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MARKOV DECISION PROCESSES WITH 

UNBOUNDED REWARDS 

JAE.E. van Nunen 

Graduate School of Management, Delft, The №therlands 

J.Wessels 

Eindhoven University of Technology, Eindhoven, Tl1e Netherlands 

1. INТRODUCTION 

We consider а Mark.ov decision system with а соuпtаЫе state space S. 

So the states in S may Ье laЬelled Ьу the natural numЬers S := { ,2,3, ..• }. 

The system can Ье contro1led at discrete points in time t О, 1, 2, ••• Ьу 

choosing an action а from an а:r·Ы t:r·ary nonempty action space А. I,et А Ье 

а cr-field он А, such that {а} Е А for all а Е А. 

'I'r1e chosen action а Е А and the curre.nt state i Е S at time t exclu-· 

sively determi.ne the probaЬility of occure.nce of state Е S at time t + 1. 

This probaЬility is denoted Ьу pa(i,j). If state i h.as been observed at. 

time t and action а Е А has been chosen, the (expected) reward r(i,a) is 

earned. The objective is to find а decision rule for which the tota.l ex

pected reward over a.n infini te time li.orizon is maximal. For the deter

mination of such а decision rule and for the computatioп of the tota.l ex

pected rewa.rd we have in fact to solve а functional equation of the follow

ing form 

v(i) sup {r(i,a) + I pa(i,j)v(j) }, i Е S. 
аЕА j 

'l'he more sophisticated methods for sol ving these functional equations, 

if they ha.ve а unique solutioп, are linear programming (D'EPENOUX [З], 

DE GHELLINCK & EPPEN [ 4]) and policy i teration (HOWARD [ 13]) , which is а 
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very beaut~iful and elegant method. Actually, linear programmiнg and policy 

iteration are in а sense eqнivaleпt {MINE & OSAКI [18], WESSELS & VAN NUNEN 

[ 29]) . 

However, fo:c large scaled proЫems, sнccessive approximatioп шethods 

teпd to Ье more efficieпt than the kпown sophisticated methods (e.g. VAN 

NUNEN [ 19 ] ) . 

Ii: appears th.at successive approximation methods allow fo:r· elegant апd 

relatively good extrapolation and error aпalysis. JVJoreover, the incorpora··· 

tion of suЬoptimality tests can improve those methods consideraЫy. 

Final1y, it appears tl1at po1icy iteration methods (there are шаnу versions 

witr1 differeпces in the po1icy improvement procedures, see e.g. HASTINGS 

[6], VAN NUNEN [21]) are essentially successive approximation methods. 

These metlюds happen to coпverge in finitely many iterations if state and 

action space are finite. 

For these reasons it is still interesting to investigate successive 

approximation methods for Markov decision processes and likewise for мarkov 

games (see VAN DER WAL [27]). Here ive will main1y Ье concerned with the 

condi·tiorш which allow successive approximat,ions with guaranteed conver

geпce in some strong sense allowiпg tl1e construction of upper and lower 

bounds . For convergence in а weaker sense, of course, \veaker condi tioпs 

can Ье used we refer to SCHAL [25] and VAN НЕЕ& VAN DEl~ WAL [12]. 

After the iпtrodцction of the model and tl1e underlying assumptions we 

will develop some propeгties. 

Moreover, we will indicate the specific sнccessive appproximatioн 

algoritl1m. Finally we will analyse the assumptions апd compare them with 

those in literature. 

Most of the assertions can Ье extended to nondenнmeraЫe state spaces 

in the obvious way. 

2. ТПЕ MODEL AND ТНЕ ASSUМPTIONS 

We will first introduce our assumptioпs on the transition probaЫli

ties апd tl1e rewards. The assumptioпs will Ье somewhat weaker than those 

proposed in [21]. 

ASSUМPTION 2.1 

а) (i,j) ~ О, L pa{.i,j) ,.; 1, 
j 

for all i,j Е S and all а Е А. 



3 

Ь) pa(i,j) is measuraЬle for all i,j Е S as а functioп of а. 

с) r(i,a) is measuraЬle for а11 i Е: S as а fur1ction of а. 

REМARK 2.1. We a1low suЬstochastic behaviour. Defectiveness of transition 

probaЬilities may Ье interpreted as а positive probaЬility of leaving the 

system, which result.s in the stopping of all earпings. Iп а шоrе forma1 

set-up tl"lis may Ье l>and1ed Ьу introduciпg ап extra state ~•hich is aЬsorЬing 

for а11 actions and does not give any earniпgs. This has Ьееп executed 

е. g. in [ 21] Ьу Vl'.N NUNEN and in [ 11] Ьу HINDERER. Wi tho11t s11c!1 а device 

quite а lot сап Ье achieved in а correct forma1 way as has Ьееп dопе Ьу 

WESSELS [ 28 J. Actually, as loпg as the outcomes in w!1ich опе is interest.ed 

may Ье expressed in terms of bouпded order .histories, ther·e is по serious 

pr·oЫem. In this paper we will suppose that: there is such ап extra st.at.e, 

wi thout gi ving i t. а name or mentioning .i. t explici tly. Compare section 5 

for the meaning of suЬstochasticity. 

(i) А decision rule тr is а sequence of traпsitioп probaЫlities 

1r := (q0 ,q1 , н .) , >vhere qt is а transition probaЫJ.ity of 

(Ht,Ht) iпto (А,А), witl1 Ht := s х А х S х ••• х S (t+l times S) and 

Н is the corr·espondiпg pr·oduct. a-field. 
t. 

'l'he class of а11 decision rul.es is denoted Ьу V. 

(ii) А decisioп rule 11 will Ье called nonrandomized or а stra·t:egy if ~ 

is degenerated for all t апd а11 

raпdomized decision rнle. 

. So а strategy is а non-

(iii) А decision rule тr is called Markov if qt only depends on the last 

component of Е 

The class of (randomized) Mar·kov decision rules is deпoted Ьу RM. 

(iv) А Markov decision rule is called stationary if qt does not depend 

on t. 

А policy f is а fuпc·tion of S iпto А. Ву F we denote the set of all 

policies. Statioпary strategies correspoпd (one to опе) to policies 

and Markov strategies correspond to sequeпces of policies. We v1ill 

apply th.ese correspondeпces deliberately. 

'l'he class of Markov strategies i.s deпoted Ьу М. 
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In an obvious way - see e.g. VAN NONEN [21] - any startiпg state 

i Е S and any decisioп ru1e тт Е V determiпe а stocl1astic process 

Zt)} t"'O on. S х А, where Xt deпotes th.e state of the system at time ·t, 

and Z t deпotes the action at tirne t. The re1evant probaЬi.li ty measure on 

(SxA) 00 will Ье denoted Ьу JJ?~. Expectations with respect to this measure 
1. 

will Ье denoted Ьу JE~. Ву JЕттХ we denote tl1e colurnnvector with i-tl1 
:L 

·тт 
cornponent JE i Х, wl1ere Х is any random Yar iаЫе. 

ASSUМP'l'ION 2. 2. We assume а posi tive fuпctioп µ on S to Ье giveп. Let W Ье 

the Banach space of vectors w (real valued fнnctions on S) whicl1 satis.fy 

ll;дll ·=sup lw(i)l·µ-l(i) < 
iES 

For шatrices (real valнed functions оп S х S) we iпtrod11ce the operator-

norrn 
l!вll := sup 11 вw11. 

11w11 =1 
Note that 

sup µ- 1 (i) Z:/в(i,j)l•µ(j). 
ieS 

Jlв 11 

3. 

(i) for а11 i Е S, 

where (а,Ь) := max{O,r(a,b)}. 

(ii) SUJ2 IJP (f) JI =: р* < 1, 
fE:r 

(iii) 

where P(f) is the rnatrix with P(f)(i,j) := pf(i) (i,j). 

SUJ2 
fE:f 

11p(f)r - р;::11 =: м < 00 

1 
for some р with О < р < 1, 

and r is the vector with i-th component r(i) := sup r(i,a). 
аЕ:А 

-+ + 
RЕМАRК 2.3. Note ·that P(f)r <oo(componentwise) since su2 P(f)r (g) < оо 

gE:f 
Moreover, P(f)r- < 00 as is implicitly stated in assumption 2.2. iii. The 

model in fact coшЬines the main features of the mode1s introduced Ьу 

HARRISON [5], WESSELS [28] апd VAN НЕЕ [9], and yie1ds а s1ight extension 

with respect to the model considered Ьу VAN NUNEN [21]. 



Since we will prove similar results as НARRISON [5], WESSELS [28], VAN 

NUNEN [ 21], this paper generalizes their resul ts. 

5 

We will first show that under assшnption 2,3.i the restriction to 

Markov strategies is allowed if one is interested in the criterion of total 

expected rewards. 

Given that assumption 2.3.i is satisfied it will Ье clear that for 

any тт Е М 

v(тт) := :JE71 I r(X ,Z ) 
n=O n n 

is properly defined and that all manipulations with integration and sum

mation are allowed. However, vi(тт) may Ье - 00 for some i Е S. Furthermore 

SUP. v. (тт) < со, In [9] VAN НЕЕ shows that under assumption 2.3.i v, (тт) is 
1ТЕМ 1 ~ 
properly defined for all 1Т Е RM since 

Moreover, he proves that 

sup v . ( 1Т) = sup v . ( 1Т) 
ттЕRМ 1 ТТЕМ 1 

It then follows straightforwardly from the generalisation of а result of 

DERМAN and STRAUCH [2] that vi(7!) is defined properly for all 1f Е V and 

i Е S, viz. for any i Е S and any 1f Е V there exists а 71* Е RM, such that 

* 1f 
]р i [Х 

n 

for all j Е s, А0 Е A,n= 0,1, .••• 

Hence 

I 
n=O 

* so vi(7!) is properly defined and equal to vi(тт). 

< 00' 
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This imp1ies 

sup v. (тт) 
"fTEV :t 

sup v. (тт). 
тrЕМ 1. 

'l'his actually means that one сап restrict oneself to strategies which 

orily depend on the starting state, on the time instant t and on the state at 

that time. Such strategies are sometimes called semi-·Markov st:categies. 

The starting state and the time in.stant will Ье proved to Ье superfluous 

later оп. 

3. SОМЕ PROPERТIES 

Let 1R derюte the set of real n.umЬers with + 00 апd - "' iпcluded. 
_оо 

Let W сопtаiп tl1ose w Е 1R , such that 1'1 :5 w0 for some w0 Е \1-J, (w0 is 

not fixed, but may depen.d on w, so W с W-). P(f) is properly defined as an 

operator оп W and on W as well. Р (f) maps еас!1 of these sets into itself. 

Here "properly defiпed" means that (P(f)w) (i) is indepeпdeпt of the order 

of summa.tions. It is straightforward that Р (f) is monotone 011. w an.d W 

Moreover Р {f) is contracting оп W wi th contraction radius 11 Р (f) 11 s р * < 1. 
00 

Тhе set V is defined as the set of vectors v in JR such t.hat 
-1-

v - (1-р) r Е w. Sin.ce W is а Banach space the set V is а complete metric 
-"' space with respect to the metric v 1-v 2 • Т11е set V contain.s t11ose v Е :JR 

suc11 that for some v 0 Е V we have v :5 v 0 • 

I.ЕММА 3.1. 

w.ith 

PROOF. 

P(f2)P r :с; P(f2 ) (pr + М1µ) 

2-
$ р r + pMlµ + р*М1 11 

$ р 
2-

+ 2рОМ1µ r 

similarly 



The proof proceeds further in an inductive way. D 

Corollary 3.1. 

щ 

(ii) 
'lf 

:JE 

z: 
n=O 

z: 
n=O 

r(X ) Е V 
n 

r(Xn,Zn) :S (1 

for all 'lf Е М 

00 

-1-
z: 

n-1 
- Р) r + nP 0 м1 µ 

n=1 

(1 
-1- -2 

- р) r + (1 - Ро) 

7 

М1µ Е v 

for all 'lf Е '[) • 

~· For 'lf Е М part (ii) follows straightforwardly from the foregoing 

lemma. Because of the results of section 2 this may Ье extended to тт Е V. D 

DEFINITION 3.1. L(f) is а mapping of v- into v- defined Ьу L(f)v := r(f) + 

+ P(f)v where r(f) is the vector with i-th component equal to r(i,f(i)). 

L(f) maps V into V viz. r(f) :S r; v s v0 for some v0 Е v, therefore 

-1-
11 v 0 - ( 1-р) r 11 = м2 < оо, 

hence 
- -1-

r (f) + P(f)v s r + P(f) (1-р) r + P(fJм2µ 

s r + 
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(i) If r (f) - r Е w, tl1en L(f) maps V into V апd L(f) is contracti.ng оп v 

with contraction radius llP(f) 11 s < 1. The fixed point of L(f) .in v 

is v ( f) : =' :f ( ( f, f, f" • .) ) . 

{ii) J"(f) is morюtcme оп v 
(iii) If v Е v, then (f)v + v(f) for n ->· со. 

PROOF. Part (i) сап Ье found in [28], part (ii) of the lenшia is trivial. 

The final part is straightforward .if r (f) - r Е W, since in that case the 

assertioп is implied Ьу ·the Banacl1 fixed point theш:·em and the convergence 

is iп пorm. If r (f) - r i W we have 

п-1 

(f)v L Pk(f)r(f) + P 11 (f)v. 
k=O 

Since v can Ье written as 

v ~ (1-р) + w With 1'1 Е \лl 

- 11 (f)r + Р (f)w. 

However, Pn(f)w tends to zero fo:r· n + 00 since P(f) is contractiпg оп 

W (assumption 2.3 ii) and Pn(f)r tends to zero for n + 00 as foll.ows from 

l.ernm.a 3.1. This implies 

v(f). о 

DEFINITION 3.2. U is а mapping of V into V defiпed Ьу 

Uv : = sup L ( f) v 
fEf 

u maps V into V, viz. 

(componentwise) • 

uv su:e {r[fJ + P(f)[(1-p)- 1r +w]} 
fEf 

о: r + sup {(1-p)- 1P(f)r} + sнр P(f)w 

fEF fEF 
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5 (1-·р) + (1-р) + P)wllµ Е V 

and 

Uv ;;;: r + inf 1-р) (f)r + inf P(f)w 
fEr fEr 

-1 - -1 
р *11w11 ]1 ? r + ( 1-р) pr - м 1 µ ( 1-р) -

0-Р) ( 1-Р) W 11 J1 Е V" 

(i) u is monotone оп V; 

(Н) u ша.рs В := {11 Е villv - (1-р) 11 5 
-1 

( 1-р) ( 
-1 

} into i tself; 

(iii) u is cont:ca.cting оп V wi th cont.raction z·adius у: у 5 р * < 1. 

Тhе proof proceeds in а similar way as tl1e proof of tlleorem 4. 3. 3. in 

VAN NUNEN [21], 0 

RЕМАRК З. 1, Suppose ·the supremum iri Uv for v Е V is attained :for certain f 

tllen 

r(f) + P(f)v Е V 

hence 

-1-
r (f) + P(f) (1-р) r + P(f)w Е V 

arid 

·-1 -
r(f) + (1-р) · r Е v 

so 

- - -1 - - -1-
r (f) - r + r + (1-р) r = r(f) - r + (1-р} r Е V 

consequently r(f) - r Е W. 
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The same holds if L(f)v approximates Uv in norm. Th.en L(f)v Е: V as w·ell. 

Hence r (f) - r Е: 117 so the use of а successive approxima.tion metlюd (e,ren 

without computing the supremum exactly) leads to а sequence of policies 

f Е F with r(f ) - r Е W. 
п n 

* Since U is contracting in V there exists а unique fixed point v of 

u in ·v. 'l'J-lis fixed point is the unique solution of the optimali.ty equation 

in V 

v sup {r(f) + P(f)v}. 
fEF 

Fur·thermore 11 пnv - v * 11 -+ О for n -+ 00 and any v Е V. In the sequel we 

will prove that 

SUJ.? JE 1! L 
1rEV n=O 

ТНЕОRЕМ З. 1 • 

r(X ,z ) 
n n 

(i) * v(·л) s v fo:r all 11 Е ·о 

sup v(тт). 
7rEV 

(ii.) For any Е > О there exists а policy f s11ch that 

hence 

llv(f) - v*ll s Е 

sup v(тт) 
'1ТЕ1J 

sup v(f) 
fEM 

* v . 

Moreover, if for some f holds that 

Then 

* * v r(f) + P(f)v 

* v·(f) = v . 

PROOF. The proof of this theorem proceeds exactly along the same lines as 

the proof of theorem 4. З .4 in [ 21]. In [ 21] part ( i) has been proved Ьу 
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showing first that the assertion is ·true for тr <:: М апd tr1eп usiпg tI1e re

su1ts of sectioп 2. Part (ii) fo11ows directly if we choose f <:: F such t!-шt. 

then 

hence 

* 7;; 
v - оµ 5 L.(f)v 5 v· 

L(f)[v* - оµ] 

* v + o(l+p)µ '°' (f)v 

iterating tJJ.is inequality gives 

* ~j $ v ( f) $ v 

* $ v 

* v 

so .Ьу choosiпg о с ( 1-р) tl1e statement wi11 Ье cJ.ear. 

4. SUCCESSIVE APPROXIМATIONS 

о 

* In th.e previous section we s!юwed that t!1e uпique fixed point v of 

the contraction operator U in V is the optimal value vector of the Markov 

* deci.sioп proЫem. Непсе, v can Ье approximated Ьу 

(v0 '' v and .n 1, 2' ..• ) . 

Furthermore, we proved the e:кistence of statio.nary Иarkov strategies wit.h 

value functions that appro:x:imate v* (i11 norш), 

* \Jsua1ly опе not onJ.y wishes to find v but 011е is also i11terested iп 

good (stationary Markov) strategies. It may occur that tl1e supremum in Uv 

cannot Ье computed exactly. Neverth.eless, there are several successi ve 

* approximation methods for the computation of v апd the determiпation of 

ап (<:-) optimal stationary Markov strategy. We refer to [22] iп this 

volume. Не:ге, as an example, we describe а шethod which uses monotonici.ty 

of the ConsequeпtJ.y the convergence of the algorithm сап Ье shown Ьу 

relatively simple proofs. 
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LЕММА 4.1. Let о > О, suppose v , v' Е v, such that Uv' - оµ s v then 

* v $ v + 
o+p*llv-v• 11 

1-р* 
µ 

PROOF. The proof can also Ье found in [28] and proceeds as follows. 

Uv U(v'+v-v'). 

Hence, since Uv' $ v + оµ we have 

or 

Uv $ v + е:µ with е: о+ р* llv - v•ll. 

Similarly 

U(v'+v-v'+e:µ) 

Iterating in the same way gives 

n ~1 е: u v $ v + е: ( 1 +р * + ••• р * ) µ $ v + 1-Р µ. 

* 
This implies 

* v 
е: 

$ v + 1-Р µ. 

* 
LЕММА 4.2. If v, v' € V with L(f)v' 

r(f) - r Е W 

о 

v, then 



and 

where 

and 

р v-v•ll 
v + ·-·---------···- i1 <; v ( f) <; v + 

f 

llv-·v•ll ,,~ inf µ- 1 (i) (v(i)-v' (i)) 
iES 

inf µ -l (i) 

iES 

\ f(i)(, ') (') L р i,J \-1 J • 
j 

PROOF. The proof of this lemma proceeds along the same lines as the proof 

of the foregoiпg lemшa. D 

The convergence of tl'1e follo•~ing successive approximation a1gorithш 

will Ье clear as а conseque11ce of the foregoing two lemшas. 

4 1 

Б'I'ЕР О. Cl1oose а > О; choose о > О such that б ( 

sнch t.hat v0 < uv0 ; п := 1; 

SТЕР 1. Determ.ine such that 

If 

-1 
< а; clюose v0 EV 

theн go 1:о step 3 else go to step 1 with n ·= n + 1; 

End of th.e a1gorithm. 

Lemшa 4.1 and 4.2 provide that the a1gorithm stops after а finite 

nuщber of iterations and that in the n-t.h iteration step of the a1gorit11Ш, 

3 
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we have 

+ 
Pf llv -v 11 

n п n-1 
1-pf 

n 

s v(f ) 
п 

* s v s v 
n 

+ -----
v -v 11 
п n-1 

1-p_k 

If the algorith.m ends at iteration step n 0 with policy f 

* 
theп the 

distance between v - v ( f ) is at mos·t. а 
по 

no 
and tl1e distance betweeп i.1pper 

and lowerbound for v(f ) is less than а -
n 

···1 
6(1-р*) • 

Note that the choice of v 0 and tl1e way in which vn is computed assure 

* that vn coпverges monotc:mically from below to v i.e. 

and 

v s 
n-1 

s v(f ) s v* 
n 

* lim v v • 
п--к;о Il 

For prooJ:s >ve reJ:er to [ 21], [ 28]. 

If we release the monotonicity assumptions and choose v0 Е V arbitrary 

i.t. remains possiЫe to give adequa·te successive approximation algorithms, 

see [22] iп this volшne. 

Iп all these rn.etl10ds а rn.aiп role is played Ьу the concept of upper 

and lowerbound. In fact the fast convergence of the algori thrn.s is caused Ьу 

the use of this concept, see e.g. МACQUEEN [16], PORTEUS [23], VAN NUNEN 

[11]. Moreover, upper and lowerhounds can Ье used to formulate suЬ

optimality tests whicr1 may even improYe the efficiency of the algorithms 

considerahly, see e,g. МACQUEEN [17], НASTINGS and VAN NUNEN [8] 1 

НASTINGS and МELI,O [ 7] ' HIJВNER [ 14] • 

5. ANAJoYSIS OF ТНЕ ASSUМPTIONS 

I,et us first make some remarks on the assumptions. 

RЕМАRК 5.1. 

(i) r may Ье replaced Ьу any vector Ь with Ь - r Е W, so it is not 
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necessary to compute r exactly. Such an approach is applied in 

VAN NUNEN [ 21]. 

(ii) In the model semi-Markov decision processes, discounted Markov 

decision processes and discounted semi-Markov decision processes are 

contained as well. 

(а) Semi-мarkov decision processes (without discounting) are covered 

Ьу taking the numЬer of the decision instant as decision time and 

the expected reward until the next decision instant as reward. 

Alternatively spoken one considers the emЬedded process, see e.g. 

MINE and OSAКI [18]. 

(Ь) Discounted Markov decision processes are included Ьу incorporating 

the decision factor S (if S $ 1) in the transition probaЫlities 

i.e. pa(i,j) := Spa(i,j). If S > 1 the theory should Ье slightly 

adapted. 

However 

remains а sufficient condition for restriction to stationary 

Markov strategies. (See VAN НЕЕ [9]). 

(с) For discounted semi-Markov decision processes with discount rate 

а ~ О again incorporation in the transition probaЫlities is 

appropriate, for а < О the theory needs slight modifications. 

-1-
We now relate the use of the translation function (1-р) r, as intro-

duced in а slightly different way Ьу НARRISON [5], to an approach of 

PORTEUS [ 24]. 

PORТEUS proposed, for the finite state-finite action case, that the 

use of а translation function might Ье replaced Ьу а transformation of the 

data. 

Не therefore introduced the return transformation 

r<1,a> := r(i,a) - <1-p)-1{r(i) - t pa(i,j)r(j)} 
j€S 
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For the transformed рrоЫеш ;те have 

:rщ ,;; r(i) - (1-pJ щ 
-1 -

(1.-р) pr(i) + (1-р) µ (i) 

for а11 i Е S 

simi1arly 

-
r(iJ ~ r(i) - с1-р) (i) 

Hence, we have 

( !) r Е W 

(2) llp(f) 11 llp (f) 11 ,;; р < 1. 
* 

for all i Е S. 

'I'his impl.ies that tr1e transformed рrоЫеш can Ье ha11d1.ed withou-t using 

а transl.ation and fits into the model. in WESSELS [28] (see al.so VAN NUNEN 

[21]). 'l'he question remains whether for al.1 i Е S and '!Г Е V one has 

v. (1Т) = v. ('!Г) + u (i) for some function и on S which is independent of '!Г. 
l l 

As а consequence of ( 1) and ( 2) we h.ave that 

тт \' ~ 
11\ f, r(X ,Z ) 

n=O n n 
I 

n=O 
JВ~r(X,Z), 

i n n 

and that any 1Т may Ье replaced Ьу а randomized Markov decision rule, 

w•j_th.out any effect on v.(тт). 
l 

~ 
n=O 

JБTTJБ 1r[r(X ,z) - (1-р) 
.i i n n 

(Х ) + (1-р) 
n 

(х 1J[x ,z_J 
п+ n n 
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N 71 -1- -1 11 -{ L :11\ r(Xn,Zn) - (1-р) r(i) + (1-р) 1\ r(~+l)} 
n=O 

-1-
v i (тт) - (1-р) r(i), 

where the third equality is allowed since 

'11 + 
JE. {r (Х ,Z ) + (1-р) 

i n n 

and the final equality is achieved since 

We will illustrate now how the results of LIPPJ:llAN [15] can Ье em

bedded in our theory (see also VAN NUNEN and WESSELS [20]) • Lippman proves 

the convergence of successive approximations at а geometric rate under 

the following conditions which are given in our notations. 

CONDITIONS OF LIPPJ:llAN. There exists а function u : S + [ 1, 00 ) , an integer 

m ~ 1, and constants О S S < 1, Ь > О such that for all i Е S, а Е А 

L un(j)pa(i,j) S S[u(i) + b]m 
jES 

However, we then have for any р* ~ S and any 

that for µ(i) := [u(i) + c]m 

the following holds: 

а) llp(f) 11 $ р* 

for n 1" .. ,m. 
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and 

Ь) 

So we can use for Markov decisioп processes as described Ьу Lippmaп 

the latter simpler and more general conditions а and Ь. 

Tl1e assumpt.i.on 2. 3. ii requires some transient behav.iour of the 

processes invol ved. This rnay Ье characterized as stz-ong excessi v·eness, i.. е. 

P(f) µ :s; for al1 f Е F 

v1ith р * < 1 and µ а positi. ve function оп S. 

For strong excessiveness several sufficient and necessary conditions 

can Ье g.iven. Iп order to make assumpt.ion 2.3.ii more transparent and to 

relate ·the latter assumptioп to tl1e assumptions of other authors ;;е \vi.ll 

g.ive t.Jюse condi.tions. 

LЕММА 5.1. (VAN НЕЕ and WESSEI,S [10]). 'l'I1e process is strongly excessive 

wi t11 µ (.i) 2: 6 > О if and only if the lifetimes of the process are ex

ponentially bounded, i.e. 

(Х ES) :s; a(i) yn 
n 

f'or all i Е S, тr Е М, ~1here у < and а is а positive function 011 S. 

PROOF. "if" choose µ(i) := sup L vn:n=>~ (Х ES, 
-1 

with 1 < v < у 
ттЕМ п=О 1 n 

and р*:= v- 1 , now it is straightforwardly verified t.hat P(f)µ :s; р*).1. 

wi th е : = { 1, 1, ... } . О 

LЕММА 5. 2. (VAN НЕЕ and WESSELS [ 10 ]) • The process is strongly excessive 

·with Л 2: µ (i) 2: 6 > О for some constallts, if alld only if the lifetimes o.f 

the process are exponentially boиllded, un.i.formly in i Е s, i.e. 

J!? ~ (Х ES) :s; 
i n 

n 
ау ( wi th а > О, О < у < 1) • 



PROOF. The "if" part of the lemma follows straightforward, the "only if" 

part can Ье achieved Ьу choosing e.g. a(i) = Лб- 1 . О 

LЕММА 5.3. (See VEINOТT [26], DENARDO [1], VAN НЕЕ and WESSELS [10]). 
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The process is strongly excessive with Л 2 µ (i) 2 о > О _for some constants 

Л 2 о > О if and only if the maximum expected lifetime is uniformly bounded 

iniES,i.e. 

SUP. L 
1!ЕМ n=O 

JP~ (Х ES) 
i n 

< м for sorne М > О, and all i Е S. 

PRC?Of. Let р (j_) Ье the maximum expected lifetime if the process starts in 

stat.e i Е S. So 

Clearly 

and 

Tl1is yields 

)l ( i) := sup L 
11ЕМ n=O 

µ 2 е + P(f)p, 

1 
)l 2 м )l + р ( f) )l • 

P(f) )l 

JP~ (Х ES). 
i n 

So for р* = ( 1- ~), о := 1 and Л := М the "if"-part will Ье clear. Оп 
the other hand if the process is strongly excessive with о s µ(i) s Л, then 

the lifetimes are uniformly e:кponentially bounded and hence the maximum 

eл-pected lifetimes are bounded. О 

COROLLARY 5 .1. The following t.h.ree asse.rt.ions a.re equivalent. 

- 1) The process is strongly excessi\re with О < о s µ (i) s д. 

2) The lifet.imes of the process are uniformly exponentially bounded. 

3) The maximum expected lifetimes of the process are bounded as function 

of tlle starting state. 
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Note that the maximum expected lifetime Х, (i) if the process si:arts i11 

state i Е S сап Ье found as i:he smallest positive so1ution to 

Х, ;о: SUJ2 [е + Р (f) 9,]. 
fEf 

There is а. c1ose relation betweeп strong excessivity and so cal1ed 

"N-st.age" contracti.on. '1'l1is relation i.s gi.ven in the followi.ng lemma. 

:LЕММА 5.4. (See VAN НЕЕ and WESSELS [10]). Let u Ье а positive function оп 

S such that P(f)u $ Mu for some М > О and all f Е F and suppose 

P(f0 ) ••• P(fN_ 1)u $ o'u, with О< р' < 1 (N--stage contraction) fог all 

Е F, then there exists а posi ti ve function µ оп S and р * wi t.h 

О< р* < 1, sucl1 that 

for all f Е F. 

N 
PROOF. Choose р* such that р' < р* < 1 and choose 

As а consequence of the foregoing lemma we see that "N-stage" contrac

tion in one norm (the u-norm) implies one-stage contraction in another 

norm (the µ-norm) • А final characterization of strongly excessive processes 

is given in the followiпg lemщa which сап again Ье found in VAN НЕЕ and 

WESSELS [ 10]. Тhis lemma gives а probaЬilistic characi:erization of the 

transient behaviour of the process. 

LЕММА 5. ~. А process is strong.l у excessi ve if and onl у if t1:1ere exists а 

partition {Sk 1 k integer} of S and num.Ьers а > 1, J3 ?': 1, such that for all 

1Т Е М 

I 
n=O 

for i Е SJ!,. 

PROOF. First note that the lemma states that there is necessarily а drift 

to lower Sk ar а drift out af the system. 

Тhе "if" part follows Ьу defining 



µ := sup Е1Т I 
пЕМ n=O 

u(X ) 
n 

where u(i) := (ae:)k if i Е sk with О< е: < 1 and ete: > 1. The "only if" 

part follows since 

Я.-1 я. 
i Е S,e_ - et < µ (i) ~ et 

-1 
with 1 < ос < р* . о 
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We conclude this section on the analysis of the basic assumptions Ьу giving 

the relation between the use of weighted supremum norms (µ-norm) and the 

use of the "similarity transformation" as described Ьу PORTEUS [24]. For 

the finite state space-finite action space situation Porteus proposed the 

following transformation of the original process. Let Q Ье а diagonal 

matrix with positive diagonal elements 

Def ine 

and 

Тhen the 

* to Qv 

Viz. 

µ-1(1) о Q := µ-1(2) 

' \. 

о ' ' ' 

r(f) : == Qr(f) ' 

P(f) := QP(f)Q-l. 

~* optimal return vector v of the transf ormed proЫem is just equal 

~* 
v sup 

fEF 

sup 
fEF 

~ -1~ -1 -1 
(I-P(f)) r(f) = sup (I-QP(f)Q ) Qr(f) 

fEF 

[Q(I-P(f))Q-l]-lQ = r(f) sup Q(I-P(f))-1r(f) 
fEF 

-1 * Q sup (I-P(f)) r(f) = Qv . 
fEF 

So the assumptions 2.3 can Ье replaced Ьу the same assumptions with µ(i) 

for the transformed proЫem. 
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