(x) := lim
n→∞

Jn(x) ≤ δ(x), x ∈ E.

By definition it obviously holds that Jnπ ≤ Jn for all n ∈ N, hence J∞π ≤ J for all
policies π. Taking the supremum over all π implies

J∞(x) ≤ J(x), x ∈ E.

The next example shows that in general J 6= J∞.

Example 3.1. We consider the following Markov Decision Model: Suppose that the
state space is E := N and the action space is A := N. Further let D(1) := {3, 4, . . .}
and D(x) := A for x ≥ 2 be the admissible actions. The transition probabilities
are given by

q(a|1, a) := 1,

q(2|2, a) := 1,

q(x− 1|x, a) := 1 for x ≥ 3.

All other transition probabilities are zero (cf. Figure 2). Note that state 2 is an
absorbing state. The discount factor is β = 1 and the one-stage reward function is
given by

r(x, a) := −δx3, (x, a) ∈ D.

Since the reward is non-positive, assumptions (A) and (C) are satisfied.
We will compute now J and J∞. Since state 2 is absorbing, we obviously have
J∞(2) = 0 and J∞(x) = −1 for x 6= 2. On the other hand we obtain for n ∈ N that

Jn(x) =

 0 , for x = 1, 2
−1 , for 3 ≤ x ≤ n + 2

0 , for x > n + 2.

Thus, J∞(1) = −1 6= 0 = J(1) = limn→∞ Jn(1).
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Figure 2. Transition diagram of Example 3.1.

As in the finite horizon model the following reward iteration holds where Jf :=
J∞(f,f,...) for a stationary policy (f, f, . . .).

Theorem 3.2 (Reward Iteration). Assume (C) and let π = (f, σ) ∈ F × F∞.
Then it holds:

a) J∞π = TfJ∞σ.
b) Jf ∈ IB and Jf = TfJf .

The functions Jn, J and J∞ are in general not in IB. However, J∞ and J are
analytically measurable and satisfy

J∞ = T J∞ and J ≥ T J,

see e.g. Bertsekas and Shreve (1978). As in Section 2 we formulate here a verifica-
tion theorem in order to avoid the general measurability problems.

Theorem 3.3 (Verification Theorem). Assume (C) and let v ∈ IB be a fixed
point of T such that v ≥ J∞. If f∗ is a maximizer of v, then v = J∞ and
the stationary policy (f∗, f∗, . . .) is optimal for the infinite-stage Markov Decision
Problem.

Natural candidates for a fixed point of T are the functions J∞ and J . In what
follows we want to solve the optimization problem (3.1) and at the same time we
would like to have J∞ = J . In order to obtain this statement we require the
following structure assumption.

Structure Assumption (SA): There exists a set IM ⊂ IM(E) of measurable
functions and a set ∆ ⊂ F of decision rules such that:

(i) 0 ∈ IM .
(ii) If v ∈ IM then

(T v)(x) := sup
a∈D(x)

{
r(x, a) + β

∫
v(x′)Q(dx′|x, a)

}
, x ∈ E

is well-defined and T v ∈ IM .
(iii) For all v ∈ IM there exists a maximizer f ∈ ∆ of v.
(iv) J ∈ IM and J = T J .

Note that conditions (i)-(iii) together constitute the Structure Assumption of Sec-
tion 2 in a stationary model with gN ≡ 0. Condition (iv) imposes additional
properties on the limit value function.
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Theorem 3.4 (Structure Theorem). Let (C) and (SA) be satisfied. Then it
holds:

a) J∞ ∈ IM , J∞ = T J∞ and J∞ = J = limn→∞ Jn.
b) J∞ is the largest r-subharmonic function v in IM ∩ IB, i.e J∞ is the largest

function v in IM with v ≤ T v and v ≤ δ.
c) There exists a maximizer f ∈ ∆ of J∞, and every maximizer f∗ of J∞ de-

fines an optimal stationary policy (f∗, f∗, . . .) for the infinite-stage Markov
Decision Model.

The equation J∞ = T J∞ is called Bellman equation for the infinite-stage Markov
Decision Model. Often this fixed point equation is also called optimality equation.
Part a) of the preceding theorem shows that J∞ is approximated by Jn for n large,
i.e. the value of the infinite horizon Markov Decision Problem can be obtained by
iterating the T -operator. This procedure is called value iteration. Part c) shows
that an optimal policy can be found among the stationary ones.
As in the case of a finite horizon it is possible to give conditions on the model data
under which (SA) and (C) are satisfied. We restrict here to one set of continuity
and compactness conditions.
In what follows let E and A be Borel spaces, let D be a Borel subset of E ×A and
define

D∗
n(x) := {a ∈ D(x) | a is a maximum point of a 7→ LJn−1(x, a)}

for n ∈ N ∪ {∞} and x ∈ E and

LsD∗
n(x) := {a ∈ A | a is an accumulation point of a sequence (an) with

an ∈ D∗
n(x) for n ∈ N},

the so-called upper limit of the set sequence (D∗
n(x)).

Theorem 3.5. Suppose there exists an upper bounding function b with βαb < 1
and it holds:

(i) D(x) is compact for all x ∈ E and x 7→ D(x) is upper semicontinuous,
(ii) (x, a) 7→

∫
v(x′)Q(dx′|x, a) is upper semicontinuous for all upper semicon-

tinuous v with v+ ∈ IBb,
(iii) (x, a) 7→ r(x, a) is upper semicontinuous.

Then it holds:

a) J∞ = T J∞ and J∞ = limn→∞ Jn. (Value Iteration).
b) If b is upper semicontinuous then J∞ is upper semicontinuous.
c) ∅ 6= LsD∗

n(x) ⊂ D∗
∞(x) for all x ∈ E. (Policy Iteration).

d) There exists an f∗ ∈ F with f∗(x) ∈ LsD∗
n(x) for all x ∈ E, and the

stationary policy (f∗, f∗, . . .) is optimal.

Suppose the assumptions of Theorem 3.5 are satisfied and the optimal stationary
policy f∞ is unique, i.e. we obtain D∗

∞(x) = {f(x)}. Now suppose (f∗n) is a
sequence of decision rules where f∗n is a maximizer of Jn−1. According to part c)
we must have limn→∞ f∗n = f . This means that we can approximate the optimal
policy for the infinite horizon Markov Decision Problem by a sequence of optimal
policies for the finite-stage problems. This property is called policy iteration.
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Remark 3.6. If we define

εn(x) := sup
π

IEπ
x

[ ∞∑
k=n

βkr−
(
Xk, fk(Xk)

)]
, x ∈ E,

where x− = max{0,−x} denotes the negative part of x, then instead of (A) and (C)
one could require ε0(x) < ∞ and limn→∞ εn(x) = 0 for all x ∈ E. In this case we
speak of a (generalized) positive Markov Decision Model. This type of optimization
problem is not dual to the problems we have discussed so far. In particular, the
identification of optimal policies is completely different (see e.g. Bertsekas and
Shreve (1978), Schäl (1990)).

3.1. Contracting Markov Decision Processes. An advantageous and impor-
tant situation arises when the operator T is contracting. To explain this we assume
that the Markov Decision Model has a so-called bounding function (instead of an
upper bounding function which we have considered so far).

Definition 3.7. A measurable function b : E → R+ is called a bounding function
for the Markov Decision Model if there exist constants cr, αb ∈ R+, such that

(i) |r(x, a)| ≤ crb(x) for all (x, a) ∈ D.
(ii)

∫
b(x′)Q(dx′|x, a) ≤ αbb(x) for all (x, a) ∈ D.

Markov Decision Models with a bounding function b and βαb < 1 are called con-
tracting. We will see in Lemma 3.8 that βαb is the module of the operator T .
If r is bounded, then b ≡ 1 is a bounding function. If moreover β < 1, then
the Markov Decision Model is contracting (the classical discounted case). For any
contracting Markov Decision Model the assumptions (A) and (C) are satisfied, since
δ ∈ IBb and there exists a constant c > 0 with

lim
n→∞

sup
π

IEπ
x

[ ∞∑
k=n

βkr+
(
Xk, fk(Xk)

)]
≤ c lim

n→∞
(βαb)nb(x) = 0.

Lemma 3.8. Suppose the Markov Decision Model has a bounding function b and
let f ∈ F .

a) For v, w ∈ IBb it holds:

‖Tfv − Tfw‖b ≤ βαb‖v − w‖b

‖T v − T w‖b ≤ βαb‖v − w‖b.

b) Let βαb < 1. Then Jf = limn→∞ T n
f v for all v ∈ IBb, and Jf is the unique

fixed point of Tf in IBb.

Theorem 3.9 (Verification Theorem ). Let b be a bounding function, βαb < 1
and let v ∈ IBb be a fixed point of T : IBb → IBb. If f∗ is a maximizer of v, then
v = J∞ = J and (f∗, f∗, . . .) is an optimal stationary policy.

The next theorem is the main result for contracting Markov Decision Processes.
It is a conclusion from Banach’s fixed point theorem. Recall that (IBb, ‖ · ‖b) is a
Banach space.

Theorem 3.10 (Structure Theorem). Let b be a bounding function and βαb < 1.
If there exists a closed subset IM ⊂ IBb and a set ∆ ⊂ F such that

(i) 0 ∈ IM ,
(ii) T : IM → IM ,
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(iii) for all v ∈ IM there exists a maximizer f ∈ ∆ of v,

then it holds:

a) J∞ ∈ IM , J∞ = T J∞ and J∞ = limn→∞ Jn.
b) J∞ is the unique fixed point of T in IM .
c) J∞ is the smallest r-superharmonic function v ∈ IM , i.e. J∞ is the smallest

function v ∈ IM with v ≥ T v.
d) Let v ∈ IM . Then

‖J∞ − T nv‖b ≤
(
βαb

)n

1− βαb
‖T v − v‖b.

e) There exists a maximizer f ∈ ∆ of J∞, and every maximizer f∗ of J∞
defines an optimal stationary policy (f∗, f∗, . . .).

3.2. Applications of Infinite-Stage Markov Decision Processes. In this sub-
section we consider bandit problems and dividend pay-out problems. Applications
to finance are investigated in Bäuerle and Rieder (2011). In particular, optimiza-
tion problems with random horizon can be solved via infinite-stage Markov Decision
Processes.

3.2.1. Bandit Problems. An important application of Markov Decision Problems
are so-called bandit problems. We will restrict here to Bernoulli bandits with two-
arms. The game is as follows: Imagine we have two slot machines with unknown
success probability θ1 and θ2. The success probabilities are chosen independently
from two prior Beta-distributions. At each stage we have to choose one of the
arms. We receive one Euro if the arm wins, else no cash flow appears. The aim is
to maximize the expected discounted reward over an infinite number of trials. One
of the first (and more serious) applications is to medical trials of a new drug. In the
beginning the cure rate of the new drug is not known and may be in competition to
well-established drugs with known cure rate (this corresponds to one bandit with
known success probability). The problem is not trivial since it is not necessarily
optimal to choose the arm with the higher expected success probability. Instead
one has to incorporate ’learning effects’ which means that sometimes one has to pull
one arm just to get some information about its success probability. It is possible to
prove the optimality of a so-called index-policy, a result which has been generalized
further for multi-armed bandits.
The bandit problem can be formulated as a Markov Decision Model as follows. The
state is given by the number of successes ma and failures na at both arms a = 1, 2
which have appeared so far. Hence x = (m1, n1,m2, n2) ∈ E = N2

0 × N2
0 gives the

state. The action space is A := {1, 2} where a is the number of the arm which is
chosen next. Obviously D(x) = A. The transition law is given by

q(x + e2a−1|x, a) =
ma + 1

ma + na + 2
=: pa(x)

q(x + e2a|x, a) = 1− pa(x)

where ea is the a-th unit vector. The one-stage reward at arm a is r(x, a) := pa(x)
which is the expected reward when we win one Euro in case of success and nothing
else, given the information x = (m1, n1,m2, n2) of successes and failures. We
assume that β ∈ (0, 1).
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It is convenient to introduce the following notation, where v : E → R:

(Qav)(x) := pa(x)v(x + e2a−1) + (1− pa(x))v(x + e2a), x ∈ E.

Observe that since r is bounded (i.e. we can choose b ≡ 1) and β < 1 we have a
contracting Markov Decision Model. Moreover, the assumptions of Theorem 3.10
are satisfied and we obtain that the value function J∞ of the infinite horizon Markov
Decision Model is the unique solution of

J∞(x) = max
{

p1(x) + βQ1J∞(x), p2(x) + βQ2J∞(x)
}

, x ∈ N2
0 × N2

0

and a maximizer f∗ of J∞ defines an optimal stationary policy (f∗, f∗, . . .).
A very helpful tool in the solution of the infinite horizon bandit are the so-called
K-stopping problems. In a K-stopping problem only one arm of the bandit is con-
sidered and the decision maker can decide whether she pulls the arm and continues
the game or whether she takes the reward K and quits. The maximal expected
reward J(m,n;K) of the K-stopping problem is then the unique solution of

v(m,n) = max
{

K, p(m,n) + β
(
p(m,n)v(m + 1, n) + (1− p(m,n))v(m,n + 1)

)}
for (m,n) ∈ N2

0 where p(m,n) = m+1
m+n+2 . Obviously it holds that J(·;K) ≥ K and

if K is very large it will be optimal to quit the game, thus J(m,n;K) = K for large
K.

Definition 3.11. For (m,n) ∈ N2
0 we define the function

I(m,n) := min{K ∈ R | J(m,n;K) = K}

which is called Gittins-index.

The main result for the bandit problem is the optimality of the Gittins-index policy.

Theorem 3.12. The stationary Index-policy (f∗, f∗, . . .) is optimal for the infinite
horizon bandit problem where for x = (m1, n1,m2, n2)

f∗(x) :=
{

2 if I(m2, n2) ≥ I(m1, n1)
1 if I(m2, n2) < I(m1, n1).

Remarkable about this policy is that we compute for each arm separately its own
index (which depends only on the model data of this arm) and choose the arm with
the higher index. This reduces the numerical effort enormous since the state space
of the separate problems is much smaller. A small state space is crucial because of
the curse of dimensionality for the value iteration.
The Bernoulli bandit with infinite horizon is a special case of the multiproject
bandit. In a multiproject bandit problem m projects are available which are all in
some states. One project has to be selected to work on or one chooses to retire. The
project which is selected then changes its state whereas the other projects remain
unchanged. Gittins (1989) was the first to show that multiproject bandits can be
solved by considering single-projects and that the optimal policy is an index-policy,
see also Berry and Fristedt (1985). Various different proofs have been given in
the last decades. Further extensions are restless bandits where the other projects
can change their state too and bandits in continuous-time. Bandit models with
applications in finance are e.g. treated in Bank and Föllmer (2003).
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3.2.2. Dividend Pay-out Problems. Dividend pay-out problems are classical
problems in risk theory. There are many different variants of it in discrete and
continuous time. Here we consider a completely discrete setting which has the
advantage that the structure of the optimal policy can be identified.
Imagine we have an insurance company which earns some premia on the one hand
but has to pay out possible claims on the other hand. We denote by Zn the
difference between premia and claim sizes in the n-th time interval and assume that
Z1, Z2, . . . are independent and identically distributed with distribution (qk, k ∈ Z),
i.e. IP(Zn = k) = qk for k ∈ Z. At the beginning of each time interval the insurer can
decide upon paying a dividend. Of course this can only be done if the risk reserve
at that time point is positive. Once the risk reserve got negative (this happens
when the claims are larger than the reserve plus premia in that time interval) we
say that the company is ruined and has to stop its business. The aim now is to
maximize the expected discounted dividend pay out until ruin. In the economic
literature this value is sometimes interpreted as the value of the company.
We formulate this problem as a stationary Markov Decision Problem with infinite
horizon. The state space is E := Z where x ∈ E is the current risk reserve. At
the beginning of each period we have to decide upon a possible dividend pay out
a ∈ A := N0. Of course we have the restriction that a ∈ D(x) := {0, 1, . . . , x} when
x ≥ 0 and we set D(x) := {0} if x < 0. The transition probabilities are given by

q(x′|x, a) := qx′−x+a, x ≥ 0, a ∈ D(x), x′ ∈ Z.

In order to make sure that the risk reserve cannot recover from ruin and no further
dividend can be paid we have to freeze the risk reserve after ruin. This is done by
setting

q(x|x, 0) := 1, x < 0.

The dividend pay-out is rewarded by r(x, a) := a and the discount factor is β ∈
(0, 1). When we define the ruin time by

τ := inf{n ∈ N0 | Xn < 0}

then for a policy π = (f0, f1, . . .) ∈ F∞ we obtain

J∞π(x) = IEπ
x

[
τ−1∑
k=0

βkfk(Xk)

]
.

Obviously J∞π(x) = 0 if x < 0. In order to have a well-defined and non-trivial
model we assume that

IP(Z1 < 0) > 0 and IE Z+
1 < ∞.

Then the function b(x) := 1 + x, x ≥ 0 and b(x) := 0, x < 0 is a bounding
function with supπ IEπ

x [b(Xn)] ≤ b(x) + n IE Z+
1 , n ∈ N. Moreover, for x ≥ 0 we

obtain δ(x) ≤ x + β IE Z+
1

1−β , and hence δ ∈ IBb. Thus, the Integrability Assumption
(A) and the Convergence Assumption (C) are satisfied and IM := IBb fulfills (SA).
Moreover, Theorem 3.4 yields that limn→∞ Jn = J∞ and

J∞(x) = (T J∞)(x) = max
a∈{0,1,...,x}

{
a + β

∞∑
k=a−x

J∞(x− a + k)qk

}
, x ≥ 0.
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Obviously, J∞(x) = 0 for x < 0. Further, every maximizer of J∞ (which obviously
exists) defines an optimal stationary policy (f∗, f∗, . . .). In what follows, let f∗ be
the largest maximizer of J∞.

Definition 3.13. A stationary policy f∞ is called a band-policy, if there exist n ∈
N0 and numbers a0, . . . an, b1, . . . bn ∈ N0 such that bk − ak−1 ≥ 2 for k = 1, . . . , n
and 0 ≤ a0 < b1 ≤ a1 < b2 ≤ . . . < bn ≤ an and

f(x) =


0, if x ≤ a0

x− ak, if ak < x < bk+1

0, if bk ≤ x ≤ ak

x− an, if x > an

A stationary policy f∞ is called a barrier-policy if there exists b ∈ N0 such that

f(x) =
{

0, if x ≤ b
x− b, if x > b.

Theorem 3.14. a) The stationary policy (f∗, f∗, . . .) is optimal and is a band-
policy.

b) If IP(Zn ≥ −1) = 1 then the stationary policy (f∗, f∗, . . .) is a barrier-policy.

The dividend payout problem has first been considered in the case Zn ∈ {−1, 1} by
de Finetti (1957). Miyasawa (1962) proved the existence of optimal band-policies
under the assumption that the profit Zn takes only a finite number of negative val-
ues. Other popular models in insurance consider the reinsurance and/or investment
policies and ruin probabilities, see e.g. Martin-Löf (1994), Schäl (2004), Schmidli
(2008).

4. Solution Algorithms

From Theorem 3.4 we know that the value function and an optimal policy of the
infinite horizon Markov Decision Model can be obtained as limits from the finite
horizon problem. The value and policy iteration already yield first computational
methods to obtain a solution for the infinite horizon optimization problem. The
use of simulation will become increasingly important in evaluating good policies.
Much of the burden of finding an optimal policy surrounds the solution of the
Bellman equation, for which now there are several simulation based algorithms
such as approximate dynamic programming, see e.g. Powell (2007). There are also
simulation based versions of both value and policy iteration. In this section we
present two other solution methods.

4.1. Howard’s Policy Improvement Algorithm. We next formulate Howard’s
policy improvement algorithm which is another tool to compute the value function
and an optimal policy. It goes back to Howard (1960) and works well in Markov
Decision Models with finite state and action spaces.

Theorem 4.1. Let (C) and (SA) be satisfied. Let f, h ∈ F be two decision rules
with Jf , Jh ∈ IM and denote

D(x, f) := {a ∈ D(x) | LJf (x, a) > Jf (x)}, x ∈ E.

Then it holds:
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a) If for some subset E0 ⊂ E

h(x) ∈ D(x, f) for x ∈ E0,

h(x) = f(x) for x /∈ E0,

then Jh ≥ Jf and Jh(x) > Jf (x) for x ∈ E0. In this case the decision rule
h is called an improvement of f .

b) If D(x, f) = ∅ for all x ∈ E and Jf ≥ 0, then Jf = J∞, i.e. the stationary
policy (f, f, . . .) ∈ F∞ is optimal.

c) Let the Markov Decision Model be contracting. If D(x, f) = ∅ for all x ∈ E,
then the stationary policy (f, f, . . .) ∈ F∞ is optimal.

If F is finite then an optimal stationary policy can be obtained in a finite number of
steps. Obviously it holds that f ∈ F defines an optimal stationary policy (f, f, . . .)
if and only if f cannot be improved by the algorithm.

4.2. Linear Programming. Markov Decision Problems can also be solved by
linear programming. We restrict here to the contracting case i.e. β < 1 and assume
that state and action space are finite. We consider the following linear programs:

(P )


∑

x∈E v(x) → min

v(x)− β
∑

y q(y|x, a)v(y) ≥ r(x, a), (x, a) ∈ D,

v(x) ∈ R, x ∈ E.

(D)


∑

(x,a)∈D r(x, a)µ(x, a) → max∑
(x,a)

(
εxy − βq(y|x, a)

)
µ(x, a) = 1, y ∈ E,

µ(x, a) ≥ 0, (x, a) ∈ D.

Note that (D) is the dual program of (P ). Then we obtain the following result.

Theorem 4.2. Suppose the Markov Decision Model is contracting and has finite
state and action spaces. Then it holds:

a) (P ) has an optimal solution v∗ and v∗ = J∞.
b) (D) has an optimal solution µ∗. Let µ∗ be an optimal vertex. Then for all

x ∈ E, there exists a unique ax ∈ D(x) such that µ∗(x, ax) > 0 and the
stationary policy (f∗, f∗, . . .) with f∗(x) := ax, x ∈ E, is optimal.

Using so-called occupation measures general Markov Decision Problems with Borel
state and action spaces can be solved by infinite dimensional linear programs, see
e.g. Altman (1999), Hernández-Lerma and Lasserre (2002).

5. Further Topics on Markov Decision Processes

So far we have assumed that the decision maker has full knowledge about the dis-
tributional laws of the system. However, there might be cases where the decision
maker has only partial information and cannot observe all driving factors of the
model. Then the system is called a Partially Observable Markov Decision Pro-
cess. Special cases are Hidden Markov models. Using results from filtering theory
such models can be solved by a Markov Decision model (in the sense of sections 2
and 3) with an enlarged state space. This approach can be found in Bäuerle and
Rieder (2011). Also the control of Piecewise Deterministic Markov Processes can
be investigated via discrete-time Markov Decision Processes.
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The presentation of the infinite horizon Markov Decision Processes is here restricted
to the total reward criterion. However, there are many other optimality criteria
like e.g. average-reward and risk-sensitive criteria. Average-reward criteria can be
defined in various ways, a standard one is to maximize

lim inf
n→∞

1
n

IEπ
x

[ n−1∑
k=0

r
(
Xk, fk(Xk)

)]
.

This problem can be solved via the ergodic Bellman equation (sometimes also called
Poisson equation). Under some conditions this equation can be derived from the
discounted Bellman equation when we let β → 1 (see e.g. Hernández-Lerma and
Lasserre (1996)). This approach is called vanishing discount approach. The risk
sensitive criterion is given by

lim inf
n→∞

1
n

log
(

IEπ
x

[
exp

(
γ

n−1∑
k=0

r(Xk, fk(Xk))
])

where the ”risk factor” γ is assumed to be a small positive number in the risk-averse
case. This optimization problem has attracted more recent attention because of
the interesting connections between risk-sensitive control and game theory and has
also important applications in financial optimization (see e.g. Bielecki et al. (1999),
Borkar and Meyn (2002)).
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