Markov Decision Processes with Applications to Finance

Nicole Bäuerle

KIT

Jena, March 2011

Outline

- Markov Decision Processes with Finite Time Horizon
 - Definition
 - Basic Results
 - Financial Applications
- Markov Decision Processes with Infinite Time Horizon
 - Definition
 - Basic Results
 - Financial Applications
- Extensions and Related Problems

Markov Decision Processes (MDPs): Motivation

Let (X_n) be a Markov process (in discrete time) with

- ▶ state space E,
- ▶ transition kernel $Q_n(\cdot|x)$.

Markov Decision Processes (MDPs): Motivation

Let (X_n) be a Markov process (in discrete time) with

- state space E,
- ▶ transition kernel $Q_n(\cdot|x)$.

Let (X_n) be a controlled Markov process with

- state space E, action space A,
- ▶ admissible state-action pairs $D_n \subset E \times A$,
- ▶ transition kernel $Q_n(\cdot|x,a)$.

A decision A_n at time n is in general $\sigma(X_1, \ldots, X_n)$ -measurable. However, Markovian structure implies $A_n = f_n(X_n)$ is sufficient.

MDPs: Formal Definition

Definition

A *Markov Decision Model* with planning horizon $N \in \mathbb{N}$ consists of a set of data $(E, A, D_n, Q_n, r_n, g_N)$ with the following meaning for n = 0, 1, ..., N - 1:

- E is the state space,
- A is the action space,
- $D_n \subset E \times A$ admissible state-action combinations at time n,
- $Q_n(\cdot|x,a)$ stochastic transition kernel at time n,
- $r_n: D_n \to \mathbb{R}$ one-stage reward at time n,
- $g_N : E \to \mathbb{R}$ terminal reward at time N.

Policies

- ▶ A decision rule at time n is a measurable mapping $f_n : E \to A$ such that $f_n(x) \in D_n(x)$ for all $x \in E$.
- ▶ A policy is given by $\pi = (f_0, f_1, ..., f_{N-1})$ a sequence of decision rules.

Optimization Problem

For n = 0, 1, ..., N, $\pi = (f_0, ..., f_{N-1})$ define the value functions

$$V_{n\pi}(x) := \mathbb{E}_{nx}^{\pi} \left[\sum_{k=n}^{N-1} r_k(X_k, f_k(X_k)) + g_N(X_N) \right],$$

 $V_n(x) := \sup_{\pi} V_{n\pi}(x), \quad x \in E.$

A policy π is called *optimal* if $V_{0\pi}(x) = V_0(x)$ for all $x \in E$.

Optimization Problem

For n = 0, 1, ..., N, $\pi = (f_0, ..., f_{N-1})$ define the value functions

$$V_{n\pi}(x) := \mathbb{E}_{nx}^{\pi} \left[\sum_{k=n}^{N-1} r_k(X_k, f_k(X_k)) + g_N(X_N) \right],$$

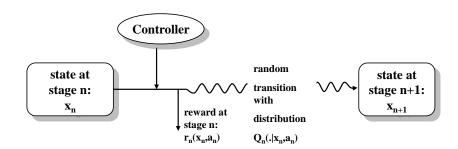
 $V_n(x) := \sup_{\pi} V_{n\pi}(x), \quad x \in E.$

A policy π is called *optimal* if $V_{0\pi}(x) = V_0(x)$ for all $x \in E$.

Integrability Assumption (A_N): For
$$n = 0, 1, ..., N$$

$$\sup_{\pi} \mathbb{E}_{nx}^{\pi} \left[\sum_{k=n}^{N-1} r_k^+(X_k, f_k(X_k)) + g_N^+(X_N) \right] < \infty, \quad x \in E.$$

General evolution of a Markov Decision Process



Literature - Textbooks on MDPs

- Shapley (1953)
- Bellman (1957, Reprint 2003)
- ► Howard (1960)
- Bertsekas and Shreve (1978)
- Puterman (1994)
- Hernández-Lerma and Lasserre (1996)
- Bertsekas (2001, 2005)
- Feinberg and Shwartz (2002)
- Powell (2007)
- ▶ B and Rieder (2011)

Notation

Let $\mathbb{M}(E) := \{v : E \to [-\infty, \infty) \mid v \text{ is measurable}\}$ and define the following operators for $v \in \mathbb{M}(E)$:

Definition

- a) $(L_n v)(x, a) := r_n(x, a) + \int v(x')Q_n(dx'|x, a), (x, a) \in D_n,$
- b) $(T_{nf}v)(x) := (L_nv)(x, f(x)), x \in E,$
- c) $(T_n v)(x) := \sup_{a \in D_n(x)} (L_n v)(x, a)$. Note $T_n v \notin \mathbb{M}(E)$.

A decision rule f_n is called *maximizer* of v at time n if $T_{nf_n}v = T_nv$.

Theorem (Reward Iteration)

For a policy
$$\pi = (f_0, ..., f_{N-1})$$
 and $n = 0, 1, ..., N-1$:

- a) $V_{N\pi} = g_N \text{ and } V_{n\pi} = T_{nf_n} V_{n+1,\pi}$,
- b) $V_{n\pi} = T_{nf_n} \dots T_{N-1f_{N-1}} g_N$.

Theorem (Reward Iteration)

For a policy
$$\pi = (f_0, ..., f_{N-1})$$
 and $n = 0, 1, ..., N-1$:

- a) $V_{N\pi} = g_N \text{ and } V_{n\pi} = T_{nf_n} V_{n+1,\pi}$,
- b) $V_{n\pi} = T_{nf_n} \dots T_{N-1f_{N-1}} g_N$.

Theorem (Verification Theorem)

Let $(v_n) \subset \mathbb{M}(E)$ be a solution of the Bellman equation:

$$v_n = T_n v_{n+1}, \ v_N = g_N$$
. Then it holds:

- a) $v_n \ge V_n$ for n = 0, 1, ..., N.
- b) If f_n^* is a maximizer of v_{n+1} for n = 0, 1, ..., N-1, then $v_n = V_n$ and $\pi^* = (f_0^*, f_1^*, ..., f_{N-1}^*)$ is optimal.

MDPs with Finite Time Horizon

Structure Assumption (SA_N):

There exist sets $\mathbb{M}_n \subset \mathbb{M}(E)$ and sets Δ_n of decision rules such that for all $n = 0, 1, \dots, N - 1$:

- (i) $g_N \in \mathbb{M}_N$.
- (ii) If $v \in \mathbb{M}_{n+1}$ then $T_n v$ is well-defined and $T_n v \in \mathbb{M}_n$.
- (iii) For all $v \in \mathbb{M}_{n+1}$ there exists a maximizer f_n of v with $f_n \in \Delta_n$.

Structure Theorem

Theorem

Let (SA_N) be satisfied. Then it holds:

- a) $V_n \in \mathbb{M}_n$ and (V_n) satisfies the Bellman equation.
- b) $V_n = T_n T_{n+1} \dots T_{N-1} g_N$.
- c) For n = 0, 1, ..., N-1 there exist maximizers f_n of V_{n+1} with $f_n \in \Delta_n$, and every sequence of maximizers f_n^* of V_{n+1} defines an optimal policy $(f_0^*, f_1^*, ..., f_{N-1}^*)$.

Definition

- (i) $r_n^+(x, a) \le c_r b(x)$,
- (ii) $g_N^+(x) \leq c_g b(x)$,
- (iii) $\int b(x')Q_n(dx'|x,a) \leq \alpha_b b(x)$.

Definition

- (i) $r_n^+(x, a) \le c_r b(x)$,
- (ii) $g_N^+(x) \leq c_g b(x)$,
- (iii) $\int b(x')Q_n(dx'|x,a) \leq \alpha_b b(x)$.

$$\alpha_{b} := \sup_{(x,a) \in \mathcal{D}} \tfrac{\int b(x')Q(dx'|x,a)}{b(x)}.$$

Definition

- (i) $r_n^+(x, a) \le c_r b(x)$,
- (ii) $g_N^+(x) \leq c_g b(x)$,
- (iii) $\int b(x')Q_n(dx'|x,a) \leq \alpha_b b(x)$.

$$\alpha_b := \sup_{(x,a) \in D} \tfrac{\int b(x')Q(dx'|x,a)}{b(x)}. \text{ Define } \|v\|_b := \sup_{x \in E} \tfrac{|v(x)|}{b(x)}.$$

Definition

- (i) $r_n^+(x, a) \le c_r b(x)$,
- (ii) $g_N^+(x) \leq c_g b(x)$,
- (iii) $\int b(x')Q_n(dx'|x,a) \leq \alpha_b b(x)$.

$$\alpha_b := \sup_{(x,a) \in D} \frac{\int b(x')Q(dx'|x,a)}{b(x)}$$
. Define $\|v\|_b := \sup_{x \in E} \frac{|v(x)|}{b(x)}$.

$$B_b := \{ v \in \mathbb{M}(E) \mid ||v||_b < \infty \}, \ B_b^+ := \{ v \in \mathbb{M}(E) \mid ||v^+||_b < \infty \}.$$

Bounding Functions

Definition

 $b: E \to \mathbb{R}_+$ is called a *bounding function* if there exist $c_r, \alpha_b \in \mathbb{R}_+$ such that

- (i) $|r_n(x,a)| \leq c_r b(x)$,
- (ii) $|g_N(x)| \leq c_g b(x)$,
- (iii) $\int b(x')Q(dx'|x,a) \leq \alpha_b b(x)$.

Financial Market:

- ▶ Bond price: $B_n = (1 + i)^n$,
- ► Stock prices: $S_n^k = S_0^k \prod_{m=1}^n Y_m^k$, k = 1, ..., d.

We denote $Y_n := (Y_n^1, \dots, Y_n^d)$.

Financial Market:

- ▶ Bond price: $B_n = (1 + i)^n$,
- ► Stock prices: $S_n^k = S_0^k \prod_{m=1}^n Y_m^k$, k = 1, ..., d.

We denote $Y_n := (Y_n^1, \dots, Y_n^d)$.

Assumptions:

- $ightharpoonup Y_1, \ldots, Y_N$ are independent.
- (FM): There are no arbitrage opportunities.

Policies:

- $\phi_n^k =$ amount of money invested in stock k at time n, $\phi_n = (\phi_n^1, \dots, \phi_n^d) \in \mathbb{R}^d$.
- ϕ_n^0 = amount of money invested in the bond at time n.
- $ightharpoonup c_n = amount of money consumed at time <math>n, c_n \ge 0$.

Policies:

- $\phi_n^k =$ amount of money invested in stock k at time n, $\phi_n = (\phi_n^1, \dots, \phi_n^d) \in \mathbb{R}^d$.
- ϕ_n^0 = amount of money invested in the bond at time n.
- $ightharpoonup c_n = amount of money consumed at time <math>n, c_n \ge 0$.

Wealth process:

$$X_{n+1}^{c,\phi} = (1+i)(X_n^{c,\phi} - c_n) + \phi_n \cdot (Y_{n+1} - (1+i) \cdot e)$$

= $(1+i)(X_n^{c,\phi} - c_n + \phi_n \cdot R_{n+1})$

Optimization Problem

Let $U_c, U_p: \mathbb{R}_+ \to \mathbb{R}_+$ be strictly increasing, strictly concave utility functions.

$$\left\{ \begin{array}{l} \mathbb{E}_{\scriptscriptstyle X} \left[\sum_{n=0}^{N-1} U_c(c_n) + U_p(X_N^{c,\phi}) \right] \to \max \\ (c,\phi) = (c_n,\phi_n) \text{ is a consumption-investment strategy with} \\ X_N^{c,\phi} \geq 0. \end{array} \right.$$

MDP Formulation

- ▶ $E := [0, \infty)$ where $x \in E$ denotes the wealth,
- ▶ $A := \mathbb{R}_+ \times \mathbb{R}^d$ where $a \in \mathbb{R}^d$ is amount of money invested in the risky assets, $c \in \mathbb{R}_+$ is amount which is consumed,
- $ightharpoonup D_n(x)$ is given by

$$D_n(x) := \left\{ (c, a) \in A \mid 0 \le c \le x \text{ and} \right.$$

 $(1+i)(x-c+a \cdot R_{n+1}) \in E \mathbb{P} \text{-a.s.} \right\},$

- $Q_n(\cdot|x,c,a) := \text{distribution of } (1+i)(x-c+a\cdot R_{n+1}),$
- $r_n(x,c,a) := U_c(c),$
- $ightharpoonup g_N(x) := U_p(x).$

Structure Result

Note: b(x) = 1 + x is a bounding function for the MDP.

Theorem

- a) V_n are strictly increasing and strictly concave.
- b) The value functions can be computed recursively by

$$V_N(x) = U_p(x),$$

 $V_n(x) = \sup_{(c,a)} \Big\{ U_c(c) + \mathbb{E} V_{n+1} \Big((1+i)(x-c+a \cdot R_{n+1}) \Big\}.$

c) There exist maximizers $f_n^*(x) = (c_n^*(x), a_n^*(x))$ of V_{n+1} and the strategy $(f_0^*, f_1^*, \dots, f_{N-1}^*)$ is optimal.

Power Utility

Let us assume $U_c(x) = U_p(x) = \frac{1}{\gamma}x^{\gamma}$ with $0 < \gamma < 1$.

Theorem

- a) The value functions are given by $V_n(x) = d_n x^{\gamma}, \ x \ge 0$.
- b) Optimal consumption is $c_n^*(x) = x(\gamma d_n)^{-\delta}$ and the optimal amounts which are invested $(\delta = (1 \gamma)^{-1})$

$$a_n^*(x) = x \frac{(\gamma d_n)^{\delta} - 1}{(\gamma d_n)^{\delta}} \alpha_n^*, \quad x \ge 0$$

where α_n^* is the optimal solution of the problem

$$\sup_{\alpha \in A_n} \mathbb{E}[(1 + \alpha \cdot R_{n+1})^{\gamma}], \quad A_n = \{\alpha \in \mathbb{R}^d : 1 + \alpha \cdot R_{n+1} \ge 0\}.$$

Semicontinuous MDPs

Theorem

Suppose the MDP has an upper bounding function b and for all n = 0, 1, ..., N - 1 it holds:

- (i) $D_n(x)$ is compact and $x \mapsto D_n(x)$ is upper semicontinuous (usc),
- (ii) $(x, a) \mapsto \int v(x')Q_n(dx'|x, a)$ is usc for all usc $v \in B_b^+$,
- (iii) $(x, a) \mapsto r_n(x, a)$ is usc,
- (iv) $x \mapsto g_N(x)$ is usc.

Then $\mathbb{M}_n := \{v \in B_b^+ \mid v \text{ is usc}\}$ and $\Delta_n := \{f_n \text{ dec. rule at } n\}$ satisfy the Structure Assumption (SA_N). In particular, $V_n \in \mathbb{M}_n$ and there exists an optimal policy $(f_0^*, \ldots, f_{N-1}^*)$ with $f_n^* \in \Delta_n$.

MDPs with Infinite Time Horizon

Consider a stationary MDP with $\beta \in (0, 1], g \equiv 0$ and $N = \infty$.

$$J_{\infty\pi}(x) := \mathbb{E}_{x}^{\pi} \left[\sum_{k=0}^{\infty} \beta^{k} r(X_{k}, f_{k}(X_{k})) \right],$$

$$J_{\infty}(x) := \sup_{\pi} J_{\infty\pi}(x), \quad x \in E.$$

Integrability Assumption (A):

$$\delta(x) := \sup_{\pi} \mathbb{E}_{x}^{\pi} \left[\sum_{k=0}^{\infty} \beta^{k} r^{+} (X_{k}, f_{k}(X_{k})) \right] < \infty, \quad x \in E.$$

Convergence Assumption (C)

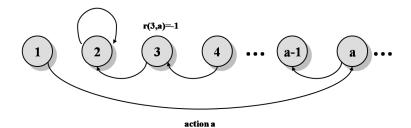
$$\lim_{n\to\infty}\sup_{\pi}\mathbb{E}_{x}^{\pi}\left[\sum_{k=n}^{\infty}\beta^{k}r^{+}(X_{k},f_{k}(X_{k}))\right]=0,\quad x\in E.$$

Assumption (C) implies that the following limits exist:

- $ightharpoonup \operatorname{lim}_{n\to\infty} J_{n\pi} = J_{\infty\pi}.$
- ▶ $\lim_{n\to\infty} J_n =: J \geq J_\infty$.

J is called *limit value function*. Note: $J \neq J_{\infty}, J_{\infty} \notin \mathbb{M}(E)$.

Example: $J \neq J_{\infty}$ ($\beta = 1$)



We obtain:

$$J_{\infty}(1) = -1 < 0 = J(1).$$

Verification Theorem

$$Tv(x) = \sup_{a \in D(x)} \left\{ r(x, a) + \beta \int v(x') Q(dx'|x, a) \right\}$$

Theorem

Assume (C) and let $v \in \mathbb{M}(E)$, $v \leq \delta$ be a fixed point of T such that $v \geq J_{\infty}$. If f^* is a maximizer of v, then $v = J_{\infty}$ and the stationary policy (f^*, f^*, \ldots) is optimal for the infinite-stage Markov Decision Problem.

MDPs with Infinite Time Horizon

Structure Assumption (SA)

There exists a set $\mathbb{M} \subset \mathbb{M}(E)$ and a set of decision rules Δ such that:

- (i) $0 \in \mathbb{M}$.
- (ii) If $v \in \mathbb{M}$ then Tv(x) is well-defined and $Tv \in \mathbb{M}$.
- (iii) For all $v \in \mathbb{M}$ there exists a maximizer $f \in \Delta$ of v.
- (iv) $J \in \mathbb{M}$ and J = TJ.

Structure Theorem

Theorem

Let (C) and (SA) be satisfied. Then it holds:

- a) $J_{\infty} \in \mathbb{M}$, $J_{\infty} = TJ_{\infty}$ and $J_{\infty} = J = \lim_{n \to \infty} J_n$.
- b) There exists a maximizer $f \in \Delta$ of J_{∞} , and every maximizer f^* of J_{∞} defines an optimal stationary policy (f^*, f^*, \ldots) .

Example: Dividend Pay-Out

Let X_n be the risk reserve of an insurance company at time n. We assume that

- $ightharpoonup Z_n =$ difference between premia and claim sizes in n-th time interval,
- ▶ $Z_1, Z_2, ...$ are iid, $Z_n \in \mathbb{Z}$ and $\mathbb{P}(Z_1 = k) = q_k, k \in \mathbb{Z}$.
- ▶ $\mathbb{P}(Z_1 < 0) > 0$ and $\mathbb{E} Z^+ < \infty$.

Control: We can pay-out a dividend at each time-point.

$$X_{n+1} = X_n - f_n(X_n) + Z_{n+1}$$
.

Let $\tau := \inf\{n \in \mathbb{N} : X_n < 0\}$ be the ruin time point. Aim: Maximize the expected disc. dividend pay-out until τ .

Formulation as an MDP

- ▶ $E := \mathbb{Z}$ where $x \in E$ denotes the risk reserve,
- ▶ $A := \mathbb{N}_0$ where $a \in A$ is the dividend pay-out,
- ► $D(x) := \{0, 1, ..., x\}, x \ge 0$, and $D(x) := \{0\}, x < 0$,
- ▶ $Q(\{y\}|x,a) := q_{y-x+a}$ if $x \ge 0$, else $Q(\{y\}|x,a) = \delta_{xy}$,
- ▶ r(x, a) := a,
- ▶ $\beta \in (0,1)$.

Then for a policy $\pi = (f_0, f_1, ...)$ we have

$$J_{\infty\pi}(x) = \mathbb{E}_x^{\pi} \left[\sum_{k=0}^{\tau-1} \beta^k f_k(X_k) \right].$$

First Results

Corollary

- a) The function $b(x) = 1 + x, x \ge 0$ and b(x) = 0, x < 0 is a bounding function. (A) is satisfied.
- b) (C) is satisfied.
- c) It holds for $x \ge 0$ that

$$x + \frac{\beta \mathbb{E} Z^+}{1 - \beta q_+} \le J_{\infty}(x) \le x + \frac{\beta \mathbb{E} Z^+}{1 - \beta}$$

where
$$q_{+} := \mathbb{P}(Z_{1} \geq 0)$$
.

In particular (SA) is satisfied with $\mathbb{M} := B_b$.

Bellman Equation

The Structure Theorem yields that

- $ightharpoonup \lim_{n\to\infty} J_n = J_{\infty},$
- Bellman equation

$$J_{\infty}(x) = \max_{a \in \{0,1,\ldots,x\}} \Big\{ a + \beta \sum_{k=a-x}^{\infty} J_{\infty}(x-a+k)q_k \Big\},\,$$

▶ Every maximizer of J_{∞} (which obviously exists) defines an optimal stationary policy $(f^*, f^*, ...)$.

Let f^* be the largest maximizer of J_{∞} .

Further Properties of J_{∞} and f^*

Theorem

- a) The value function $J_{\infty}(x)$ is increasing.
- b) It holds that

$$J_{\infty}(x)-J_{\infty}(y)\geq x-y,\quad x\geq y\geq 0.$$

c) For $x \ge 0$ it holds that $f^*(x - f^*(x)) = 0$.

Band and Barrier Policies

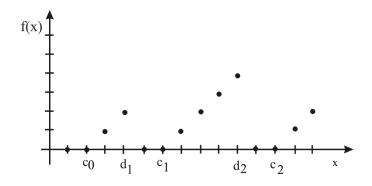
Definition

a) A stationary policy (f, f, ...) is called *band-policy*, if \exists $n \in \mathbb{N}_0$ and $c_0, ..., c_n, d_1, ..., d_n \in \mathbb{N}_0$ s.t. $d_k - c_{k-1} \ge 2$, $0 \le c_0 < d_1 \le c_1 < ... < d_n \le c_n$ and

$$f(x) = \begin{cases} 0, & \text{if } x \le c_0 \\ x - c_k, & \text{if } c_k < x < d_{k+1} \\ 0, & \text{if } d_k \le x \le c_k \\ x - c_n, & \text{if } x > c_n. \end{cases}$$

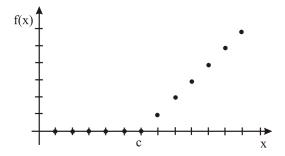
b) A stationary policy (f, f, ...) is called *barrier-policy* if it is a band-policy and $c_0 = c_n$.

Band Policies



MDPs with Infinite Time Horizon

Barrier Policy



Main Results

Lemma

Let
$$\xi := \sup\{x \in \mathbb{N}_0 \mid f^*(x) = 0\}$$
. Then $\xi < \infty$ and $f^*(x) = x - \xi$ for all $x > \xi$.

Theorem

The stationary policy $(f^*, f^*, ...)$ is optimal and a band-policy.

When is the Band a Barrier?

Known Condition: $\mathbb{P}(Z_1 \ge -1) = 1$.

- de Finetti (1957)
- Shubik and Thomson (1959)
- Miyasawa (1962)
- Gerber (1969)
- Reinhard (1981)
- ► Schmidli (2008)
- Asmussen and Albrecher (2010)

Semicontinuous MDPs

Theorem

Suppose there exists an upper bounding function b, (C) is satisfied and

- (i) D(x) is compact for all $x \in E$ and $x \mapsto D(x)$ is usc,
- (ii) $(x, a) \mapsto \int v(x')Q(dx'|x, a)$ is usc for all usc $v \in B_b^+$,
- (iii) $(x, a) \mapsto r(x, a)$ is usc.

Then it holds:

- a) $J_{\infty} \in \mathcal{B}_{b}^{+}$, $J_{\infty} = TJ_{\infty}$ and $J_{\infty} = J$ (Value Iteration).
- b) $\emptyset \neq LsD_n^*(x) \subset D_\infty^*(x)$ for all $x \in E$ (Policy Iteration).
- c) There exists an $f^* \in F$ with $f^*(x) \in LsD_n^*(x)$ for all $x \in E$, and the stationary policy $(f^*, f^*, ...)$ is optimal.

Contracting MDP

Theorem

Let b be a bounding function and $\beta\alpha_b<1$. If there exists a closed subset $\mathbb{M}\subset B_b$ and a set Δ such that

- (i) $0 \in \mathbb{M}$,
- (ii) $T: \mathbb{M} \to \mathbb{M}$,
- (iii) for all $v \in \mathbb{M}$ there exists a maximizer $f \in \Delta$ of v, then it holds:
 - a) $J_{\infty} \in \mathbb{M}$, $J_{\infty} = TJ_{\infty}$ and $J_{\infty} = J$.
 - b) J_{∞} is the unique fixed point of T in \mathbb{M} .
 - c) There exists a maximizer $f \in \Delta$ of J_{∞} , and every maximizer f^* of J_{∞} defines an optimal stationary policy (f^*, f^*, \ldots) .

Howard's Policy Improvement Algorithm

Let J_f be the value function of the stationary policy (f, f, ...). Denote $D(x, f) := \{a \in D(x) \mid LJ_f(x, a) > J_f(x)\}, \quad x \in E$.

Theorem

Suppose the MDP is contracting. Then it holds:

a) If for some subset $E_0 \subset E$ we define a decision rule h by

$$h(x) \in D(x, f) \text{ for } x \in E_0, \qquad h(x) := f(x) \text{ for } x \notin E_0,$$

then $J_h \ge J_f$ and $J_h(x) > J_f(x)$ for $x \in E_0$. In this case the decision rule h is called an improvement of f.

b) If $D(x, f) = \emptyset$ for all $x \in E$, then the stationary policy (f, f, ...) is optimal.

Extensions and Related Problems

- Stopping Problems
- Partially Observable Markov Decision Processes
- Piecewise Deterministic Markov Decision Processes
- Problems with Average Reward
- Games

- Bäuerle, N., Rieder, U. (2011): Markov Decision Processes with Applications to Finance. Springer.
- Bellman, R. (1957, 2003): Dynamic Programming. Princeton University Press, NJ.
- Bertsekas, D.P. and Shreve, S.E. (1978): Stochastic optimal control. Academic Press, New York.
- Bertsekas, D.P. (2001,2005): Dynamic programming and optimal control. Vol. I, II. Athena Scientific, Belmont, MA.
- Feinberg, E.A. and Shwartz, A. (2002): Handbook of Markov decision processes. Kluwer Academic Publishers, Boston, MA.
- Hernández-Lerma, O. and Lasserre, J.B. (1996): Discrete-time Markov control processes. Springer-Verlag, New York.

- - Howard, R. (1960): Dynamic programming and Markov processes. The Technology Press of M.I.T., Cambridge, Mass.
- Powell, W.B. (2007): Approximate dynamic programming. Wiley-Interscience, Hoboken, NJ.
- Puterman, M.L. (1994): Markov decision processes: discrete stochastic dynamic programming, John Wiley & Sons, New York.
- Shapley, L. S. (1953): Stochastic games, Proc. Nat. Acad. Sci., pp. 1095–1100.

Thank you very much for your attention!