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MARKOV EXTENSIONS, ZETA FUNCTIONS,
AND FREDHOLM THEORY FOR

PIECEWISE INVERTIBLE DYNAMICAL SYSTEMS

G KELLER

Abstract. Transfer operators and zeta functions of piecewise monotonie and
of more general piecewise invertible dynamical systems are studied. To this end
we construct Markov extensions of given systems, develop a kind of Fredholm
theory for them, and carry the results back to the original systems. This yields
e.g. bounds on the number of ergodic maximal measures or equilibrium states.

1. Introduction

A. Background.
Piecewise invertible dynamical systems have attracted considerable attention

during the last two decades. They occur in the literature under various names,
the most prominent are perhaps: piecewise monotonie transformations [La-
sota/Yorke, 1973], /-expansions or number-theoretical algorithms, see [Water-
mann, 1970] or [Schweiger, 1973] for references, and one-sided subshifts, in
particular subshifts of finite type or topological Markov chains, cf. [Denker et
al., 1976]. They all can be described as triples (X, T ,27) where X is a topo-
logical space, 27 is a finite or countable partition of X, and T : X —► X is a
mapping whose restrictions Tz to elements of 27 are injective.

[Hofbauer, 1986] investigates topological properties of (a restricted class of)
such systems. He constructs a topological Markov chain on a countable state
space in such a way that the system under consideration is a continuous factor of
this chain (in fact, it is a one-block factor). Although the factor map is generally
not finite-to-one, it is nice enough to carry over a great part of the chain's
topological structure to the underlying system yielding in this way a description
of the set of nonwandering points and of the measures of maximal entropy.
Such results ignore, however, a possible smooth structure of the space X and
a priori ideas about what subsets of X are small in a measure-theoretic sense.

To be definite, consider the family of systems ([Q,I),T ,27), 0 < p < 1,
where 2p = {[0,p),[p,1)} ,Tp(x) = p~xx(0 <x < p),Tp(x)=(l-p)-x(x-p)
(p < x < 1 ).     All T  leave the Lebesgue measure on [0,1) invariant and are
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434 G. KELLER

measurably isomorphic to a one-sided Bernoulli-shift with stationary probability
vector (p, 1 -p). Their metric entropy p logp + ( 1 -p) log( 1 -p) is maximized
for p = j such that the Lebesgue measure is singular to the measure of maximal
entropy if p / j . Nevertheless we are mostly interested in properties of orbits
(Tpx)n=x 2     valid for Lebesgue-almost all x e [0,1).

This motivates the attempt to investigate extensions (X, f ,72) of "smooth"
systems which at the same time inherit the "smooth" local structure of the sys-
tem and show a global Markov structure similar to that exploited by Hofbauer.
As a consequence of the Markov structure, "smooth" probability densities on
X are transformed by the action of t into "smooth" densities, provided that
f itself is "smooth" enough. This allows a systematic study of the spectral
properties of the Perron-Frobenius operator of t acting on spaces of "smooth"
functions on X. To number-theorists this operator is better known as Kuzmin
operator, and in statistical mechanics generalized versions of it are called trans-
fer operators. (I shall adopt this last name.) In a second step these results must
be interpreted for the system (X, T ,27).

During my work on these problems I learned that the same techniques can
be used for exploring equilibrium states on various subshifts. For subshifts of
finite type [Mayer, 1980] has done interesting work in this direction (in the
context of one-dimensional spin systems with long-range interactions). From
his work I learned how to use the theory of nuclear operators for investigating
dynamical systems. The results presented here apply to a much broader class of
subshifts including sofic systems (see [Coven/Paul, 1975], [Weiss, 1973]) and
many coded systems (see [Blanchard/Hansel, 1986]).

B. Organization and results.
§2 begins with a quick review of the spectral theory for quasicompact op-

erators and of Fredholm-determinants for nuclear operators on Banach-spaces.
Both concepts are combined in the definition of quasinuclear operators (Def-
inition 2.3. Some technical aspects of this definition are motivated by later
applications.) The main result for quasinuclear operators P (Theorem 2.5)
describes that part of their spectrum that can be characterized by the zeroes of
an analytic function associated with P and called the Fredholm-determinant of
(Id - zP).

The next three sections are independent of these functional analytic prepa-
rations, and the reader might prefer to begin his reading of this paper with
definitions, basic facts, and simple examples for piecewise invertible dynamical
systems and with the construction of Markov extensions for given systems (§3),
followed by an introduction to transfer operators and (Ruelle-)zeta functions for
weighted piecewise invertible systems and their Markov extensions (§4)     and

1 Very briefly: If 7": X —» X is an at most countable-to-one transformation and if j:I-»C
is a "weight function", then (Pgf)(x) = J2ver- ' x 7{y)s(y) is the associated transfer operator and

Cg(z) = exp (y^li Ç J2t"x=x S(x)g{Tx) ■ ...• g(T"-]x))  is the corresponding zeta function.
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PIECEWISE INVERTIBLE DYNAMICAL SYSTEMS 435

some considerations on analytic structures for such weighted systems (§5) in-
cluding notions of (generalized) holomorphic functions and expanding systems.
§6 is the core of this paper. We investigate transfer operators P acting on a
space ^°° of bounded holomorphic functions: Theorem 6.1 gives conditions
under which transfer operators of Markov extensions of expanding systems are
quasicompact on Tf00 and describes in some detail the isolated eigenvalues of
P and their associated eigenspaces. Our main result, Theorem 6.2, gives ad-
ditional conditions under which P is quasinuclear and under which (some of)
the isolated eigenvalues of P are just the inverses of the poles of Cg(z) ■ This
uses heavily Theorem 2.5. Finally, Proposition 6.10 and Theorem 6.11 relate
the peripheral spectrum of P to invariant measures on irreducible components
of the Markov extension.

While the zeta function of a weighted piecewise invertible system and that
of its Markov extension are often equivalent in the sense that they have the
same poles and zeroes in the domain referred to by Theorem 6.2, the relations
between the spectral properties of the corresponding transfer operators are more
delicate: Proposition 7.1 provides some general criteria for an eigenvalue of the
original system to be also an eigenvalue of the extended system. Unfortunately
I was not able to obtain a useful, general result in the other direction, except for
peripheral eigenvalues (Lemma 7.3). Nevertheless the results from §§6 and
7 show that for many transfer operators P associated to a weighted piecewise
invertible system there is r < r(P ) (= spectral radius of P ) such that the
inverse of each eigenvalue X of P with \k\ > r is a pole of the corresponding
zeta function with multiplicity equal to the algebraic multiplicity of I.

In §8 some of the previous results are translated into the "language" of equi-
librium states. For example, if the greatest positive eigenvalue of the transfer
operator P of the Markov extension of a weighted system is simple, then there is
a unique equilibrium state p for logg (Theorem 8.3.b), and if (T,p) is weakly
mixing, then the partition 2 is weak Bernoulli under T with an exponential
mixing rate (Theorem 8.5). (Both theorems say a bit more than indicated here.)

In §9 we touch upon several applications of Theorem 6.1: It is pointed out,
how the spectral theory for P   can be used to approach various probabilistic
limit theorems via the routes (a) L - approximation, (b) strongly mixing sta-
tionary processes and functionals of them, (c) Fourier- or Laplace-transforms.
We also relate exponential extinction rates to the pressure of T restricted to a
certain "repelling" subsystem (Proposition 9.7) and give a rigorous proof of the
fact that long transients behave stochastically just like typical trajectories from
the "repelling" subsystem.

I have chosen three classes of examples in order to illustrate the sometimes
rather general definitions and results:

2 For a rather special case the reverse implication has been proved in [Hofbauer/Keller, 1984].
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436 G. KELLER

(I) Topological Markov shifts, sofic systems
These are among the simplest piecewise invertible systems, and they are in-

cluded only, because everything reduces to ideas well-known to most readers.
(II) Up-and-down-counters
This is a class of subshifts which are neither of finite type nor sofic (i.e.

homomorphic images of subshifts of finite type). Using a rather explicit formula
for their zeta function Ç,(z) we show e.g. that they have unique maximal
measures (8.7).

(III) Piecewise analytic and expanding interval transformations
These are maps f : [0,1] —* [0,1] for which there is a partition 0 = aQ <

ax < ■ ■ ■ < aN = 1 such that each f,,_ a . is monotone and extends holomor-
phically to a map t, defined on a complex neighbourhood of [a,_x ,a,] and
satisfying \f',\ > a > 1 . If <j> : [0,1] —► C is such that each <t>ua._ a ( extends
holomorphically to the same neighbourhood as the corresponding T, and if
g = exp <t>,

( n-\     \X/"g   = lim (sup\g(x)-g(Tx)-...-g(Tn    x)\)      ,

then Cg(z) extends to a meromorphic function on {\z\ < g^ }, and X" is
a pole of Ç   if and only if A is an eigenvalue of P , the transfer operator of
the Markov extension of f. In this case, the multiplicities of X" as a pole
and of A as an eigenvalue coincide. If g = ll\t'\, i.e. if P   is the classical
Perron-Frobenius operator, then each eigenvalue A of P   acting on ßF[0,l]
that satisfies  \X\ > gj^    is the inverse of a pole of (g .   The multiplicity of
A as an eigenvalue is less than or equal to the multiplicity of X~ as a pole
(see (7.7)). In this case it is also true that all equilibrium states for logg
are absolutely continuous with respect to Lebesgue measure, and the number
of ergodic equilibrium states equals the multiplicity of the eigenvalue 1 of
P acting on BV[0,l] (cf. 7.7). This number, in turn, coincides with the
multiplicity of the pole at 1 of C, (z) (cf. 6.14 and 7.7). An informal discussion
of the Fredholm theory for transfer operators of interval maps can be found in
[Oono/Takahashi, 1980].
C. Discussion.

I feel that the rather heavy machinery used for the description of the general
setting and the proof of the main result needs some additional justification:

( 1 ) Analyticity results for Fredholm determinants and for the inverses of zeta
functions have been obtained so far only for very simple dynamics (topologi-
cal Markov shifts over a finite alphabet) but quite general g, see e.g. [Ruelle,

3 See 3.12, 4.8, 5.9, 6.12, 7.5.
4 See 3.13, 4.9, 5.9,6.13, 7.6, 8.7.
5 See 3.15, 4.10, 5.10, 6.14, 7.7, 8.8.
6 The space of functions of bounded variation on [0, 1].
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1976] or [Pollicott, 1986], and, on the other hand, for more general dynamics
(piecewise monotonie interval maps) but rather simple g (piecewise constant),
see e.g. [Takahashi, 1981], [Hofbauer/Keller,1984], or [Mori, 1985]. The com-
bination of more complex dynamics and more general g necessitates a theorem
like 2.5 and justifies the use of holomorphic functions in 6.2. It seems possi-
ble, however, that a clever combination of Pollicott's arguments with Theorem
2.5 could yield similar results for P acting on spaces of Lipschitz-continuous
functions or on spaces of functions of bounded variation.

(2) The general framework introduced in §§3 and 4 allows to treat a class
of systems much broader than just interval transformations (which have a very
special Markov extension). This is illustrated by the subshifts in Example II.

(3) Even for interval transformations, and even if one is not interested in zeta
functions, the use of Markov extensions and of holomorphic functions has its
merits: It seems quite difficult to obtain rigorous results about extinction rates
and transient behaviour as presented in §9.C by studying transfer operators
acting on spaces of functions of bounded variation, cf. [Keller, 1984].

(4) All results apply to higher-dimensional systems, too, but it seems to be
nontrivial to verify the assumptions of Theorems 6.1 and 6.2 for fairly general
classes of such systems. The complex ^-transformation that maps the unit
square (regarded as a subset of the complex plane) to itself by z h-> ßz mod Z
(\ß\ > 1 ) should be a good candidate to test ones ideas for more general two-
dimensional piecewise analytic and expanding maps. It already turned out to
be tractable from a related point of view in [Keller, 1979].

2.  QUASICOMPACT AND QUASINUCLEAR OPERATORS

A. Quasicompact operators.
Throughout this section P is a linear operator on some complex Banach-

space (5,||.||). Generalizing Definition V-3-1 and Lemma V-3-1 in [Neveu,
1964], we say that P is quasicompact if there is k 6 N and a compact operator
K: B — B such that \\Pk - K\\ < r(P)k where r(P) is the spectral radius of
P. The existence of the limit

(2.1) rK = lim (infill/'" - All : K a compact operator on B})

is trivial. Obviously rK < r(P), and it follows from Lemma VIII.8.2 in [Dun-
ford/Schwartz, 1958] that every spectral point A of P with \X\ > rK is isolated
in the spectrum a(P) of P and that the corresponding eigenprojection Ek
has a finite-dimensional range. Thus we obtain the following restricted spectral
representation for a quasicompact operator P (cf. [Kato, 1976], III.6.5):

For any r > rK there are finitely many spectral values A,,... ,XN with
\X,\ > r. All of them are eigenvalues, and P can be decomposed as

N

(2.2) P = ¿2X,(E, + N,) + Q
i=i
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438 G. KELLER

where E, is the finite-dimensional eigenprojection corresponding to X,, N, =
(P - X, Id)E, its eigennilpotent , and Q is a linear operator with r(Q) < r.
Furthermore E.E. = 0 (for i / /), E-N. = N-E. = E (for all i), and
E,Q = QE, = 0 (for all i).

In particular, all X, are poles of the resolvent of P, and X, is a pole of
order v, if and only if (P - X, Idf'E, = 0 but (P - X, Id)"'~xE, ¿ 0 (Theorem
VII.3.18 in [Dunford/Schwartz, 1958]).

With this notation we obtain a representation for Pn :

(2.3) ^=E^(i;(;W) + e".
¿=i \k=o x '      J

For T: B — B let ker(T) = {x e B: Tx = 0} and range(T) = {Tx: x e
B}. Theorem VH.3.24 in [Dunford/Schwartz, 1958] implies

ker(P - X, Id)17' = range(£,) ~ ß/range(Id -E,),

range(P - X, Id)"' = range(Id -ET)

for all X,. In particular (P - X, Id) is a Fredholm operator.

B. The essential spectrum.
The above spectral decomposition motivates the following definition: For

a bounded linear operator P on B the nonessential spectrum is the set of
all isolated spectral points A of P for which ranged - Aid) is closed and
Un>0ker((P - Aid)") is finite-dimensional. Its complement in o(P) is just the
essential spectrum ess(P) of P in the sense of [Browder, 1961, Definition 11].
The essential spectral radius is defined as

(2.4) z-ess = sup{|A|:Aeess(.P)}.

From the results listed in part A it is obvious that for quasicompact operators
ress - rK - anc*' usmS "measures of noncompactness", [Nussbaum, 1970] proved
that for arbitrary bounded linear operators

holds.

Id denotes the identity mapping on B .
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C. Nuclear operators.
Denote by B' the space of bounded linear functionals on B . According to

[Grothendieck, 1956, Chapter II. 1], a linear operator P on B is nuclear (or of
trace class), if it can be represented as

oo

(2.6) P = J2a,y'l®xi
i=\

where x, € B, y, e B', \\x,\\, \\y',\\ < 1, and ¿2°lx \a,\ < oo. y',®x, represents
the operator on B mapping x to y',(x) • x,. The trace norm \\P\\T is the
infimum of all yj°!, \a,\, the a, arising from a representation (2.6) of P.

Observe that rigorously the right-hand side of (2.6) is an element of the norm-
completion B'&B of B' ® B (ibid.), and in general the same operator P can
be represented by different elements from B'®B . However, if P isp-summing
for some 0 < p < 2/3 , i.e. if P has a representation (2.6) with Y1°¡1\ \a,\P < °°
for some 0 < p < 2/3, then there is only one element in B'éB representing
P. Since we are only working with | -summing operators, we call P nuclear,
if it is nuclear in the sense of Grothendieck and has a unique representation in
B'®B . This allows us to define the trace   of a nuclear P unambiguously as

oo

(2.7) tr(P)^ary,(x,)
i=i

where a,, x,, y, are taken from any representation (2.6), and the Fredholm
determinant '

(oo      n \

-£ — tr(/>"))

for \z\ < l/limn_^oo(tr(P"))x/n. Theorem 4 and its corollaries in
[Grothendieck, 1955] tell us that det(Id-zP) is an entire function and

(2.9) det(Id-z/,) = n(l-zA.)
i

where the product extends over all eigenvalues X, of P counted according to
their multiplicities. The sequence (X,)°lx is r-summable if P is p-summing and
r~x =p~x -i. Finally (ibid.)

(2.10) tr(P) = £A,..
i

D. Quasinuclear operators.
Remember that the defining property of a quasicompact operator P is its

approximability (in the sense of part A) by compact operators. The resulting

8 See Corollary 3 of Theorem 4 in Chapter II,§1 of [Grothendieck, 1955].
9 See Chapter I, §3, no. 2 of [Grothendieck, 1955] or Chapter II, Proposition 1 of [Grothendieck,

1956].
10 See Chapter II.3 of [Grothendieck, 1956].
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decomposition (2.2) asserts a much nicer approximation: For any r > ress there
is a finite-rank (and a fortiori nuclear) operator F such that spectral radius
(P-F)<r and (P - F)F = F(P -F) = 0. So there is nothing special, from
this point of view, about approximability by nuclear operators. However, the
operator F is not explicitly known in general, and the Fredholm determinant of
F, which might serve as an approximate Fredholm determinant for P, cannot
be described in known terms. Therefore we shall define quasinuclear operators
in terms of "effective" approximation schemes of nuclear operators.

2.1. Definition. A family 7 of continuous projections on a Banach space B
is a projection net if

(a) a,ß e 7 implies aß = ßa e 3 and there is y e 3 with ay = a,
ßy = ß.

(b) ||q|| < C for some C > 0 and all a e 7.
The projection net 7 is continuous if
(c) lima&sr a(x) = x for all x e B in the norm topology of B.x '

If 70 = 3 U {Id}, then 7^ is also a projection net.

Given a linear operator P and a projection net 7 we fix some further
notation: For a e7 denote by ra the spectral radius of

Pa:=(Id-a)P(Id-a)

and let ras = lima6g- ra . Observe that r0 = r(P).

2.2. Proposition. Let P be a linear operator on B and let 7 be a projection net.
1 1If Pa is compact for all a e7 and if ras < r(P), then P is quasicompact

and r    < r..ess —   as
If additionally 7 is continuous and if there is A > 0 such that for all m eN

and 0 < e < r c there is n > m withas —

(2.11) ïïm ||(Id-ß)P"(Id-ß)\\ > A • (ras - e)n ,

then ress = ras. In particular ras is independent of the special choice of 7 in
this case.
Proof. Fix a e7. By induction on n we show

(2.12) P" - PP"~ ' is compact for all n > 1.
For n = 1 this is trivial. For (n + 1) we have

P"+X - PP" = P"Pa + P"P(Id-a) - PP"~XP(Id-a) + PP"~XaP(Id-a)

= P"Pa + PP"~XaP(Id-a) + (P" - PP"~X)P(Id-a).
The first term in this sum is compact as Pa is, the third one by the inductive
hypothesis, and the second term is different from 0 only for n = 1, in which
case its compacity follows from that of Pa.

' '  lim(l65r a(x) = x means that for each neighbourhood  U of x there is ß e 7F such that
for all « > ß (i.e. aß = ß) holds:  a(x) e U .

12 A similar proof yields the same result if the aP are compact.
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Now (2.5) and (2.12) imply ress < lim^^dlPH • M^P"-'|l)!/" = ra, and as
a e 3 is arbitrary, ress < ras < r(P), i.e. P is quasicompact.

For the reverse inequality let K be any compact linear operator on B . Then

(2.13) lim ||(Id-/?)tf(Id-/?)|| < (1 + C) • lim \\(Id-ß)K\\ = 0

by continuity of 3 and the fact that {Kx: \\x\\ < 1} is relatively compact in
B. Fix n e N such that (2.11) holds. Then

\\P"-K\\ >(l + C)-2\\(Id-ß)P"(Id-ß) - (Id-ß)K(Id-ß)\\
for all ß e 7, and in view of (2.11 ) and (2.13)

II/5" -/^H > (1 + C7)-2|^||(Id->5)JP"(IcI->ff)|| > ^-(1 + C-)-2 .(ras-e)".

Now ress > ras follows from Nussbaums's result (2.5) and from (2.1).     D

2.3. Definition, (a) The linear bounded operator P: B —> B is 7-quasinuclear,
if 7 is a projection net for which all Pa (a e 7) are nuclear and which
satisfies:

(i) For ß e 7 and n e N there exists limae5¡-tr((a.P„a)"). This limit is
denoted by Uy (P?), and we set /„ = limn_too\tr^-(Pß)\x/n. For ß = 0 we
have PQ = P and write t(P) instead of t0 . We also let /as := lim^g- tß .

(ii) There is S > 0 such that |tr((aPa)n)\ < S"   (neN,ae3).
(iii) For each e > 0 there are Ce > 0 and ß = ße e 3 such that

\\(aPßa)"\\ < Ce(ríS + e)",    \tr((aPßa)")\ < C£(ías + e)

EN  £
(iv)

for az e N and a e 3Q .

lim\\a(Pa)JPß-P]Pß\\T = 0

for all ß e 7 and ; € N.
(b) Having defined a kind of trace for ^"-quasinuclear operators in (i) we

can extend the definition of a Fredholm determinant (cf. (2.8)) to this class of
operators: For ß e 7 let

oo       n
Z(2.14) devtfd -zP•) = exp   - £ — tr?(P¡)    .n

n=\

2.4. Remark, (a) The definition of f» and fas depends on the particular choice
of 7. This should be kept in mind although the above notation ignores this
dependence.

(b) Condition (iv) means that P and P„ map "small" subspaces "close" to
ones that are not much "bigger" (in the sense of the filtration 3 ). Its special
form is motivated by later applications, where it may be satisfied, as in Example
6.14, not only in the limit but also for "finite" a.
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(c) If one does not assume nuclearity of the Pa but instead of the aP
(a e 3) and if one replaces the inequality in (iv) by

lim\\a(Pa)JPß-P]Pß\\=0,

then one arrives at a slightly different definition of quasinuclearity that will not
be referred to in this paper but might be useful in other situations. The following
theorem and its corollary remain valid (see also the footnote to Proposition 2.2).

(d) We did not require z*as < r(P) for ^"-quasinuclearity. Hence 7-
quasinuclearity does not imply quasicompactness.

2.5. Theorem. Suppose P is 7-quasinuclear. Let R = max{ras, iaJ . Then
(a) det^-(Id-zP) is analytic in {z e C: \z\ < R~x},
(b) det^(Id-z0P) = 0 if and only if z~x is an eigenvalue of P. The

multiplicity of z0 as a zero of det5r(Id-zP) is finite and equals the algebraic
multiplicity of z7   as an eigenvalue of P.

2.6. Corollary. Under the assumptions of the theorem the following holds:
(a) All spectral points X of P with \X\ > R are eigenvalues of P.
(b) r(P) = t(P), if ü>(P") > 0 for all neN and if

(I) tM < t(P) or ias < r(P)        and        (2) ras < r(P) or ras < t(P).

Proof of the corollary. By Proposition 2.2 P is quasicompact and ress < z*as < R.
This proves (a). If r(P) > ras, we have

r(P) = max{|A|: A is an eigenvalue of P}.

Hence, if t(P) > R or r(P) > R, we obtain from (2.14), Pringsheim's theorem,
and Theorem 2.5

t(P)= ïîm try(P")1/" = max{|zr1: deW(Id-zP) = 0} = r(P).
n—>oo     •* •*

Otherwise we have r(P) < R and t(P) < R, and the additional assumption
implies r(P) = t(P).    D
Proof of the theorem. Fix e > 0 and ß = ß£ e 7 as in Definition 2.3(aiii).
For each a e 7Q   (Id-zaP„a)~    exists and is an analytic function of z  in
G£ = {\z\<(R + Eyx}. Let

Aa(z) = - z(Id-ß)(Id-zaPßayX(Id-ß)aPaß ,

Bn(z)= -zßaPa(Id-Aa(z))ß.

Then
(2.15)

(Id-zqPq) = (ß + (Id -zaPa)(Id-ß)) (Aa(z) + Ba(z) + Id)

= (id-za^a-z/ïa/MId-/?)) (id+BJz)) (Id+Aa(z))

Although the first identity is not mysterious (its matrix version is Schur's equal-
ity, see also Lemma 2 of [Hofbauer/Keller, 1984]), the proof is a bit tricky:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PIECEWISE INVERTIBLE DYNAMICAL SYSTEMS 443

Let A = Aa(z), B = Ba(z), and make use of aß = ßa . Then

(ß + (Id -zaPa)(Id -ß)) (A + B + Id)- (Id -zaPa)
= B + (Id -zaPa)A + zaPaß
= z(Id -ß)aPaß + (Id -z(Id -ß)aPa) A
= z(Id -ß)aPaß + (Id-zaPßa)A

= z(Id-ß)aPaß - z(Id-ß)aPaß + zß(Id-zaPßa)~X(Id-ß)aPaß

= zß(Id-ß)aPaß + z2 ßaPßa(Id-zaPßa)~X (Id-ß)aPaß
= 0

Suppose now that a e 3. As P is ¿^"-quasinuclear, all factors occurring in
(2.15) are of the type "Id + nuclear operator". Hence

(2.16) det(Id-zaPa) = det(Id-zaPßa) ■ det(Id+Ba(z)),

because ßaPa(Id-ß) and Aa(z) are "transient" off-diagonal terms which
do not contribute to the determinants (see Chapter II.3, Proposition 2 of
[Grothendieck, 1956]). We take the limQ£^ on both sides of (2.16): As

(oo      n \
-^2—tT((aPa)n)\     for|z|<S_1

by (2.8) and Definition 2.3(aii), we have in view of Definition 2.3(ai, ii) and
(b)

(2.17) limdet(Id-zaPa) = det^(Id-zP)   uniformly for \z\ < (S + e)~X

Similarly, but using (iii) instead of (ii) of Definition 2.3(a) one obtains

lim det(Id-zaP^a) = det^(Id-zPg)

(2.18)
= exp i -

V     n=\

As Bn(z) is nuclear for all ae70 (i.e. also in the limit a = Id ), we obtain

i      oo      n \

exp ( - ^2 — trr(Pß) J     uniformly in C7£.

(2.19) limdet(Id+5a(z)) = det(Id+5Id(z))       (z e Ge)

if we can show that lima&^ Ba(z) = Bxd(z) in trace-norm ||.||y-, for the deter-
minant is continuous with respect to this norm (see Chapter II.2, Proposition 1
of [Grothendieck, 1956]). To this end fix / e N, and let a > ß such that for
0 < j < I

\\a(Pßa)]Pß - (Pß)JPß\\T < (ras + e)J ■ /"'
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(cf. Definition 2.3(aiv)).13   Then (cf. Chapter II, §1, no. 2 of [Grothendieck,
1955])

\\BXd(z) - Bn(z)\\T = \\zßP(AXd(z) - aAa(z))\\T
oo

< \z\2 ■ \\ßP\\ £ |z|Í(Id -ß)(PJß - a(Pßa)J)Pß\\T
/=0

< l-l2 • const • i/(1_k|;ras + £)) + t (WC- + «»' ■ ™

by Definition 2.3(aiii), and as / was arbitrary, we obtain

(2.20) lim 115,

Now(2.16)-(2.20) imply

2.20) lim \\B.,(z) - B (z)||r = 0   for all z e G,

(2.21)      deV(Id-zP) = deV(Id-zPj8)-det(Id+5Id(z))   for \-z\ < S  ',

and the right-hand side of this equation is analytic in Ge. This proves (a) of
the theorem.

Let B(z) = BXd(z), and suppose that det(Id+B(zQ)) = 0 for some z0 e Ge.
The following identity is a generalization of Theorem 5.1 in [Gohberg/Sigal,
1971]:

tri B'(z)(Id+B(z))  xdz
J\z-z0\=r

(2-22) =/ -^-det(Id+B(z)) ■ det(Id + B(z))  xdz
J\z-z0\=r    dZ

= 2ni ■ (multiplicity of the zero z0of det(Id +B(z)))

for small z*. We prove it: Recall that

B(z) = -zßPß - z2ßP(Id -ß)Pß - z2ßP I ¿ zJPJß j Pß.

Since \\SPß\\T < \\S\\ • \\Pß\\T for each bounded linear operator S on B,
B(z) is an analytic function of z e Ge with respect to the trace-norm, and
H-Z^z)!^ < j for \z\ < z0, say. Hence, observing the fact that tr(t7K) =
tr(VU) for nuclear operators U and V on B,

tr(B'(z)(Id+B(z))-X) = tr(-^log(Id+B(z))

^-ztr(lo%(ld+B(z))) = jz-Trtr(log(Id-f-Ä(z))) = -^logdetTld+B(z))    for \z\ < e0

13 This is the only instant of the proof where Definition 2.3(aiv) is needed. If the definition of
quasinuclearity is varied as proposed in Remark 2.4(c), the proof of the subsequent identity changes
only slightly.
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i.e.

(2.23) tr(ß'(z)(Id+fi(z))"')-det(Id+ß(z)) = ^det(Id+5(z))

for \z\ < e0, and by analytic continuation (2.23) continues to hold on Ge
(where (Id+B(z)) is defined and analytic). Using once again the continuity of
the trace functional with respect to the trace-norm one finally arrives at (2.22).

As all B(z), z e G£, are nuclear and a fortiori compact, (Id+B(z)) is an
analytic operator-valued function, normal with respect to bd(G£) in the sense of
[Gohberg/Sigal, 1971, §2]. In particular, Theorem 2.1 (ibid.) says

(2.24) M(Id+B(zA) = ^-.tr ( B'(z)(Id+B(z))~Xdz
2%l      J\z-Zo\=r

where M(Id+B(zQ)) is the multiplicity of the singular point z0 of (Id+.ß(z))
(cf. §1 (ibid.)).The multiplicity M is invariant under equivalence, i.e. if E(z),
F(z) are equivalent holomorphic families of invertible operators defined in a
neighbourhood of zQ , then M (E(zQ)(Id+B(z0))F(z0)) = M(Id+B(z0)).

Recall (2.15) for a = Id:

(Id-zP) = (Id-zPß - zßP(Id-ß)) (Id+B(z)) (Id+A(z))

The first and the last factor on the right-hand side are analytic and invertible in
Ge, i.e.  (Id-zP) and (Id+B(z)) are equivalent at zQ e G£. Hence

(2.25) M(Id +B(z0)) = M (Id -zQP)

and the right-hand side of this equation coincides with the usual notion
of (algebraic) multiplicity of the eigenvalue zT7 of P (ibid., §1,1). As
det5¡-(Id-zP„) / 0 for z 6 G£ by (2.18), assertion (b) of the theorem fol-
lows now from (2.21), (2.22), (2.24), and (2.25).   D
2.7. Remark. The theorem allows us to define det(Id-z.P) as the equivalence
class of del^(Id-zP) of analytic functions on {\z\ < R} under the equivalence
/ ~ g if and only if f/g and g/f are analytic on {\z\ < R}. This makes
particular sense if there is some 7 such that R = r= (. = r    .

dS dS CSS

3. Piecewise invertible systems and their
Markov extensions

A. Piecewise invertible systems.
Having accomplished the functional analytic prerequisites we now define the

class of piecewise invertible dynamical systems to be investigated in the rest of
this paper. For similar definitions see [Schweiger, 1975] and [Hofbauer, 1986].

3.1. Definition. Let X be a topological space.
(a) The triple (X, T ,27) is a piecewise invertible system, if 2 is a finite or

countable partition of X such that for each Z e27 cl(Z) is compact and if
the restrictions T,z can be extended to continuous injective maps Tz: cl(Z) —»
X.   ( cl denotes the topological closure, int the interior, and (for later use)
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bd the boundary.) Often we shall just say system instead of piecewise invertible
system.

(b) (X, T, 3) is a piecewise compact system if all Z e72 are compact open
subsets of X.

(c) The system (X, T ,2) is a Markov system if TZ{ nZ2/0 implies
TZX D Z2 for all Zx,Z2e2T.
3.2. Remark. If (X, T,27) is piecewise compact, then Tz = Tz is a homeo-
morphism from Z onto TZ   (Z e 2).

3.3. Definition (Cylinders). For n > 0 let
n

2n = \J T~'2 = {z0 n t~xzx n • ■ • n T'nZn ¿0:Z,e2}
¡=o

be the cylinders of length n of the system (X ,T ,72). Denote by Vn(x) the
cylinder of length n containing x, (x e X) and by reg(X ,T,2) = {x e

k kX: T x e int Vn(T x)for all/t > 0, « > 0} the set of all regular points of
(X, T, 3). Observe that if (X, T, 2) is piecewise compact, then each Z e72n
is compact and re%(X, T ,3) = X.

(X ,T ,2) is generating, if [x] := f|„>0 Vn(x) = {x} for all x e X.

3.4. Definition (Factors, extensions). (X, T,72) is a factor of (X, f ,2), and
(X, t, 72) is an extension of (X, T, 3), if there is a continuous map n from
X onto X such that T o n = n o f on the set n~x(reg(X,T,2)). Then
T o n = n o t for all k on the same set, because this set is T-invariant.
We also say n-factor or n-extension if we want to specify the factoring map.
Observe that T on = not on all of X if (X, T ,2) is piecewise compact.

B. Canonical extensions.
Our main goal in this section is to construct in a canonical way a Markov

extension for a given piecewise compact system. At the end we also show how to
find, in a canonical way, a piecewise compact extension for an arbitrary system.

From now on let (X,T,2) be a piecewise compact system. The ideas
behind the following construction of a Markov extension are borrowed from
[Hofbauer, 1986] and some of his earlier works, e.g. [Hofbauer, 1979]. Refer-
ences can be found in his 1986 paper. Analogous constructions for (two-sided)
sofic systems are carried out in [Krieger, 1984].

3.5. Definition (Successors). Suppose C is a compact subset of X. The
nonempty sets among TC n Z with Z e 2 are called the successors of C.
We write C —> D if D = TC n Z . As all Z e2 are assumed to be compact,
successors of compact sets are again compact, and one can iterate the forma-
tion of successors. Let 737 be the smallest set of (compact) subsets of X that
contains 2 and is closed under forming successors.

The following lemma relates the above construction to cylinders. Its proof is
simple and can be found in [Hofbauer, 1986, Lemma 1].
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3.6. Lemma. Suppose that Z, e 2 (i = O, ... ,k) and that D C ZQ. Let
Ak=Dnf]k=xT~iZ, and D0 = D, D, = T(D,_x)r\Z, (i=l,...,k). Then
Dk = TkAk and Ak = Ç\k=0 T~'D, .IfD = Z0, then Ake2k.

Now let
X=[JD

where the D are pairwise disjoint copies of the sets D e 3) . Elements of X
are denoted by x = (x, D) with x e D e3. Define f:X—>X by

f(x,C) = (Tx,D)   ifC^DandTxeD
and let 2 = {D: D e 37) . Then (X, f ,3) is, by construction, a piecewise
compact Markov system. It is a n-extension of (X, T,3) where n: X —► X
is defined by n(x, C) = x. By ns we denote the projection from X to 37 ,
ns(x,C) = C.
3.7. Definition, (a) (X,t,2) is the canonical Markov extension of
(X,T,3).

(b) The Markov diagram of (X, T ,2) is the directed graph (3, —►) with
vertex-set 3 and edges defined by the successor relation (cf. [Hofbauer, 1986]).
As usual it can be represented by a {0, l}-valued 3 x â^-matrix.

(c) The Markov-diagram is uniformly forward finite if there is a uniform
bound on the number of successors of a single vertex.
3.8. Remark. If (X, T ,3) is a piecewise compact Markov system, it coincides
with its canonical Markov extension, and the Markov diagram describes the
Markov structure of (X, T, 3) itself.

3.9. Definition (Orbits and paths). An orbit of length n (in X) is an ordered
n -tuple x ,Tx, ... ,Tn~ x. It is periodic if Tnx = x . Orbits in X are defined
analogously. A path of length n (in 3 ) is an ordered (n + l)-tuple to =
D0DX ...Dn with D,_x -> D,   (z = 1,...,«). It is closed, if Dn = D0. With
to we associate the cylinder of length n Z(co) = f|"=o T~'D,. Infinite orbits
and paths are defined analogously.

Note that Lemma 3.6 establishes a 1-1 correspondence to *-► 3(to) between
paths and cylinders of length n . The following relation between orbits in X
and paths in 3 are implicit in Theorem 1 of [Hofbauer, 1986]. The proof is
easy.

3.10. Lemma. Suppose (X, T ,2) is a piecewise compact system.
(a) Each x e X induces a unique infinite path co(x) = DQDXD2 ■■ ■  by D =

n&(TJx)   (j = 0,1,2,...). Notation:  con(x) = D0-■ ■ Dn.

14 Hofbauer investigates the topological Markov chain defined by this matrix. It is again a piece-
wise compact system and can be obtained as an co-factor of (X, t,Z) by w(x) = (n<g(Tnjc))„>o ■
If (X,T,Z) is generating, then w is a homeomorphism between X and the chain, cf. Lemma
3.6.
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(b) Each infinite path D0DXD2 ■ ■■ in the Markov diagram represents a point
x e X, i.e. there is x e X with co(x) = D0DXD2-- . This x is unique if
[x] = {x}, in particular if (X, T ,2) is generating.

(c) If to(x) = C0CXC2--- , to(y) = D0DXD2-- , n(x) = n(y) = x for
x ,y e X, and if C0 n Vk(x) = DQ n Vk(x) for some k > 0, then C = D,
(i > k).

The following lemma, which relates periodic orbits in X and X to closed
paths in 3 , is a slight variation of Theorem 8 in [Hofbauer, 1986]:

3.11. Lemma. Suppose (X, T ,3) is a generating, piecewise compact system.
(a) If D0DX... DnXDQ is a closed path, then there is exactly one x e DQ such

that f'(x,D0) = (T'mod"x,D,modn) for i = 0,1,2, ... .
(b) // Tnx = x for some x e X, and if x e int(7r^ o fn(x, VQ(x))), then

there is x e n~ {x} with f"x = x . If x is in the interior of each D e 3 it
belongs to, then x is unique.

Proof, (a) By Lemma 3.6, Ak = f|¡=0 T~'D,modn is nonempty and compact for
all k e N. Hence Ax = f]°l0T~'D,modn ç D0 is nonempty. Let x e A^.
By Lemma 3.6, A^ ç [x] = {x}, and we obtain inductively f(T'x,D,) =
(Ti+lx,D{,+ X)modn) (i = 0, ...,«- 1). Since {T"x} = Tn A^ ç Ax = {x},
this yields

f,(x,JD0) = (r'mod"x,D;mod„)       (z>0).

As each point satisfying this relation belongs to Ax = {x}, x is uniquely
determined.

(b) Let Z = VQ(x). Then 7r(x, Z) = x = n(fn(x, Z)), and for some k big
enough holds

^(x,Z)n^(x) = ^(x) = 7r^(f',(x,Z))nFfc(x)

because (X, T,2) generates. Hence ns(t'(x ,Z)) = n3¡(tn+l(x ,Z)) for i>
" Ink by Lemma 3.10(c), and for a suitable multiple In of « and x := T (x,Z)

holds

tnx = (T(l+X)nx,ns(t(M)n(x,Z)))

= (Tlnx,ns(t,n(x,Z)))

= x en~ {x}

and ton(x) is closed, i.e.  to{x) is periodic.
If y is another point with n(y) = x , t"y = y , then also to(y) is periodic,

and by Lemma 3.10(c) the two paths coincide if x is in the interior of each
D e 3 it belongs to. x = y follows now from part (a).   D
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3.12. Example I (topological Markov shifts, sofic systems).
Let X be a finite or countable set of symbols, A a {0,l}-valued XxX-matrix

which is row-finite (i.e. J2T€z A(o, x) < oo for all o e X ), and let
NJ

QA = {(oxo2o3 ■ ■ ■ ) e X   : A(o,,o,+ x) = 1 for all i e N}

With the product topology of the discrete topology on X the shift space ClA is
a topological space. If S : QA —► QA , S(tJxo2tJ3 ■ ■ ■) = (a2a^a^ ■ ■ ■) denotes the
shift transformation, and if 2 = {[er], : a e 17) (where [o]x = {(oxo2oi ■ ■ ■) e
ClA : ffj = ct} ) is the partition into cylinders of length 1, Then (£2^ ,S,3) is
a generating, piecewise compact system. (For the compactness of the fibers see
Lemma 1.5(b) in [Wagoner, 1988].) We have 3 = 2 because of the Markov
structure of QA , and it is easily seen that (£2^, S, 3) is its own canonical
Markov extension.

If X is finite, if X is another alphabet, and if 6 : X —► X, then 6 extends
a NJ

coordinate-wise to a map from £2^ to S   , and

ilAe = {9(co):coeQA}

is a sofic system (see [Coven/Paul, 1975]). As in [Krieger, 1984] it is easy to
show that 3 is finite.

3.13. Example II (up-and-down-counter).
This is an example of a family of closed subshifts of {0,1} which are

not sofic. Before I describe these systems, some notational conventions are
introduced which will be used later, too.

For a set X of symbols let X+ = {er, • • on : n > 1, a, e X} and X* = X+ u
{empty word} . Similarly, for W ç X* let W+ = {wx ■■• wn: n > 1 ,w, € W)
and W* = W+ u {empty word}. Furthermore let W°° = {wxw2w3 ■ ■ ■ : w, e
W). W00 is considered as a subset of X .By £20(H/) we denote the smallest
shift-invariant subset of X containing W°° and by Q(W) its topological
closure in X   .

If A ç X* and B c X* or B c XN, we let AB = {uv : u e A, v e B).
AB C X* orX   , respectively.

If a e X then o" = a ■ ■ ■ a («-times).
Here comes the up-and-down-counter: Let X = {0,1} , fix M ç N (infinite,

otherwise we would come out with a sofic system), and let

WM = {0il':ieM}

and
VM = {O'V: 0 < i < j < oo and j e M if i > 0}.

It is quite obvious that Q0(WM) = VMW™ , and it is also not hard to see that
n(WM) = VMRM where

RM = w~uw*{0°°}u{n
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If S: Çl(WM) —► Çl(WM) denotes again the shift-transformation and if 2 =
{[0]i > [!][}> then (Çl(WM),S,2) is a generating, piecewise compact system,
and its Markov diagram has the following structure, if, for example, the three
smallest members of Ai are 2,5,  and 6 :

¡>2
I

D3
I I

De
I

D0 - Dx
I I

^o ,o      *m ,0      E2 0     L3 o      E4 0     E5 0
17       7       7       7      7

E0,\        E\,l        E2,\        E3,\        E4,l
17/77

■^0,2        *M,2        ^2,2        "^3,2

Ï   7       7       7
^0,3       ^1,3       ^2,3

i     /        f   /

^0,4 ^1,4

I      /
Fß0,5

I
'0,6

I

Here

Dn = {0AJ:l<i<j-n,jeM}RMo{0~},    i.e.   D0 = [0]x,

Enm = {lJ:j>n+l,j + meM}RM,

E = {lJ: l<j<œ}RM = [l]x,

Fn = {0j~" lJ:n<j<oc,je M}FQ U {0°°}       for zz > 1,

G„ = {l"+'}V
For special choices of M the right-hand side of the diagram may collapse. For
M = N, for example, En m = En 0 for all m and E0 0 = E.

If M is finite, the same construction yields a finite diagram, and (£2( WM), S)
is a one-block factor of the topological Markov chain defined by (3, -»), i.e.
it is sofic. For later use we note some further facts:

(a) All closed paths are of the form F0 ■ ■ ■ F,G} ■ ■ ■ GQF0 (j e M) (or trans-
lates of these cycles), except for the trivial cycle EE .

(b)
D0 = int(D0),   Dn\int(Dn) = {0°°}   (n > I),

E = int(E),   Enm\int(Enm) = {l°°}    (if M ¿ N),

Fn\int(Fn) = {0°°},    G„ = int(G„).
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3.14. Extensions for nonpiecewise compact systems.
The relations between (X,T,2) and its canonical Markov extension as

stated in Lemmas 3.10 and 3.11 are no longer true, if (X,T,2) is not
piecewise compact. In order to investigate a nonpiecewise compact system
(X, t, 3) by means of a Markov extension it is therefore useful to construct
first a (usually non-Markovian) piecewise compact extension (X, T ,3) ofthat
system. This can be done as follows:

Suppose that X is compact and that V e27. Let

X, X £ ci(z),   vn= ¿2 d(z)  («>i;
Z€2?„.

zçr

(disjoint topological sum), and let Tn: Xn —► Xn_x be the continuous extension
of t to Xn (n>l). Denote by O^ n the canonical projection Xn —> Xk (n >
k) and by (X^,®,,. oo) the inverse limit of the inverse spectrum (Xn,Q>k J
(see Appendix 2, Definition 2.2 of [Dugundji, 1966]). Similarly (Vtx>,'&k «jii^)
is the inverse limit of (Vn,Q>k n\V) • The following diagram commutes:

X,

r2|>2

X.k-\

tk\vk

X

'I    ^ '2    ^ '3 'k      ^ roo

The map  7^  is uniquely defined by the  Tk   (1 < k < oo), and as all  Tk,v
(1 < k < oo) are continuous and injective, the same holds for T,v^ .

Hence (X^ , Tx ,<Pq x2) is a piecewise compact <D0 ̂-extension of
(X, T ,3). Properties analogous to Lemmas 3.10 and 3.11 must be deduced
separately in particular cases from the above construction. They depend strongly
on how far (X, T ,2) is from being piecewise compact.

For later use we note that

%,oo(TÍ^ = f*(*0,oo*)      f°r * e «C("8(* ' ? ' ̂ ))

(see Definition 3.3) and for all x if t is continuous.

We close this section with a class of examples for nonpiecewise compact
systems:

3.15. Example III (piecewise monotonie transformations).
Let IçRu {+CO, -co} be a bounded or unbounded interval, 2 a finite

or countable partition of X into intervals, and let t: X —► X be a map for
which Tz is strictly monotone and continuous for each Z e2.

(a) The ^-transformation, ß > 1 : X = [0,1], fx = ySxmodl, 2 =
{[0,ß~x),[ß~x ,2ß~x), ... ,[/c/T',1]} where k is the integer part of ß. In
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this case
Zc-l

Xx = Y,Üß~X Ai+l)ß~X\A[kß-\l],
j=0

Zc-1 Zc-l
x2 = EEt^"1 +jß~2Jß~l + u+w~2]

(=0 j=0
k-\

+Y^[iß~x + kß-2,(i+i)ß-x]
1=0
'-1

+Y}kß~x + jß~2 ,kß~x + u + i)ß-2\
]=0

+[kß-x + lß-2,l],

where / is the integer part of ß(ß - k), and so on. The Markov diagram looks

where also all intervals in the dashed box are pairwise joined by arrows.
(b) The continued fraction transformation:
X = [0,1], fx = -Lmodl (x > 0) and f(0) = 0. Obviously 3 =

{!„ = [¿\ > j¡] ■ n e N} u {{0}}, and there are arrows /„ - Im , In -> {0} , and
{0} —> {0} for all m.ziGN. We shall not pursue further such systems whose
Markov diagrams are not uniformly forward finite. 15

4. Transfer operators and zeta functions

A. Transfer operators.
In this section we take a first step from the purely topological concepts of

the last section towards a consideration of "smooth" and measure-theoretical
structures of our systems:

Let (X,T,3) be a piecewise invertible system. By mb^) (or simply mb
if no confusion can occur) we denote the space of complex valued, bounded,
Borel-measurable functions on X . Pick some g e mb(A'), and fix the following
notation:

gn(x) = g(x) ■ g(Tx) ■...■ g(Tn~xx).

'- Cf. however the last paragraph of Example 4.10 and Remark 6.3.
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4.1. Definition, (a) (X ,T ,2 ,g) is a weighted system with weight function g,
if

£ |*(y)| e mh(X)
Tx=y

as a function of x .
(b)

where ||. H^ is the supremum-norm on mb(X).

With a weighted system (X,T,2,g) we associate the linear operator
P : mb —► mb (sometimes abbreviated as P )

(4.1) pgf(x)=J2s(y)f(y)-
Ty=x

Our goal is to restrict P   to suitable subspaces of smooth functions and to show
that under certain assumptions on T and g this restriction is quasicompact or
even quasinuclear.

For later use we note

(4.2) P¡f(x) =   J2 gn(y)f(y) (n 6 N)
T"y=x

4.2. Definition.  P   is the transfer operator of (X, T ,2, g).

4.3. Remark. These operators are frequently called Perron-Frobenius operators,
in particular if the following setting is considered:

There is a nonatomic measure m on X with respect to which T is nonsin-
gular and such that g~x is its ra-derivative. ' Then P is dual to T in the
sense that

(4.3) f Pgfx.f2dm= [ fx-Tf2dm
J X J X

whenever both sides of this equation are well defined ( T f := foT). Obviously
m({g = 0}) = 0.

It is easily checked that for 0 < / e mb and p = f ■ m

(4.4) pgf = f       if and only if       Tp = p,

where (Tp)(A) = p(T~ A).   But even if such an absolutely continuous,  T-
invariant measure exists, this is not the only choice of g for which the operator
P   describes relevant aspects of the dynamics of (X ,T ,2) (cf. §9.C).

We note that (4.3) implies

(4.5) f \Pgf\dm< \\f\dm       (f e LXJ.
J X J X

16 I.e.   J   g~]dm = m(TA) for all measurable A contained in some Z € 3? .
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4.4. Remark. One might ask if, with g as in the preceding remark, P: Lm —►
Lm has already interesting spectral properties. This is not the case:

Assume for simplicity that PI = 1, i.e.   Tm = m and P(Tf) = /.  For
XeC, \X\< 1, define Qx:Lxm^Lxm by

oo
Qx = ^XkTk(Id-TP).

Zc=0

Then PQX = XQX, Q¡ = Qx, and QJ = / if and only if Pf = Xf. Hence
Qk is a projection onto {f e Lm: Pf = Xf), and X is a Lm-eigenvalue of P
if and only if Qx ^ 0. Since T is not a bijection, there is 0 ^ f e Lm with
0 ¿ f - TPf = PkTk(f - TPf), i.e.   Tk(f - TPf) ± 0 for all k , and there
are arbitrarily large n such that

«-i
Qx f = ̂ 2À T (Id - Tp)f í °-

vt=o

Now Q.f^O follows from

Qj=Qr/+E* T Q\f ***
k=\

J2xk"TknQ\n)f
Zc=l

< Q?f

Hence A is a L^-eigenvalue of P, and the Lm-spectrum of P is the whole
unit-disc. (This argument is taken from §IV in [Keller, 1984]. See also §1 of
[Takahashi, 1981].)

B. Zeta-functions.
Another object we associate with (X ,T ,3 ,g) is the zeta function 7T,g(z)

(or simply Ç(z) ):

4.5. Definition. For Y c X and V c 3 let

(4.6) y(Y,n)=      Y,      Sn(x)       and       y(? ,n) = y [   (J Z, zz
.v:  7"v=v

r'.ie>'(0<i<n]

and define

Let

(4.7)

oo      n
ZCg(Y,z) = expiJ2-y(Y,n)\ , Çg(z) = Çg(X ,z).

*.n=l

y(y)= lim \y(y,n. ,i/i
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Then Cg(z) is analytic in {\z\ < y(3)~x), and using results of §2, we shall see
that, under the same conditions we need in order to show that Pg is quasinuclear
on some suitable function space, Çg(z) can be extended to a meromorphic
function on a bigger domain, where its inverse is closely related to the Fredholm
determinant of P .

C. Transfer operators and zeta functions for Markov extensions.
Suppose (X ,T ,3) is a piecewise compact system and (X ,f,27) its canon-

ical Markov extension. A weight function g is lifted by the canonical projection
n : X —► X to a weight function g e mh(TX) :

(4.8) g(x) = g(n(x)).

By P = A and £(z) = Cg(z) we denote the associated transfer operator and
zeta function on X.

A function / e mb(Z) can also be regarded as a family (fD)DeS of func-
tions fD: D —► C where fD(x) = f(x,D). With this notation P. can be
written in terms of the Markov diagram:

(4-9) (P¡f)D=        £       (fCo^c^(^c0°---°^cL)iD
<0.C„_,€Ä

C0-C„_x-D

Similarly, the zeta function Ç can be expressed in terms of closed paths of
the Markov diagram, provided (X, T ,3) generates:

Suppose  to = D0- -Dn_XD0  is a closed path of length  n  in 3.    By
Lemma 3.11(a) there is exactly one x e DQ such that f'(x,DQ) =
(T'mo,inx,D,modn) (i > 0), and we can define gn(to) = gn(x,D0). Observ-
ing Lemmas 3.10(a) and 3.11(a) we thus obtain

oo      n

(4.10) Cè(z) = exp^L- Yl ¿»
kn= 1        w closed path of length n

The linear systems (mb(X),P ) and (mh(X),P.) are related by the maps

e, : mb(^r) -» mb(l),

<4•11, t^m.c)-{Sf>- «7^-
and

if Ce3\3

(4.12) nm:mb(X)-+mb(X),    (n.f)(x) =  £ /(*).
x(x)=x

Observe that

(4.13) n.(ej) = f.
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The basic (but not the only) device to "project" spectral properties from P
down to P is

4.6. Lemma. The linear system (mh(X),P) is a factor of the linear system
(mh(X),P.) via the onto-homomorphism nt,i.e.

7T    oP= P   o 7T   .*        g g        *
In particular

P¡f=nJ¡(eJ).
The proof is left to the reader. For similar statements cf. Lemma 10 in

[Hofbauer/Keller, 1984] and Lemma 1 in [Mayer, 1984].
Denote by nn the restriction of n to the set {x e X: t"x = x} . The next

lemma relates £   and Ç. :
4.7. Lemma.

(oo      n • \

E7  £ ^W(card^'{x}-1)    .
n=\ T"x=x )

Proof. Observe that fx = x implies  T"nn(x) = nn(x) and that gn(x) =
gn(nn(x)).    a

D. Examples.
We evaluate the quotient Ç/Ç for the examples introduced in §3.

4.8. Example I (topological Markov shifts, sofic systems, cf. 3.12).
As (ÇlA,S,3) is its own canonical Markov extension, C¿(¿) = í„(z) • ^e

note by the way that if g = 1 and X is finite, then Cg(z) = det(Id-z^)- , see
[Bowen/Lanford, 1970].

The zeta function of a sofic system is rational, and its inverse need not be a
polynomial (see [Coven/Paul, 1975]).
4.9. Example II (up-and-down-counter, cf. 3.13).

As 0°° and l°° are the only points which may occur as noninterior points of
some C e 3 , we see from Lemma 3.11(b) that card 7r~ {x} = 1 if Tnx = x
and x t¿ 0°° , I00 . From the diagram in 3.13 one infers that ^"'{O00} = 0 and
7I;1{100} = {(100,£)} for all «.Hence

Cé(z) (   ^{z.g(Q°°)f\

As in Example I we can give a simpler expression for C„(z) if g = 1 :   WM is
a circular code in the sense of [Keller, 1987]. Hence

/ 00      n \ / 00 \
Z™V[L-¿y(K>n)) -- (l-E^-ou-cl^A/nX")

E
Kn=\ / \ n=\

In
Z

neM

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PIECEWISE INVERTIBLE DYNAMICAL SYSTEMS 457

(ibid., Lemma 1     ) and

«*) = d - z)'2 (l - £ z2n)   '

(ibid., Lemma 2). In the particular case M = N we thus have

CM-      {i + 2)   2.
(l-z)(l-2z2)

One should note that, although ((z) is meromorphic, neither Ç nor Ç~ can
be analytically extended to {|z| < r) for r > 1 in contrast to the situation in
Example I. If M is finite, then Ç(z) = l/polynomial(z). (This is not necessarily
true for general sofic systems, see e.g. the "even" system of [Weiss, 1973].

4.10. Example III (piecewise monotonie transformations, cf. 3.15).
Suppose that 2 is finite. If x e X is regular18 then ^^{x} contains

exactly one element, and Tnx = x if and only if tnx = x . On the other hand,
if x is not regular, then t x e bd(Z) for some k e N and Z e3, and there
are at most finitely many nonregular points periodic under t, each of which
has at most two preimages under <P0 x . Hence

(4.14) Çg(z) = Ç.(z)H(z)

where H(z) is a finite product of expressions of the type
(oo      Zc« \

±Y.^Sk(x))n\=l-zkgk(x)

with k e N and x e bd(Z) ,Z e3. (We have tacitly assumed that g : 7c -* C
is continuous on each Z e3 such that it can be lifted by í>0 ̂  to a continuous
weight function g = goO0 x on X.)

Similarly, if T"x = x and if x is interior to each D e 3 it belongs to,
then there is a unique x e n~x{x} with f"x = x (see Lemma 3.11(b)). But if
x e hd(D) for some D=TkZ,Ze3k (see Lemma 3.6), then x e Tj(hd(Z))
for some Z e 3 and 0 < j < k, i.e. one of the finitely many boundary
points of the sets Z e 3 is ultimately periodic and its orbit contains x. Hence
x e n~n {x} is unique for all but finitely many x from above, and for these
exceptional x [Hofbauer, 1986] has shown that there are at most four t-
periodic x e n~ {x}, each of prime period p or 2p if p is the prime period
of x. Therefore

(4.16) Çg(z) = ÇÈ(z)H(z)

17 The mathematical essence of this lemma is similar to Corollary 1 of Theorem 1 in [Takahashi,
1983]. The language used there is very different, however.

18 I.e. if Tkx € int V„(tkx) for all k,n > 0 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



458 G. KELLER

where H(z) is again a finite product of expressions of the type (4.15). It will
turn out later that the factors H(z) and H(z) are unessential for our purposes.

A rather advanced treatment of the continued fraction transformation can be
found in [Mayer, 1976]. There it is shown that Ç (z) is meromorphic in C for
a wide class of functions g and that P acts as a nuclear operator on a suitable
space of holomorphic functions. The proof relies heavily on the fact that each
monotonicity interval is mapped by this transformation onto the whole unit
interval.

5. Analytic structures

The phase space A" of a piecewise compact system is in general highly discon-
tinuous; indeed, if the system generates, it is completely disconnected, because
each point x possesses a base of closed open neighbourhoods V(x). Therefore
we cannot expect X to carry a differentiable structure in a rigorous sense. On
the other hand, if we are primarily interested in interval maps e.g., we have a
clear idea of what differentiability of T means, although (X, T ,3) is the sys-
tem obtained from the "smooth" system (X, f ,3) by doubling all preimages
of critical points (cf. 3.14-3.15): We simply forget about the doubling (that
was necessary in order to avoid troubles in constructing the Markov extension)
and re-identify the split up points. In this way some subspace of mb(X) can be
identified with a space of holomorphic functions on a complex neighbourhood
of [0,1], and the transfer operator behaves as if it were acting on this space
of holomorphic functions. From here it is only a small step to apply such an
identification-procedure to systems which we never thought of being smooth,
e.g. to subshifts.

We start recalling some facts about spaces of bounded holomorphic functions

A. Bounded holomorphic functions.
Suppose that £2 is a region in C . By ^°°(£2) we denote the space of

bounded holomorphic functions on £2. Endowed with the supremum-norm
||. H^ , ¿r°°(£2) is a Banach space.

The following important theorem will turn out to be responsible for the nu-
clearity of certain "partial" transfer operators on ^°°(£2) (cf. Theorem 5.8):

5.1. Theorem (of Montel as extended by Grothendieck ). Let £2, ,£22 be re-
gions in d , cl(£2,) c £22. Then the natural embedding 3"X(Q2) «-» ̂°°(£2,)
is not only compact (Montel) but also nuclear {Grothendieck).

B. Piecewise analytic systems.
Suppose (X,T,3,g) is a weighted system and (3, —►) is its Markov

diagram.

5.2. Definition. A pair sé = (s,(UD)DeS) is an analytic structure for
(X,T,3,g) if there is d > 1 with:

19 [Grothendieck, 1955], §1, no. 3
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(i) UD (D e 3) are regions in C  , and

sup{diam((7D) : D e 3, UD ¿ Cd} < co.

(ii) 5 is a map from X to Cd with cl(s(D)) ç UD n Rd, and s(D) is a
uniqueness set for bounded holomorphic functions on UD .

(iii) for C,De3 with C —> D there is a holomorphic map xCD : UD-^ Uc
such that s o (T~X),D = xCD os,D if C ç Z .

Denote by DxCD the total derivative of xCD and by ||Dtcd|| its Euclidean
operator norm on C   . Since rCD(UDf)R ) ç UCC\R  , DxCD has real entries.

(iv) For each D e 3  either gD = 0, or there is  \pD e 7f°°(UD)  with
gD = exp(ipD) o s,D =: gD o s,D . The ipD and their derivatives are uniformly
bounded. Here gD stands for gz,D when C ç Z.

For a path to = DQ- ■ ■ Dn let
i

and
Xw = TD„ ,D, ° ■ • • ° Tfl„-, ,D, >       ^c = ^

Then T~l = (T"7ir,)"'  (cf. Lemma 3.6) andIZ(w)-1

5orc1=Ti0OS|Z)„-

The meaning of Drw and HZJt^H is obvious.

5.3. Definition.   (X,T,3,g) is j/-expanding if
(i) there are zz0 e N and a < 1  such that H-Dt^H < a on C/^ for all paths

to in 3 of length n> n0, for which gn\z,w. ̂  0.
(ii) c1(tcd(C/d)) ç C/c for all C,De3 with C — D and gD^0.

5.4. Remark. At first sight it might look sufficient to define analytic structures
only on the cylinders Z e 2 and not on all components D of the Markov
extension. However, the notion of an sé -expanding system would become more
complicated in this case.

C. Piecewise analytic Markov systems.
Throughout this subsection suppose that (X,T,3,g) is Markovian.  Re-

member that 2 = 3 in this case.

5.5. Remark. If (X ,T ,2 ,g) is sé -expanding and if to is a closed path of
length n in 3 such that gn\Z{oj) ̂ 0, then xw has a unique fix-point xw and

\\DxJxJ\\ < a"1"0 (see Lemma 1 of [Ruelle, 1976]). We denote

(5.1) K(n) = YJ\\^a(x(0)\\-\gn(co)\

where the sum extends over all closed paths to of length n with gn,z,w) ^ 0,
and
(5.2) zc := hm K(n)X/" < aX,n°y(3).

n—<-cx>
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Observe that zc < y(3) if y(3) > 0.

5.6. Definition. For an analytic structure sé of (X ,T ,3 ,g) let

7r°°(sé) = \fe mb(A-) : VD e 3 3fD e 3*°°(UD) such that fD = fDo s,D

f\\\3= E H/zJoo < °° |
Des )

and
Des

be the space of sé -holomorphic functions on X.
Notation:  \\fj^ := WfJ^ .

5.7. Remark. (ß^°°(se), ||| • |||^) is a Banach space. (Observe that the map
fD h-» /D o5|D is 1-1 by Definition 5.2(ii).)

5.8. Theorem. Suppose that (X ,T ,3 ,g) is sé-expanding. For a path to =
D0-Dn define Lw : ¿F°° (sé ) -» ^°° (sé ) by

(L    f)(x)-í{g»'f)0Tü[W>      ÍfXeDn>
["J)[X>-\0, otherwise.

Then Lw is nuclear (in the sense o/§2.C), and

(5.3) tr(LJ = gn(xw) • det(Id-Drjxjr1    if to is closed,

(5.4) lT(LJ = °   otherwise, i.e. ifD0 ¿ Dn.
Proof. The nuclearity is an immediate consequence of 5.1. (5;3) is contained
in the proof of Lemma 2 of [Ruelle, 1976], and (5.4) follows from Chapter II.3,
Proposition 2 of [Grothendieck, 1956].
D. Examples.

5.9. Examples I, II (closed subshifts, cf. 3.12-3.13).
For j = I, ... ,d let <j>. : X —► C be nonconstant bounded maps, let Pj eC ,

\Pj\ < P < 1 , and let R = max{|^.(tr)|/(l-|p;|): ; = 1, ... ,d; a e X}. Define
s: £2^ U:={zeCd: |zy| < R   (j = 1, ... ,</)} by

OO

sj(ox,o2,oi,...) = Y,<t>J(o-l)-p'J.
i=\

For De3 let UD = U, and if C -> D in 3 then define tcd: L — U by

(Wz)), = ((rVc7) + zJ)-/>,    if CCta],.

We check that (s, (UD)DeS) is an analytic structure:
(a) |i7.(u;)| < pR (w e £2), hence cl(s(D)) ç UD   (De 3).
(b) Let C ç [a]x , C — D, w eD. Then

(i(rc_1ui))j =Sj(aw) = p.'tp.W + Sjiw)) = (xCD(s(w)))j,

i.e. so(T~x)lD = xCDos{D.
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(c) For d = 1 it is an easy excercise to show that s(D) is a uniqueness
set (D e 3) in case of Examples I and II, if one assumes for Example I that
there are no trivial cylinders (i.e. consisting of finitely many points only). The
corresponding assertion for d > 1 follows, because now s(D) is the Cartesian
product of one-dimensional uniqueness sets.

(d) Obviously the rCD are holomorphic on U and ||Z)tcd|| = n,=i Pj ^
pd < 1. Finally, for z e U

\(rCD(z))j\ < p(R(l -P) + R) = P(2 -p)R<R

such that cl(xCDU) ç U and (Q,S ,3)  is sé -analytic.   In particular k <

7(3)U.UPj-
Similarly one may choose UD = C (D e 3) and xCD: C —► C,z i-» 0 if

C —> D. In this case zc = 0.

5.10. Example III (piecewise monotonie transformations, cf. 3.14-3.15).
Let s = O0 ̂  , and for D e 3 and e > 0 let UD = {z eC: dist(z,s(D)) < e}

UD is a region in C and cl(s(D)) C UD. Suppose that (T¿ ),fZ has a bounded
holomorphic extension to a complex neighbourhood of TZ (Z e 3) and that
inf^ |r'(x)| > 1 . Now, if 3 is finite, e > 0 can be chosen small enough
such that there exist extensions xCD of (TS,Z7)7,D)  to  UD  (if C —» D and
C ç Z ), and by choosing e even smaller (if necessary), one may assume

\tcd\ < Q < 1       f°r some a < 1.

In particular cl(xCD(UD)) C Uc for such C,D.
We still have to assure that s(D) is a uniqueness set for bounded holomorphic

functions on UD, (D e 3), i.e. card(s(D)) = co for all D e 3. This
requirement is fullfilled, however, since it is easily seen that the endpoints of
each D e 3 are non-isolated in D. Hence sé = (s,(UD)D€S) is an analytic
structure for (X ,T ,2 ,g) for suitable g, e.g. for g = 1 / ¡ Z*' o j |, (just the
structure on X inherited from ÎCR), and {X, T,3,g) is J^-expanding.

6. Spectral theory for Markov systems

A. The main theorems.
Assume throughout this section that (X,T,3,g) is a weighted Markov

system, expanding with respect to the analytic structure sé = (s, (UD)D€^).
Fix an increasing sequence (¿?)„€N of finite subsets of 3 such that

U„eN K = S ' and define Projections ß[£n]: ßr°°(se) - 3'°0(sé) by

(/>[w»z={£ ;flhze^e,

&~ — {ß[^„]'- n eN} is a continuous projection net (see Definition 2.1).
Finally suppose that <j> e mb(X) is real-valued, 4>D = 4>D o s for some 4>D e

^°°(c/0) (D e 3), and that the 4>D are uniformly bounded.
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Under these assumptions and with the notational conventions of §2.D we can
state

6.1.   Theorem. Suppose that the Markov diagram of (X,T,3) is uniformly
forward finite.20

(a) The transfer operator P = Pa.„-,iM leaves 7f°°(sé) invariant.
(b) // ras < r(P), then P is quasicompact on ß?°°(se) and ress < ras. //

(¡> = 0 and g>0, then ress = ras.
(c) If r^ < r(P), if there is some Borel measure m on X with supp(ra) = X,

supD€â, m(D) < co, and such that g~x is the derivative of T with respect to
m,     and if 37°° (sé ) is dense in Lm, then P admits a representation

l N

(6.1 ) P = £ X,E, + J2 W + Nt) + Qi=i i=/+i
with E,, N,, and Q as in (2.2) and where T = {Xx, ... ,X,} ̂  0 is the set of
eigenvalues of modulus 1, and \X,\ < 1 for j = I + I, ... ,N. For each X, e T

(6.2) E,= lim  l-Y,(X7xP)k
'       n—»oo Yl *—»     '

uniformly on the unit ball of ßf°°(se).   E, extends to Lxm ,  \\E,\\X = I, and
(6.2) holds strongly on Lm.   (P - ^2i=x X,E,)    tends to 0 as n —► oo strongly
on Lxm .   If Pf = Xf for some 0 ¿ f e Lxm and \X\ = 1, then f e JT°°(sé)
and X e T.
(If supp(zn) / X, then (6.1) and (6.2) still hold in the Lm-sense.)

(d) If, in the situation of(c), <f> = 0, i.e. if P is the classical Perron-Frobenius
operator satisfying (4.3), then Xx = 1 e T, Ex is positive, and T is fully cyclic.

Let d := rank(£"j). There are a mod m-partition (Xx, ... ,Xf) of X into
T —T~ -invariant measurable sets and a basis {hx, ... ,hd) of range(£, ) such
that h¡ > 0 and fx hj dm = Ô,, (i,j = I, ... ,d). If h is any convex combi-
nation of the h, and dp = h dm , then p is a T-invariant probability measure.

(e) If P satisfies the assumptions of (c) and (d) and if the eigenspace
range(£'1) of P   is one-dimensional, then (without any further assumptions on

P = P„.eXp(/¿) ) P: Lxm -» Lxm has an eigenvalue of modulus 1 if and only if
exp(itj)) is equivalent to a constant, i.e. there are a e R and ip e mb(X) such
that exp(i(/)) = exp i (a + tp o T - \p)  m-a.e.

6.2.    Theorem. Suppose  (X,T,3)  generates,  that the Markov diagram of
(X ,T ,3 ,g) is uniformly forward finite and that g>0. Let P = P   and

yas= hmy(3\%n)       (cf. (4.7)).d!>      n—»oo "

20 See Definition 3.7.
21 Cf. Remark 4.3.
22 I.e. Pf = Xf, \X\ = 1 , implies P(fk¡\f\k~K) = Xkfk¡\f\k~x for all A: e Z , see Definition

V.4.5 in [Schaefer, 1974].
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23

Assume
(i) r(P) < co,    y(3) < oo,
(ii) [yas < 7(3) or yas < r(P)] and [ras < r(P) or ras < y(3)\,

(iii) lima€5r \\a(Pßa)jPß - PJßPß\\T = 0 for all ße7 and j e
Then P: ^°°(sé) -> ßr°°(s/) is 7-quasinuclear and r(P) = y(3).   The

inverse of the zeta function C„(z)  can be analytically extended from  {\z\ <
y(3)~x} to24

Gr:= {zeC: \z\ < l/max{yas,ras,zc}} ,

and det^r(Id — zP) • Cg(z) is analytic and nonzero on Gr .  z0 e G^ is a pole

°f Cg(z) if and only if z\\   is an eigenvalue of P . The order of the pole zQ of
Cg(z) is finite and equals the algebraic multiplicity of the eigenvalue z~   of P .

Even without assuming (ii) l/( (z) can be analytically extended to Gy.
6.3. Remark. The assumption in both theorems that the Markov diagram of
(X, T, 3) is uniformly forward finite is needed only for showing that P is
a bounded operator on 7f°°(sé) and that Pa is nuclear for a e 7. It can
be replaced by these two assertions. Alternatively one could assume in view of
Remark 2.4(c) that P is bounded on ß^°°(se) and aP is nuclear for ae7.
In this case the trace-norm in assumption (iii) of Theorem 6.2 may be replaced
by the usual operator-norm. With these changes both theorems apply also to
systems like the continued fraction transformation, but it may be quite hard to
verify these assumptions (see 4.10 and [Mayer, 1976]).

6.4. Remark. Even if Gy is the greatest ball around 0 to which Cg(z)~ can be
analytically extended, it may still be possible to extend Cg(z) meromorphically
to a bigger ball (see also 6.13, Example II).

The proof of the theorems needs the following monotonicity lemma:

6.5. Lemma. Assume that g > 0. Let £2, ç C¿2 be sets of paths of length n
in D, and suppose that there are fw e 3"°°(sé) (to G £2,). // aD (D e 3) are
positive constants with IK/JoH^ < aD (co e £2,) and if f = £DeÄ aDxD, then

Eik4-£>^"'il<^ £(/*-¿r>7;
wen, wen

:J

with a constant A independent of n , £2,, £22, fw, and f* .
Proof. Observing that (X ,T ,3 ,g) is sé -expanding and that gD = 0 or
gD = exp\pD e exp^°°(£/D) for D e 3, where the derivatives of the tpD
are uniformly bounded, it needs a routine calculation to show that there is a
constant B > 0 with

\gn(^^)\<\gn(rwz2)\.exp(B\zx-z2\)

23 ||.||r  is the trace-norm, see §2.C.
24 For k see Remark 5.5.
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for zî 6 N and z{,z2 in the domain of xw ,   to = DQ ■ ■ ■ Dn . In particular

(6.3) \gn(xwzx)\< const-\gn(xwz2)\

for n,to,zx,z2 as above. If UD ^ C    this follows from the uniform bound-
edness of the sets UD ̂  C    (see Definition 5.2(i)). Otherwise g is constant on
UD , and it suffices to treat gn_x o %w, where to' = D0- -Dn_x .

Now the positivity of g implies

E   Mfa,-8n)oTülW*í   E     E    W(fw)cl*-U»°*Joo
Dez   men,
cey ,„=(■•.d

< E E ac-comt-™™{gnorw(s(x))}    (by(6-3):

wen

dzl'j    wen,
cex ,u=(...d

< const- y~^ E (/--^)°r«
wen,

= const.
weil.

6.6. Remark. The need for such a lemma is the main reason why I restricted
Theorem 6.2 to the case g > 0. If Lemma 6.5 holds because of other reasons,
most of the theorem remains true for more general g .

Proof of Theorem 6.1. As the Markov diagram of (X ,T ,3) is uniformly
forward finite, Pß (ß e 7) is a finite sum of operators of the type f >->
(f g exp(i<p))oT7D each of which is nuclear by Theorem 5.8. Hence Pß is nu-
clear and a fortiori compact for ß e 7 . P leaves 77'°°(sé) invariant, because
for fe7"x(sé)

pf\\\.«< E En^-exp(^)-/)°(r<C   l\D\
DeS <■'&*

( ■ — D

(6.4) < E Eii£cexp(^c)Ui/dL
CeS oey

c —n

< const- sup \\gcexp(it/>c)\\
ces

f\ u

The quasicompactness of P and ress < ras follow from Proposition 2.2.
Suppose now   0   =   0   and   g   >   0.     For   /  e   &°°(sf)   let   f   =

Y,Des WfoW* ■ *d ■ Then f* e X°°W). IH/lL/ = Ill/Ill/ ,™dfora,ße7
with a > ß and r  > r   - e :— ^ n —   as

v..\\\(Id-ß)p"(Id-ß)\\\^
>iii(id-^)p"(id-)8)riii^
> A P"f (by Lemma 6.5),
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Hence
A- Hl (Id-ß)P"(Id-ß) ||L>||| P" ||L> r" > (r-e)n

and ress = ras follows from Proposition 2.2. This proves (a) and (b).
Suppose now that there is a measure m on X with supp(zn) = X and

with the properties from Remark 4.3. If |A(| > 1 and if Pf = X,f for some
0¿/eX°°(^),then \X,\\f\ = \Pf\<Pg\f\ and 0<l\f\dm = fPg\f\dm,
whence \X,\ = 1. We show that N, = 0: Suppose there is / e E,(^"x(sé))
with N,f £ 0 (i.e. / \N,f\dm > 0 as supp(zn) = X ) and N2f = 0. Then by
(2.2) and (4.5)

0 < J \N,f\dm < Um i (jPg\f\dm + J \E,f\dm\ < 0,
a contradiction. Hence N, = 0 if \X,\ — 1. This yields the representation (6.1).
(If supp(m) t¿ X, practically the same argument shows that (6.1) still holds in
the Lxm-sense.)

For \X\ = 1 and zz e N let SXn = -nY,nkZo(k~Xp)k ■ Because of (6.1)
lim„_00 Sx n — E, if X = X, eT and lim^^^ Sx n = 0 if X g Y (uniformly
on bounded subsets of ^°°(j/)). As ¡\Pf\dm '< jPg\f\dm = ¡\f\dm, P
and also Sx n are Lm -contractions, and since ^°°(sé) is dense in Lm, Sx n
converges strongly on Lm thereby extending E, to a projection from Lm
ontoE,(^x'(sé')) with ||£;||, = 1 . (The strong convergence to 0 as « —» oo of
(P - J2i=i ^,-E,) is an immediate consequence.) For 0 / / e Lm and \X\ = 1
with Pf = Xf we thus obtain 0 # / = \imn^ooSxJ = E,f e^°°(sé) and
X = X,eT. This finishes the proof of (c) and we turn to (d):

Let <p = 0. For X = 1 and f e Lm with / f dm ^ 0 identity (4.3) implies

0Ï j fdm= lirr^j Sx Jdm = j Exfdm

and hence 1 = Xx e T. Obviously Ex is positive in this case. T is fully
cyclic by Proposition V.4.6 in [Schaefer, 1974] and the example thereafter. As
/erange(£,) implies /, |/| e range(Ex) ,25 range{Ex) is a vector sublattice
of Lm (Riesz subspace).

Hence there are 0 < h, e range(£'1), Jh,dm = 1 (i = I,... ,d) with
mutually disjoint supports H,.26  As

/        h,dm= /   P"h,dm= /   h,dm = è,,,
Jt-"H, Jh, Jh,

we have for X, := lj„>0 T~nH,

Lh dm = á...
x,

25 The latter because /"/ = /=> \f\ < P\f\ and / \f\ dm = f P\f\ dm
26 See the preliminaries of §1 in [Schaefer, 1980].
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In view of Remark 4.3 the assumption supp(zn) = X implies g > 0.
Therefore TH, = H, and the X, are disjoint and T - T~ ' -invariant. Let
B= X\(f,=xXi . Then

i(B) =  f ExxBdm = Y,[ ExxBd
Jx h7\Jx-

d    .  n— 1     -

-,kbecause fx_ P xB ̂ m - /r-«x %b dm = 0 » i.e. (Xx, ... , Xd) is a partition of
X modulo w-null sets.

As the T-invariance of the measure dp = h dm follows from (4.4), this
finishes the proof of (d).

We prove (e): Let d = 1, h = hx. Suppose there are a e R and \p e mb(X)
such that

(6.5) exp(itp) = exp i(a + \p o T - ip)    m-a.e.

Then

P(h ■ exp(itp)) = Pg(h-exp i(cf> + y/))
= exp(ia)P (h • exp(i \p o T))
= exp(ia) • h • exp(iip)   m-a.e.,

i.e. exp(z'a) ia an eigenvalue of P: Lm —» Lxm .
Conversely, let Pf = Xf for 0 ^ / e Lxm and \X\= 1 . Assume without loss

of generality that / \f\dm = 1, / = |/| ■ exp(zy), and X = exp(ia), a e R.
Then

i.e.

I/I • exp i(a + \p) = Pf =Pg(f ■ exp(idj))     m -a.e.,

l/l = Pg (l/l • exp i(-a + 4>-¥oT+ip))< Pg\f\    m -a.e.
as P   is positive and, because of (4.3) P |/| = |/|, i.e.  \f\=h, and

exp i(-a + <j)-ipoT+tp)=l    m -a.e.

on {h ,¿ 0}. This means that (6.5) holds p-a.e. or, equivalently, m-a.e. on
H = supp(/z). Since the identity f = h • exp(itp) determines \p (mod 2n )
only on H and since X = U„>o T "H modulo m , the domain of validity of
(6.5) can be iteratively extended to X (mod m).   D
6.7. Remark. Most ideas in the proof of (c)-(e) of Theorem 6.1 have already
occured in one or another form in the literature, some of them several times. In
a similar situation, [Pollicott, 1984] proved (e). His proof is slightly different.
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Proof of Theorem 6.2. At the beginning of the proof of the last theorem we saw
that P: ßr°°(se) -» 3'00(sé) is bounded (see (6.4)) and that all Pß (ß e 7)
are nuclear. Let a = ß[Wk], ß = ß[W,], k>l. Then

tr((aPßa)")=     £    tr (/~ (gn •/) oTJ
ÍIK=£>0 ■••/)„

(6-6) E      ^K)-det(Id-^(^))"'

by Theorem  5.8.     As   (X ,T,3 ,g)   is   sé -expanding,   gn(xw)   =   0   or
II^tûj(-OII - a"/n° < 1 by Remark 5.5. Therefore, if d is the dimension
of the analytic structured and if g^x^) ^ 0. then

(6-7)  (Truhán¿M{Ii-DtM}~'£ (i-ii^xji/-
(Observe that ¿)tcu(xiU) has real entries, see Definition 5.2(iii).)

Hence all summands in (6.6) are positive, and the expression is monotone in
k if / is fixed. Therefore

limtr((aP^)") = tr^(P")

exists (possibly = oo ). Observing the positivity of g we thus obtain from (6.6),
(6.7), and (4.6) for ß = ß[g,\ and sé ç W, ç 3 ç 3

(6.8) cn ■ y(3 \33 ,n) < tr?(P¡) < c'nx ■ y(3 \sé , n)

for some constants 0 < cn 7 1 • m particular

(6.9) tß=M\trr(P;)\X/"=ih^\y(3\g,,n)\X/n = y(3\i?/)

and

ias=lim tß=\\my(ß\^) = yK.

Now /(P) = t0 = y(D) < co by (6.9), and all further assumptions on t in
(ii) and (iii) of Definition 2.3 follow immediately from (6.8) and (6.9).The
corresponding assumption on r in (iii) of Definition 2.3 is easily verified using
Lemma 6.5 (i.e. the positivity of P ). Finally, (iv) of Definition 2.3 is nothing
but assumption (iii) of the theorem. Hence P is .^-quasinuclear.

Now the theorem will follow from Theorem 2.5 and Corollary 2.6, if we can
show that det^Id-zP)-C(z) is analytic and nonzero on Gr . (Note that r(P)
is then an eigenvalue of P, because r(P)~x = t(P)~x = y(3)~] is a pole of
Ç(z) and hence of detr(Id-zP).)
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Observing (2.14) and (4.10) we have
I oo      n >

dev(ld -zP) ■ C(z) = exp ÍJ2 £-(-tr^(P") + y(3 ,n))
Vn=l j

oo      n

exP    E^     E     sMw^-teW-DxJxjy1)
rt= 1 to closed paih of

length n \n3

and by (6.7) det^Id -zP)Ç(z) is analytic and nonzero for

d     w'/»
l^l^l/„l«n(E^j(( 1

1 - ||Dt ,(x

= 1/ lim zc(«)     = k    .   D
n—»oo

6.8. Remark. We have seen that if <¡> = 0 and g > 0, then P behaves much
like a positive operator, e.g. z-(P) is an eigenvalue of P. But since ß?°°(se)
is far from being a Banach lattice, the general theory of positive operators does
not apply. However, just as in the Banach lattice setting, one can show that if
X is an eigenvalue of P of modulus r(P), then X~x is a pole of the resolvent
(Id -zP)~ whose order does not exceed the order of r(P)~ , which we denote
by a . This follows easily from

G(X,t,s):=t(^—^\  (ld-tX~xP)~x

fflts   oo

«=o -
(6.10) . ,\i   / ,    oo    /     ,3       x k+l

'ErEÍÁ)   Mk

X3-^ \X-tXu,er   ' k=o x '

+ (terms bounded as t —> 1)1

in the limit t -> 1  for 5 > <r : Let 0 < / e ^°°(sé). Then

lim\G{X,t,s)(f)\<limG(r(P),t,s)(f) = 0,í-»i /-»i
and for general / e 3'00(sé) this estimate can be applied separately to the
positive functions f = Y.Des II/dIIj/ " Xd and (/ + /*)•

Also, if 0 < /€ X°°(jí/) , O € ^ , and (f,/^1/),/) = 0 for some <> > 0,
then (£,^/)|D>0.

In Theorem 6.1(d) we have seen that, if P is a Perron-Frobenius operator
with respect to a measure m with supp(w) = X, then the positive cone of
ranged, ) is just the space of densities of w-absolutely continuous T-invariant
measures.
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In general, the relation between ranged, ) and T-invariant measures is more
complicated, even if P = P . For its investigation we need

6.9. Lemma. Suppose that g >0, that P = Pg is quasicompact, that (X, T,2)
generates, and that s is continuous. If o is the order of the pole r(P)~ of the
resolvent of P, then there is a nonnegative, range(£'1 )-valued Borel measure F
on X such that

EXN°-X(f) = jfdF   forallfe^00(sé),

I PfdF = r(P)- i fdF   for all f e LXF , and

HI F(Z) ||L,<||| £,<-1 %,    forallZeS.
Proof. Without loss of generality assume r(P) = 1. Since P /z € ^,°°(sé)
for Ze2k,

F(Z):=ExNx°-XPk(xz)
is well defined for such Z, F > 0 by Remark 6.8. It is easy to check that
F(Z) = YjF(Z') where the sum extends over all Z' e 3k+x with Z'gZ.
Hence F extends uniquely to a finitely additive nonnegative set function on
the algebra generated by \Jk>G3k. Since all sets in this algebra are compact, F
is countably additive, and since ||| F(Z) ||L¿.<||| EXNX~ \\\^ for all Z e2, F
extends to a nonnegative range(L'1 )-valued measure on the cr-algebra generated
by (jk>03k , i.e. on the Borel sets.

Let 7 e JT°°(sé), D e 2. For k > 0 and Z e 3k fix az e (f ■ XD)(Z)
and consider fk := $2ze2- ak%z • (/ ' Xd) *s continuous by continuity of 5 .
Therefore ||/-*D - /J^ =: ôk -^ 0 as zc -» co and

[ fdF=   lim   ífkdF= lim ExNx°-XPkfk
JO k—»oo J k—»oo

<   limExNax-XPk((f + ôk)xD)
k—*oo

= ExN°-X(f.xD),
and for the reverse inequality consider -/ instead of /.

Since jPXzdF = ExNax~xPk+X(xz) = £,<"'p\xz) = ¡XzdF for all
Ze3k, k > 0, we also have ¡PfdF = ¡fdF for all / e LXF .   u

Next we have to think about the structure of the graph (3, —») : A subset^
of 3 is irreducible, if for all C,D e 7 there is a path from C to D and
if 3 is maximal with respect to this property. It is well known that there is
a maximal positive integer p (the period of 3 ) such that the length of each
closed path in 3 is a multiple of p (see e.g. [Seneta, 1980]).

6.10. Proposition. Suppose that P = P is quasicompact, that (X,T,3) gen-
erates, that s is continuous, that (3, —») is irreducible with period p and that
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g > 0 everywhere. Then
(a) The set T of eigenvalues of P of modulus r(P) consists of the simple

eigenvalues r(P) ■ e2nik/p   (k = 0, ... ,p - I).
(b) There are a Borel measure m on X with supp(m) = X and

supDeÄ m(D) < oo, and a strictly positive function h e7?°°(sé) such that

Exf = Í fdm • h   for all f e 7*°°(sé), and

jPfdm = r(P).jfdm   forallfeLXm.

The measure p = h • m is an ergodic T-invariant probability measure.

Proof. Let a be the order of the pole r(P) of the resolvent of P and denote
E = EX, N = Nx . Then N° = 0 but Na~x ¿ 0. Without loss of generality
assume r(P) = 1. Then ENa~x = lim,^, G(l,t,o)>0 by Remark 6.8, and
EN"-XP = EN°~X .

Fix C e3 and let j be the maximal integer such that ENJxc ^ 0. Obvi-
ously j < a . Suppose for a contradiction that j > 1. Then ENa~x(ENJxc) —
0, where ENJxc > 0 by Remark 6.8. As (X, T, 3) generates, there are e > 0
and Z e 3n with (ENJxc),z > e ■ Let w bea path of length k > n in 3

ksuch that Z(a>) ç Z . Since T Z(to) =: D e 3 and ek := e • inf gk,z,w) > 0,
we have

(PkENJxc\D > ((ENJxc) ■ gk) o:w>V xD.

Hence

0 = EN"~X(EN]xc) = ENa~xPkEN'xc > ek ■ ENa~XxD > 0,

i.e. ENa~ Xd = 0 ■ This argument applies to all D e 3 , because (3, —►)
is irreducible, in contradiction to EN°~X / 0. Hence j = 0, i.e. Nxc = 0,
and as C e 3 was arbitrary, N = 0 and E > 0. In view of Remark 6.8 all
eigenvalues in T are semisimple.

We prove the simplicity of r(P) = 1 : Let Pf = f for some / e C(X ,R),
and assume that f(x) > 0 for some x e D e 3. As (X ,T ,2) generates,
there are n > 0 and Z e 2n such that /z > 0. Now the irreducibility of
(3, -») together with g > 0 implies / > 0 on all of X. Hence, if Pf = f for
/ € C(X, R), then / = 0,/<0or/>0 everywhere. If there are nonzero
/, and f2 as above, then ipa = fx + af2 satisfies the assumptions on / above,
and since a~ \pa —» f2 as a —» ±co, there is some a e R with ipa = 0, i.e.
/ = -af2. If Ph = h for some h e ^°°(sé), then 3i/z and 3/z satisfy the
assumptions on /, because 5 is continuous. Hence rank(L') = 1 , i.e. r(P) = 1
is a simple eigenvalue. The proof that F = {e "' 'p : k = 0, ... ,p-l] and that
all X e T are simple is postponed.
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Now fix 0 < h e range(.E). By Lemma 6.9 there is a Borel measure m on X
suchthat Ef=h-Jfdm and / Pfdm = r(P) ■ f f dm for all /s/»
and m(D) <\\\ E ||Ly for all D e 2.

We show supp(rn) = X: m(D) > 0 for all D e 3, because (3, —►) is
irreducible and m(D) = f P"xDdm for all n > 0. Hence, if Z = Z(to) e
3n, then m(Z) = fP"xzdm > infgn]z • m(TnZ) > 0 since TnZ e 3. As
(X, T ,3) generates, this proves the claim.

Finally, if / e IT* , then

ffoTdp=   í foT-hdm= Í P(foT-h)dm

=  (f-Phdm= Íf-hdm

= ffdp,
and the ergodicity of p follows immediately from rank(.E) = 1. This proves
(b).

We turn back to (a). Write C —^ D if there is a path of length k from C
to D.   (3, —>k) is again a directed graph.  Assume first that p = 1 . Then
(3, —>k) is irreducible and of period 1 for each zc > 1. Hence r(P) = 1 is a

ksimple eigenvalue for all P  . With the measure m constructed above we are
in the situation of (c) and (d) of Theorem 6.1, in particular T is a finite group.
If there were 1 ̂  X e F, one would have X  = 1 for some zc > 1 contradicting
the simplicity of the eigenvalue 1 of P  . Hence T = {1} in case p = 1.

If p > 1, then 3 can be decomposed uniquely into p disjoint subsets
30, ... ,3 . , each having the property that C e 3, and C —>k D implies
D e 3{,+k)modp . The graphs (3,, -^p) are irreducible and of period 1 (i =
0, ... , p - 1 ). This is proved just as in the case of nonnegative matrices, see e.g.
[Seneta, 1980]. Hence (a) and (b) of this proposition apply to each P?Y where
V, = {fe ^°°(sé): fD = 0ifD#3r,}. In particular P*v¡ has only 1 as an
eigenvalue of modulus one, and its multiplicity is p . This implies immediately
that Yl¿er multiplicity(A) = p , and since Y is a group, we can finish the proof
by showing that e~2n'lp eT: Let ^(x) = k if x e D e 3k and let Ph = h .
Then P(he2nivlP) = e2n,(y/-X)/p-P(h) = e-2n'lP■h-e2n'vlP , i.e. iT2"'7' e r.   a

Now we turn to the case of a general graph (3, —►). Let 3X,32, ... be the
irreducible subsets of 3 , X, := Uoe^ D f°r each i. Let Y, := f)n>0 T~nX,.
Since the 7, are irreducible, TY, = Y,, and it is easily checked that

2 = {DnY,: De7DnY ¿0}
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is a Markov partition for T,Y . (Y,,T,37) generates if (X,T,3) does. We
make the following additional assumption:

If (7,,   —»)   does not consist of a single loop only, and if
(6.11)        D r\Y, ^ 0 , then s(D n Y¡) is a uniqueness set for bounded

holomorphic functions on UD .
This strengthens requirement (ii) of Definition 5.2. One should note, however,
that D n Y, is uncountable if (7,, —►) does not consist of a single loop only,
and hence (6.11) is not really restrictive.

Under this assumption (Y,,T,3,,g) is ¿^-expanding if (X,T,3,g) is
sé -expanding where sé, = (s ,(UD)D€jr). The transfer operator corresponding
to (Y,,T,3,,g) is denoted by P,.

6.11. Theorem. Suppose that (X ,T ,3 ,g) satisfies (6.11) and the assumptions
of Theorem 6.2, that ras < r(P) and yas < y(3), that g > 0 everywhere, and
that s is continuous. Let P = P and d = rank(£'1). Then r(P,) < r(P) except
for d irreducible subsets of 3 (say 3X, ... ,3d) for which r(P,) = r(P) and
for which holds:

(a) The subsystem (Y,,T,2,,g) satisfies all assumptions of Theorems 6.1
and 6.2 and Proposition 6.10, and it does not consist of a single loop only.

(b) There are a o-finite Borel measure m: on X with supp(m,) = Y, anda
function 0 < h, e 3"x(sé), zero outside X,, satisfying

(£i(/-Xx,))|x,= / fdmfhi\x,   for all fe^00 (sé).
J x,

The measure p, = h,-m, isa T-invariant ergodic probability measure equivalent
to m,. h, satisfies (Ph,)l[Xi = h,^x¡.

(c) There is a o-finite Borel measure m, on X such that m,,x = m,,x ,

j Pfdm, = r(P) ■ j fdmi   for all f e LXm¡

andsupp(m,) = cl(\Jk>0T-kY,).
Proof. Fix some 7,. If y(7T) < y(3) = r(P), then l/Ç(Y,, z) is analytic and
nonzero in {|z| < (r(P) - fi)-1} for some £ > 0. In particular, l/r(P) is not
a zero of l/C(Y,,z). Also r(P,) < r(P), since otherwise ras(P;.) < ras(P) <
r(P) = r(P,) and yJ37) < yJ3) < y(3) = r(P) = r(P,) such that Theorem
6.2 would lead to the contradiction r(P,) = y(37) < y(3) = r(P).

If, on the other hand, r(P) = y(3) = y(37), then yJ7,) < yJ3) <
y(3) = y(37) and rJP,) < rJP) < r(P) = y(37), and Theorem 6.2 applies
to P.. Hence r(P,) = y(3,) = r(P), and in view of Proposition 6.10 r(P) is a
simple eigenvalue of P,, such that, by Theorem 6.2 again, l/r(P) is a simple
zero of l/i(7,z).

As Ç(X,z) = H,C(Y,,z), there are exactly d irreducible components 3,
of (3 , —»), say 3X, ... ,3d , for which r{Pt) = r{P) is a simple eigenvalue of

Pf
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Now Proposition 6.10 guarantees the existence of measures m, and p, =
h,- m, with full topological support on Y,. Since the Y, are closed subsets of
the X,, these measures can be interpreted as measures on X, with topological
support Y,. Since TY, = Y,, the p, are ergodic, T-invariant probability
measures.

We use the operators G(X,t,s) defined in (6.10) and denote by G,(X,t,s)
the corresponding operators for the P¡. Observing (6.11) we see that D
and D n Y, have actually the same analytic structure for all D e 3,. Hence
(P"(f ■ Xx,))lYi = P"(f\Y), in particular (Ph,)Yi = F,(h,]Y¡) = hm and
(Ph,)]x. = h,¡Xi. Thus for all 0 < t < 1 and 5 > 1

(G(r(P),t,s)(f-xXi)){Yi = G¡(r(P),t,s)(flYi).

But lim,^! G,(r(P),t,s) = 0 for s>2, whence

(EM-XXi))lY-)irn(G(r(P),t,l)(f.XXi))lYi

= limG,(r(P),t,l)(flYi) = E,x(flY)

= /  fdm,-h,= I   fdm,-h,   by Proposition 6.10.
Jy, Jx,

In view of (6.11), Jx f dm, • h, extends uniquely to the nonnegative function
Ex(f • Xx) defined on X,. This proves (a) and (b).

We turó to (c): For k > 0 let

X,k = {xeX:Tkxe X,, TJx $ X, (j = 0,... ,k - 1)},

and for a bounded measurable function / let

m,M(f) := m,(Pk(f-xiJl)),    where xiik •= XXik-

Then m, := J2k>o r(P)~ mt t 'sa c-finite Borel measure, and using the rela-
tions

Pf-Xlfi = P(fx,,0 + fXiA),
Pf-XlM = P(fXiMX)       (k>D

it is straightforward to check that m,(Pf) = r(P) ■ m,(f) for / e Lm .    D

B. Examples.

6.12. Example I (topological Markov shifts, sofic systems).
For a finite state Markov shift whose transition matrix has a positive spectral

radius Theorems 6.1 and 6.2 apply imediately, because yas = ras = 0 < r(P)
and Id e 7 . (The latter assures condition (iii) of Theorem 6.2.)

If px, ... ,pd are as in Example 5.9, then

<V= KzeCd: \z\-r(P) <
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Hence, the smaller the p (i.e. the "smoother" the functions in %?°°(st) ), the
bigger is G^.

If UD = C (De 3), i.e. if 3*°°(UD) = Cd and ß?°°(se) = cd'CàTd{S), then
Theorems 6.1 and 6.2 reduce to statements about matrices (cf. 4.8).

These results are well known, of course. The analyticity part of Theorem 6.2
(and much more) for finite state Markov shifts is due to [Ruelle, 1976].

For general countable state Markov shifts the assumptions of the theorems
must be checked in each case individually.

As the canonical Markov extensions of sofic systems are finite state topolog-
ical Markov chains, the above remarks apply to these extensions as well.

6.13. Example II (up-and-down-counter, cf. 3.13).
We consider the canonical Markov extension of the counter (£2( WM ),S, 3).

Its Markov diagram is uniformly forward finite, since each D e3 has at most
two successors. Fix an analytic structure sé and a weight function g such
that (Q(WM), S, 3, g) is an sé -expanding weighted system (cf. 5.2, 5.3, 5.9).
Let <§* = {E ,F0} (cf. 3.13). As there are no closed paths in 3 \ 77?, we have
yas = y (3 \ f ) = 0. As the number of paths of length n in 3 \ £? starting at
any D e3\g? is bounded by zz,

'«*£(»• ll*JJl/" » *00

for P acting on 3*°°(sé). Hence Theorems 6.1 and 6.2 apply if g^ < r(P)
or g^ < y(3).

If g = 1 , then r(P.) > 1 = g^ as the diagram (3, -*) contains finite sub-
diagrams describing topological Markov shifts of positive entropy. In particular
Theorem 6.2 applies in this case and G^ D {\z\ < 1} provided the p. from 5.9
have been chosen such that Yldj=x Pj ■ y (3) < 1 or UD = C (D e 3). From the
explicit formula for the zeta function (see Example 4.9) or from Proposition
6.10 it follows immediately that y(3)~x = r(P)~x is a simple pole of Ç(z).
Hence A, = r(P) is a simple eigenvalue of P.

If M = N, then Çx(z) = (1 +z)/(l-2z2) (see4.10), and {|z| < 1} is indeed
the greatest ball around 0 to which C^ (z) can he analytically extended.

6.14. Example III (piecewise monotonie transformations with finitely many
monotonicity intervals).

In order to check the assumptions made in Theorems 6.1 and 6.2 we need
some informations from [Hofbauer, 1985, Theorem 9 and its Corollary 1] about
the structure of the Markov diagram for piecewise monotonie transformations:

Let 30 = 2 and 3n+x = 3n U {D e 3: 3C e 3n such that C -► D}
(n> 1). Then

(6.12) 3nc3n+x(n>l),     \j3n=3,    card(3n) = O(n),

(6.13) lim r(M,sxs ) = 1,n—>oo 1-^ \-z"
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where M,^,^  is the transition matrix of (3, —►) restricted to entries from
3\3n and acting by right-multiplication on row vectors of lx(3\3n). Now
let to = D0 • • • Dn be a path of length n in 3 . Then

(6.14) DneSrk+n     ifZ)0€^>  and

(6.15)
co is closed, then it is completely contained in 32   provided
n > n0 for some zz0 e

As 3 is finite, each D e3 has at most card(J¿T) successors, i.e. (3, —►) is
uniformly forward finite.

Let 7 = {ß[3n]: zigN}. For ß = ß[3,] and / e 3"x(sé) we have in
view of (6.3)

HI p;/ HL,< const- HI / |||^ -IIS,,««, • \\(MmSi)"\\x,

i.e.   rß < gx  ■  r(MmSi), and therefore ras = Hm^^ rß < g^ by (6.13).
Hence ras < r(P) provided that g^ < r(P). Similarly it follows from (6.15)
that yas < g^ , cf. the proof of Lemma 5 in [Hofbauer/Keller, 1984].

We turn to the particular case where f is piecewise analytic as discussed in
Example 5.10 and where g = l/\f'\. Let g be the "lift" of g to the associated
piecewise compact space X (see 3.14, 3.15). Choosing e > 0 in 5.10 small
enough, (X ,T ,2 ,g) becomes a weighted sé -expanding system. In particular
r(P) > 1 as / Pf dm = f f dm (where m is the Lebesgue measure lifted to
the Markov extension X of X ). Hence Theorem 6.1 applies if g    < 1.

Assumptions (i) and (ii) of Theorem 6.2 are now trivially sastisfied as

card({x: f"x = x}) < (card(^))".

We check assumption (iii): Let ß = ß[3k], n e N, and a = ß[3k+n]. Then,
in view of (6.14), a(Pßa)JPß = PJßPß for 0 < ; < n .

We summarize the results for the case g = l/\f'\ :    r „ = r   < ?   , y   <° /ii ess as — °oo '  'as —
#oo ' y(^) = r(P) = ' ' and hence zc < gooy(3) = gx ■  In particular G^ 3
{| z | < gTo } ■ We also note that in this case

l/n

(6.16) i = y(^) = SI X>Tj*ft

where the sum extends over all closed paths to of length n.  If g ^ l/\f'\,
then (6.16) still allows the conclusion k < g^ ■ y(3) = gx, and hence again
CV 2 i\z\< g'1}-
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7. Eigenvalues and eigenfunctions for
NON-MaRKOVIAN SYSTEMS

A. A general result.
Suppose that (X ,T ,3 ,g) is a weighted, sé -expanding, piecewise com-

pact system (not necessarily Markovian) and that (X ,t ,3 ,g) is its canoni-
cal Markov extension. Our goal is to derive knowledge about eigenvalues and
eigenfunctions of P and poles of Cg(z) from corresponding results for P.
and Cg(z) proved in the last section.

Cg(z) and £è(z) have been related in Lemma 4.7 and Examples 4.8-4.10,
and it seems difficult to prove general results about this relation more precise
than Lemma 4.7.

P   and P. are related by

n o P. = P on     (Lemma 4.6).*     g       g     *    v '

This identity, however, is of no use, unless one has some additional information
about the range of nt : 3"x'(sé) -» mb(A').

In order to state a rather general result, which applies to various examples,
we introduce the following notation:

Let P = P , P = P., and suppose
(Al) (H, HI . HI) is a Banach space of (equivalence classes of) functions on

XT, P(H)CH.
(A2) (H, ||. ||) is a Banach space of (equivalence classes of) functions on X,

P(H)CH.
(A3) nt(H) C H and s,: H —► H is continuous.
(A4) P: H -+ H is quasicompact with spectral radius r(P) and essential

spectral radius ress, and for f > ress there is N = N(f) e N such that

N
P = £>,.(£,.+ #,.) + Q

<=i

as in (2.2). We write Êx = Ê, if X = X, and Èx = 0 otherwise.
(A5) P: H —* H is bounded with spectral radius r(P).
Under these assumptions we can state

7.1. Proposition.
(a) Assume that ||| P" \\\= 0(r(P)n), \\Pn\\ = 0(r(P)n), and that nt(H) is

dense in H. If (P - Xldf fi = 0 for some f e H, k > I, \X\ = r(P), then
Pf = Xf, and there is feH with nj = f and Pf = Xf. Briefly

y kernel((P - Aid)'') = kernel(P - Aid) = nt(Êx(H)).
k>\
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(b) // (P -klaff = 0 for some fe H, k>l, \X\ > z\ss, and if condition
(A6) below is satisfied, then there is f e H with nmf = f and Êxf = f. Briefly

U kernel((P - Aid)*) = nt(Êx(H)).
k>l

The condition mentioned above is:
(A6) There are a sequence of functions fn e mb(X) and constants a, ß,

yx, y2, C > 0 such that for m = [ßn]

PmfneH,     |||PW/J||<C-^,    ||/-7r./J<C.y2",

|A|"+^
y i < -js—,   y2 <

ess r(P)

a+ß

7.2. Remark. If / € nt(H), one may choose /„ = /, a = I, ß = 0, y, = 1,
y2 = 0 in (A6), and the condition reduces to |A| > ress. This is always the case
if em(H)CH.

Proof of the proposition.
(a) Define SXn = ^"^(X"1 P)j and SXn analogously. As ||| P" ||| =

0(r(P)n), Hm^^^ n = Êx strongly and PÊX = XÊX (see Corollary VIII.5.2
in [Dunford/Schwartz, 1958]). Hence

lim S\    o 7t= lim no S, „ = n„oÊ,
„_oo    i.,n        *       „_00    *        A,« * i.

strongly. Since nt(H) is dense in H and ||P"|| = 0(r(P)n), we may assume
Pf = Xf, and there are f. e H with  \\f - Sin(njj)\\ < j~x  for all n.

A * _    1 A

Hence ||/ - nt(Exf)\\ < j , and as range(7rt o Ex) is finite-dimensional,
/ e range^ o Êx). This proves (a).

(b) In view of (A6) we can fix f > ress and r > r(P) such that

(7.1) r<|A|,   y,<4^,   y2<
a+ß

We may assume that Q from (A4) has spectral radius less than f.
Suppose now

(7.2) (P-XId)f = h = nthent(Êx(H)).
We shall show

(7.3) fent(Èx(H)).
Observe first that (7.2) implies

n-\

(7.4) (A-'P)"/- / = A"1 E^"1^ e nt(Êx(H))
j=0

because (PJ onéo ÊX)(H) = (nm o PJ ÊX)(H) = (nm o Êx PJ)(H) ç nt(Êx(H))
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Let / = [an] + 1 and define

ä„ = (A-'P-A-'ß)'(A-'P)"7„.
un is an element of the finite-dimensional space W := range(J2f=x E¡) > Ê, as
in (A4).
Note that ÊX(H) C W. Now

f-(f-(X-xP)'+mf)-n,(ûn:

<

< const

(rxpfm(f-nJn)\\ + \\n,((X-xP)l+mfn-ûn)
l+m

< const ■

y2" + const.|||(A  XQ)'(X lP)mf„\\\

by (A3), (A6), and the choice of r,

•y2 1   -f-const- r \X\        'yx

< const •

^0

a+ß \"
•y2   +

,a+8'l
ß\C

as n —> oo       by (7.1).

Hence / can be approximated by elements from n^W)  (see (7.4)), and as
dim(nt(W)) < dim(W) < oo, we have f e n^W), say /= ntw , w eW.

Let K = {w e W: nt(w) = 0}. As nt o P = P ont, we have

(7.5) (P-XId)kck.
Let   Û   =   Ê.(H)   and   V   =   (£;=1,   N ÊX)(H).    Then   L7 + V   =   W,

Û nV = {0} , and both spaces are stable under (P - Aid).    (P - Ald),^  is
an isomorphism of the finite-dimensional space V and hence also of its stable
subspace V n K .

Let f = u + v , ûeÛ,   v € V. For large s we have

TT.tP-AId)^ = nt(P-XId)sw = {P-XId)sf
.5-1(P-AId)    Xa = 7r.(p Aid)'  'Â 0.

This shows that (P-AId)'* and hence also v belong to V n K. Therefore
/ = ntw = njt e nt(Êx(H)), and (7.3) is proved.

With h = 0 in (7.2) this proves (b) of the proposition for the case k = 1 .
For k > 1  we proceed by induction:
Suppose we know that for some k > 1

(7.6) (P-Xldffent(Êx(H))
implies

(7.7) fent(Ê.(H)).
For k = 1 this has just been proved ((7.2) => (7.3)).
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If (P - XIdf+xf € nt(Èx(H)), then /, := (P - Aid)/ satisfies (7.6) and
hence /, e nt(Êx(H)) by (7.7). But this means that / satisfies (7.2) with h
replaced by /,, and (7.3) tells us that / e nt(Êx(H)), i.e. (7.7).   D

Proposition 7.1 does not exclude the case that ntoÊx =0 for some eigen-
value X, of P, such that X, is not an eigenvalue of P. It just says that under
suitable assumptions each eigenvalue of P is also an eigenvalue for P. It seems
quite difficult indeed, to show the injectivity of tt,.^ .ß. for general A, even for

particular examples.21 (But see also the last paragraph of Example 7.6.) For
A e T, however, we have

7.3. Lemma. Suppose Theorem 6.1(c) applies to P together with a Borel mea-
sure rh satisfying for all C ,D e3

m{x e Cnn~xD: Vk(nx) g D} -^ 0      as k -» oo.

Then Êxf = 0 for all X eT and all f eL^ with ntf = 0 mon~ -a.e. (For
Vk(x) see Definition 3.3.) In particular nt: range^) -> L~OJt_, is 1-1.

Proof. Let NQ = {x e X: 7t„/(x) ^ 0} . Fix S > 0 and choose a decomposition
3 =3X U32 with a finite 3X and such that |||/2||Ly < S where f2 := EDe^2 /•
Xfi, À ■=f-f2- For keN let

Bk = {xeX:3De3x such that x € D but Vk(x) % D).

Then

nJÊxf\(x) < HI Êxf2 I, + HI Ëx(fx ■ (xNoUBk o n)) |||^
(7-8) +n.\Êx(fx-(xXVNoUBk)on))\(x).

Now

and
Êif2\U<ô\\\Êâ\J2 NU/- " in ̂ x iiij/

W\Êx(fx-(XNoUBko7i))\\\^<const-\\Êx\\x I \h\dm

< const-IIÉJ, HI/|||^ lm(n-xN0) +  £ «(Cn^1^)
V ces,

where the constant is the norm of Id^range^), || • ||,)—► (range^), ||| • ||Ly).
Since for j > k and y e X \Bk there is just one x e X such that t'y = x

21 Added in proof. Recently V. Baladi and the author proved the injectivity of nm,g ,u¡ for
W > Z«s in the case of piecewise monotonie transformations. The proof can be adapted to quite
general systems. It will appear in Comm. Math. Phys. as Lemma 4.3 of the paper Zeta functions
and transfer operators for piecewise monotone transformations.
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for all y e n    {y} (see Lemma 3.10(c)), we have

nt\(X-xP)j(fx.(xXX{NoUBt)on))\(x)

< E \8„(y)\-xX\{NaUBk)(y)-KÂ(y)\-
yeT-'x

For y e X\N0 we have \njx(y)\ = \nj2(y)\ <||| f2 \\\^< Ô , such that the third
term in (7.8) can be estimated by

7=Zc

1   ""'<<*■ lim -Vp"l<¿. |||£<?,1 HL
n^oo n ¿—'    * *     " •*

j=Zc

where £ is the projection onto {P¿$ = 0} •
Putting everything together we have in the limit k —► oo : n^ \Êxf\ <SCX with

a constant C, independent of S, and as ô > 0 was arbitrary, nt\Êxf\ = 0,
i.e. Z^/ = 0.   D
7.4. Remark. Theorem 6.1 (d) underlines the importance of measures m on X
with

(7.9) supp(m) = X    and Pfdm=     fdm    for/eL^.

Similarly there may be a measure m on X with

(7.10) supp(m) = X     and      f Pfdm= f fdm     for f e LXm.

The relation between such measures on X and XT is as follows: If m satisfies
(7.10), then m := mont satisfies (7.9), observe only Lemma 4.6. On the other
hand suppose that some m sastisfies (7.9) and that Lemma 7.3 applies to P
and m . We show that m := m o et satisfies (7.10):

l Pf dm- f fdm= Í' (emP - Pejfdm = ( Êx(eJ - Pejf dm = 0

by Lemma 7.3, since nt(e:tP - Pet) = 0 by (4.13) and Lemma 4.6.
Observe that in any case / fdm = 0 if ntf = 0.

B. Examples.

7.5. Example I (topological Markov shift).
Suppose that Theorem 6.1(b) applies to the system (cf. Example 6.12). Al-

though P and P coincide as operators on mb(A") = mb(Â'), we distinguish
between P: C(X) - C(X) and P:3'00(sé) - 3'°°(sé), and Proposition
7.1(a) still tells us that if |A| = r(P) and ||P"|| = 0(r(P)n), then each contin-
uous eigenfunction of P with eigenvalue A belongs to 7f°° (sé ).   For finite
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state Markov shifts part (b) of that proposition implies that if Exf = f and if
/ varies by at most C • y2 on cylinders of length n (where y2 < 4* ), then
/ e 3"x(sé). As ress = 0, it suffices to choose ß = 1, yx > r(P), and a close
to 0 and to use Lemma 6.5 in order to show that if fn is constant on cylinders
of length n , then ||| P"/„ W^ const- H/J^- ||| P"l |||^ .

7.6. Example II (up-and-down-counter, cf. 3.13 and 4.9).
Although the same remarks as above apply, this does not really help in this

case, because eigenfunctions may be (and will be in general) discontinuous and
cannot be approximated as before. (3 does not consist of cylinders only!)
Hence Proposition 7.1 must be applied in a different way.

In Example 3.13 we saw that 3 = {F,, G, : i > 0} is the only irreducible
component of (3,  —►)  not consisting of a single loop only, and Theorem
6.1 l.c) provides a er-finite measure m on X such that (7.9) holds for P.-, .

Ai

Since D \ int(D) ç {0°° , 1°°} for all D e 3 , and since for cylinders Ze3n

(7.11) m(Z)=X~" f P"xzdm < X~" sup m(D),
3 De3

we can apply Lemma 7.3. (Observe that A, > 1, cf. Example 6.14). Hence
Remark 7.4 shows that the measure m = moet on X satisfies (7.10) for the
operator Px-, . In particular m(Z) = m(etxz) < const-A,"" for Z e 3n by
(7.11).

Hence, if / e mb(A') is of bounded variation with respect to the lexico-
graphic ordering on X, and if fn = J2Ze3-n Xz • j^z) ¡zfdm, then

/ \f - fn\dm<m(X)-X7n -yar(f)
J x

and P"(eJn) e 3'00(sé). Since also

III Pn(eJn) |||^< const- 11/11^- HI P>,1) IL< ll/IL-const- X\
by Lemma 6.5, we can apply Proposition 7.1(b) with H = £P°°(sé), H =
Lm,yx = A, = r(P), ress = 1 , y2 = X~ , and ß = 1 , which results in the
following conditions:

|A|>A^,    \X\>Xf>.
The optimal choice for a is 1 in which case we obtain |A| > ^/77x .

We resume: If / e Lm is of bounded variation and if (P - Aid) / = 0
for some k > 0 and |A| > y/Tx , then / = nj for some / e Èx(3'00(sé)).
Also Aj is a simple eigenvalue for P: Lxm —> Lxm in view of Lemma 7.3, and
if M g k • N for all k > 2, then the irreducible part of (3, —») has period
2, and r(P) and -r(P) are the only eigenvalues of maximal modulus for P.
Unfortunately this result tells nothing about those A with 1 = ress < |A| < \fX[.
Better results cannot be expected, however, unless one can show directly that
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/ e nt(3"x'(sé)), as it has been done for certain interval maps in Lemma 11
of [Hofbauer/Keller, 1984].

7.7. Example III (piecewise monotonie transformations).
Suppose that 3 is finite. In just the same way as in the foregoing example,

but using the Lebesgue measure, which is a priori given, instead of the measure
m constructed there, one can check (A6) when H = Lxm, H = 7ftx'(sé), yx =
A, = r(P) = I3ess< goo,y2 = g^ + e (any e > 0), ß = 1, and a = 1 . The
resulting condition on A is |A| > ^fg^. Again there is a gap to GT = {\z\ <
S"1} (cf. 6.14).

Proposition 7.1(a) and Lemma 7.3 show that for A = 1 there is a 1-1-
correspondence between eigenfunctions of P: 3'°°(sé) —» ßf°°(se) and of
P:LX -L1 .m m

8. Invariant measures

A. Preliminaries.
Suppose that (X ,T ,3 ,g) is a weighted, piecewise compact, sé -expanding

system with a canonical Markov extension (X,f ,Z,g) whose Markov dia-
gram is uniformly forward finite. Let P = P    P = P    and assume that there is

a Borel probability measure moni with / Pf dm = / f dm for all f e Lm.
Let m = mo nt be the "lift" of m to X (see Remark 7.4). If fas < r(P) for
some projection net 7, then Theorem 6.1 applies to P. In particular A, = 1,
and for each 0 < h e LM such that Ph = h and / h dm = 1 the probabil-
ity measure dp = h dm is T-invariant. It is easily seen that dp := h dm is
T-invariant, where h = nt(h), and that

(8.1) I fdp = I fon dp   forall/eL^.
8.1. Remark. T acts isometrically on L", and its adjoint T* satisfies T*f =
P(fh)/h .   T*T = Id¿í , whereas TT* is the orthogonal projection onto T(L')

2(see Lemma 9 in [Hofbauer/Keller, 1982]). For feL   and A e C with |A| = 1/'
we have Tf = If if and only if T f = Xf if and only if P(fh) = Xfh (ibid.,
Theorem 2).

8.2. Lemma.   (T,p) is weakly mixing if and only if

(8.2) ifdp = 0^njx(fon-h) = 0      (feL^XeT)

Proof. Assume (8.2), let /, e L J5,  /2 e Lx , and let j fdp = 0.   Then
k„(/20*-Â) =f2h, and

/ f\°T" • f2dp = ¡ fx ■ 7ttPn(f2 on -h) dm —> 0   as n —> oo

by Theorem 6.1(c), i.e.  (T.p) is weakly mixing.
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Conversely, suppose that (T,p) is weakly mixing. Fix k e N such that
Xk = 1 for all X, e T. Let /, e L™, f2e L¿ , and suppose that / f2dp = 0.
Then /2 • h = nt(f2on ■ h) and

IfxoTkn-f2dp = jfx-Pkn(f2h)dm

= / /[ • ntPk"(f2 o n ■ h)dm -* E / A ' ^.^(^ ° ̂  ' ~h)dm

as /î—»co. Since (T,p) is weakly mixing, this implies '^2,x&TnttÊx(f2on-h) =
0. Now use (4.13), Lemma 4.6, and (6.2) for P to show that n^Ê etntÊx =
ô xntÊ   for X,p e T. Then (8.2) follows at once.   D
B. Equilibrium states.

We recall some concepts from ergodic theory specialized to piecewise invert-
ible systems. General references are e.g. [Parry, 1969], [Walters, 1981], or
[Petersen, 1983].

Suppose (X,T,3) is a generating, piecewise invertible system and 3 is
the Borel- a -algebra of X. By 37 (T) denote the set of T-invariant Borel prob-
ability measures on X . For v e 37(T) let

(8-3) gv= ¿2xz-KlXz\T-X3]
zez

and

(8.4) h(u,T) = - jloggjv,

the entropy of (T, v). (Note that v{gv = 0} = 0.) From the general theory of
entropy it follows that h(T,v) does not depend on the particular choice of 3
as long as 2 generates.

Given a weight function g > 0 and v e 3f(T), let

(8.5) F(v,T,g) = h(u,T) + j log gdv.

If u{g = 0} >0, then F(v,T,g) = -co.
uQ e 37(T) is an equilibrium state for log g , if

(8.6) F(vG,T,g) = sup{F(v,T,g):veJ?(T)}.
If (X,d) is a compact metric space and if T and log g are continuous, then
the common value of both sides of (8.6) coincides with the pressure

press(7\ logs) = lim lim - log p(T, log g,e),
E-»0n-»oo n "

where

pn(T, log g,e) = supl E^«(x): L'is(«,e)-separatedL
KxeE J

(Recall that E ç X is (n,e)-separated, if whenever x,y e E and x # y,
there exists some i with 0 < i < n- 1 and d(T'x, T'y) > e .) This variational
principle is due to [Walters, 1976].
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8.3. Theorem. Let (X ,T ,2 ,g) be as in part A of this section with the measures
m and p described there.

(a) p is an equilibrium state for log g and F(p, T, g) = 0  (= logA, ).
(b) Suppose supp(m) = X. Then each equilibrium state v for log g can be

represented as dv = hudm with hv e n Jjange(È x)), and the number of ergodic
equilibrium states for logg equals rarAdn t o È x). In particular, if Xx = 1 is a
simple eigenvalue of P., then there is a unique equilibrium state for log g.

Proof, (a) (a slight generalisation of [Ledrappier, 1974]). For v e J£(T) let
Pv = P   , and observe that since we can choose E^ [xz | T TT X7,

(8.7) jfx-PJ2dv = jfxoT-f2dv

if both sides of this equation are well defined.   In particular, since v is T-
invariant, Pv 1 = 1 z^-a.e. Let an be a measurable function such that log an e
Lv . Then
(8.8)
F(v,T,g) = h(v,T) + Ílog gdv = jlog^-dv

= - I - / loga,, du +     log
n—\ rj.k

¡t=o 8V ° T
n-\ r^k

dv\    as v o T    =v

<-(- [logadu+ [ aoT"Y\ 8°T, dv - 1» V /     "     / "     L\g..oTkfc=o 8„
n-\

<\(- f log andv+ f P\an oT") dv -   l\

= - (-J logandv + J an-ntP"(eJ)dv - lj

Specialising to an = exp(-yfn) we obtain

by (8.7)

F(v,T,g)<^= + ^^^\\\P"y/n n ij/ 0   as Z2 —*■ oo

because ||| P" \\\= 0(n"   X") = 0(n    '), where o is the order of the pole A,
of the resolvent of P .

On the other hand, using the convention 0 • log 0 = 0, we have for h
l.yloglPlll.yh.(ä): A|logA|<max{e-  ', ||| h ||L -log ||| Â |||y} < oo. Hence hAogh eLxm,

i.e.  log h e L    and as p o T     = p.

log ~nr- € L„ and / log—r— dp = 0.
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Now

/h o T • glog    h.gßdß

hoT-gn , fhoT-gxíno i ■g rno i ■ g
<   / —=-^Ldp - 1 < / —-^Ldm - 1~ J      h-g J        g

= [P\———)dm - 1 = ÍPß(l)-hdm - 1

= 0   as/yi)= lp-a.e.,

i.e. p maximizes F(v,T,g). This proves part (a).

We turn to (b): Since supp(m) = X, we have supp(w) = X, and hence T
is a finite group and all A e T are semisimple (Theorem 6.1). In particular
there is zc > 0 such that Xk = 1 and JZfjo' k' = 0 for all 1 / A e T. Using
the notation Sr = P — I^er ^Êx we can fix ß > 1 and 0 < y < 1 such that
pVPF)* < y < 1. Let h = ntÊx(eJ), an = min{h~x ,ßln/k]}, and let v be any
equilibrium state for log g. Then F(v ,T ,g) = 0, and by (8.8) we have for
large ;'

0 = k-F(v,T,g)

<±-(kjlog^-dv + kjajknJx(eJ)dv-k + JJ2  faJkK¥(eJ)d^

< I I [ loghdv-jlogß-v{h<ß J}+ ia,khdv - 1 + yJ)
J   \J(h>ß-'} J      J J

<\ f loghdv-logß-v{h<ßJ} + K.
J J{h>ß~J} J

Hence

(8.9) logß-v{h<ß j}<\ [ loghdv + K.
J J{h>ß-j} J

As log/z is bounded from above, -co < floghdv < co is well defined. This
shows v{h = 0} = 0 (let j-»oo in (8.9)).

We prove log h e Lxv : Suppose for a contradiction that Jloghdv = -co.
Then ¡{h>ß_l}loghdv < 0 for large ;' and (8.9) yields v{h < ß~j) < y' for
large /', which in turn implies floghdv > -co.   This allows the following
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estimate:

= l+F(v,T,g) = l
with equality if and only if (h • g)/(h o T ■ gv) =  1    zy-a.e.   Hence  gv =
(g • h)/(h o T)   v-a.e.   Therefore we obtain for f eLv and zî e N

(8.10) J J       .„        y  .

In view of Theorem 6.1(d) there are f-f~ -invariant sets î; and P-invariant
functions A, > 0 such that /V Â ¿m = r5, , and

ÊJ=ZÎjd*"hi    for feL^.
M Jx>

In particular h = J2j=i afh   f°r some a, e R.
Suppose now / is bounded and constant on each cylinder Z € 3N for

some N>0. Then PN(fon-h)e-^'00(s/) and i E£=v~' ^*(/° * • Â) -
Ê PN(fon • Â) in X°°(j/). Hence, for such /, (8.10) implies

//*./
_ï-!-(¡u

= É «; • / pN(f°n ■ hj)dñi ■ j n-Ydv
i ,j= 1 '

= J2a,[fon-h,dm.f7^dv
i=\       J J

- //v ¿An

for some hv e n3range(Èx)). Since (X,T,2) generates the Borel-er-algebra
of X, it follows that dv = hvdm .     D
8.4. Remark. If m{x e D: Vk(x) g D} -» 0 as k — oo for all D e3, then
Lemma 7.3 applies, and there are exactly rancis,) ergodic equilibrium states
for logs in Theorem 8.3(b).
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C. Exponential weak Bernoulli mixing.
Let (X ,T ,2 ,g), m , and p be as described in part A of this section. For

finite or countable partitions 3 and 3 of X let

DM(3,3)=     ¿2     \ß(RnS)-p(R)p(S)\.
Re3i ,se.9*

3 is called a weak Bernoulli partition for (T ,p), if

lim b(n) = 0   where b(n) = sup D(3, , T'{k+n)3,).

It is well known that

b(n) = 2 • sup /" sup l\p(A\3k) - p(A)\ : A e T~{n+k)3z} dp
ke^J ( >

where 32 is the a-algebra generated by \/°^0T~'2. \b(n) is known as
the mixing coefficient of absolute regularity of the ^-valued stochastic process
t\n , £n(x) = Z if Tn(x) e Z . A discussion of this notion of mixing and a lot
of references are provided by [Bradley, 1983].

8.5. Theorem. Suppose that (T,p) is weakly mixing. Then 2 is a weak
Bernoulli partition for (T,p) and

b(n) = 0(rn)

for each r > max{|A|/A,: Xe o(P), \X\ <XX) .
8.6. Remark. For finite state Markov chains an even stronger mixing property
was proved by [Bowen, 1975]. For piecewise monotonie interval transforma-
tions (with g of bounded variation) a result like Theorem 8.5 can be found
in [Hofbauer/Keller, 1982] and [Rychlik, 1983]. Here we adapt Rychlik's very
elegant proof to our setting.

Proof of the theorem. Let A = T~(n+k)A, Ae32. On Be2k we have

Since p(A) = p(Â) = fÂ h dm ,

\p(A\2k) - p(A)\ < [ \P"+k(xB h)lp(B) - h\ dm   on B
Jà

and hence
\b(n) < sup J2  [ \P"+k(XB h) - p(B) ■ h\ dm.
2 *6NzztV

Let È = n-x(B).   Then xB = XB ° n, nm(xÊh) = XBh, and Pn+k(xBh) =
n.P"+k(XBh)- Hence

tm.

\b(n)< sup ¿2  ¡\n3"+k((xB-p(B))h)\dm

sup ¿2  [\nV"Pk((xB-p(B))h)\dm
Zt€N „T"£ Jk€S>Bei-k
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by Lemma 8.2, where *F = P
6.1(c). Now

T.xer*Ex as the L.-operator (cf. Theorem

-b(n) < sup J2
keN B€2¡,

VnPk((xB-p(B))h)

< const- z-" • sup Y, (HI P (XÉ-h) IL +/*(*)• III * ID
' nezk

(
< const- r

\
h 111^+ sup 53  ||(Â-sfl)ort

ZceN eu paih in^
of length A-

by Lemma 6.5 where

»*=Exz- wK
zez

w   Wsf

< const- r" (m h \\\J/ + sup ||| Pfc(Â*) |||^)

ñAFinally observe that sup^.^ ||| P   |||j/< co and /z   e D

8.7. Example II (up-and-down-counter).
In (7.6) we saw that the counter (£2(14"^ ,S) has a Borel measure m with

supp(zn) = £l(WM) and /Pf dm = A, / f dm for all f e Lm . Xx is a simple
eigenvalue of P . Replacing g = 1 by g = XT' , we can apply Theorem 8.3 and
see that the counter has a unique measure p of maximal entropy logAj for
each subset M of N. If M g zc • N for all k > 2, then 1 and -1 are the only
peripheral eigenvalues of P.-i . Hence (Q(WM),S ) has exactly two ergodic
measures of maximal entropy, both weakly mixing, and hence exponentially
weak Bernoulli mixing under S .

8.8. Example III (piecewise monotonie transformations).
Suppose that 2 is finite. In Example 6.14 we showed, how Theorem 6.1

applies. In particular, if g = l/\t'\, then all equilibrium states on X for log g
are absolutely continuous with respect to the Lebesgue measure on X. The
number of ergodic equilibrium states for log g equals rank^, ), and in view
of Example 7.7 this number is identical with the multiplicity of the eigenvalue
1 for the operator P acting on the space of functions of bounded variation on
X or on LXJX) (cf. [Hofbauer/Keller, 1982]).

As the spaces [0,1 ] = X and X differ only by countably many points, " X "
may be replaced by " [0, 1 ] " in the above remarks.
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9. Applications

A. Limiting behaviour of processes Sn = YllZo f°T.
Let (X, T,2 ,g) be as in §8.A, and assume that (T,p) is weakly mixing.

2
f

oo
*^k

hV
k=\

Fix f e L2 with J fdp = 0 and suppose

(9.1) £ll(0*/HL2i<oo.

(yfc)/t>0 = (fo T )k>Q is a strictly stationary stochastic process with respect to
the probability measure p on X. Let Sn = J2"k=o ̂k anc*

(9.2) <72=var(ro) + 2.¿cov(yo,Y,)<co.■2=var^0j + z-
Zc=l

An easy classical calculation [Kac, 1946] yields

(9.3) lim var(S lyfn) = a2.
n—»oo "

The exceptional case a = 0 is characterized by the following lemma (see
Lemma 6 of [Rousseau-Egele, 1983]; we give a shorter proof).

9.1. Lemma. Assume (9.1). Then a = 0 if and only if f = <j> - T<f> for some
<peL2M.

Proof. By (9.1), /^ = ET=o(T*)kf is in L\ ■ A straightforward calculation
yields

o1 ̂  ¡(f^r f^f^-r fjdp
= \\fJn-\\T'fJ^
= \\Uli-\\Tru2Ll.

Since 7T* is the orthogonal projection onto TL2, a2 = 0 is equivalent to
/oo = ^^*/oo ' which is true if f = <f> - Ttfi and which, on the other hand,
implies f = f- T*f   = TT* f   - T* f   .    Gf J J or, J on ^oo ^oo

Let fn = E [f\2n]. A convenient tool to verify (9.1) is

9.2. Lemma. Suppose f e L   is bounded, J fdp — 0, and

(9-4) \\fn-f\\L} = 0(an)

for some 0<a<l. Then there is 0 < b < 1 such that ||(r*)"/||¿2 = 0(b").
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Proof. Fix k € N such that Xk = 1 for all A e Y, and suppose that n = 2lk
for some / e N. Let T = P - £Aer AL:, (as Lm-operator). Then

IKOVttlli^ll/ttlloo-/|/>" (//t-A)|rf«
■ J\n,Pn(f,kon-h)\dm

■ (E / MA on-h)\dm + j K*"(4 o * • Â)| rfm)

/'"•* •"Cp"C(f¡ko7fh)\dm

by Lemma 8.2 and as »FP = *P2,

^ll/ILHIltV^OTT-A)^
< ll/lloo- HI ^  IL -ll/lloc- III ^

by Lemma 6.5, where h* = E *zll^z_^ Azii"|ziij/ '
ze¿

= 0(|||4^/2|||y)   as sup HIP" HI y< oo.
«

Since the spectral radius of *F is less than 1, the lemma follows from
H//* - f\\L\ - °(a"'2) and the fact that ||r*||L, = 1.   D

There are (at least) four approaches to probabilistic limit theorems for the
process Sn provided ct2 > 0.
9.3. L2-TECHNIQUE.

Assuming (9.4) and using Lemma 9.2 one can reduce the asymptotic normal-
ity of Sn/vno2 to that of a backward martingale (see [Gordin, 1969]). This
approach to the central limit theorem was used by [Keller, 1980] for piecewise
monotonie interval maps.

9.4. (/o T")n>Q   AS A FUNCTIONAL OF AN ABSOLUTELY REGULAR PROCESS.
Let £,n(x) = Z e 2 if T"x e Z. This defines a stationary ^-valued

process, which, by Theorem 8.5, is absolutely regular with exponential decrease
of mixing coefficients. Assuming (9.4) and observing that (X ,T ,3) generates,
the process (Yn)n>0 can be represented as a sufficiently regular functional of the

28process (£„)„>0 , and one obtains a central limit theorem     with convergence
rate n~" for some 0 < v < j and an almost sure invariance principle for
the process Sn that is good enough to imply loglog-laws and weak invariance
principles. Details can be found in [Hofbauer/Keller, 1982] where this approach
has been used for piecewise monotonie interval maps.

28 Cf. [Ibragimov/Linnik, 1971].
29 Cf. [Philipp/Stout. 1975].
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The other techniques rely on direct estimates of the Fourier- or Laplace-
transforms of Sn/y/ñ or Sn. They apply only to "analytic" /, analytic in the
sense that for each Z e 3 there is fz e ^°°(UZ) such that fz o s = fiz (cf.
§5).
9.5. FOURIER-TRANSFORM TECHNIQUE.

Let P, = Pg.exp,„ a for t eU. Then Theorem 6.1 applies to Pt,

Í exp(itSn) dp= Í Pn(h ■ exp(itSn)) dm= Í P"(h) dm,

and a perturbation expansion of the spectral representation of Pt at t = 0 leads
to a convergence rate n~ in the central limit theorem, while this expansion
for small \t\ together with the spectral theory of P( for arbitrary / leads to a
local limit theorem for Sn . [Rousseau-Egele, 1983] has carried out this program
for piecewise monotonie interval maps.

9.6. Laplace-transform technique.
We still assume / to be analytic in the above sense, but we skip the assump-

tion ¡ f dp = 0. Let now P, = Pexpi,rs for ieR. Then, similarly as above,
/exp(tSn)dm = jP"(l)dm , and Theorem 6.1(b) (or perturbation theory ap-
plied to PQ ) yields quasicompacity of Pt for small \t\, say P, = Xx (t)Êx (t)+^(t)
for t_ < t < t+ and Êx(t)(f) = h ■ f f dp. (Remember that (T,p) is weakly
mixing.)

Let ^„(0 = ^ log Jexp(tSn) dm . Then
(a) y/n(t) = }¡log fn,P?(eJ) dm ^ log Xx(t)=:ip(t)<oo  (n-oo),
(b) tp(t) is real analytic on (/_ ,/ ), since P, is an analytic family of oper-

ators,
(c) using Chapter VII, §2.3 and formula (2.14) in [Kato, 1976] it is not hard

to show that (/(0) = / / dp and ip"(0) = o2.
If a   > 0 one can choose t_ ,t+ so small that <p"(t) > 0 for t_ < t < t+ .

Let a_ = y/'(t_)> a+ = V/'(t+)-  Properties (a)-(c) are sufficient for a large
deviations result, namely:

For all qG (y/'(0),a+)

lim - log m ( -2- > a ) = -1(a) e (-co, 0),
n-»oo n \ n        J

and for all a e (a_ , y/'(0))

lim - log m ( -2 < a ) = -1(a) e (-co, 0),
n-»oo n \ n        J

where 1(a) = a • ta - w(ta) and ta is the unique solution of y/'(t) = a . (Note
that if ¡fdp = 0, then 1(a) = a2/2<r2 + 0(a3) in the limit a -» 0.)

Here we used [Plachky/Steinebach, 1975]. A good discussion of the Laplace-
transform technique can be found in [Cox/Griffeaths, 1984].
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B. Limiting behaviour of statistics based on (/o T")n>0 .
The technique of representing (f°Tn)n>0 as a functional of an exponentially

mixing absolutely regular process (cf. 9.4) can be used to derive limit theorems
for statistics based on the sample (f(x), ... ,/o r"~'(x)), more complicated
than the simple "mean-value statistic" Sn . This has been worked out for U-
statistics by [Denker/Keller, 1985]. We do not go into details.

C. Extinction probabilities and transient behaviour.
Suppose (X,T,3,g) is a weighted system and m a probability measure

on X such that / Pf dm = f j dm for all f e Lxm. Let A be a finite union
of cylinders from 3 and let

t(x) = ^(x) = min{« > 0: Tnx e A).

(For other "traps" one must start with a refined partition 3.) We investigate
pn = m{x > n). Since x > n is equivalent to $¡Ylk=oXA ° ^ < 0,the
large deviation result from (9.6) (if applicable to / = xA) would yield
limn_(oo i logpn = -1(0). But as / = xA > 0> ^¡(0 is increasing in t and
hence tp'(t) > 0 such that a_ > 0, i.e. a = 0 is not in the domain of va-
lidity of the large deviation estimate. There is an alternative approach to this
problem, however, which shares the large deviation flavour:

Let gA = g ■ (1 - xA) ■ (Do not confuse this notation with the former
gn .) Suppose that Theorem 6.1 applies to (X ,T ,3 ,gA) (it need not apply to
(X,t,3,g)\). Then

Pn =  flÍ(l-XA)oTkdm = (P¡ fn'(l -XA)oTk) dm
J   k=0 J \k=0 I

= jP"gA(l)dm = j7ttP¡A(eJ)dm,

i.e. ÏÏm",,^ ¿p„ < log r(PèA).
Similarly, if A, A = r(PéJ and P3hA = A, A hA > 0, then

Pn> IIIÄJL1 • [ï[(^-XA)oTk .nm(hA)dm
J   k=0

- \\\hA\C ■ j'n,P;A(hA)dm

= W\hA\\C <,A-j*ßA)dm,

and hence limf)_(00 j¡ log pn = log A, A provided ¡n^(hA)dm > 0, e.g. if
supp(w) = X.
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Theorem 8.3 provides an equilibrium state pA e Jt(T) with F(pA , T ,gA) =
log A, A . In particular, PA{gA ° T = 0} = 0 for all k > 0, i.e. supp(p^) =:
XAçf)~0T-k(X\A), glXA>0,and

x-°ZXx,A = F(liA>T\xA>g\xA)

= sup{F(v,TlXA,glX4):ve^(T¡XA)}

= press(T¡XA,logglXA)

provided XA is a compact metric space (cf. §8.B).
We summarize these results in

9.7. Proposition. If X\A is compact metric and if supp(zn) = X, then

Um - log m{rA > n} = press(7^ , log g¡xJ.

For constant g this was proved in [Keller, 1984].
If the trap A is very small, it may take quite a long time until a trajectory

hits it with probability 5 , say, and it is interesting to characterize the behaviour
of the orbits before extinction. We shall show that it is in some sense indistin-
guishable from the behaviour of typical orbits of the system (T ,pA) where pA
is an equilibrium state for log gA .

So suppose again that (X ,T,3 ,g) is a weighted system and m is a prob-
ability measure on X with supp(w) = X and / Pfdm = / f dm for all
f e Lm. m is lifted to a measure m = m o nt on X. Let the trap A , the first
exit time xA , and the weight function gA be as above.

9.8. Proposition. Suppose that Lemma 6.9 applies to the system (X ,t ,2 ,gA),
that Xx A is the only peripheral eigenvalue of P. and that A, A is semisimple,

i.e. PL = Xx A Èx + 4* with r(¥) <XXA. Let mA = (m o Êx (et 1 ))" ' • m o Êx,
mA = mA o et, and for n e N let mn = m(- \xA > n).

For cp: X -+ R and n e N let Varn(0) = sup{|<ï>(x) - 0(y)|: x,y e Z e
2n}. Then there are S > 0 and 0 < q < 1 such that

^S-IIOII^V^ + Var^cD)

for all 0 < k < n and O: X -> R.
Proof. For 0 < k < n let

mk,n= E mA(Z)-mn(-\Z),
Z€3Tk

vk,n= E mA(Z)-mn(-\Z)xmA(-\Z).
ze^k

j Q>dmn - / Q>dm/
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mk n is a probability measure onl, i^t;i onlxl, and

/ <Pdmn - / <f>dmA\\Jx Jx '

<\[ *dmn- [ Qdmk   \ + \[     ®oprxdvk    -Í     <t>opr2dvk
'JX JX '       'JxxX JXxX

where p^ ,pr2: X x X —► X are canonical projections,

< ¿2 \m„(Z)-mA(Z)\\[ <t>dm„(-\Z) + Var,(<D)
■m* 'Jzzezk

< 2||<D||00 • sup \m„(B) - mA(B)\ + Var^(<î>)
B

where the supremum extends over all B in the CT-algebra o(3k) generated by
2

Next, if pn = m{x > n} > 0, then

mn(B)=Pn~l        XBdm

-P;lfr{xB'U{l-ZA)oAdm

= Pñl / n*pl~kfdm   where / = pÍSe3B) e^°°(sé),

Xnx;AkjÊxfdm + fVn-kfdm
= XnXAfÊx(e.l)dm + fV"(eJ)dm

^X"x 4fÊx(e,xB)dm + fV"-kfdm
XnXAfÊx(e.l)dm + fVn(e,l)dm-

Here we made use of the fact that moÊx is a er-finite measure on X invariant
under X7 4P    (see Lemma 6.9).

Fix 0 < q < q < 1  such that A~ ' r(*F) < q . As

III *"~7 IL< const- (Xx Aq)"-k. ||| /|||^< const- (A, jf~k(Xx Aq/qf
< const- A" ̂ #""     (use Lemma 6.5)

and
HI V(e, 1 ) HI^< const- (A,,<?)",

we finally get
n—Zc,m„(£) = je,xBdmA-(l+0(qn)) + 0(qr

= mA(B) + 0(q"-k)

uniformly in B .    a
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lim
n—>oo

= 0.

9.9. Corollary. Let Fn (n e N) be a sequence of functions from Xn to R,
and assume that Fn is Lipschitz-continuous in each variable separately with a
Lipschitz-constant Ln, in the sense that (for some ô > 0)  \Fn(... ,x,...) -
Fn(... ,y, ...)\ < Ln -As(x,y), where As(x,y) = exp(-ô ■ max{n e N: 3Z e
3n such that x ,y e Z}).

If supn€N Halloo < co and if lim„_00 Ln = 0, then

\    Fn(x, ... ,T"~xx)dmn- J Fn(x, ... ,T"~xx)dm/

Proof. Let <D„(x) = Fn(x, ... , T"~xx). Then

Var,(<D„)<L„.(T-^+ «-/:),

and choosing k = kn such that n - kn —► oo and Ln ■ (n - kn) —► 0 as n —► oo,
the corollary follows from Proposition 9.8.   D
9.10. Remark. If En: X —» C[0,1] is defined as the path obtained by linear
interpolation of the points (-¿Tj , n~ J2'J=of° TJ(x)), (i = 0, ... ,n- I) for
some Lipschitz-continuous function /:!-»! (in the above-defined sense),
the corollary shows that the distributions of the En under mn and under mA
are asymptotically equivalent. The distribution of En under mA tends, in turn,
to the distribution of a Brownian motion over [0,1] as n —► oo provided a
as defined in (9.2) is positive, cf. 9.4.
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