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Abstract

In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of
computational heuristics, some with a long history, have been proposed for the identification of communities or,
alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby
finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an
effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be
evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of
community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks.
Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large
effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range
communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper
scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be
overpartitioned. We show how by adopting a dynamical perspective towards community detection [1,2], in which the
evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can
detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the
performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally
good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and
through the analysis of real-world networks from imaging, protein structures and the power grid, where a multiscale
structure of non clique-like communities is revealed.
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Introduction

The analysis of community structure in complex networks has

gained much attention in recent years and a variety of community

detection algorithms have been proposed (for a recent overview

see Ref. [3]). The reason for this interest is that by finding

community structure in large networks one hopes to reveal

relevant modules at mesoscopic scales that can affect or explain

the global behavior of the system. Community detection may thus

facilitate new insights into the structural and functional organiza-

tion of a system (and the interplay between these two), as well as

potentially serving as the basis for reduced descriptions of complex

systems. Examples of important applications include networks

from technological, physico-chemical, biological and medical data

as well as data from the social sciences (see e.g. [3–6] and

references therein).

Community detection algorithms are based on diverse notions

of what makes a good community. Different mathematical and

computational heuristics, some of them based on graph partition-

ing concepts, have been used to identify communities or to obtain

an optimized split of the original network into smaller subgraphs

with a community-like character. A common trait in many

algorithms is to group nodes based on edge density: communities

concentrate high edge weight within them, while having low edge

weight between them. This structural notion has led to several

heuristics including, among others, modularity [7,8] and multi-

scale-Potts models [9–11] which have been coupled with different

optimization algorithms (e.g., the Louvain method [12]) for the

maximization of the corresponding cost functions. Recently, the

Map equation framework has proposed an alternative notion that

views communities as groupings of nodes that lead to concise

descriptions (in an information-theoretical sense) for the process of

communicating the position of a random walker within the

network [13,14].

To aid in the comparative evaluation of community detection

algorithms, there has also been an effort to design benchmark
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graph models with an embedded community structure [7,15–17].

However, in designing these benchmarks, a particular notion of

community has to be adopted implicitly. As in many of the

community detection algorithms described above, such bench-

mark models are based on the customary structural notion of

community in terms of edge density. Therefore, the community

structure is introduced as a stochastic clique-of-cliques, i.e., as a

hierarchy of interconnected realizations of Erdös-Renyi graphs

with block-wise homogeneous, ‘all-to-all’ edge densities. This

notion is motivated by the fact that many complex systems in the

literature have been found to display small diameters and is indeed

applicable to a wide range of networks, e.g. networks constructed

from correlations or networks from the social sciences.

However, as we show below, there is a broad class of locally

sparser networks where the assumption of ‘all-to-all’ connectivity

is not warranted yet may still contain relevant modular

substructures, which we would like to identify via community

detection. A community in this case corresponds to a set of nodes

which have a stronger direct or indirect connection with each other

than with nodes outside their community. Such long-range

substructures cannot be modelled accurately by stochastic cliques.

This is the case in a variety of systems (e.g. biological and

engineering networks) where entities are coupled in a complex

manner via a chain of local interactions such that not all entities

of a module are directly connected, yet they are more strongly

related to each other than to entities from a different subsystem.

Therefore, the evaluation of algorithms on benchmarks with

clique-like communities might not be representative of their

ability to identify relevant structures on real networks with

localized, sparser connectivity where non-clique like communities

may still exist.

The characteristics of communities in such networks (relatively

sparse with a strong local structure) also highlight a limitation in

popular community detection methods. It is already known that

some of these methods (e.g., modularity) are affected by a

‘resolution limit’ [18], a lower scale that establishes a minimum

size below which communities cannot be detected. Infomap, on

the other hand, seems to be immune to such a limit [19]. We show

below that these methods also have a ‘field-of-view’ limit, an upper

limit in the effective diameter of the communities they can detect.

This field-of-view limit affects both modularity and Infomap.

Therefore, such structural methods contain an implicit scale and

can only detect communities that lie within a range of effective

sizes (dependent on each method and each graph) and might miss

groups outside of it.

One way to correct for the field-of-view limit is to adopt an

approach to community detection that intrinsically scans across

scales, such as the partition stability framework [1,2]. Stability is a

recently proposed dynamical approach to community detection

which follows the time evolution of a Markov diffusion process on

the graph incorporating increasingly longer paths on the network.

This process entails a natural dynamic sweeping that can be

understood as the application of a zooming lens to community

detection. It is important to remark that the sweeping process is

inherent and key to the methodology: the dynamical basis implies

a systematic tool by which the structure at all scales needs to be

examined, without looking for the ‘right’ scale. In doing so,

stability is able to reveal communities without imposing a scale a

priori or, indeed, community structure at multiple scales. It has

been shown [1] that in such a framework, the standard structural

notion of community given by modularity is a particular case

based on one-step transitions (i.e., detected at Markov time equal

to 1). It can be shown [20] that Infomap also considers one-step

transitions in an averaged manner.

Under this interpretation, it is easy to understand why one-step

methods (such as modularity and Infomap) cannot detect

communities with large effective diameter, since these communi-

ties cannot be properly explored within one-step transitions. When

faced with such communities, one-step algorithms tend to

overpartition them. In fact, this feature provides us with an

indicator that one-step methods are being applied to a community

structure outside their range of applicability: when one-step

methods return communities with large effective diameters, this

can be seen as an indicator that the methods are operating on a

graph which does not conform to their intrinsic notion of

communities as cliques. On the other hand, long range

communities can be revealed at longer Markov times through

the dynamic sweeping provided by stability. We show below the

relevance of these observations through the analysis of constructive

examples and of real networks from biology, computer science and

engineering.

Methods

Notation
Networks are here defined as undirected, connected, weighted

graphs with N nodes. For simplicity, we consider non-bipartite

graphs. The connectivity of the graph is encoded by the weighted

adjacency matrix A, a symmetric matrix where Aij~Aji

corresponds to the weight of the edge between nodes i and j.

The total weight of the edges is m~

PN
i§j~1 Aij .

Community detection methods: structural and dynamical
interpretations
The purpose of this section is to provide a dynamical re-

interpretation of some popular community detection algorithms

that are based on structural notions of community. It will be

shown that such methods can be seen as one-step methods. When

reinterpreted as one-step dynamical methods, it becomes possible

to understand the inherent assumptions or bias of structural

methods towards the identification of short-range communities

and the limits that this imposes on the detection of non clique-like

communities.

A different interpretation of a well-known metric:

Modularity as a one-step method. The well-known

modularity [7,8,21] has in recent years been used as one of the

standard metrics to evaluate and optimize community structure.

The original idea of modularity was intrinsically combinatorial: it

assigns nodes to communities such that the density of links inside a

community is maximized, when compared to a random network

with the same degree sequence. It has been shown previously [1]

that this measure can be interpreted dynamically as a one-step

method. Modularity, Q, can be rewritten as [1]:

Q~trace HT
PM{p

T
p

� �

H, ð1Þ

where M~D{1A is the one-step transition matrix of a discrete

time random walk defined on the graph; D is a diagonal matrix

with the strengths of the nodes on its diagonal (Dii~di~
P

j Aij );

pi~di=2m is the equilibrium distribution of the process; and

P~diag(p). Furthermore the hard partitioning of the graph into c

communities is encoded into a N|c indicator matrix H with

Hij[f0,1g, where a 1 denotes that node i belongs to community j.

Recasting modularity in this way suggests the following

dynamical reinterpretation: communities are assigned such that

the overall probability of starting in a community and remaining

there after one step is maximized compared to the probability of

Non Clique-Like Communities
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randomly ending up in the same community when at equilibri-

um. Hence modularity can effectively be seen as a one-step

method and, as such, it tends to favor communities in which the

Markov process spreads rapidly, such as clique-like groups with

weak connections between them. On the other hand, when the

underlying communities are not clique-like (or have a large

effective intra-community distance), modularity optimization can

lead to overpartitioning, i.e., to the detection of artificially small

communities. This is shown in the examples in the Results

section.

Another one-step method: Infomap and clique-like

communities. Recently, Rosvall and Bergstrom [14] have

proposed the (Info-)Map framework for community detection.

The general idea behind the Map equation algorithm is to find a

binary code with unique codewords for each node within a

community that can be used to describe compactly the position of

a random walker in the network. In a network with a marked

community structure, the probability of flipping membership is

smaller. Therefore, one can compress the description by reusing

short node names (codewords) within separate communities,

similarly to the way street names may be used in different cities

throughout a country [14].

Although different in spirit to modularity, it is interesting to note

that the Map equation, much like modularity, is also based solely

on the equilibrium distribution p and a one-step process that

reflects inter-community transitions in an block-averaged manner.

Indeed, it can be shown that the Map equation formalism does not

distinguish different connectivity structures inside communities

[20]. This reflects an implicit assumption about fast mixing

communities and, consequently, a homogeneous ‘all-to-all’

connection pattern (i.e., clique-like communities in the sense of

having short effective diameter) matches best the inherent notion

of community of the algorithm. Hence, Infomap is prone to

finding communities that can be well approximated as stochastic

cliques. Indeed, Infomap performed as one of the best algorithms

in a recently conducted benchmark test where communities are

defined as stochastic cliques [19]. This also explains why, unlike

modularity, the Map equation is not known to be affected by the

resolution limit: the fact Infomap is greedy with respect to locally

dense substructures makes it well suited for detection even at the

finest scales. However, this desirable, designed-for feature also

means that when the graph under consideration has slowly mixing

communities, Infomap displays a pronounced overpartitioning

effect, even more so than modularity.

Stability as a dynamical framework for community

detection: sweeping across scales. Communities with large

effective diameters, e.g., non clique-like communities, can be

missed by the methods above because they may not be discernible

with one-step measures. This raises the question of how to detect

non clique-like communities? Intuitively, a means to account for

their structure is to consider walks of lengths greater than one.

This can be done in a principled way using the recently proposed

partition stability framework [1,2]. The idea underpinning stability

is to define a Markov (diffusion) process on the graph and follow

how the probability flow spreads out over time. Rather than

looking at one-step measures, stability takes into account walks of

increasing length systematically by looking at larger times and, in

doing so, it can reveal communities at different scales: in general,

the longer the time, the coarser the partition. Alternatively, one

can think of the Markov time as providing a zooming lens that scans

the structure of the graph from the finer to the coarser structure.

Importantly, stability has been shown to provide a unifying

framework for several measures of community detection including

modularity and spectral partitioning [1]. In the following, a brief

introduction to the stability measure will be given. For a more

detailed exposition see [1,2].

The stability of the partitioning of a graph can be defined via

the autocovariance of a Markov process taking place on the graph.

The definition can be based on both discrete and continuous

times. Here we consider the continuous-time Markov process on

the graph governed by the following (Laplacian) dynamics:

_pp~{p ½D{1L�, ð2Þ

where p is a 1|N probability vector, D is the diagonal matrix

with the strengths di, and L~D{A is the graph (combinatorial)

Laplacian matrix. Under the assumptions made above (undirect-

ed, connected, non-bipartite graphs), the stationary distribution p

of this dynamics is pi~Dii=2m. Now we can define the clustered

autocovariance matrix of the graph at time t as:

Rt~HT
P exp({tD{1L){p

T
p

� �

H, ð3Þ

with P~diag(p) and the matrix H encoding the partitioning as

defined for modularity above. Note that each entry ½Rt�ij is the

probability for a random walker to start in community i at

stationarity and after time t end up in community j minus the

probability of two independent walkers to be in i and j at

stationarity.

We can then write the stability of a partition H at time t as:

r(t,H)~trace Rt: ð4Þ

This is a global quality function for a given graph and partition

that changes as a function of time. It is easy to see that modularity

is a particular case of the linearization of the stability (or of its

discrete analog) at time t~1 [2]. The stability r(t,H) can now be

optimized in the space of partitions H with any optimization

method for graph clustering. In the present work, this has been

done with the efficient Louvain method [12]. The effect of time is

intuitive: with increasing time the Markov process explores larger

regions of the graph, so the Markov time acts as a resolution

parameter that enables us to identify community structure at

different scales. Communities are identified as subgraphs within

which the probability distribution of the process is more contained

over a time t than otherwise expected at stationarity. Importantly,

stability does not aim to find the best partition, but rather tries to

reveal relevant clusterings at different scales through the zooming

process that occurs naturally through the dynamics. A relevant

partition should be both persistent over a comparably long

timescale and robust with respect to slight variations in the graph

structure and/or the optimization [22,23]. In order to quantify the

robustness of the partitions, we use the variation of information to

measure the similarity between partitions [23,24].

Stability differs from one-step methods in its intrinsic multistep

character, as it is based on the exponential of the full adjacency

matrix. Furthermore, stability does not introduce any effective

assumption towards a block-averaged transition matrix and is thus

not biased towards a particular structural model of clique-like

communities. The fact that stability uses the diffusion dynamics

from each node taking into account walks of all possible lengths,

rather then looking at one-step transitions only, has an important

bearing on the detection of non clique-like communities. As the

Markov time increases, stability is able to find the cohesion within

non clique-like communities as the multi-step density between

nodes in such a community is increased. The dynamic zooming

provided by the Markov process is the key characteristic of the

Non Clique-Like Communities
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stability framework. Such an approach does not focus on a

particular scale but rather provides a means to establish the

presence of robust partitions that can appear at any given scale or,

indeed, reveal the existence of a multiscale community structure. If

no communities are present, e.g. in pure Erdös-Renyi random

graphs, stability returns the absence of robust communities at any

scale. The effect of the Markov dynamics as a zooming lens,

scanning from finer to coarser resolution, provides a means to

ameliorate the effect of the resolution and field-of-view limits. We

should remark that the Markov time does not impose a dynamic

on the network necessarily but can rather be seen as a device to

reveal the potential community structure in the network (even if

the network does not have an intrinsic dynamics).

Community structure in benchmark graphs and in
different applications
A number of benchmark graph models have been proposed for

the evaluation of community detection algorithms (for some widely

used examples see [7,15–17]). Nearly all of these benchmarks

share a particular notion of community: typically a parameter

controls the ratio of the probability for a node to connect within its

own community versus the probability to connect to a node

outside the community. Some more recent models [25] allow for

more heterogeneous degree distributions of the nodes, yet a

community can basically still be described as a homogeneous

substructure and the community structure may be thought of as

a probabilistic realization of a ‘clique of cliques’:

p(i,j)!kikjf (Ci,Cj), ð5Þ

where ki,kj are the degrees of node i and j respectively and f is a

function of the associated communities Ci,Cj of i and j alone.

Therefore, these random graph models can be thought of as ‘mean

field’ or ‘block models’, in that intra- and inter-community

structure is approximated by average connection properties.

If we think of Markov diffusion processes or flows taking place

on these graphs, such networks exhibit fast exploration of all nodes

within each community–due to the clique-like structure of the

community any node in the community is reached in one step.

Although graphs of this type are indeed found in real applications

(such as networks constructed from correlation measurements or

in some instance of social groupings), a wide spectrum of real

networks are not of this form because they do not display an ‘all-

to-all’ connection pattern. An important example of networks that

cannot support clique-like connection patterns is that of geo-

graphically embedded networks, such as power grids, sensor-

networks, river-networks, road- and train-networks and other

transport and supply and distribution networks. Similarly,

networks containing constraints, in some cases dictated by

geometry or by some other cost functions, such as higher-

dimensional grid or lattice-like structures originating from physical

and biological systems, will not display homogeneous block-like

structures in their connectivity patterns. We show some examples

of these networks in the Results section below.

This issue is generic in the sense that it applies to graphs that

have an intrinsic geometric or constraint-driven structure even if it

emerges from an abstract data structure. Examples include graphs

with a low doubling dimension [26] which are related to graphs

that can be naturally embedded in a low-dimensional Euclidean

space. Indeed, it has been conjectured that the Internet

autonomous systems network–a prominent example of a network

pegged to geographical constraints–has low doubling dimension

[27] and can be embedded naturally into a two-dimensional

hyperbolic plane [28]. Other networks with a similar structure

emerge from the projection of high-dimensional data onto a lower

dimension while preserving the local structure of the data [29] or

in web graphs with a tendril-like structure in the periphery. In all

these networks, the connection probability between nodes is

strongly influenced by locality and it tends to be sparser and

inhomogeneously distributed within and in between different

structural components. Invoking again a diffusion process, these

graphs may contain non clique-like communities within which

diffusion is slow, such that they cannot be identified with standard

structural, one-step community detection methods. The fact that a

wide range of real networks are not of a mean-field type and their

possible community structure may not be clique-like should be

taken into account when comparing community detection

algorithms on benchmarks which have been developed with the

implicit assumption of clique-like communities.

Results

We now analyze a series of constructive and real-world

examples in which communities are significantly different from

clique-like structures. For all the results presented below, we run

the respective community detection algorithms 100 times with a

different random seed and select the best partition found as the

community structure. For both modularity and stability, the

optimization has been performed with the Louvain algorithm [12].

Infomap has its own implicit optimization method. To assess the

robustness of communities obtained by the stability method, we

used the variation of information [24] of all solutions found by the

optimization.

Constructive examples: Non clique-like communities with
low intra-community diffusivity
Before considering real-world networks, we illustrate our ideas

with constructive toy examples to exemplify the notion of non

clique-like communities. The first example is a ‘ring of rings’, in

which 5 rings of 20 nodes with strong intra-ring edges are linked via

weak edges to each other (Fig. 1A–C). Given our discussion above,

it would be desirable that community detection algorithms should

reveal the strongly linked ring communities. Indeed, the strong

rings correspond to the notion of community as the equivalent of

the connected components when the graph is ‘almost disconnect-

ed’, i.e., in the limit when the weaker edges become non-existent.

However, as shown in Figure 1A–B, one-step approaches, such as

modularity and Infomap, fail to recover these communities and

return ‘optimal’ clusterings that are overpartitioned with many

communities of no individual relevance.

Following our discussion in the Methods section, these results

can be understood as a consequence of the locally greedy, one-step

characteristics of these algorithms. The Infomap algorithm obtains

18 communities as this algorithm does not have any incentive to

create communities that go beyond small ring segments, as such

communities have low one-step escape probability while being as

locally clique-like as possible. In fact, Infomap fails to recognize

the rings even when all edges in the graph (within and between

communities) have equal weights. Modularity also optimizes

according to one-step transitions and, in the case of the rings,

such a short horizon is not enough to identify the rings of length 20

and it returns a partition into 8 communities. This effect becomes

more acute when the length of the rings increases, e.g., with 2 rings

of 50 nodes modularity finds 10 communities instead of the

expected 2.

In contrast, the stability formalism identifies only one persistent

and robust partition: the right split into 5 rings (Fig. 1C). Stability

Non Clique-Like Communities
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detects the communities when the dynamic zooming reaches

sufficiently long Markov times. In this case, this occurs at a

Markov time greater than 1, thus explaining why modularity is

unsuccessful. Indeed, above t^2, a long-lasting plateau of stability

corresponding to 5 communities emerges and this partition is

robust as given by the vanishing value of the variation of

information calculated for 100 optimizations of the stability at

each time point.

As explained above, the Markov time at which the structure is

detected is indicative of an effective intra-community diffusion

distance that needs to be spanned to make the community

identifiable. This is akin to a measure of the diameter of the

community (specifically in the case of quasi-regular graphs). The

fact that both Infomap and modularity are effectively one-step

methods means that if the communities they detect are the ‘right

ones’, they should always have low diameter. Conversely, when

the communities returned as optimal by Infomap and modularity

have large diameters, this can be seen as an indication of an

overpartitioning effect by these methods. In that case, both

algorithms are operating in a regime for which they were not

designed since they will always try to find locally dense or one-step

structures and the communities may thus be too fine grained.

This observation can be used to provide a check for the

appropriateness of those methods for the particular network

analyzed. As a simple proxy, one can monitor the diameter of the

detected communities. Here we calculate the average of the

maximum of the shortest paths in the subgraphs induced by the

partioning. The diameter is just an easily computable indicator of

this effect but other more appropriate measures could be used,

specially in the case of non-regular graphs. For instance, in the

case of the ring of rings, the corresponding average diameters of

the communities found by each method are DMod&14 and

DMap&4:56, indicating a potential overpartitioning. Similar

diameters are observed in the real-world examples shown below,

as does the fact that the communities detected by Infomap tend to

be smaller in diameter than the ones found by modularity, a

reflection of Infomap being more greedy towards locally clique-like

structure. This feature of Infomap, which makes it immune to the

resolution limit, makes Infomap more sensitive to the field-of-view

limit, and hence to overpartitioning.

Further insight into the importance of the intra-community

distance in non clique-like communities can be gained by

considering another constructive example: a ring of 5 small-world

(SW) graphs [30] with 200 nodes each in which edges inside SWs

are five times stronger than edges between SWs (Fig. 1D–F). The

SWs are constructed using the CONTEST toolbox [31] as follows:

start from a ring with nearest and next-nearest connections and

add a random shortcut to each node with probability p. As shown

in Figure 1D, both Infomap and modularity suffer from severe

overpartitioning: when the SW graphs have few shortcuts,

Infomap finds 87 communities and modularity returns 27

communities while stability finds the right split into 5 communities.

As the shortcut probability is increased, the diameter of the SW

is reduced while their local structure is basically unaffected going

from a ‘large world’ to a ‘small world’ (this is the classic finding by

Watts and Strogatz [30]). From our viewpoint, this means that the

SWs become smaller (i.e., their diameter decreases) and these

communities should become easier to detect by one-step methods.

Indeed, it is shown in Figure 1E that modularity detects the correct

number of communities when their mean diameter falls below 7.

On the other hand, Infomap does not detect the SWs as

communities in the range shown in Fig. 1E, and only detects the

SWs when the diameters fall below a diameter of around 4 (not

shown). Again, this highlights the bias of Infomap towards locally

clique-like communities with short effective diameters. The same

feature that makes Infomap successful in dealing with the

resolution limit appears here at the basis of its susceptibility to

the field-of-view limit.

Figure 1. Constructive networks with non clique-like community structure. A–C Ring of rings: 5 rings of 20 nodes in a ring configuration.
The edges within each ring are 5 times stronger than between rings. Optimal communities according to: A modularity (8 communities found) and B
Infomap (18 communities found). C Analysis with stability: number of communities found (blue) and average variation of information (VI) of the
partitions found (green) as a function of Markov time. The average VI is obtained from 100 runs of the Louvain algorithm. Starting at t&1:96 the
correct partitioning into 5 communities is detected as a persistent, robust partition with vanishing VI. No other stable partition is detected at any
other Markov time (as shown by the high values of VI). D–F Ring of small worlds: 5 SWs of 200 nodes in a ring configuration. The edges inside each
SW are 5 times stronger than those between different SWs. The SW property, and thus the diameter of the SWs, is varied by varying the shortcut
probability p[½0:1,1� (see text for details). D Examples of partitions obtained by modularity and Infomap for p~0:1. E Number of communities
detected as a function of the measured mean diameter of the small world subgraphs for Infomap, modularity and stability: Infomap never detects the
SWs; modularity detects the SWs only when they have short enough diameter; stability always detects the SWs (at different Markov times) as the only
stable partition. F Markov time elapsed until the SWs are detected by stability as a function of the shortcut probability.
doi:10.1371/journal.pone.0032210.g001
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Figure 1E also shows that stability consistently detects the right

community structure with 5 SWs as the only persistent and robust

partition, for all densities of shortcuts, i.e., no matter how small or

large their diameter is. According to our dynamic viewpoint, it is

expected that as the diameter decreases, the SW communities will

be detected at smaller Markov times. This is presented in

Figure 1F, where we show that the Markov time at which the

SWs become identifiable by stability decays roughly as the inverse

of the shortcut probability. Satisfyingly, this correlates well with

the dependence of the mixing time in SWs estimated from the

spectral gap, i.e., the first non-zero eigenvalue of the Laplacian

[32].

Networks with non clique-like communities from diverse
real-world applications
As shown above, the key limitation of modularity and

Infomap for the analysis of non-clique community structures is

their reliance on a single-step (structural) notion of community,

which leads to existence of a fixed scale in the algorithm. In

contrast, stability zooms across scales and, importantly, the

scanning through all scales is an essential feature of the

algorithm. By scanning through time and considering all

relevant features detected along the way, a multi-scale structure

can be revealed, yet without imposing a scale a priori. In cases

where there is no community structure, as for Erdös-Renyi

random graphs, the algorithm does not find structure at any

scale. If there is one or more scales, they can be found through

the sweeping. Therefore, in stability, the potentially multi-scale

structure of the graph is explored through a multi-step process

given by the Markov time.

Graphs from image analysis. As a first real application we

consider an image segmentation problem in which the aim is to

analyze an image and find meaningful substructures without a

priori knowledge or guidance. One approach towards this problem

is to create a graph representation of the image, in which each

node corresponds to a pixel in the original image and the weight of

the edges is computed according to image properties such as

distance between the pixels, difference in intensity and/or color,

etc. [33]. The resulting graph can then be analyzed for community

structure as a means to detect meaningful substructures in the

image. Clearly, the graphs thus generated will not have

homogeneous, clique-like community structure, since the graph

is generated from an image with a two-dimensional structure and

it incorporates a distance metric.

In Figure 2 we present the results of the analysis of a sample

image of size 102|102 pixels. The image is freely available in

various sizes in png format at http://www.iconarchive.com/

show/christmas-icons-by-mohsenfakharian/balloons-icon.html.

The graph we analyze is constructed from the grayscale version

in Fig. 2A. As expected from our discussion above, Figure 2D–

E shows that both Infomap and modularity lead to an over-

segmentation of the image into 213 and 37 communities,

respectively, with average diameters larger than one:

DMap&3:67 and DMod&8:27, a fact that is indicative of non

Figure 2. Image segmentation via community detection. A Original image in color and the grayscale version used in the analysis. B Image
segmentation (false color plot) found with stability (16 communities). C Stability analysis of the image graph. The partition in B corresponds to the
plateau at Markov time t~11:3, where a minimum of the VI also occurs. D–F Image segmentation (false color plot) obtained from different
community detection methods: D modularity (37 communities), E Infomap (213 communities), F hierarchical Infomap (15 communities; highest
hierarchical level).
doi:10.1371/journal.pone.0032210.g002
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clique-like communities. On the other hand, the dynamic

zooming provided by stability finds a naturally robust partition

into 16 communities, which emerges at a Markov time of around

11 (Fig. 2B–C) and corresponds well with the underlying features

of the image. The robust partition is indicated both by its

persistence in terms of Markov time and by its robustness, as

indicated by a minimum in the variation of information between

the partitions found by the optimization. For comparison, we also

evaluated in Fig. 2F hierarchical Infomap [34], which has been

proposed recently and allows to agglomerate hierarchically the

communities obtained by the Map equation formalism into

different levels. Our analysis shows that only the clusterings

obtained at the highest level of hierarchical Infomap provide a

perceptual improvement and the hierarchical scheme still leads to

communities split into subcomponents of no obvious significance.

This example from image segmentation highlights the relevance

and significance of a notion of community that deviates from the

usual clique-like assumptions, which can only be detected with

multi-step community detection algorithms, such as stability

optimization.

Protein structure analysis. Proteins are a class of macro-

molecules with complex three dimensional spatial structure which

exhibit a hierarchy of motions that are intimately coupled to their

function. Structural analysis that can shed light into their function

is a very active area of research. Although it is well known that

identifiable motifs appear at different time and length scales, a

coherent methodology that can provide an integrated description

of the hierarchy of structures from the bottom-up remains elusive.

As a second example, we show in Figure 3 the analysis of the

protein Adenylate Kinase (AdK), an enzyme which functions by

performing an opening and closing global motion at slow time-

scales. Therefore, AdK has been studied both experimentally and

theoretically as a model for the analysis of hierarchical dynamics

of proteins and as a benchmark for method development (see, for

example [23] and references therein). In this case, the graph is

created from structural data, i.e., from the positions of atoms in

three-dimensional space and the interactions between them. This

results in a graph in which the nodes are atoms and the edges

correspond to bonds and chemical constraints (for details see

[23]).

The structural and geometric origin of the graph leads to a non

clique-like community structure. Again, this causes overpartition-

ing for both Infomap and modularity, as can be seen in Figure 3A–

B: Infomap returns 421 communities with average diameter

DMap&4:05 while modularity detects 69 communities with

average diameter DMod&10:12. The large diameters again

indicate that both methods are operating in a regime that does

not match their intrinsic assumption of what constitutes a good

community. Indeed, the partitions obtained by these methods do

not reflect the dynamical and structural features that are

prominent in AdK [1,23] and even the highest level in hierarchical

Infomap (Fig. 3C) is overpartitioned and does not provide an

appropriate coarse graining in this case. On the other hand, the

robust partitions detected by stability disclose the multiscale

structure of the protein graph, revealing important functional and

structural subunits, such as amino acids, secondary structures and

conformational substructures as exemplified in Figure 3D–F

[1,23].

Power grid network. Our final example is the analysis of a

classical technological network, namely the power grid of Con-

tinental Europe (http://www.termoenergetica.upc.edu/marti/

index.htm). This network is based on data from the Union for

the Coordination of Transmission Energy (UCTE) and has

been analyzed previously for robustness to targeted attacks

Figure 3. Analysis of the structural graph of the protein Adenylate Kinase (AdK). A–E Visualization of the communities found by the
different algorithms (adjacent regions in the same color correspond to communities): A Modularity (69 communities); B Infomap (421 communities);
C hierarchical Infomap (58 communities). D–F Some of the robust communities found by stability at different Markov times: D t~0:1 (206
communities), the communities capture the amino acids of the protein (214 amino acids); E t~240 (8 communities), the communities correspond
approximately to secondary structure of the protein (c.f. [23]); F t~4000 (3 communities), the communities correspond to the functional domains of
the protein that operate at slow timescales. Note that stability finds meaningful substructures also for other times not shown [1,23].
doi:10.1371/journal.pone.0032210.g003
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[35,36]. As this network is embedded geographically and is

constrained by engineering costs, its structural properties are

far from ‘all-to-all’ connectivity and we expect non clique-like

communities.

The community structures obtained by stability, modularity and

Infomap are shown in Figures 4 and 5. The results for Infomap

and modularity follow the same pattern as above: Infomap

overpartitions into 254 communities with average diameter

DMap&4:91 while modularity returns 32 communities with

DMod&13:84 (Fig. 4A–B). Both methods result in a fractured

representation of the European power grid. Hierarchical Infomap

finds non-meaningful partitions for low hierarchical levels and

improved partitions only at its highest level, although still

displaying segregated small regions.

Through its intrinsic dynamic sweeping, stability reveals a

multiscale structure with meaningful subregions of different sizes at

various Markov times. The Markov times highlighted in Figure 5

have been selected according to the relative decrease in variation

of information, which indicates a more robust partitioning.

Interestingly, the communities found by stability at different times

appear to be related to historical and commercial features of the

power grid network. For larger times, the coarse communities

correspond well with big historical monopolies, basically identified

with nations. Germany provides an exception to this scheme since

the German power grid is split between four large companies (with

one covering the eastern part of Germany). See http://de.

wikipedia.org/wiki/Stromnetz#Netzbetreiber. This is reflected

faithfully by the community structure detected by stability

(Fig. 5D). For shorter times (Fig. 5B–C), we get communities on

a sub-national scale that also correspond to regional operators,

e.g., France gets split up into several communities which overlap

well with the regional organization of the French power grid. For a

map of the French regional electrical companies, see http://www.

rte-france.com/fr/nous-connaitre/qui-sommes-nous/organisation-

et-gouvernance/le-siege-et-les-unites-regionales. Similar effects

are observed in Spain, Italy and Switzerland. In Figure 6, we

show a representation of the communities found as the dynamic

zooming lens of the Markov process is applied to this network.

The detailed analysis of these observations will be the object of

future work.

The dynamic zooming provided by the Markov time is not only

the key ingredient to detect communities without a restriction of

scales but also the robustness (or lack of robustness) of specific

communities is revealing of characteristics of those communities.

In the case of the grid, interesting effects can be found when

looking at the way communities coarsen as the Markov time gets

larger. For instance, the communities in Switzerland appear to flip

between different adjacent communities as the Markov time

increases. This lack of robustness indicates a strong shared

interconnectedness of the Swiss communities with its neighboring

groups. This aligns well with the known fact that the Swiss power-

grid is an important mediating hub in the center of Europe with 11%

of Europe’s electricity flowing through Switzerland (https://www.

swissgrid.ch/swissgrid/en/home/europa/european_overview/ch_

in_europe.html).

Discussion

The examples considered above illustrate how one-step

methods, which are tuned to detect clique-like or low diameter

communities, are prone to displaying a form of overpartitioning

for networks with non clique-like community structure. This is the

result of the existence of a field-of-view limit for structural, one-

step algorithms, such as Infomap and modularity. The field-of-

view limit establishes an upper limit on the size of the communities

that can be detected, as given by their effective intra-community

distance. Therefore, non clique-like communities present a

challenge because they have an inherent scale that might fall

Figure 4. Community structure analysis of the European power
grid with different one-step methods: A modularity (32 commu-
nities); B Infomap (254 communities); C hierarchical Infomap (24
communities; top level of hierarchy).
doi:10.1371/journal.pone.0032210.g004
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beyond the field-of-view of standard one-step methods. When the

intra-community effective distance is larger than the field-of-view,

this leads to overpartitioning. The field-of-view appears on the

opposite scale of the well-known resolution limit [18], which

indicates a lower limit size below which modularity cannot detect

communities.

Indeed, Infomap can be seen as having being designed to

resolve absolutely the fine scale (hence no resolution limit) by

optimizing for locally clique-like substructures. This feature, which

makes it extremely successful in the analysis of networks with high

density of connections, makes it ‘myopic’ with respect to larger

non clique-like structures. Therefore, Infomap suffers from a large

field-of-view limit, even more acutely than modularity, as shown in

the examples above. Interestingly, the fact that Infomap can also

be seen as a one-step method from a dynamical perspective, as

discussed above, has allowed us to propose a multi-step correction

of the Map formalism that may provide a remedy for this problem

[20]. Modularity has an intrinsic scale dependent on the overall

size (weight) of the graph which allows it to resolve communities in

a range between the resolution and field-of-view limits. Depending

on the particular graph, this scale may be well matched to the

community structure present (in which case, modularity works) or

may be too large (underpartitioning, affected by the resolution

limit) or too small (overpartitioning, affected by the field-of-view

limit). Stability on the other hand applies a dynamic zooming

across all scales following the Markov time evolution and thus does

not impose a priori a specific scale to detect the community

structure. It is important to remark that the dynamic zooming is a

key aspect of the analysis: only by scanning through Markov time

one can reveal whether a specific (time-)scale is meaningful for the

problem at hand or whether it merely corresponds to an artificial,

non-robust partition.

Although the standard assumption of communities as probabi-

listic clique-like groups is well motivated and relevant for a number

of important complex systems, our examples highlight the fact that

this view of community is not always representative of the

structures found in networks of current interest. Segments in an

image, functional subunits of a protein or geographic entities in the

power network are modular substructures of networks that are

only adequately identified when multi-step community detection

methods, such as stability optimization, are employed. Further-

more, multi-step methods such as stability can also be used for the

analysis of clique-like community structures, as shown in Ref. [37]

with benchmark models (see Fig. 2 therein and note that the

Reichardt-Bornholdt Potts method [9,10] has been shown [1,2] to

correspond to a linearization of our partition stability formalism).

As recent work suggests [38], however, it may not be possible to

resolve highly inhomogeneous community structure at a single

(fixed) time, and further research needs to be pursued to develop

local methods that do not infer a set of scales from the global

graph.

Arguably, communities that are non clique-like are in some

instances most relevant, in the sense that they correspond to

subsystems in which all parts are related but not necessarily in a

direct manner. This is a specific network viewpoint for data

analysis, as opposed to a generic set of relationships between

Figure 5. Community structure analysis of the European power grid with stability. A Stability analysis of the community structure of the
power grid graph: number of communities found (blue) and average VI (green) vs Markov time. In this case, 1000 initializations of the Louvain
algorithm have been used to find the best community and compute the variation of information. B–D Stability finds robust partitions for different
Markov times that seem to be related to known structure in the power grid. The partitions shown correspond to Markov times: B t~2:63 (25
communities), C t~11:76 (15 communities) and D t~94:79 (7 communities).
doi:10.1371/journal.pone.0032210.g005
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elements based on correlation. In fact, the analysis of networks

with clique-like communities, corresponding to subsystems where

all nodes interact with each other, may be more appropriately

pursued through multivariate statistics, rather than explicit

network analysis. This realization also has implications for current

efforts to construct networks from data where, in contrast to

correlation matrices, locally sparser networks are favored as a

means to reveal the underlying systemic connections of the data

[6].

Nearly all commonly used benchmark models to date have

adopted a clique-like notion of community, a fact that needs to be

taken into account when considering comparative tests performed

on these benchmarks, which are likely to be favorable towards

methods that have been designed for the detection of a clique-like

notion of community [19]. Although these benchmark graphs

reflect adequately the community structure of many important

networks and datasets, we have shown that many real-world

graphs are likely to have non-clique community substructures.

This observation hints at the need for a broader set of benchmarks

(e.g., random geometric graphs) that go beyond a block-averaged

structure and can reflect the specific properties of networks from

different application areas.

No community detection method will be universally optimal for

the analysis of all networks and, as pointed above, trade-offs

between specific and generic features are to be expected. Our

findings highlight the critical importance of a detailed assessment of

the assumed definition of community and of its appropriateness to

the features of the network to be analyzed. Our work also reinforces

the need for a careful consideration of the scales that might be

implicit in community detection algorithms that can lead to the

identification of non-relevant structures as communities. Our use of

the multi-step stability framework proposes to circumvent the

implicit assumption of a scale by considering community detection

as a zooming process through all scales in a systematic manner, as

given by a Markov diffusion on the graph. Alternatively, one can

understand the stability formalism as finding the particular time

scale at which modules in the graph will be seen as clique-like

communities after the process diffuses on the graph.

However, and specifically in the case of non-regular graphs,

there remain issues inherent to the fact that all the methods

Figure 6. Multiscale community structure of the European power grid with stability. The illustrative partitions shown correspond to
Markov times t~f0:81,2:12,2:62,11:75,20:08,34:29,94:79,173:49,389:77,1176:77,1919:14,10000g (from left to right, top to bottom) and have been
selected based on their relative robustness. The dynamic zooming provided by the Markov time provides a progressively coarser representation of
the network that captures geopolitical and commercial features of the grid.
doi:10.1371/journal.pone.0032210.g006
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considered in this paper use global definitions of community. As

stated above, there is a need for further research towards local

methods for community detection that avoid the restrictions

imposed by the global graph scale and potentially allow for a soft,

overlapping partitioning of the network. More generally, although

a huge set of community detection algorithms has been presented

to date, it is still an open problem to establish connections between

the underlying themes (conceptual and algorithmic) that these

methods implement and the applications for which they might be

especially suitable. This will be the object of future work.
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